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Abstract

Nitrifying microorganisms, including ammonia-oxidizing archaea, ammonia-oxidizing bacteria
and nitrite-oxidizing bacteria, are the most abundant chemoautotrophs in the ocean and play an
important role in the global carbon cycle by fixing dissolved inorganic carbon (DIC) into
biomass. The release of organic compounds by these microbes is not well quantified, but may
represent an as-yet unaccounted source of dissolved organic carbon (DOC) available to marine
food webs. Here, we provide measurements of cellular carbon and nitrogen quotas, DIC fixation
yields and DOC release of ten phylogenetically diverse marine nitrifiers. All investigated strains
released DOC during growth, representing on average 5-15% of the fixed DIC. Changes in
substrate concentration and temperature did not affect the proportion of fixed DIC released as
DOC, but release rates varied between closely related species. Our results also indicate previous
studies may have underestimated DIC fixation yields of marine nitrite oxidizers due to partial
decoupling of nitrite oxidation from CO, fixation, and due to lower observed yields in artificial
compared to natural seawater medium. The results of this study provide critical values for
biogeochemical models of the global carbon cycle, and help to further constrain the implications
of nitrification-fueled chemoautotrophy for marine food-web functioning and the biological

sequestration of carbon in the ocean.

Introduction

A fraction of the carbon dioxide (CO.) that is captured by marine phytoplankton at the surface
sinks to depth as dead organic material, supporting a deep ocean food web of both microbes and
higher trophic levels (Hannides et al. 2013; Giering et al. 2014; Choy et al. 2015). Organic

matter decomposition in the mesopelagic releases ammonium, a reduced form of nitrogen that
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can be used as an energy source by chemoautotrophic nitrifying archaea and bacteria to fuel
dissolved inorganic carbon (DIC) fixation into biomass (Ward 2011). Chemoautotrophic
production provides a new, labile, non-sinking source of particulate organic matter to the deep
ocean which is otherwise dominated by refractory organic carbon (Reinthaler et al. 2010;
Middelburg 2011), supporting the heterotrophic microbial community in the mesopelagic
(Hansman et al. 2009; Baltar et al. 2010).

The main nitrifiers in the ocean are ammonia-oxidizing archaea, which oxidize ammonia
(NH3) to nitrite (NO2"), and nitrite-oxidizing bacteria, which further oxidize NO>™ to nitrate
(NO37) (Ward 2011). These two steps are assumed to be tightly coupled, as NO;™ typically does
not accumulate in oxic, open ocean waters with measurable nitrification, with the exception of
the primary nitrite maximum at the base of the euphotic zone (Lomas and Lipschultz 2006;
Santoro et al. 2013). Despite this tight coupling, ammonia-oxidizing archaea are approximately
six times more abundant than nitrite-oxidizing Nitrospinae bacteria at a given location and
sampling depth throughout the Pacific Ocean (Santoro et al. 2019), possibly owing to their
smaller cell size compared to nitrite-oxidizing bacteria (e.g., Watson and Waterbury 1971; Qin et
al. 2017; Mueller et al. 2021), or as a result of the higher theoretical energy yield from ammonia
compared to nitrite oxidation (Bock and Wagner 2013). Ammonia-oxidizing bacteria are thought
to play a minor role in global ocean nitrification due to their overall low abundances (Santoro et
al. 2010; Buchwald et al. 2015; Tolar et al. 2016).

Despite the known difference in theoretical energy yield, there are many uncertainties
regarding the organic carbon yield from ammonia versus nitrite oxidation (hereinafter referred to
as DIC fixation yield) and the contribution of both physiological groups to chemoautotrophic

DIC fixation in the ocean. Cultures of ammonia-oxidizing archaea have recently been shown to
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release dissolved organic carbon (DOC) during growth (Bayer et al. 2019a), yet this component
of organic carbon is not captured by conventional methods measuring DIC incorporation into
biomass. As such, the release of DOC by chemoautotrophs might represent an as-yet
unaccounted source of organic material in the deep ocean potentially fueling the microbial loop,
with important implications for the marine carbon cycle. However, it remains unclear if DOC
release is a phenomenon only observed under specific culture conditions, restricted to select
strains of ammonia-oxidizing archaea, or a common feature shared by diverse autotrophic
nitrifiers under natural conditions.

Here, we report combined measurements of DIC fixation and DOC release of ten
phylogenetically diverse marine nitrifiers comprising two genera of ammonia-oxidizing archaea
(Nitrosopumilus and Ca. Nitrosopelagicus), one genus of ammonia-oxidizing bacteria
(Nitrosomonas) and three genera of nitrite-oxidizing bacteria (Nitrospina, Nitrospira, and
Nitrococcus). We further explored the effect of different culture conditions, including
environmentally-relevant conditions of low substrate concentration and temperature, on these
measurements using two nitrifier strains isolated from the Pacific Ocean (Nitrosopumilus sp.
CCS1 and Nitrospina sp. Nb-3). The results of this study will inform ecological theoretical
models to further constrain DIC fixation yields associated with nitrification in order to better

understand the dynamics involved in the sequestration of carbon in the ocean.

Methods

Nitrifier culture sources
Ammonia-oxidizing archaeal cultures used in this study were three axenic Nitrosopumilus strains

and one Nitrosopelagicus enrichment culture. Ca. Nitrosopelagicus brevis U25 originates from a
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North Pacific Ocean water sample (Santoro and Casciotti 2011; Carini et al. 2018). The level of
enrichment during the time of this study was >90% and co-cultured heterotrophic bacteria
belonged to the genera Erythrobacter and Gracilimonas as previously described (Santoro and
Casciotti 2011). Nitrosopumilus sp. CCS1 is a novel strain isolated from a seawater sample
collected from the California Current system in the North Pacific Ocean (Santoro et al,
unpublished). Nitrosopumilus adriaticus NF5 (=JCM 32270 =NCIMB 15114") and
Nitrosopumilus piranensis D3C (=JCM 322717 =DSM 106147 =NCIMB 15115") were isolated
from the Northern Adriatic Sea and have been described in detail (Bayer et al. 2016, 2019¢).

The four axenic nitrite-oxidizing bacterial strains, Nitrospina gracilis Nb-211, Nitrospina
sp. Nb-3, Nitrococcus mobilis Nb-231 and Nitrospira marina Nb-295, were obtained from the
culture collection of John B. Waterbury and Frederica Valois at the Woods Hole Oceanographic
Institution (WHOI). N. gracilis Nb-211 was isolated from surface waters of the South Atlantic
Ocean (Watson and Waterbury 1971), N. mobilis Nb-231 was isolated from a surface water
sample obtained from the South Pacific Ocean (Watson and Waterbury 1971) and N. marina Nb-
295 was isolated from a water sample collected at a depth of 206 m from the Gulf of Maine in
the Atlantic Ocean (Watson et al. 1986). Nitrospina sp. Nb-3 was isolated from the Pacific
Ocean off the coast of Peru and has not yet been officially described (Watson and Waterbury,
unpublished), however, its genome has recently been sequenced suggesting it is phylogenetically
distinct from the species Nitrospina gracilis (Bayer et al. 2022).

Ammonia-oxidizing bacteria used in this study, Nitrosomonas marina C-25 and
Nitrosomonas sp. C-15 (also referred to as strain Nm51, (Koops et al. 1991)), were both obtained
from the culture collection at WHOI and were revived from 60-year old cryostocks. Strain C-15

was isolated from surface water (1 m depth) of the South Pacific Ocean off the Peruvian
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continental shelf (Watson and Mandel 1971) and strain C-25 was isolated from surface waters of

the South Atlantic Ocean (200 miles off the Amazon River mouth) (Watson and Mandel 1971).

Culture conditions
Nitrosopumilus adriaticus NF5, Nitrosopumilus piranensis D3C, Nitrosomonas marina C-25 and
Nitrosomonas sp. C-15 were grown in HEPES-buffered artificial seawater medium containing 1
mM NH4Cl, and Ca. Nitrosopelagicus brevis U25 was grown in natural seawater medium
containing 50 uM NH4Cl. Nitrospina gracilis Nb-211, Nitrospira marina Nb-295 and
Nitrococcus mobilis Nb-231 were grown in artificial seawater medium supplemented with I mM
NaNO:a. Nitrosopumilus sp. CCS1 and Nitrospina sp. Nb-3 were grown under multiple culture
conditions as indicated in the Results and Discussion. All strains were routinely grown in 60 mL
polycarbonate bottles (Nalgene) containing 50 mL culture medium, and bottles were incubated at
25 °C (with the exception of Ca. Nitrosopelagicus brevis, which was always incubated at 22°C)
in the dark without agitation.

The artificial seawater medium contained 18.54 g L'! NaCl, 4.7 g L' MgSO4 x 7H,0,
3.55 g L' MgCl, x 6H20, 1.03 g L'! CaCl> x 2H,0, 0.51 g L' KCl, 0.14 g L' NaHCOs. The
natural seawater medium consisted of aged seawater collected from the Santa Barbara Channel
(approx. 10 m depth, 0.2 pm pore size filtered and autoclaved). Artificial and natural seawater
were supplemented with 2.6 mg L' KoHPOs4, 250 pg L' FeNaEDTA, 30 pg L' H3BO3, 20ug L
MnCl, x 4H,0, 20 pg L' CoClz x 6H>0, 24 pug L' NiCl, x 6H>0, 20 pg L! CuCl: x 2H>0, 144
pg L' ZnSO4 x TH20, 24 png L' Na;MoO4 x 2H>0. The pH was adjusted to 7.8-8.0 with NaOH
or HCI. Due to the pH decrease associated with ammonia oxidation, culture medium with high

initial NH4" concentrations (>250 uM) was buffered to pH 7.8 by addition of 10 mM HEPES
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(54457, Sigma-Aldrich). Ammonia-oxidizing archaea cultures were supplemented with 50 U L*!
catalase (Sigma-Aldrich, Cat. Nr. C9322) to reduce oxidative stress and nitrite-oxidizing bacteria
cultures were supplemented with 50 ng L' cyanocobalamin. To test the effect of reduced
inorganic and organic nitrogen compounds on Nitrospina sp. Nb-3, NH4C1 (50 uM) or tryptone
(150 mg L") were added to the culture medium.

NO>™ concentrations were measured using the Griess-Ilosvay colorimetric method
(Strickland and Parsons 1972) and enumeration of cells was performed on an Guava Easy-Cyte
flow cytometer (EMD Millipore) following SYBR Green staining as previously described (Bayer

etal. 2021).

Cellular carbon and nitrogen content measurements

To determine C : N ratios, between 100-500 mL of culture was filtered onto combusted (450°C,
4h) glass fiber filters (Advantec, GF-75, 25mm; 0.3 um nominal pore size). Filters were acidified
with HC1 (10% v/v), dried (60°C, 24h), and packed into tin capsules prior to being analyzed on a
CHN elemental analyzer (Exeter Analytical, CEC 440HA). The instrument was calibrated with
acetanilide following manufacturer protocols.

Cellular carbon (C) content was calculated using both, CHN elemental analyzer (only for
large cells) and '*C-DIC incorporation measurements (see below), divided by the number of
newly produced cells. Additionally, C content of the archaeal strain Nitrosopumilus sp. CCS1
was calculated from a dilution series of concentrated cells as described in (White et al. 2019).
Cells were concentrated using tangential flow filtration (Ultracell 30 kDa membrane, Pellicon,
Millipore Sigma) and a dilution series of 1.1 to 5.6 x10!! cells L™! was constructed by

resuspending cell concentrates in culture medium (Fig. S1). The total organic C content for each



161  wvial of the dilution series was directly measured by high temperature combustion using a

162  modified Shimadzu TOC-V as described in (Carlson et al. 2010). C content per cell was

163 calculated via linear regression of cell counts and elemental content over the dilution series,
164  where the slope of a Model II least squares regression is considered the elemental content per
165  cell (Fig. S1).

166

167  Combined DIC fixation and DOC release measurements

168  DIC fixation was measured via the incorporation of ['*C]-bicarbonate as previously described
169  (Herndl et al. 2005) with modifications. [*C]-bicarbonate (specific activity 56 mCi mmol'/2.072
170  x 10° Bq mmol!, Perkin Elmer) was added to 5 mL of culture (between 10-60 uCi were added
171  depending on the activity of the culture). Different incubation times were tested (see Results
172 section) and all consecutive experiments were performed over the entire length of the growth
173 curve. For every culture condition, at least three replicate live samples and one formaldehyde-
174  fixed blank (3% v/v) were incubated in temperature-controlled incubators in the dark. Due to
175  radiation safety procedures which preclude measurements of radioactive samples in general-use
176  equipment, parallel incubations without ['#C]-tracer additions were used to determine cell

177  abundance and nitrite concentration (see above). Great care was taken to ensure the exact same
178  culture conditions to reduce potential biological heterogeneity between replicates.

179 Incubations were terminated by adding formaldehyde (3% v/v) to 5 mL of sample. After
180  30-60 min, every sample was individually filtered onto 25 mm, 0.2 um pore size polycarbonate
181  filters (Millipore) and rinsed with 0.5 mL of artificial seawater using a glass filtration set

182  (Millipore). The individual filtrates (5.5 mL per sample) were collected and transferred to

183  scintillation vials to determine the fraction of ['*C]-dissolved organic carbon (['*C]-DOC).
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Excess ['*C]-bicarbonate from the filters was removed by exposing them to fumes of
concentrated HCI1 (37 %) for 24 h. The filters were transferred to scintillation vials and 10 mL of
scintillation cocktail (Ultima Gold, Perkin Elmer) was added. The filtrates were acidified to pH
~2 with HCI1 (25 %) as previously described (Marafion et al. 2004), and filtrates were kept for 24
h in open scintillation vials placed on an orbital shaker before 10 mL scintillation cocktail was
added to each vial. Samples were shaken for ca. 30 sec and incubated in the dark for at least 24 h
prior to counting the disintegrations per minute (DPM) in a scintillation counter (Beckman
Coulter LS6500) for 15 min.

Total radioactivity measurements were performed to verify added ['*C]-bicarbonate
concentrations by pipetting 100 pl of sample into scintillation vials containing 400 pl beta-
phenylethylamine (to prevent outgassing of '*CO>). Scintillation cocktail was added, vials were

shaken for ca. 30 sec and immediately measured in the scintillation counter.

The resulting mean DPM of the samples were corrected for the DPM of the blank, converted into

organic carbon fixed over time and corrected for the DIC concentration in the culture media.

DIC fixation rates were calculated using the following formula:

(DPMs - DPMy) x DICy/(DPMy x incubation time)

where DPM are the disintegrations per minute measured in the scintillation counter, for the

sample (s) and the blank (b). DICy, denotes the dissolved inorganic carbon concentration in
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culture medium and DPM tracer (tr) is the DPM for the ['*C]-bicarbonate added to the

incubations.

DIC concentration measurements

Total alkalinity (TA) of unfixed natural and artificial seawater medium was measured via an
open-cell endpoint titration using a Mettler-Toledo TS5 autotitrator, and pH was measured
spectrophotometrically using a Shimadzu UV-1280 UV-VIS spectrophotometer as described
previously (Dickson et al. 2007; Hoshijima and Hofmann 2019). Dissolved inorganic carbon
(DIC) concentrations were calculated from TA and pH using the CO2SYS software (Pelletier
2007). To calculate DIC concentrations of HEPES-buffered media, TA values were taken from

unbuffered artificial seawater medium and the pH was re-measured after adding HEPES.

Calculations of Gibbs free energy (AG)
The effective Gibbs free energy (AG) for ammonia and nitrite oxidation was calculated for the
culture conditions in this study using the following formula:

AG=AG°+RTIn Q

where R is the ideal gas constant (8.314 J mol'! K), Q is the reaction quotient, and T is the

temperature in Kelvin. AG®° values were obtained from (Amend and Shock 2001).

QO was calculated based on the following measurements and estimates: NO,™ concentrations were

measured directly (see above); [NOs'] and [NH4"] were estimated from the decrease or increase

in [NOy], respectively; NH3 concentrations were calculated based on [NH4"], pH of the culture

10
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medium, and the acid association constant (pKa = 9.4); and O> concentrations were estimated to
be 235 uM under completely oxic conditions during our incubations. A correction for ionic
strength was applied according to (Amend and LaRowe 2019). Calculations can be found in the

Supporting Information (Table S1).

Statistical analyses

Pairwise comparisons were performed with a two-sided Mann-Whitney U Test
(pairwise.wilcox.test) using the R software environment (R Core Team 2013). P values were
adjusted for multiple comparisons using the Benjamini-Hochberg correction

(p-adjust.method="fdr") (Benjamini and Hochberg 1995).

Results and Discussion

Elemental composition of cultured nitrifiers

We determined the cellular carbon (C) content of cultured isolates of ammonia-oxidizing
archaea, ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to six different
genera. The cellular C contents of ammonia-oxidizing archaea were ~11-17 fg C cell"! (Table 1),
which is slightly higher than values reported for natural populations in the deep Atlantic Ocean
(~8.39 fg cell!, (Herndl et al. 2005)) and an enrichment culture from the Baltic Sea (9 fg cell’!,
(Berg et al. 2014)), but much lower than values reported for ammonia-oxidizing archaea from
hypoxic shelf waters of the Gulf of Mexico (50 + 16 fg cell !, (Kitzinger et al. 2020)). All
investigated marine ammonia- and nitrite-oxidizing bacteria had higher cellular C quotas
compared to archaeal nitrifiers (Table 1), with Nitrospina exhibiting the lowest (~28-55 fg C

cell'!) and Nitrococcus the highest (~272-1207 fg C cell!) values (Table 1). The C content of

11
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ammonia-oxidizing archaea cells remained fairly constant during different growth phases, while
C contents of all investigated nitrite oxidizer strains drastically decreased (~40-70%) from early
exponential growth to stationary phase, which was supported by the observation of smaller cells
in stationary compared to exponentially growing cultures (data not shown). Cell sizes of natural
populations of Nitrospinae bacteria have been reported to be 4-fold (Kitzinger et al. 2020) and
50-fold (Pachiadaki et al. 2017) larger than cells of ammonia-oxidizing archaea, potentially
reflecting these variations in cell size and C content during different growth phases.

Due to the small cell sizes of ammonia-oxidizing archaea and the potential to lose some
cells via filtration through 0.2 um pore size filters, we compared the cellular C content of
Nitrosopumilus sp. CCS1 to values obtained from a filtration-independent method using a
dilution series of concentrated cells (see Methods section). There was no difference between the
cellular C content of exponentially growing cells of strain CCS1 when using either method (12.0
+2.0 vs. 12.5 fg cell’!, see Table 1). Additionally, we quantified the amount of strain CCS1 cells
passing through 0.2 um filter sizes via flow cytometry and found that 0.2 pm polycarbonate
filters had very high retention efficiency with only 0.14 + 0.03% of cells not being recovered,
further confirming that our results are not biased by the applied filtration procedure.

The molar C : N ratios of all investigated nitrifiers were in the range of 3.4-4.6 : 1 (Table
1), with the exception of previously published values of Nitrosopumilus maritimus NAOAG6
(Meador et al. 2020) and two ammonia-oxidizing bacteria strains (Glover 1985). The values
observed are lower than average values of heterotrophic marine bacteria cultures (~5 : 1)
including Pelagibacter ubique (~4.6 : 1) (White et al. 2019), and references therein), with
Nitrospina cells exhibiting the lowest average C : N ratio (~3.4) of all cultured nitrifiers in our

study (Table 1). These low cellular C : N ratios are surprising considering the observation of

12
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281

282

283
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288

glycogen storage deposits in cells of Nitrospina gracilis, Nitrococcus mobilis, and Nitrospira
marina (Watson and Waterbury 1971; Watson et al. 1986), as well as polyhydroxbutyrate
storage in Nitrococcus mobilis (Watson and Waterbury 1971). Cellular N contents in our study
might be underestimated as measurements were performed on acidified samples, which could
lead to partial hydrolyzation of proteins and amino acids. However, C : N ratios obtained from
non-acidified cell pellets of Nitrosopumilus adriaticus and Nitrosopumilus piranensis (Bayer et
al. 2019c) are comparable to those obtained for Nitrosopumilus sp. CCS1 in this study (Table 1),

suggesting a negligible bias for at least some of the studied species.

Table 1. Elemental stoichiometry of phylogenetically diverse cultured marine nitrifiers during different
growth phases (early exponential, late exponential, stationary) including previously published values. C :
N ratios were obtained during exponential growth phase. Cellular C content values are derived from DIC

incorporation measurements if not stated otherwise.

:N
Organism (mfl mol) Cellular C content (fg C cell!) Ref.

. Late .

tat

Early exponential exponential Stationary
Ammonia-oxidizing archaea
Ca. Nitrosopelagicus brevis U25 n.d. n.d. 10.8 n.d. this study
12.0 £2.0/ 12.9+2.0/ .
] ilus sp. .03+0. B+0.

Nitrosopumilus sp. CCS1 4.03+0.32 11.8+£0.2 12 5& 163 + 0,28 this study
Nitrosopumilus adriaticus NF5 391 n.d. 16.7+7.5 17.3+23 this study,'
Nitrosopumilus piranensis D3C 3.98 n.d. 16.3 17.2+1.9 this study,’

34+ 14
Nitrosopumilus maritimus NAOAG6 5.8/5.9" n.d. n.d. 1746 +/ 2
Ammonia-oxidizing bacteria

Nitrosomonas sp. C-15 431+0.11 n.d. 145.7+11.1 1152 +3.8 this study
Nitrosomonas marina C-25 4.38+0.14 n.d. 302.4+10.0 159.7+13.4 this study

Nitrosomonas marina 5.59-6.11* 241 139 133 3

Nitrosococcus oceani 3.58-4.95% 1115 961 919 3

Nitrite-oxidizing bacteria

Nitrospina gracilis Nb-3 3.41£0.05 50.8+3.9 40.1+2.5 28.4+4.6 this study

13



289
290

291
292
293
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295
296

297
298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Nitrospina gracilis Nb-211 3.43+0.18 54.9+4.9" n.d. 304+34 this study
153.5+18.1/

jtrospi j - 22+0. ST, 8+6. i
Nitrospira marina Nb-295 4.22+0.03 155.2 + 6 5* 69.5+7.5 57.8+6.2 this study
994.6 + 315.4/ .
: —— " + +
Nitrococcus mobilis Nb-231 4.60+0.13 1206.6 + 156.1% 442.9 +38.0 272.1+60.7 this study
Nitrococcus mobilis 3.07-4.75%* 1226 671 384 3

! Bayer et al. (2019¢); > Meador et al. (2020); ! Glover (1985)

*Range of values obtained during different growth conditions

% Value obtained from TOC dilution series (see Materials and Methods section and Fig. S1)
#Values obtained from CHN elemental analyzer measurements (see Materials and Methods section)
$ Grown in HEPES-buffered medium

* Values obtained under phosphate-replete and phosphate-deplete conditions (P replete/ P deplete)

DIC fixation yields of marine nitrifiers

We conducted combined measurements of DIC fixation, DOC release and ammonia/nitrite
oxidation rates of ten nitrifier cultures. The biological variability of NO;™ and DIC fixation
measurements between replicate bottles across all nitrifier strains and culture conditions was
5.2+3.7 and 4.843.2%, respectively. Here, we use the term ‘DIC fixation yield’ to describe the
number of moles of inorganic carbon (CO; or HCO5") that are fixed for every mole of N (NH3 or
NO>") oxidized, including the proportion that is released/lost as DOC.

Marine ammonia-oxidizing archaea, including three axenic Nitrosopumilus strains and
one Ca. Nitrosopelagicus enrichment culture, exhibited the highest DIC fixation yields
(meantsd= 0.091 £ 0.012, n=47) in our study, which were on average ~2-times higher than those
of marine ammonia-oxidizing bacteria (meantsd= 0.047 £ 0.010, n=23) (Fig. 1). Ammonia-
oxidizing archaea encode the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle for
DIC fixation (Walker et al. 2010), which is suggested to be the most energy-efficient aerobic
autotrophic DIC fixation pathway (Konneke et al. 2014). In contrast, ammonia-oxidizing bacteria

use the Calvin-Benson-Bassham (CBB) cycle (Utaker et al. 2002; Stein et al. 2007), which has a

14
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higher ATP requirement and an estimated 20% loss of fixed DIC due to the oxygenase side-
reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase (Berg 2011). DIC fixation yields of
two Nitrosopumilus strains were recently reported to be up to ten times higher (0.18-1.2,
(Meador et al. 2020)) compared to values in our study and previously published values of
Nitrosopumilus adriaticus NF5 (0.1, (Bayer et al. 2019¢)) and a Nitrosarchaeum enrichment
culture (0.1, (Berg et al. 2014)). However, such high values would require unrealistically high
ATP yields (up to 2.4 moles ATP per mole NH3 oxidized) compared to reported estimates of

0.15-0.28 ATP/NHs (mol/ mol) (Li et al. 2018).
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Fig.1 Comparison of DIC fixation yields of ten different phylogenetically diverse marine nitrifiers.
Plotted values include both, the fraction of C incorporated into biomass and the fraction of C released as
DOC. For nitrite-oxidizing bacteria, only measurements conducted over the entire length of the growth
curve (until stationary phase) are shown (see Fig. 2). Values obtained from cultures grown under different

conditions (see Fig. 3 and Fig. S3) are included in this plot.
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327

328 DIC fixation yields of marine nitrite-oxidizing bacteria (Nitrospina/Nitrospira:

329  meantsd=0.036 + 0.005, n=47; Nitrococcus: meantsd=0.018 + 0.002, n=11) were lower

330  compared to those of ammonia oxidizers (Fig. 1). Nitrococcus mobilis, which uses the CBB
331  cycle for DIC fixation (Fiissel et al. 2017) had ~2-times lower DIC fixation yields compared to
332 Nitrospina and Nitrospira which use a O>-tolerant version of the reverse TCA cycle (Liicker et
333 al. 2010, 2013). Zhang et al. (2020) measured ~1.7-times lower DIC fixation yields of Nitrospina
334 gracilis 3/211 and a terrestrial Nitrospira isolate compared to values in our study. We observed
335  that radiotracer incubations conducted over the entire length of the growth curve (until early
336  stationary phase, see Fig. S2) resulted in ~1.4 to 1.7-times higher DIC fixation yields of nitrite
337  oxidizers compared to incubations conducted until late exponential growth (when NO2 was
338  completely oxidized) (Fig. 2), suggesting that, in contrast to Nitrosopumilus sp. CCS1 where
339  ammonia oxidation and DIC fixation were tightly coupled, nitrite oxidation might be partly
340  decoupled from DIC fixation in nitrite-oxidizing bacteria. This observation was also supported
341 by an increase of cell numbers after NO>~ was completely depleted (Fig. S2). While incubation
342 times <72 h are typically favored over longer times for environmental measurements to avoid
343  cross-feeding of reaction products, our results indicate that DIC fixation yields of nitrite

344  oxidizers might be underestimated using these established protocols (Fig. 2).

345
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Fig. 2 Comparison of DIC fixation yields obtained from 24 h radiotracer incubations during exponential
growth, and long-term (LT) radiotracer incubations carried out until either late exponential growth or
early stationary phase. Measurements of both Nitrospina strains (Nb-3 and Nb-211) were combined in
this plot. Statistical significance (adj. P-value <0.01) of within-condition comparisons are indicated by an
asterisk (*). Statistical results of all pairwise comparisons are reported in Table S2. Representative growth

curves can be found in the Supporting Information (Fig. S2).

We further explored the effect of multiple culture conditions, including environmentally
relevant conditions of low substrate concentrations (1 pM) and low temperature (15°C), on DIC
fixation yields of Nitrosopumilus sp. CCS1 and Nitrospina sp. Nb-3. We observed that
Nitrospina sp. Nb-3 was ~1.4-times more efficient in converting energy to growth when grown
in natural seawater compared to artificial seawater medium, which was not observed for
Nitrosopumilus sp. CCS1 (Fig. 3). We hypothesize that reduced N compounds present in natural
seawater (ammonium and/or organic N compounds) might be responsible for the observed

differences due to the metabolic costs of six reduced ferredoxins associated with assimilatory
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NO:> reduction in Nitrospina and Nitrospira (Liicker et al. 2013; Bayer et al. 2021). Those
reduced ferredoxins could instead be used as electron donors for DIC fixation via the rTCA cycle
(Berg 2011). Additions of ammonium or tryptone to artificial seawater medium likewise resulted
in significantly higher DIC fixation yields (Fig. 3, Fig. S3), corroborating this hypothesis.
Environmental populations of Nitrospinae have previously been shown to favor ammonium and
the organic N sources urea and cyanate over nitrite (Kitzinger et al. 2020). Our data suggest that
in addition to urea and cyanate, marine nitrite-oxidizing bacteria can assimilate more complex
organic N sources such as peptides and/or amino acids thereby saving energy that can instead be
invested in C assimilation. We cannot exclude the possibility that some of the organic C present
in natural seawater or added via tryptone might also be assimilated, however, the observed
higher net DIC fixation yields suggest that organic C assimilation plays — if at all —a very minor
role in marine nitrite oxidizers. Furthermore, we observed slightly higher DIC fixation yields of
Nitrosopumilus sp. CCS1 in HEPES-buffered artificial seawater compared to unbuffered culture
medium (Fig. 3), which coincided with higher cellular C quota (Table 1). While we cannot
explain these observations, the differences in DIC fixation yield did not seem to be caused by
variations in pH, which remained constant in unbuffered culture medium containing low

substrate concentrations (1 pM NH4").
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Fig. 3 DIC fixation yields of Nitrosopumilus sp. CCS1 and Nitrospina sp. Nb-3 under different culture
conditions (substrate concentrations: 1 pM, 250 uM, 1 mM; temperature: 15°C, 25°C) and culture media
(natural seawater, artificial seawater, HEPES-buffered artificial seawater). Plotted values include both,
the fraction of C incorporated into biomass and the fraction of C released as DOC. Ammonium (50 pM)
or tryptone (150 mg L") served as additional, reduced nitrogen source for Nitrospina sp. Nb-3. Statistical
significance (adj. P-value <0.01) of within-condition comparisons are indicated by an asterisk (*).

Statistical results of all pairwise comparisons are reported in Table S2.

The theoretical Gibbs free energy release (AG) estimated for conditions in our study was
3.6-times higher for ammonia compared to nitrite oxidation (Table 2), yet DIC fixation yields of
Nitrosopumilus sp. CCS1 and Ca. Nitrosopelagicus brevis U25 (Table 2) were only 2 to 2.6-
times higher compared to Nitrospina sp. Nb-3. Similar observations were made by Kitzinger et al
(2020) who reported that Nitrospinae bacteria in low O2 waters of the Gulf of Mexico are more
efficient in translating energy gained from nitrite to C assimilation than ammonia-oxidizing

archaea are in translating energy gained from ammonia oxidation. Thermodynamic properties
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and the efficiency of the DIC fixation pathway itself can contribute to realized energy yields.
Additional factors include the requirement of four out of six generated electrons by ammonia
monooxygenase to reduce molecular oxygen in ammonia oxidizers (Stahl and de la Torre 2012;
Caranto and Lancaster 2018). When considering that a maximum of 53.8% of the energy
released from catabolism are available to ammonia oxidizers for growth (Gonzalez-Cabaleiro et
al. 2019), ammonia-oxidizing archaea are estimated to have slightly higher DIC fixation
efficiencies compared to nitrite-oxidizing bacteria encoding the rTCA cycle (Table 2). While
oxygen protection likely increases the energy demands of the rTCA cycle (Berg 2011), our
results indicate that the cycle might also be highly efficient under oxic conditions that are found

in most regions of the global ocean.

Table 2. Thermodynamic considerations and comparison of DIC fixation efficiencies and biomass yields
of marine ammonia-oxidizing archaea and nitrite-oxidizing bacteria grown under environmentally
relevant conditions (substrate concentration: 1 uM; temperature: 15°C) in artificial and natural seawater

medium. Gibbs free energy calculations for NH; oxidation and NO,™ oxidation can be found in Table S1.

Ca. Nitrosopelagicus U25% Nitrosopumilus sp. CCS1 Nitrospina sp. Nb-3
. Natural Artificial Natural Artificial Natural
Culture medium
seawater seawater seawater seawater seawater
Gibbs free energy 280/ 151* 276/ 149% 276/ 149% 77 77
(kJ mol™)
DIC fixation yield 0.111 < 0.008 0.080 + 0.085 + 0.032 + 0.043 £
(mol mol!) ' ) 0.004 0.008 0.002 0.004
DIC fixation
. 396 £29/ 290+ 15/ 308 £29/
efﬁc1ency_1 735+ §3% 5374 07% 570 + 54% 416 £26 55852
(nmol C kJ™)
Biomass yield® 0.135+ 0.143 + 0.056 + 0.076 +
(gBio gN) 0.187+0.019 0.010 0.019 0.005 0.010

SCa. Nitrosopelagicus U25 was grown at 22°C with initial substrate concentrations of 50uM.
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&The average chemical formula of bacterial biomass (CH1.700.4No.2, (Popovic 2019)) was adjusted using the C:N
ratios from Table 1 (Ammonia-oxidizing archaea: CH1.700.4No.2s; Nitrospina: CH1.700.4No.29).
*When considering 53.8% of the energy released is available for growth according to Gonzalez-Cabaleiro et al.

2019.

Multiple studies have used estimates of DIC fixation yields to infer DIC fixation rates
associated with nitrification in diverse marine and estuarine environments (e.g., Dore and Karl
1996; Lam et al. 2004; Lee et al. 2015), and a value of 0.1 for archaeal ammonia oxidation has
widely been used in the literature (Wuchter et al. 2006; Reinthaler et al. 2010; Middelburg 2011)
without direct experimental evidence. Previous measurements of DIC fixation yields were
mainly derived from cultures of ammonia and nitrite oxidizers that are not representative for the
majority of nitrifiers found in marine environments and were highly variable (ammonia-
oxidizing bacteria: 0.033-0.130; nitrite-oxidizing bacteria: 0.013-0.031; (Prosser 1990) and
references therein). The variations in DIC fixation yields we observe for marine nitrifiers across
different species and culture conditions are comparably low within ammonia-oxidizing archaea
(mean+sd=0.091 + 0.012; n=47) and Nitrospina/Nitrospira (mean+sd=0.036 £ 0.005; n=56),
suggesting that these values are more constrained than previous estimates and particularly useful

for modelling approaches in marine systems.

DOC release by chemolithoautotophs

We measured DOC release rates of ten nitrifier cultures and tested how different culture
conditions affected the amount of DOC released in proportion to the amount of fixed DIC. All
investigated strains released DOC during exponential growth, and DOC release ceased when
cultures reached stationary phase (as determined by comparing the total amount of released DOC

until late exponential vs stationary phase, see Fig. S4), suggesting that DOC release is a feature
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of metabolically active nitrifiers. This is in agreement with earlier observations of amino acid
release by exponentially growing Nitrosopumilus cells (Bayer et al. 2019a). The amount of
chemoautotrophically fixed DIC that was released as DOC by nitrifiers made up on average ~5-
15% (Fig. 4a). This is within the range observed for phytoplankton, which released 2-10% and 4-
42% of their photosynthetically fixed DIC in culture and environmental studies, respectively
(Carlson 2002), and references therein). To assess the potential stimulation of DOC release
during the 30-60 min of formaldehyde fixation (see Methods section), we compared the fraction
of fixed DIC released as DOC between 24 h and long-term (7 and 10-day long) incubations (Fig.
S5). If DOC release was occurring during the fixation period, it would make up a larger fraction
of the total DOC release in 24 h compared to long-term incubations. However, we did not
observe any significant differences between incubation times (Fig. S5), suggesting that
formaldehyde fixation did not bias our results.

DOC release varied between closely related species (Fig. 4a). Nitrosopumilus piranensis
released more DOC compared to the two other investigated Nitrosopumilus species, which is in
agreement with (Bayer et al. 2019b) who reported higher amino acid release rates of V.
piranensis compared to N. adriaticus. Differences in the amount of released DOC have also been
recently reported between the closely related aquarium strain Nitrosopumilus maritimus SCM1
(9-19% of fixed DIC) and the environmental strain Nitrosopumilus maritimus NAOAG6 (5% of
fixed DIC) (Meador et al. 2020). Within nitrite oxidizers, Nitrospina sp. Nb-3 consistently
released less DOC compared to N. gracilis Nb-211 and the two phylogenetically more distantly

related species N. marina and N. mobilis.
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Fig. 4 DOC release by marine nitrifiers as a fraction of fixed DIC. a) Comparison of DOC release by ten
different phylogenetically diverse marine nitrifiers. Values obtained from cultures grown under different
conditions (see panel b) are included in this plot. DOC release by Ca. N. brevis might be underestimated
due to the presence of heterotrophic bacteria that could take up some of the released DOC. b) Comparison
of DOC release by Nitrosopumilus sp. CCS1 and Nitrospina sp. Nb-3 grown under different culture

conditions (substrate concentrations: 1 pM, 250 uM, 1 mM; temperature: 15°C, 25°C) in artificial or

natural seawater medium. Statistical results of all pairwise comparisons are reported in Table S2.

The fraction of released DOC remained constant across different culture conditions
including environmentally relevant conditions of low substrate concentration (1 uM) and at low
temperature (15°C) in natural seawater (Fig. 4b). This suggests that DOC release is not an
artifact of unrealistic culture conditions but likely a feature exhibited by nitrifier populations in

the environment. However, given the differences in DOC release between closely related
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476  cultured species (Fig. 4a) and the greater diversity of nitrifiers observed in the ocean, it is

477  possible that DOC release might differ in more complex natural environments, particularly of
478  marine nitrite oxidizers for which environmentally relevant clades escaped cultivation thus far
479  (Pachiadaki et al. 2017). Additionally, in situ pressure conditions could further affect DOC
480  release by nitrifiers in nature. While the composition of DOM released by bacterial nitrifiers is
481  currently unknown, a fraction of the DOM released by ammonia-oxidizing archaea has been
482  shown to consist of labile compounds, such as amino acids, thymidine and B vitamins, that can
483  be limiting for heterotrophic microbes in open ocean waters (Bayer et al. 2019a).

484

485 Conclusions

486  Our results suggest that DIC fixation yields of marine nitrite oxidizers might be underestimated
487 by conventional <72 h-long tracer incubations, due to a partial decoupling between NO>"

488  oxidation and C assimilation over short timescales. Additionally, DIC fixation yields of

489  Nitrospina were positively affected by the presence of ammonium or complex organic N

490  compounds, which might influence metabolic interactions with ammonia oxidizers and/or

491  heterotrophic prokaryotes in the environment, suggesting a potentially underappreciated role for
492  competition in the N cycle (Santoro 2016).

493 DIC fixation yields of marine nitrifiers obtained in our study will help to further constrain
494 the relationship between C and N fluxes in the nitrification process and inform theoretical

495  models about how to connect observations at microscale to regional and global scales. Using a
496  mean global value of organic C export from the euphotic zone of ~6 Pg C yr ! (Siegel et al.

497  2014) and a mean C:N ratio of sinking marine particles (at the surface) of ~7.1 (Schneider et al.

498  2003), we estimate that the resulting global ocean organic N export of ~0.85 Pg yr ! could fuel
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up to 0.13 Pg C y'! of chemoautotrophic DIC fixation (0.094 Pg C y! by ammonia-oxidizing
archaea and 0.037 Pg C y! by nitrite oxidizers) in the dark ocean, which is in the lower range of
previous estimates (0.15-1.4 Pg C y!, see Table S3 and references therein). Furthermore, we
show that nitrifiers release significant amounts of DOC under environmentally relevant
conditions, equating to fluxes of 0.006-0.02 Pg C y! of fixed DIC released as DOC. Elucidating
the lability and fate of the DOM released by nitrifiers will be crucial to understand its

implications for the marine carbon cycle.
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