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Abstract—As software-defined network (SDN) adoption in-
creases, it becomes increasingly important to develop effective
solutions to defend them against cyber attacks. A prominent
cyberattack that can compromise SDNs is TCP-SYN floods,
which can exhaust network resources by initiating too many
fraudulent TCP connections. Previous efforts to detect SYN Flood
attacks mainly rely on statistical methods to process mirrored
traffic or flow statistics. Thus, they either incur high overhead
(in the case of port mirroring) or lead to low accuracy (in
the case of using flow statistics). In this paper, we propose
a machine learning (ML)-enabled TCP-SYN flood detection
framework using Openflow port statistics. We demonstrate that
ML models such as Random Forest classifiers can differentiate
normal traffic from SYN flood traffic with up to 98% accuracy.
We also introduce a novel threat localization technique that can
pinpoint where the attack traffic originates from in the network.

Index Terms—Software-defined networking, anomaly detec-
tion, TCP-SYN floods, DDoS detection

I. INTRODUCTION

Since the original ARPANET, networks have become per-
manently embedded within the fabric of computer commu-
nications. Traditional computer networks were developed to
disperse intelligence across the physical devices in the topol-
ogy, like routers and switches. These architectures consisted of
both a control plane, which administered configuration of the
nodes and path programming, and a data plane that assisted
with packet forwarding. As innovation progressed, networking
applications became more diverse, dynamic, interconnected,
and geographically distributed like the Internet of Things
(IoT), vehicular networks, and smart grids. Increasing diversity
along with increasing complexity hindered the management
of networks due to complicated synchronization problems and
complex implementation issues [1].

To address these problems, software-defined networks
(SDN) were introduced. SDNs decouple the data and control
planes, so a logically centralized controller can oversee routing
decisions for all network devices in a network. The SDN
controller can facilitate network policy upgrades, alterations,
and monitoring due to having the ability to inject flow tables in
network switches that control network operations and policies
[2]. This consolidated architecture also enables the ability to
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Fig. 1: TCP-SYN flood attack

perform network data analysis and mining to improve effi-
ciency or provide security as large networks can be monitored.

Cyber attacks such as Distributed Denial of Service (DDoS)
threaten the healthy operation of SDN networks. The number
of global DDoS attacks is expected to reach 15.4 million by
2023 [3]. The main goal of a DDoS attack is to consume and
exhaust the resources, like bandwidth and memory, of a target
machine, thereby preventing it from serving legitimate and
legal requests. An eminent DDoS attack against SDNs is the
TCP-SYN flood, which takes advantage of the Transmission
Control Protocol (TCP) handshake mechanism, by not return-
ing the final ACK packet to the target node. Attackers keep
sending TCP SYN packets to the target, thereby consuming
the target device’s resources [4] as illustrated in Figure 1.
This type of attack can be catastrophic for organizations
and their SDN infrastructures as they can risk the loss of
revenue, reputation, and intellectual property. The problem
can be exacerbated if TCP-SYN flood attacks occur on SDNs
associated with national critical infrastructures like the power
grid, transportation systems, and energy sectors.

Network administrators can monitor and manually identify
the existence of TCP-SYN floods on a network. However,
such manual solutions are not feasible as attacks could cause
significant damage before they are detected. Thus, automated
solutions are key to the uninterrupted operation of critical SDN
infrastructures. Anomaly detection methods can be placed in
the logically centralized SDN controller to identify malicious
traffic using network metrics that network devices report to
the controller periodically [5].978-1-6654-9952-1/22/$31.00 ©2022 IEEE



Due to the significance and prevalence of TCP-SYN floods
on an SDN infrastructure, it has received considerable atten-
tion from researchers, especially using machine learning(ML)-
based anomaly detection. However, existing solutions to de-
tect TCP-SYN attacks have few issues. First, they utilize
established SDN anomaly and intrusion detection datasets [6]
[4], which are collected from fixed network topologies, that
might be different than most SDN topologies in terms of
users, nodes, devices, geographical spread; all of which can
vastly affect network metrics. Second, they mostly rely on
flow statistics, which again can limit the transferability of
solutions to different networks since the flow statistics depend
on network topology and traffic characteristics. For example,
the original DARPA dataset provides artificially high feature
values compared to real traffic data, as it was simulated in
a military network environment. The same problem exists in
other datasets that are derived from DARPA such as NSL-
KDD. Similarly, the open-sourced datasets like the UNSW-
NB15 dataset contain multiple flow features like IP addresses,
protocols, TCP/IP headers, payload information, recorded start
time, SYN Flag, and ACK Flag counts. These may end up as
redundant features that play no impact in being able to detect
potential TCP-SYN flood attacks. Depending on the approach
being used to detect TCP-SYN floods, these features can also
increase the cardinality of the dataset, leading to increased
training and inference times. Finally, a common problem faced
by many open-sourced datasets is that of class imbalance. In
general, many of these SDN datasets just do not have enough
data samples that can model certain anomaly types effectively.
This leads to poor performance metrics when trying to detect
these classes. Hence, training a TCP-SYN flood attack detector
using these datasets will hinder the effectiveness of the models
in production networks, putting organizations at risk against
cyber threats [7]. Addressing the above limitations is crucial
to ensuring that organizations can generate, train, and deploy
their detectors to identify TCP-SYN flood attacks, and not rely
on open-sourced datasets.

In this paper, we propose a TCP-SYN flood detection
framework using an SDN simulation environment, that ad-
dresses the above-mentioned limitations. Organizations can
gear the simulation environment and record metrics towards
their topology, instead of relying on using the recorded metrics
derived from static topologies from the SDN datasets. This
can provide better performance and security. We, also, inves-
tigate different network statistics to conduct attack detection.
Flow statistics may contain many redundant features and can
increase cardinality, leading to higher training, and inference
times. Another option is to utilize port-level statistics instead
of flow statistics where we capture statistics from every single
SDN port in the infrastructure. Yet, this can also be an issue
as certain port statistics are reported as a cumulative value,
affecting the accuracy of the models.

Our proposed approach focuses on delta/differential port
statistics. Differential port statistics refer to the change in
magnitude of observed statistics in switch ports in a time
interval. Differential port statistics can provide a more fine-

grained analysis of network flows from the port level. Normal
port statistics may get aggregated over time and can have
high magnitudes for the feature values. This can lead to
lower ranges over the magnitude scale, between the feature
magnitudes during normal and attack circumstances. This
can induce instances of attack to be misclassified as normal.
Using differential port statistics, this range can be higher
over the magnitude scale and can lead to more accurate
performance and faster identification. This can allow us to
rapidly capture and identify potential TCP-SYN flood attacks
from the network traffic before they cause harm. To avoid the
class imbalance problem, we gather an equal number of logs
for both normal and malicious traffic.

Our main contributions proposed in this work are:
• Setting up an SDN simulation environment that each

organization can gear towards their topology.
• Capturing various differential port statistics under both

normal and attack conditions to model both circum-
stances, while minimizing class imbalance by ensuring
an equal representation.

• Training an ML model on our captured data to generalize
both conditions.

• Testing the performance of our approach towards real-
time detection of TCP-SYN floods.

The rest of the paper is structured as follows: Section II
provides the literature study and related work. Our method-
ology is provided in Section III. Section IV demonstrates
our simulation, results, and analysis. Finally, conclusions are
drawn in Section V.

II. RELATED WORK

Detection of infrastructure level SDN threats like DDoS
attacks continues to be a point of interest in the research
community. There have been multiple approaches that have
been attempted to combat the threat of DDoS. The authors
in [8] and [9] proposed source-based mechanisms, where the
mechanisms were placed near the source of the attack. In
[8], the work aimed to detect DDoS floods by monitoring
the ingress and egress of a source network and comparing
it with predefined normal flow models. The researchers in [9]
proposed MULTOPS which is a heuristic and a data structure
that network devices at the source subnet can use to detect
and filter DDoS flooding attacks. The disadvantage of source-
based methods is that it can be difficult to differentiate between
normal and DDoS flows due to insufficient volumes of traffic
at the source [10]. Other studies proposed destination-based
solutions, where mechanisms are placed at destination hosts
or victims [11] [12]. The work in [11] proposed a packet
marking mechanism called RIM to detect the path of attack
traffic which can help distinguish it from legitimate traffic after
detection. Authors in [12] proposed a hop-counter filtering
mechanism where information about a source IP address and
its hops from the destination are recorded in a table when
the destination is working normally. If the destination gets at-
tacked, the victims look at incoming packets and determine the
source from the previously logged source and corresponding



hops. The main shortcoming with destination-based methods
is that they cannot accurately detect and respond to the attack
before it reaches the victim [10].

Some works investigated the usage of network-based meth-
ods to detect DDoS threats, where detection and response
methods are deployed at network devices like routers and
switches [13] [14]. In [13], the researchers proposed a route-
based packet filtering method as an expansion to ingress
filtering at the core of the network. The work in [14] proposed
Watchers that detected misbehaving routers that launched
DDoS attacks by absorbing, discarding, and misrouting pack-
ets. Network-based techniques suffer from high storage and
processing overhead at the core devices, which can cause de-
ficient performance [10]. Detection of TCP-SYN flood attacks
has also received attention as a prominent type of DDoS attack
that affects networks [15] [16]. In [15], the authors presented
SAFETY that provided early detection of TCP-SYN floods
by harnessing the programming and wide visibility approach
of SDN with entropy method to determine the randomness of
flow data. The experiments in this work were conducted on
only singular destination victims, which is not always the case
in TCP-SYN attacks. [16] proposed AEGIS that detected and
mitigated SYN floods against the SDN controller by regularly
checking if there is a performance lag in the controller during
floods. This method can detect SYN floods after the controller
performance drops, by when significant damage could have
already been done to the controller.

To facilitate faster detection of TCP-SYN flood attacks, the
usage of ML methods has also been investigated [17] [4].
In [17], the researchers propose a TCP-SYN flood mitigation
technique using a K-nearest neighbor algorithm for SDN. The
authors in [4] propose an anomaly detection model using
isolation forest and k-means clustering. The limitation of
these works is that they have conducted experiments on open-
sourced and customarily used datasets. That limits the topol-
ogy upon which these methods can be useful. Organizations
will not be able to cater these trained models to their SDN
infrastructures, as it can lead to sub-optimal performance and
put the organization at risk. Also, most of these datasets utilize
flow-level statistics. Many of these data features are redundant,
leading to high cardinality, training, and inference times.

III. METHODOLOGY

Our proposed approach primarily consists of using an SDN
simulation environment to build custom topologies that each
organization can cater to their use case. Network flows are
simulated to showcase the appropriate functionality of the
generated network. During these flow simulations, differential
port statistics are collected, which form the basis of modeling
normal behavior in the simulated SDN. Following, a TCP-
SYN flood attack is launched that targets a particular host in
the network. The same network metrics are collected under this
scenario. The accumulated network metrics form the dataset
to train an ML model in an offline manner. The trained ML
model can then be placed in the SDN controller, equipped to
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Fig. 2: Proposed TCP-SYN detection framework

detect TCP-SYN floods in real-time. Figure 2 illustrates our
proposed framework.

A. SDN Simulation Generation

To set up the simulation environment we used Open Net-
work Operating System (ONOS) SDN controller (API version
2.5.0) alongside Mininet. ONOS uses Open Service Gateway
Initiative (OSGi) service component at runtime for the creation
and activation of components and for auto-wiring components
together, which makes it easy to create and deploy new user-
defined components without altering the core components.
Mininet creates a realistic virtual network, and runs a real
kernel, switch, and application code, on a single machine
which creates a realistic testbed environment. We also created
our ONOS application (component) to collect the needed
statistics. We were able to gather differential and cumulative
port, flow entry, and flow table statistics for each connected
Open vSwitch in the Mininet topology. We created a custom
Mininet topology using Mininet API (version 2.3.0) with Open
Flow (OF) 14 protocol deployed to the switches.

B. SDN Flow Simulation

IPerf is a tool for testing, measuring, and simulating network
functionalities. It is used to create TCP and UDP data streams
simulating network flows in virtual and real networks with
pre-chosen source and destination IPs and with a dummy



TABLE I: Differential port statistics collected for every port
on every switch

Differential Port Statistic Description
Received Packets Number of packets received by the port
Received Bytes Number of bytes received by the port
Sent Packets Number of packets sent by the port
Sent Bytes Number of bytes sent

Port alive Duration The time port has been alive in seconds
Packets Rx Dropped Number of packets dropped by the receiver
Packets Tx Dropped Number of packets dropped by the sender
Packets Rx Errors Number of transmit errors
Packets Tx Errors Number of receive errors

payload. By using the Mininet API with IPerf, we created
a Python script to simulate realistic network flows. Every 5
seconds, we created a flow between a randomly chosen source-
destination host pair with a bandwidth of 10 Mbps that lasted
for 5 seconds. Hence, we identify the total number of normal
flows by N . This represents the number of simulated flows
under normal working conditions of the simulated SDN and
not under any attack.

C. Collect Statistics

As mentioned in Section III-A, we created a custom appli-
cation to collect and log the available statistics that get polled
on a configured interval (5 seconds) from OF switches. We use
differential port statistics which were collected by the message
exchanging of OFPPortStatsRequest and OFPPortStatsReply
and computed on the controller side by taking the difference
between the last two collected data instances. We created a
key-value map of this data by gathering it from the data
storage service, using the ”Device Service” API provided
by ONOS. After this, we logged the map of the collected
statistics to a Javascript Object Notation (.json) file with
a name Ni.json. Table I shows the collected statistics and
their descriptions per port on every switch in the simulated
SDN. These differential port statistics are chosen as they are
customarily available in most SDN setups. Also, in the case
of any kind of DDoS threat like TCP-SYN, metrics that get
influenced by byte/packet transmission along with network
throughput are key in detecting if a DDoS attack is actively
exhausting network resources.

Additionally, we also collect other network metrics as
shown in Table II. These metrics provide the real-time state
of the OF ports within the switches of the SDN. Also, they
are contemporary measures that can be collected from any
SDN setup, including any SDN simulation environment like
the one utilized in our proposed framework. We denote the
dataset of collected differential port statistics, under normal
conditions as XN . The total number of samples in XN can be
symbolized as E. Here, xni represents a single data sample
and xni ∈ XN , i = {0, 1.....E}. All the samples in XN are
labeled as normal.

D. TCP-SYN Attack

To capture differential port statistics during a threat, we
launch a TCP-SYN flood attack on the network. This attack is
launched with a particular host machine as the intended victim.

TABLE II: Additional statistics collected for anomaly detec-
tion

Statistic Description

Connection Point
Network connection point expressed
as a pair of the network element identifier
and port number

Total Load/Rate Obtain the current observed total
load/rate (in bytes/s) on a link

Total Load/Latest Obtain the latest total load bytes
counter viewed on that link

Unknown Load/Rate Obtain the current observed unknown-sized
load/rate (in bytes/s) on a link

Unknown Load/Latest Obtain the latest unknown-sized load bytes
counter viewed on that link

Time seen When the above-mentioned values were last
seen

is valid Indicates whether this load was built on valid
values

The compromised machines that launch the attack, from here
on referred to as attackers, can be any of the remaining host
machines in the simulated SDN topology. Let the total number
of attack flows by A. This represents the number of simulated
flows under attack conditions of the simulated SDN. To create
minimal variance and class imbalance, we ensure that A = N .

Let the dataset of collected differential port statistics, under
attack conditions, be denoted as XA. The total number of
samples in XA can be symbolized as F . Here, xai represents
a single data sample and xai ∈ XA, i = {0, 1, ..F}. All the
samples in XA is labeled as attack.

E. Dataset Creation

After collection of the differential port statistics, we must
combine both datasets N and A into one dataset X , where
X = {XN , XA}. This combination ensures that all data is
aggregated into one source, from which the ML algorithm can
begin learning.

F. ML Classifier

The ML classifier is utilized to perform predictions on
network flows, to see if the SDN infrastructure is under attack.
For this ML procedure, X gets separated into the Xtrain

and Xtest datasets. We denote the total number of samples
in Xtrain as Y , while the total number of samples in Xtest

is represented by Z and Y > Z. Let the ML classifier be
represented by µ. The classifier is trained on Xtrain, to obtain
a model ν, that is saved:

ν = µ(Xtrain) (1)

Once the ML classifier is trained, the values in Xtest are
parsed through to obtain the accurate prediction of the network
flow γ:

γ = ν(Xtest) (2)

The main objective behind running the testing dataset Xtest

through the trained ML classifier ν is to obtain performance
metrics like precision, recall, and F-Measure scores only.
The primary objective of an anomaly detector for an SDN



environment is to rapidly parse through real-time network
traffic. This traffic does not have any labels associated with
the data samples. Hence, it is entirely contingent upon the
trained anomaly detector ν to decipher between normal and
attack traffic in an online setting.

G. Threat Detection

This is a primary component of the proposed TCP-SYN
flood detection framework. As we do not collect any flow-level
metrics for classification, we do not have access to any host-
level information like IP addresses. So, to accurately detect
TCP-SYN floods and where they are originating from on
the network, we depend on the Threat Detection and Threat
Localization modules. These modules will also be tested on
real-time traffic that have no predicted and ground-truth labels
associated with it.

For Threat Detection, let the list of real-time flows be U ,
and the total number of flows be denoted with V . Here, ui
represents a single flow and ui ∈ U, i = {0, 1, ..V }. Within
every single flow ui, multiple switches can be denoted as uis .
Within each switch uis , some ports predict, using ν, if that
flow is normal or under attack. We assume the total number
of switches per flow is denoted as Pi. Let the total number of
ports per-flow ui be Wi, and list of ports for each flow ui get
denoted by uisp such that uisp ∈ ui, p = {0, 1, .....Wi}.

First, we must detect the number of ports that are classifying
a flow as under attack. That can be determined by running each
port and its corresponding differential port statistics through
the pre-trained classifier to obtain their prediction ωp:

ωp =

{︄
0 ν(uisp ) == Normal,

1 ν(uisp ) == Attack,
p = {0, 1, .....Wi} (3)

The predictions of the flow then get summed up, denoted
as ηp:

ηp =

Wi∑︂
0

ωp (4)

We introduce a hyperparameter called port threshold, de-
noted as Φ. Φ can be defined as a threshold ratio where any
value over this ratio infers that the SDN is under a potential
attack. Φ allows us to possess more control over the threat
detection approach by acting as a control variable. This value
is determined by the system administrator(s) who oversee the
SDN infrastructure and security, and the magnitude of Φ is
determined by the important parameters in the SDN topology
like the number of hosts, switches, links, and ports. We see
from previous equations that, for every single flow, a decision
is made within every single port from all switches that the
flow passes through. The port classifies, based on observed
differential port statistics, if that flow is undergoing an attack
using the trained ML model ν. The SDN is categorized as
undergoing a potential TCP-SYN flood attack if the ratio of
ports that classify the flow as an attack to the total number
of ports that the flow passed through is greater or equal to Φ.
Hence, a flow is classified as under attack if:

ωp =

{︄
Attack ηp < Φ,

Normal ηp ≥ Φ,
p = {0, 1, .....Wi} (5)

Using Equation 5, we can classify if a network is undergoing
a TCP-SYN flood attack currently.

H. Threat Localization

For threat localization, we introduced another hyperparam-
eter called the switch threshold denoted as Θ. Θ allows us to
possess more control over the threat localization approach by
acting as a control variable and is responsible for recognizing
the switches where at least Θ + 1 ports are classifying the
flow as under attack. This value is also selected by the
system administrator(s) in charge of the SDN infrastructure
and security, and the magnitude of Θ is determined by the
important parameters in the SDN topology like the number of
hosts, switches, links, and ports. Every SDN has its unique
topology. But the basic building blocks will primarily be the
same. There will be various hosts that communicate with
each other using network switches. The main goal of Θ is
to accumulate the total list and frequency of flagged switches
using the trained ML model ν. The primary goal will be to
localize the switch that is flagged most often, as the malicious
hosts performing the TCP-SYN flood will be connected to that
switch. Finding the flagged switches from a network flow can
be accomplished by:

ζs =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Attack

p∑︂
0

ηp > Θ,

Normal

p∑︂
0

ηp ≤ Θ,

(6)

where ζs represents if a switch has flagged the flow and
where p = {0, 1..Wi}, s = {0, 1..Pi}. Equation 6 allows us
to detect all the switches that flag a flow as under ongoing
attack. The main goal here is to find all the flagged switches
to pinpoint which switches are passing attack flow through its
ports. This can be used to localize the hosts in the network that
are malicious. To perform the final localization of the switches
to find out which hosts are malicious, we must compute the
frequency with which the switches get flagged. The switch
that is flagged the most ψ, will be directly connected to the
malicious hosts that are performing the TCP-SYN flood attack.
This can be detected by:

ψ = arg max
(

V∑︂
0

ζs), s = {0, 1, ..Pi} (7)

Using the above methodology, we can perform anomaly
detection to detect ongoing TCP-SYN flood attacks in the
SDN. Additionally, we are also able to localize the attackers
by flagging the closest switch that the attackers are connected
to. The proposed method employs the usage of differential
port statistics, which are customarily available in most normal
networking setups. For our experimental purpose, we are
emphasizing on SDNs due to the wide relevance and usage of



Fig. 3: Simulated SDN Topology

SDN architectures across industries, organizations, and critical
infrastructures over normal networking architectures. That is
why our experimentation and results are conducted using
an SDN and metrics collection is regulated using OpenFlow
statistics. However, this research and the proposed method can
be expanded to other modern computer network architectures
like SD-WAN, SASE, or other traditional networks.

IV. EXPERIMENTATION AND RESULTS

A. Setup

The simulated topology for our experimentation can be seen
in Figure 3 which consists of 10 hosts and 12 switches. For
the attack scenario, we launched a TCP-SYN flood from Hosts
1 and 2, while the intended target/victim machine was Host 8.
The goal of the proposed framework is to be able to detect the
ongoing attack and ultimately, localize which of the hosts are
malicious by finding the switch closest to the attackers. The
attack deployment was conducted using the scapy library while
ML analysis, threat detection, and localization were conducted
using TensorFlow, sklearn, and python.

B. Results and Analysis

For our experiments, we utilized the following initial values:
N = 50, A = 50, U = 100,Φ = 0.3,Θ = 3. Our generated
datasets were split using an 80%-20% ratio between training
and testing data. For performance metrics, we are using
Accuracy (A), Precision (P), Recall (R), and F-Measure (F)
scores. The ML classifier chosen for our experiments was a
Random Forest (RF) classifier. This algorithm was chosen due
to its relevance and wide usage when studying SDN anomaly
detection in literature.

First, we look at the performance that is being achieved
by various ML classifiers on our collected differential port
statistics dataset. The classifiers tested were RF, Multi-Layer
Perceptron (MLP), and Support Vector Machine (SVM) due to
their relevance and wide usage when studying SDN anomaly
detection in literature. The model with the highest accuracy
can be correlated with better performance during TCP-SYN
flood attack detection. Table III illustrates the performance of
the algorithms when running the generated datasets. We notice
that the RF gives us the best performance followed by the
SVM, while the MLP provides us with mediocre performance
for our dataset.

TABLE III: Performance of RF, MLP, and SVM to the
generated dataset

Classifier Accuracy
Random Forest 99.342%

Multi Layer Perceptron 51.409%
Support Vector Machine 97.852%

Accuracy Precision Recall F-Measure
Data Type
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Fig. 4: ML performance on port statistics and differential port
statistics

Next, we analyze the impact of differential port statistics
on the performance of our RF anomaly detector. For this, we
observe the performance achieved by our ML algorithm when
facing normal port statistics versus differential port statistics.
Figure 4 shows us the performance achieved on port statistics
and differential port statistics. The ML classifier achieves good
performance on both data types, but the algorithm performs
better on differential port statistics as it attains better P, R, and
F scores. This can be attributed to differential port statistics
being collected and reported as magnitude differences in a time
interval. This prevents the aggregation of metrics over time,
which may be occurring in normal port statistics. This also
allows more fine-grained analysis of network flows from the
port level and provides better performance metrics. Superior
performance is preferred as this anomaly detector will be
placed to analyze live/real-time traffic which has no labels.

For a comprehensive analysis of the degree of influence our
captured network metrics exhibit over the classification perfor-
mance of our RF model, we also analyze the explainability of
the model. This is conducted by analyzing the predictions of
the model, on a random single testing sample, using the Local
Interpretable Model-agnostic Explanations (LIME) framework
[18] and the results are provided in Figure 5. This helped
provide explainability and interpretability to our TCP-SYN
detection framework. We observe that, for the sample, the
model predicted it as undergoing a TCP-SYN flood attack. The
main dataset features that were influential in the prediction
were differential port statistics like Received Packets, Sent
Packets, Received Bytes, and Sent Bytes. From this, we can see
the impact these metrics have on the detection of TCP-SYN
attacks detection. This also reinforces customary knowledge
that network metrics revolving around byte/packet transmis-
sion, along with network throughput, are key in detecting if a
DDoS attack is actively exhausting network resources.

Subsequently, we observe the performance of our proposed



Fig. 5: Using LIME to find most influential features

10 50 100
Number of Flows (N=A)

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Pe
rfo

rm
an

ce
 M

et
ric

s

Accuracy
Precision
Recall
F-Measure

Fig. 6: ML performance on varied number of flows for N and
A

method by varying the number of normal and attack flows
used to generate the dataset. For this, we obtain performance
metrics while we are varying the values of N = A =
{10, 50, 100}. The results of this experiment are illustrated
in Figure 6. We observe that N = A = 10 provided decent A,
P, R, and F scores, but those scores rose when N = A = 50.
The magnitudes continue to be steady when N = A = 100.
At N = A = 10, the model was not optimally learned. It
achieved optimal learning at N = A = 50 and continued to
hold the same performance till N = A = 100.

The above results were conducted using the testing dataset
from our generated TCP-SYN flood detection dataset. How-
ever, the primary aim of this research is to propose a frame-
work that can conduct anomaly detection on real-time data.
The generated ML algorithm can be placed in the SDN
controller, and it can observe live traffic to provide rapid
inferences to protect the SDN infrastructure from TCP-SYN
flood attacks. The remaining analysis is conducted using real
traffic from the SDN infrastructure while it is undergoing the
attack.

Next, we observe the performance of the proposed approach
under varying values of Φ = {0, 0.05, ....0.35}. The goal here
is the observe the performance metrics when the value of Φ is
diversified. The analysis is illustrated in Figure 7. We can see
that P and F are low at the lower values of Φ. As the value of
Φ increases, the values of P and F progressively increase till
Φ = 0.3. The value of R remains constant throughout. This
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Fig. 7: ML performance on varied values for Φ
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Fig. 8: Detecting Number of Flagged Switches by varying Θ

suggests that lower values of Φ restrict our ability to optimally
detect TCP-SYN floods, as many normal flows get flagged as
under attack, leading to high false positivity rates. This can
limit the ability of the framework to optimally detect ongoing
TCP-SYN floods. Higher values of Φ provide more balance
to the framework and lead to better performance.

Similarly, we observe the performance of the proposed
approach under varying values of Θ = {0, 0.5, .....4}. The
goal here is to observe the number of flagged switches when
the value of Θ is diversified and to identify the value of Θ
that minimizes the number of flagged switches. The analysis
is illustrated in Figure 8. We observe that lower values of
Θ yield a high number of flagged switches. That maximizes
the number of switches through which a flow under attack
passes and does not help identify and localize the malicious
hosts, which is an optimization problem. As the value of Θ
increases, it provides more control to the anomaly detector
to appropriately detect an attack and localize the malicious
hosts as it increases the threshold for how a switch becomes
flagged. Θ = 3 provides the best performance as it identifies
the minimal number of flagged switches before that value
becomes null, which is 4. This means that the malicious hosts
must be connected to these 4 switches.
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Fig. 9: Checking the most frequently flagged switches over U
number of real-time flows

Lastly, we perform the final step of threat localization in
which we compute the frequency with which certain switches
are flagged over the total number of real-time flows being
observed. This can be observed in Figure 9. Here, we observe
that over U number of real-time flows, Switches 2, 11, 9, and
0 are flagged the most times with frequencies of 72, 51, 51,
and 30, respectively. Switch 2 is flagged the highest number
of times, which indicates that the malicious hosts must be
closely connected to this switch. This is confirmed as we
can observe, from the topology diagram in Figure 3, that the
malicious hosts 1 and 2 are both directly connected to Switch
2. Using the proposed methodology, we can identify that the
SDN infrastructure was undergoing a TCP-SYN flood attack
using differential port statistics. On top of identification, we
are also able to localize the malicious hosts 1 and 2 using our
Threat Localization module.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a TCP-SYN flood detection
framework for SDNs. The framework encompasses the usage
of an SDN simulation framework as the base architecture so
that each organization can cater their approach to their infras-
tructure. Instead of traditional network flow statistics, we focus
on collecting differential port statistics to conduct our analysis.
The collection of these metrics to perform TCP-SYN flood
detection has not been investigated previously. Also, usage of
metrics can allow us to reduce dataset cardinality, training,
and inference times. We use an ML algorithm to perform
our detection on both testing and real-time data. Lastly, we
also propose our Threat Detection and Localization technique
that can pinpoint which of the network hosts are malicious.
Experimentation and results show that using differential port
statistics over normal port statistics provides better P, R, F,
and A scores. The analysis also illustrates that a Φ = 0.3
and Θ = 3 provide the best performance for detecting and
localizing malicious hosts. We aim to expand this framework
to other attack scenarios besides DDoS attacks for future
work. The focus will be placed on threats that are not easily
perceivable. Potential options include other SDN threats like
traffic diversion, traffic sniffing, IP spoofing, SQL injections,
and flow table overflows. We also will add explainability to

study those attack scenarios under our framework to provide
more insights on which differential port statistics are most
influential in detecting the various attacks that we propose to
experiment on.
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