
UNR-IDD: Intrusion Detection Dataset using
Network Port Statistics

Tapadhir Das∗, Osama Abu Hamdan∗, Raj Mani Shukla†, Shamik Sengupta∗, Engin Arslan∗
∗Department of Computer Science and Engineering, University of Nevada, Reno, USA

†School of Computing and Information Science, Anglia Ruskin University, UK
Email: tapadhird,oabuhamdan@nevada.unr.edu, raj.shukla@aru.ac.uk, ssengupta,earslan@unr.edu

Abstract—With the expanded applications of modern-day net-
working, network infrastructures are at risk from cyber attacks
and intrusions. Multiple datasets have been proposed in the
literature that can be used to create Machine Learning (ML)
based Network Intrusion Detection Systems (NIDS). However,
many of these datasets suffer from sub-optimal performance and
do not adequately represent tail classes. To address these issues, in
this paper, we propose the University of Nevada - Reno Intrusion
Detection Dataset (UNR-IDD) that provides researchers with a
wider range of samples and scenarios. The proposed dataset
utilizes network port statistics for more fine-grained control and
analysis of intrusions. Using different ML algorithms, we provide
a benchmark to show efficient performance for both binary and
multi-class classification tasks. The paper further explains the
intrusion detection activities rather than providing a generic
black-box output of the ML algorithms. In comparison with the
other established NIDS datasets, we obtain better performance
with an Fµ score of 94% and a minimum F score of 86%. This
performance can be credited to prioritizing high scoring average
and minimum F-Measure scores for modeled intrusions.

Index Terms—Computer networks, network intrusion detec-
tion, machine learning, dataset

I. INTRODUCTION

Modern computer networks and their connected applications
have reached unprecedented growth with implementations like
the internet of things, smart homes, and software-defined
networks. However, this has also increased the potential for
network intrusions that attempt to compromise the major
principles of these computing systems: availability, authority,
confidentiality, and integrity [1]. These threats are difficult
to detect unaided, as they display indistinguishable network
traffic patterns as normal functionality [2]. Approaches like
traditional firewalls cannot detect these intrusions as they do
not possess the ability to inspect and conduct deep packet
inspection. This has led to the rise in Network Intrusion Detec-
tion Systems (NIDS) which aim to provide higher protection
[3]. NIDS constantly monitor the network traffic patterns for
any kind of malicious behavior. Modern networking appli-
cations have become more diverse, dynamic, interconnected,
and geographically distributed, with a larger number of users,
applications, and nodes, generating substantial amounts of
shared data. Protecting these large-scale networks has become
a challenge as existing NIDS show inefficient intrusion detec-
tion performance, including high false alarm rates and zero-
day attacks [4].

The usage of machine learning (ML) for NIDS has gained
traction in the last decade as various open-sourced datasets

have been proposed and established. Customary NIDS datasets
include NSL-KDD [5], UNSW-NB15 [3], and CIC-IDS-2018
[6]. However, a common problem that has been identified
with many of these datasets is inadequate modeling of tail
classes [7]. Tail classes refer to certain labels with limited
samples compared to other labels, leading to poor perfor-
mance when fitting the ML model. Researchers have been
looking at methods to address this issue of tail classes.
Commonly investigated methods include undersampling and
oversampling. However, oversampling increases the size of
the dataset, increasing training time, memory, and complexity.
Correspondingly, undersampling can reduce data samples from
the majority classes, affecting the overall performance of
prediction models [8]. It can also be argued that because these
techniques manipulate existing data samples, they do not add
any new insights.

Other proposed methods to address tail class representation
include transfer learning, data augmentation, representation
learning, and ensemble methods [7]. These techniques, how-
ever, have limitations in their own regard. For example, trans-
fer learning and data augmentation could further increase class
variability as head classes have more samples and would be
augmented more. In representation learning, the accumulated
training stages make decoupled training less practical to be
integrated with existing well-formulated methods. Ensemble
methods can lead to higher computational costs due to the
presence of multiple classifiers. A valid method to ensure
that tail classes have adequate representation is to prioritize
them during data generation to ensure adequate modeling
and uniform high performance. This necessitates the need
for a new NIDS dataset in which all labels are adequately
represented.

Another limitation of the current datasets is that they mostly
depend on flow level statistics. This can limit the transferability
of the NIDS solutions to other network configurations since
the flow statistics depend on the network topology and traffic
characteristics. In addition, many of these datasets contain
redundant features that play no impact in being able to
detect potential network intrusion types. Depending on the ML
approach being utilized, these features can also increase the
cardinality of the dataset, leading to increased training and
inference times. Finally, some existing datasets suffer from
incomplete or missing records. These records or samples must
be ignored or dropped from the overall dataset, which leads
to sub-optimal performance. Addressing the above-mentioned



limitations is vital to ensuring that proper NIDS are being
developed to adequately protect networking infrastructures
from intrusions.

In this paper, we propose the University of Nevada - Reno
Intrusion Detection Dataset (UNR-IDD). The main difference
between UNR-IDD and existing NIDS datasets is that UNR-
IDD consists primarily of network port statistics. These refer
to the observed port metrics recorded in switch/router ports
within a networking environment. The dataset also includes
delta port statistics which indicates the change in magnitude
of observed port statistics within a time interval. Compared
to datasets that primarily use flow statistics, UNR-IDD can
provide a more fine-grained analysis of network flows as
decisions are made at the port level versus the flow level.
This can lead to rapid identification of potential intrusions.
We also address the limitation of tail classes. Our dataset
ensures that there are enough samples for ML classifiers to
achieve high F-Measure scores, uniquely. Our dataset also
ensures that there are no missing network metrics. The pro-
posed observable dataset metrics can be obtained through
most networking architectures. However, for our testbed, we
have used a software-defined network (SDN) environment,
due to the wide relevance of and usage of SDN architectures
across industries, organizations, and critical infrastructures. In
summary, the main contributions of our dataset include:

• The primary usage of port and delta port statistics to
model the various intrusions in the dataset.

• Confirms enough samples to ensure high-performance
metrics across all tail classes.

• Ensuring all data samples are filled and there is no
missing data in the dataset.

• Provides performance comparison of intrusion detection
models when using UNR-IDD and other NIDS datasets.

The rest of the paper is structured as follows: Section II
provides the literature study. Our dataset collection, con-
figuration, and generation methods are detailed in Section
III. Section IV presents experimental results and discussions.
Finally, conclusions are drawn in Section V.

II. RELATED WORK

Some of the very first datasets that emerged for creating
NIDS include the DARPA [9] and KDDCup99 [10]. The main
issue with these datasets is that they are outdated. KDDCup99
suffers from redundant and duplicate data samples. DARPA
does not represent modern networks as it was simulated in
a military network environment. Thus, it contains artificially
high feature magnitudes compared to real traffic data. Other
proposed datasets for NIDS include CAIDA [11], CDX [12],
Kyoto [13], Twente [14], and ISCX2012 [15]. CAIDA dataset
suffers from having very limited features and was only con-
strained to being able to detect Distributed Denial of Service
(DDoS) attacks. Similarly, the CDX dataset only contains
five features and could only detect buffer overflow attacks.
The Kyoto dataset is restricted to two classes and contains
limited features, which restraints its functionality. The Twente
and ISCX2012 datasets solely focused on IP flows within the

network level, which restricts their capability as they are flow-
oriented and do not provide network-level information that
can be used to detect network-wide issues. The size of the
Twente dataset is also small to perform adequate modeling of
the intrusions [16].

Three customary NIDS datasets are NSL-KDD [5], CIC-
IDS-2018 [6], and UNSW-NB15 [3]. These datasets also have
several limitations. For instance, the UNSW-NB15 suffers
from inconsistent performance for machine learning classifiers.
It requires more rigorous and expanded machine learning
mechanisms which increases training and inference times. The
NSL-KDD and CIC-IDS-2018 datasets suffer from missing
data samples within their datasets. Many of these datasets also
suffer from the issue of containing inadequately modeled tail
classes which lead to inconsistent performance.

For more effective intrusion detection, we need to ensure
that a dataset contains a wide variety of intrusion categories.
We also need to make sure that it is complete as missing data
can negatively impact the performance of prediction models.
The primary usage of port level statistics, in conjunction with
some flow statistics, for NIDS is another attractive research
direction that can be employed to check their efficacy at
detecting network intrusions. Lastly, it is critical to ensure
that tail classes have adequate representation so that prediction
models can accurately capture their unique behavior and attain
high performance.

III. UNR-IDD DATASET

We setup up our testbed using an SDN simulation environ-
ment due to the ease of usability and implementation. It also
ensures that the dataset is not dependent on any static topology
and can be configured to reproduce the network activity of
various topologies. Following the testbed configuration, we
perform flow simulations within the SDN topology to replicate
appropriate functionality. During these flow simulations, de-
sired network statistics are collected, under normal and attack
conditions.

A. Testbed Configuration

To set up the testbed, we use Open Network Operating
System (ONOS) SDN controller (API version 2.5.0) alongside
Mininet for the network topology generation. ONOS uses the
Open Service Gateway Initiative (OSGi) service component
at runtime for the creation and activation of components and
auto-wiring components together, making it easy to create and
deploy new user-defined components without altering the core
constituents. Mininet creates the desired virtual network, and
runs a real kernel, switch, and application code, on a single
machine, thereby generating a realistic testbed environment.
We also implemented our ONOS application to collect network
statistics. Specifically, we gathered delta and cumulative port,
flow entry, and flow table statistics for each connected Open
vSwitch in the Mininet topology. We created a custom Mininet
topology using Mininet API (version 2.3.0) with Open Flow
(OF) 14 protocol deployed to the switches. The generated SDN



Host 8
Host 10 Host 9

Host 4 Host 5

Host 6 Host 7
Host 1 Host 2 Host 3

Switch 10 Switch 9 Switch 7 Switch 5 Switch 3 Switch 0

Switch 11 Switch 8 Switch 6 Switch 4 Switch 2 Switch 1

Fig. 1: Simulated SDN topology

topology for our experiments is illustrated in Figure 1, which
consists of 10 hosts and 12 switches.

B. Flow Simulation

IPerf is used to create TCP and UDP data streams simulating
network flows in virtual and real networks using dummy
payloads. By using the Mininet API and IPerf, we created a
Python script to simulate realistic network flows. Once every 5
seconds, we initiated Iperf traffic between a randomly chosen
source-destination host pair with a bandwidth of 10 Mbps
and duration of 5 seconds. These values must be carefully
chosen as they are dependent on the number of nodes, hosts,
switches, and geographical spread of the simulated network.
We then simulate flows under normal and intrusion conditions
to gather data in every scenario. To ensure that each normal
and intrusion category is minimally variable and adequately
represented, we execute the same number of flows while
simulating each scenario.

C. Data Collection

We create a custom application to collect and log the
available statistics that are captured periodically (once in
every 5 seconds) from OpenFlow (OF) switches. The statistics
are collected through by means of OFPPortStatsRequest and
OFPPortStatsReply messages between controller and switches.
The delta port statistics are computed on the controller side
by taking the difference between the last two collected data
instances. We create a key-value map of this data by gathering
it from the data storage service, using the ”Device Service”
API provided by ONOS. After this, we logged the map of
the collected statistics to a Javascript Object Notation (.json)
file with a name Ni.json. Table I shows the collected port
statistics and their descriptions per port on every switch in the
simulated SDN. These statistics relay the collected metrics
and magnitudes from every single port within the SDN when
a flow is simulated between two hosts. Table II illustrates the
collected delta port statistics and their descriptions per port
on every switch. These delta statistics are used to capture the
change in collected metrics from every single port within the
SDN when a flow is simulated between two hosts, at a time

TABLE I: Port statistics collected for every port on every switch
Port Statistic Description

Received Packets Number of packets received by the port
Received Bytes Number of bytes received by the port
Sent Packets Number of packets sent by the port
Sent Bytes Number of bytes sent

Port alive Duration The time port has been alive in seconds
Packets Rx Dropped Number of packets dropped by the receiver
Packets Tx Dropped Number of packets dropped by the sender
Packets Rx Errors Number of transmit errors
Packets Tx Errors Number of receive errors

TABLE II: Delta port statistics collected for every port on every switch
Delta Port Statistic Description

Delta Received Packets Change in number of packets received
by the port

Delta Received Bytes Change in number of bytes received
by the port

Delta Sent Packets Change in number of packets sent
by the port

Delta Sent Bytes Change in number of bytes sent

Delta Port alive Duration Change in the time port has been alive
in seconds

Delta Packets Rx Dropped Change in number of packets dropped
by the receiver

Delta Packets Tx Dropped Change in number of packets dropped
by the sender

Delta Packets Rx Errors Change in number of transmit errors
Delta Packets Tx Errors Change in number of receive errors

interval of 5 seconds. Additionally, we also collect some flow
entry and flow table statistics to work in conjunction with the
collected port statistics as seen in Table III. These metrics
provide information about the conditions of switches in the
network and can be collected in any network setting.

D. Intrusions

The following intrusions are simulated in the data collection
phase:

• TCP-SYN Flood: A Distributed Denial of Service
(DDoS) attack where attackers target hosts by initiating
many Transmission Control Protocol (TCP) handshake
processes without waiting for the response from the target
node. By doing so, the target device’s resources are
consumed as it must keep allocating some memory space
for every new TCP request.

• Port scan: An attack in which attackers scan available
ports on a host device to learn information about the
services, versions, and even security mechanisms that are
running on that host.

• Flow Table Overflow: An attack that targets network
switches/routers where attacks compromise the function-
ality of a switch/router by consuming the flow tables that
forward packets with illegitimate flow entries and rules so
that legitimate flow entries and rules cannot be installed.

• Blackhole: An attack that targets network switch-
es/routers to discard the packets that pass through, instead
of relaying them on to the next hop.

• Traffic Diversion: A attack that targets network switch-
es/routers to reroute the direction of packets away from
their destination, to increase travel time, and/or to spy on
network traffic through a man-in-the-middle scenario.



TABLE III: Flow statistics collected
Statistic Description

Connection Point
Network connection point expressed
as a pair of the network element identifier
and port number

Total Load/Rate Obtain the current observed total
load/rate (in bytes/s) on a link

Total Load/Latest Obtain the latest total load bytes
counter viewed on that link

Unknown Load/Rate Obtain the current observed unknown-sized
load/rate (in bytes/s) on a link

Unknown Load/Latest Obtain the latest unknown-sized load bytes
counter viewed on that link

Time seen When the above-mentioned values were last
seen

is valid Indicates whether this load was built on valid
values

TableID Returns the Table ID
values

ActiveFlowEntries Returns the number of active flow entries in
this table.

PacketsLookedUp Returns the number of packets
looked up in the table.

PacketsMatched Returns the number of packets that
successfully matched in the table

MaxSize Returns the maximum size of this table.

TABLE IV: Multi-class Classification Labels
Label Description

Normal Normal Network Functionality
Attack Network Intrusion

These intrusion types were selected for this dataset as they
are common cyber attacks that can occur in any networking
environment. Also, these intrusion types cover attacks that can
be launched on both network devices and end hosts.

E. Labels

This dataset can be broken down into two different machine
learning classification problems: binary and multi-class clas-
sification. The goal of binary classification is to differentiate
intrusions from normal working conditions. Binary classifica-
tion can estimate if a network is under attack but does not
provide any information about the type of attack. The labels
for binary classification in UNR-IDD are illustrated in Table
IV.

The goal for multi-class classification, however, is to differ-
entiate the intrusions not only from normal working conditions
but also from each other. Multi-class classification helps us to
learn about the root causes of network intrusions. The labels
for multi-class classification in UNR-IDD are illustrated in
Table V.

IV. EXPERIMENTATION, RESULTS, AND ANALYSIS

To showcase the functionality of our proposed dataset,
UNR-IDD, we run evaluations using the dataset and demon-
strate the performance achieved. We illustrate results across
multiple scenarios by varying the classification type, the ML
algorithms, and other prominent NIDS in the literature. For
performance evaluation, we are using accuracy (A), precision
(P), Recall (R), and F-Measure (F) scores as the metrics. In
addition, we are also using the mean scores for precision (Pµ),
recall (Rµ), and f-measure (Fµ) across all label types in the

TABLE V: Multi-class Classification Labels
Label Description

Normal Normal Network Functionality
TCP-SYN TCP-SYN Flood
PortScan Port Scanning
Overflow Flow Table Overflow
Blackhole Blackhole Attack
Diversion Traffic Diversion Attack

TABLE VI: Binary Classification Performance
Label P R F
Attack 1.0 1.0 1.0
Normal 1.0 1.0 1.0

datasets during multi-class classification. This will provide us
with the mean performance achieved on the dataset for all
label types.

First, we observe the performance that is being achieved
from the proposed dataset on both binary classification and
multi-class classification scenarios. For this, we are utilizing a
Random Forest (RF) as our ML algorithm. We chose to use an
RF due to its relevance and wide usage when studying NIDS
in literature. The binary classification performance and multi-
class classification performance achieved from the dataset can
be observed in Table VI and Table VII, respectively. We
can see that in Table VI, both label types are providing a
performance of 1.0 for P, R, and F scores. This means that
the dataset is linearly separable, and the RF has no trouble
detecting if a given network flow is normally functioning or
under any potential intrusion. Similarly, in Table VII, we see
the RF achieving excellent performance as well. All the label
types achieve high scores for P, R, and F scores. These can
be attributed to the fact that each label type has adequate
representation and enough data samples thereby, makes them
linearly separable from each other. This makes it easier for
machine learning classifiers to recognize them individually,
which does not deteriorate performance. These results demon-
strate one of the main contributions of this proposed dataset,
which is ensuring that all labels have enough data samples to
achieve high performances, individually and as a collective.

Next, we observe the performance that is being achieved
from the proposed dataset using multiple ML algorithms:
RF, Multi-layer Perceptron (MLP), Support Vector Ma-
chine (SVM), Bagging Classifier (BC), KNeighborsClassifier
(KNC), and AdaBoost Classifier (ABC). We chose to use these
algorithms due to their relevance and wide usage when study-
ing NIDS in literature, along with their ease of accessibility
through the sklearn libraries. The performance achieved by
the algorithms on UNR-IDD is provided in Table VIII. We
can see that the best performance is achieved by the RF and
BC classifiers as they achieve the near-optimal Pµ, Rµ, and
Fµ scores. This is followed by the SVM, KNC, and ABC
classifiers which achieves above-average scores, succeeded
by the MLP which achieves substandard performance. These
results can be associated with the fact that an RF classifier is
an ensemble classifier consisting of multiple decision trees and
can overcome the problem of overfitting. Similar functionality
occurs in BC as it also is an ensemble classifier whose default
classifier is a decision tree. Accuracy and variable importance



TABLE VII: Multi-class Classification Performance
Label P R F

Blackhole 0.98 0.98 0.98
Diversion 0.99 0.97 0.98
Normal 1.0 1.0 1.0

Overflow 0.98 0.76 0.86
PortScan 0.91 0.94 0.92
TCP-SYN 0.91 0.92 0.92

TABLE VIII: Multi-class Classification Performance using Machine Learning
Algorithms

Algorithm Pµ Rµ Fµ

SVM 0.89 0.79 0.81
MLP 0.59 0.54 0.54
RF 0.96 0.92 0.94
BC 0.95 0.93 0.94

KNC 0.79 0.75 0.77
ABC 0.69 0.59 0.55

are also automatically generated in RF and BC [17], compared
to the other classifiers observed.

We also analyze the explainability of the RF model across
various labels for a more comprehensive analysis. This is
conducted by analyzing the predictions of the model, on
testing samples with varying predicted labels, using the Local
Interpretable Model-agnostic Explanations (LIME) framework
[?]. These results are provided in Figure 2. We evaluationsan-
other proposed contribution to the UNR-IDD dataset, which
incorporates the primary usage of port and delta port statistics
to model the various intrusions in the dataset.

Lastly, we compare the performance that is being achieved
from the proposed UNR-IDD dataset to two open-sourced
NIDS datasets: NSL-KDD and CIC-IDS-2018. These two
are established NIDS datasets that are frequently used for
researching network intrusion and anomaly detection. We
use the same RF classifier for all three datasets and their
performance is evaluated using A, Pµ, Rµ, and Fµ. We also
introduce a new metric, min F, which represents the minimum
F-Measure score that is achieved for any label in that dataset.
This metric can highlight the variability between Fµ and the
min F value in each dataset.

We observe the impact of the dataset sizes on the training
times. We provide this comparison in Table IX where we
provide the dataset dimensions (samples and features) for all
the datasets. As observed, CIC-IDS-2018 contains 6,291,450
samples and 80 features, NSL-KDD contains 125,974 samples
and 43 features, and UNR-IDD contains 37,412 samples and
34 features. This emphasizes that the proposed UNR-IDD
dataset has the lowest operational footprint out of the observed
NIDS datasets. For evaluation, we note both the Overall
Training Time (OTT) in seconds (s) and Normalized Training
Time (NTT) in milliseconds (s). We observe that UNR-IDD,
due to its smaller dimensions, takes less time to train at 4.03s
than NSL-KDD at 9.84s and much less time to train than
CIC-IDS-2018 at 9056.23s. NTT can be defined as the time
taken to train one sample and can be computed by dividing
the OTT by the number of samples. We notice that the NTT is
least for the NSL-KDD with 0.078 ms/sample, with UNR-IDD
achieving comparable performance to it with 0.107 ms/sample.
This can be attributed to NSL-KDD having only 3 categorical

(a) Explanations for PortScan

(b) Explanations for Normal

(c) Explanations for Overflow

Fig. 2: LIME Explanations for UNR-IDD

features per sample, whereas UNR-IDD contains 5 categorical
features per sample. CIC-IDS takes the most NTT out of the
three datasets with 1.439 ms/sample. From the perceived OTT
and NTT, we observe that the UNR-IDD provides the quickest
OTT and very comparable NTT. This signifies that using UNR-
IDD, a competent ML model for intrusion detection can be
generated much quicker as it can train the overall dataset the
fastest while training each sample with comparable speed to
that of the other observed NIDS datasets.

In Figure 3, we observe that both the NSL-KDD and CIC-
IDS-2018 datasets achieve 99% A scores. Relatively, the UNR-
IDD dataset achieves comparable performance with an A score
of 95%. This can be attributed to the UNR-IDD dataset being
smaller, overall, than NSL-KDD and significantly smaller,
overall, than CIC-IDS-2018 in terms of both the number of
samples and features. We also note that the Pµ score for the
UNR-IDD dataset is equivalent to that of CIC-IDS-2018 at
96%. Compared to this, NSL-KDD achieves a Pµ score of
79%. Similarly, the Rµ score for UNR-IDD is higher than
CIC-IDS-2018 and NSL-KDD at 93% versus 91% and 74%,
respectively. The most important contribution of the proposed
UNR-IDD dataset is its effect on F-Measure scores. Since each
tail class is adequately represented in the dataset, it achieves
the highest Fµ out of all three datasets with 94% compared to
93% and 76% for CIC-IDS-2018 and NSL-KDD, respectively.
Similarly, the minimum F score that is achieved across all
three datasets is highest in the UNR-IDD dataset with 86%,
while the CIC-IDS-2018 and NSL-KDD datasets achieve a
minimum F score of 58% and 0% respectively. This highlights
the UNR-IDD’s prioritization of the F-Measure score as it
achieves the least variability between the Fµ and the min F
value observed among all the datasets.

The proposed UNR-IDD dataset can perform network in-
trusion detection with competent performance. The dataset



TABLE IX: Training Analysis of the NIDS Datasets
Dataset Samples Features OTT (s) NTT (ms)

UNR-IDD 37,412 34 4.03 0.107
NSL-KDD 148,517 43 9.84 0.078

CIC-IDS-2018 6,291,480 80 9056.23 1.439

UNR-IDD CIC-IDS-2018 NSL-KDD
NIDS Datasets

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce

Accuracy
Mean Precision
Mean Recall
Mean F-Measure
Minimum F-Measure

Fig. 3: Performance Analysis of UNR-IDD, NSL-KDD, and CIC-IDS-2018
datasets

prioritizes representation for all tail classes and ensures that
each label achieves high performance and F scores. Compared
to customary datasets, UNR-IDD is a smaller overall dataset.
However, the dataset still provides efficient performance across
all the labels. Due to this, anomaly/intrusion detection could
be trained more easily in resource-constrained network devices
or low-end servers. Presently, this dataset can be publicly
accessed on Kaggle [18].

V. CONCLUSION AND FUTURE WORK

In this paper, we propose the University of Nevada - Reno
Intrusion Detection Dataset (UNR-IDD) for network intrusion
detection. The dataset addresses several limitations of existing
datasets by primarily using network port statistics and delta
port statistics, to achieve a more fine-grained analysis of the
network and rapid identification of potential intrusions within
a network. Emphasis is also placed on improving represen-
tation for all tail classes, so that each class has adequate
representation and achieves high performance individually, in
conjunction with the whole dataset. Also, to ensure optimal
performance, there are no incomplete or missing data samples
within the dataset. The dataset is generated using an SDN
simulation environment and desired network statistics are col-
lected through OpenFlow metrics. Simulation and results show
that the dataset can achieve efficient performance for both
binary and multi-class classification scenarios and achieves
the best performance when using an RF classifier. Results also
show that the dataset achieves better performance than other
established datasets, with a priority for improved and high
scoring Fµ and min F scores. This highlights the dataset’s pri-
oritization of adequate label representation, compared to other
datasets. Future work in this research can include augmenting
the dataset with more intrusion categories. Potential categories
include data plane threats like ARP spoofing, side-channel
attacks, control plane threats like network manipulation, and
application plane threats like API exploitation, application
manipulation, and brute-force/password guessing attacks.

REFERENCES

[1] R. Heady, G. Luger, A. Maccabe, and M. Servilla, “The architecture
of a network level intrusion detection system,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States); New Mexico . . . , Tech.
Rep., 1990.

[2] T. Das, R. M. Shukla, and S. Sengupta, “The devil is in the details: Con-
fident & explainable anomaly detector for software-defined networks,”
in 2021 IEEE 20th International Symposium on Network Computing and
Applications (NCA). IEEE, 2021, pp. 1–5.

[3] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),”
in 2015 military communications and information systems conference
(MilCIS). IEEE, 2015, pp. 1–6.

[4] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, p. e4150, 2021.

[5] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE symposium on
computational intelligence for security and defense applications. IEEE,
2009, pp. 1–6.

[6] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018.

[7] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep long-tailed
learning: A survey,” arXiv preprint arXiv:2110.04596, 2021.

[8] A. Y.-c. Liu, “The effect of oversampling and undersampling on classi-
fying imbalanced text datasets,” Ph.D. dissertation, Citeseer, 2004.

[9] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The
1999 darpa off-line intrusion detection evaluation,” Computer networks,
vol. 34, no. 4, pp. 579–595, 2000.

[10] “KDD Cup 1999 Data.” [Online]. Available: http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html

[11] “Downloads of CAIDA Online Datasets,” Jun. 2013. [Online]. Available:
https://www.caida.org/catalog/datasets/about/downloads/tables/

[12] B. Sangster, T. O’Connor, T. Cook, R. Fanelli, E. Dean, C. Morrell,
and G. J. Conti, “Toward instrumenting network warfare competitions
to generate labeled datasets.” in CSET, 2009.

[13] J. Song, H. Takakura, and Y. Okabe, “Description of kyoto university
benchmark data,” Available at link: http://www. takakura. com/Ky-
oto data/BenchmarkData-Description-v5. pdf [Accessed on 15 March
2016], 2006.

[14] A. Sperotto, R. Sadre, F. v. Vliet, and A. Pras, “A labeled data set
for flow-based intrusion detection,” in International Workshop on IP
Operations and Management. Springer, 2009, pp. 39–50.

[15] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[16] A. Thakkar and R. Lohiya, “A review of the advancement in intrusion
detection datasets,” Procedia Computer Science, vol. 167, pp. 636–645,
2020.

[17] N. Farnaaz and M. Jabbar, “Random forest modeling for network
intrusion detection system,” Procedia Computer Science, vol. 89, pp.
213–217, 2016.

[18] “UNR-IDD Intrusion Detection Dataset.” [On-
line]. Available: https://www.kaggle.com/datasets/tapadhirdas/
unridd-intrusion-detection-dataset

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.caida.org/catalog/datasets/about/downloads/tables/
https://www.kaggle.com/datasets/tapadhirdas/unridd-intrusion-detection-dataset
https://www.kaggle.com/datasets/tapadhirdas/unridd-intrusion-detection-dataset

	Introduction
	Related Work
	UNR-IDD Dataset
	Testbed Configuration
	Flow Simulation
	Data Collection
	Intrusions
	Labels

	Experimentation, Results, and Analysis
	Conclusion and Future Work
	References

