

1 **Carbon content, carbon fixation yield and dissolved organic carbon release**
2 **from diverse marine nitrifiers**

3 Barbara Bayer^{1,2*}, Kelsey McBeain^{1,3}, Craig A. Carlson¹, and Alyson E. Santoro¹

4

5 ¹ Department of Ecology, Evolution and Marine Biology, University of California, Santa
6 Barbara, CA, USA

7 ² Current address: Department of Microbiology and Ecosystem Science, University of Vienna,
8 Vienna, Austria

9 ³ Current address: Department of Oceanography, University of Hawai'i at Manoa, Honolulu, HI,
10 USA

11 *Correspondence: barbara.bayer@univie.ac.at

12 Running head: C fixation and release by nitrifiers

13

14 Author contribution: BB and AES designed the study. BB and KM conducted laboratory
15 experiments. BB analyzed the data and drafted the initial manuscript in consultation with AES.
16 AES and CAC contributed to revision and editing of the final manuscript.

17

18 Keywords: Cellular C quota, DIC fixation yield, DOC release, nitrification, ammonia-oxidizing
19 archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria

20

21 Data availability statement: Data and metadata are available at the Biological and Chemical
22 Oceanography Data Management office (BCO-DMO) under project [806565](#).

23 **Abstract**

24 Nitrifying microorganisms, including ammonia-oxidizing archaea, ammonia-oxidizing bacteria
25 and nitrite-oxidizing bacteria, are the most abundant chemoautotrophs in the ocean and play an
26 important role in the global carbon cycle by fixing dissolved inorganic carbon (DIC) into
27 biomass. The release of organic compounds by these microbes is not well quantified, but may
28 represent an as-yet unaccounted source of dissolved organic carbon (DOC) available to marine
29 food webs. Here, we provide measurements of cellular carbon and nitrogen quotas, DIC fixation
30 yields and DOC release of ten phylogenetically diverse marine nitrifiers. All investigated strains
31 released DOC during growth, representing on average 5-15% of the fixed DIC. Changes in
32 substrate concentration and temperature did not affect the proportion of fixed DIC released as
33 DOC, but release rates varied between closely related species. Our results also indicate previous
34 studies may have underestimated DIC fixation yields of marine nitrite oxidizers due to partial
35 decoupling of nitrite oxidation from CO₂ fixation, and due to lower observed yields in artificial
36 compared to natural seawater medium. The results of this study provide critical values for
37 biogeochemical models of the global carbon cycle, and help to further constrain the implications
38 of nitrification-fueled chemoautotrophy for marine food-web functioning and the biological
39 sequestration of carbon in the ocean.

40

41 **Introduction**

42 A fraction of the carbon dioxide (CO₂) that is captured by marine phytoplankton at the surface
43 sinks to depth as dead organic material, supporting a deep ocean food web of both microbes and
44 higher trophic levels (Hannides et al. 2013; Giering et al. 2014; Choy et al. 2015). Organic
45 matter decomposition in the mesopelagic releases ammonium, a reduced form of nitrogen that

46 can be used as an energy source by chemoautotrophic nitrifying archaea and bacteria to fuel
47 dissolved inorganic carbon (DIC) fixation into biomass (Ward 2011). Chemoautotrophic
48 production provides a new, labile, non-sinking source of particulate organic matter to the deep
49 ocean which is otherwise dominated by refractory organic carbon (Reinthal et al. 2010;
50 Middelburg 2011), supporting the heterotrophic microbial community in the mesopelagic
51 (Hansman et al. 2009; Baltar et al. 2010).

52 The main nitrifiers in the ocean are ammonia-oxidizing archaea, which oxidize ammonia
53 (NH_3) to nitrite (NO_2^-), and nitrite-oxidizing bacteria, which further oxidize NO_2^- to nitrate
54 (NO_3^-) (Ward 2011). These two steps are assumed to be tightly coupled, as NO_2^- typically does
55 not accumulate in oxic, open ocean waters with measurable nitrification, with the exception of
56 the primary nitrite maximum at the base of the euphotic zone (Lomas and Lipschultz 2006;
57 Santoro et al. 2013). Despite this tight coupling, ammonia-oxidizing archaea are approximately
58 six times more abundant than nitrite-oxidizing Nitrospinae bacteria at a given location and
59 sampling depth throughout the Pacific Ocean (Santoro et al. 2019), possibly owing to their
60 smaller cell size compared to nitrite-oxidizing bacteria (e.g., Watson and Waterbury 1971; Qin et
61 al. 2017; Mueller et al. 2021), or as a result of the higher theoretical energy yield from ammonia
62 compared to nitrite oxidation (Bock and Wagner 2013). Ammonia-oxidizing bacteria are thought
63 to play a minor role in global ocean nitrification due to their overall low abundances (Santoro et
64 al. 2010; Buchwald et al. 2015; Tolar et al. 2016).

65 Despite the known difference in theoretical energy yield, there are many uncertainties
66 regarding the organic carbon yield from ammonia versus nitrite oxidation (hereinafter referred to
67 as DIC fixation yield) and the contribution of both physiological groups to chemoautotrophic
68 DIC fixation in the ocean. Cultures of ammonia-oxidizing archaea have recently been shown to

69 release dissolved organic carbon (DOC) during growth (Bayer et al. 2019a), yet this component
70 of organic carbon is not captured by conventional methods measuring DIC incorporation into
71 biomass. As such, the release of DOC by chemoautotrophs might represent an as-yet
72 unaccounted source of organic material in the deep ocean potentially fueling the microbial loop,
73 with important implications for the marine carbon cycle. However, it remains unclear if DOC
74 release is a phenomenon only observed under specific culture conditions, restricted to select
75 strains of ammonia-oxidizing archaea, or a common feature shared by diverse autotrophic
76 nitrifiers under natural conditions.

77 Here, we report combined measurements of DIC fixation and DOC release of ten
78 phylogenetically diverse marine nitrifiers comprising two genera of ammonia-oxidizing archaea
79 (*Nitrosopumilus* and *Ca. Nitrosopelagicus*), one genus of ammonia-oxidizing bacteria
80 (*Nitrosomonas*) and three genera of nitrite-oxidizing bacteria (*Nitrospina*, *Nitrospira*, and
81 *Nitrococcus*). We further explored the effect of different culture conditions, including
82 environmentally-relevant conditions of low substrate concentration and temperature, on these
83 measurements using two nitrifier strains isolated from the Pacific Ocean (*Nitrosopumilus* sp.
84 CCS1 and *Nitrospina* sp. Nb-3). The results of this study will inform ecological theoretical
85 models to further constrain DIC fixation yields associated with nitrification in order to better
86 understand the dynamics involved in the sequestration of carbon in the ocean.

87

88 **Methods**

89 *Nitrifier culture sources*

90 Ammonia-oxidizing archaeal cultures used in this study were three axenic *Nitrosopumilus* strains
91 and one *Nitrosopelagicus* enrichment culture. *Ca. Nitrosopelagicus* brevis U25 originates from a

92 North Pacific Ocean water sample (Santoro and Casciotti 2011; Carini et al. 2018). The level of
93 enrichment during the time of this study was >90% and co-cultured heterotrophic bacteria
94 belonged to the genera *Erythrobacter* and *Gracilimonas* as previously described (Santoro and
95 Casciotti 2011). *Nitrosopumilus* sp. CCS1 is a novel strain isolated from a seawater sample
96 collected from the California Current system in the North Pacific Ocean (Santoro et al,
97 unpublished). *Nitrosopumilus adriaticus* NF5 (=JCM 32270^T =NCIMB 15114^T) and
98 *Nitrosopumilus piranensis* D3C (=JCM 32271^T =DSM 106147^T =NCIMB 15115^T) were isolated
99 from the Northern Adriatic Sea and have been described in detail (Bayer et al. 2016, 2019c).

100 The four axenic nitrite-oxidizing bacterial strains, *Nitrospina gracilis* Nb-211, *Nitrospina*
101 sp. Nb-3, *Nitrococcus mobilis* Nb-231 and *Nitrospira marina* Nb-295, were obtained from the
102 culture collection of John B. Waterbury and Frederica Valois at the Woods Hole Oceanographic
103 Institution (WHOI). *N. gracilis* Nb-211 was isolated from surface waters of the South Atlantic
104 Ocean (Watson and Waterbury 1971), *N. mobilis* Nb-231 was isolated from a surface water
105 sample obtained from the South Pacific Ocean (Watson and Waterbury 1971) and *N. marina* Nb-
106 295 was isolated from a water sample collected at a depth of 206 m from the Gulf of Maine in
107 the Atlantic Ocean (Watson et al. 1986). *Nitrospina* sp. Nb-3 was isolated from the Pacific
108 Ocean off the coast of Peru and has not yet been officially described (Watson and Waterbury,
109 unpublished), however, its genome has recently been sequenced suggesting it is phylogenetically
110 distinct from the species *Nitrospina gracilis* (Bayer et al. 2022).

111 Ammonia-oxidizing bacteria used in this study, *Nitrosomonas marina* C-25 and
112 *Nitrosomonas* sp. C-15 (also referred to as strain Nm51, (Koops et al. 1991)), were both obtained
113 from the culture collection at WHOI and were revived from 60-year old cryostocks. Strain C-15
114 was isolated from surface water (1 m depth) of the South Pacific Ocean off the Peruvian

115 continental shelf (Watson and Mandel 1971) and strain C-25 was isolated from surface waters of
116 the South Atlantic Ocean (200 miles off the Amazon River mouth) (Watson and Mandel 1971).

117

118 ***Culture conditions***

119 *Nitrosopumilus adriaticus* NF5, *Nitrosopumilus piranensis* D3C, *Nitrosomonas marina* C-25 and
120 *Nitrosomonas* sp. C-15 were grown in HEPES-buffered artificial seawater medium containing 1
121 mM NH₄Cl, and *Ca. Nitrosopelagicus brevis* U25 was grown in natural seawater medium
122 containing 50 µM NH₄Cl. *Nitrospina gracilis* Nb-211, *Nitrospira marina* Nb-295 and
123 *Nitrococcus mobilis* Nb-231 were grown in artificial seawater medium supplemented with 1 mM
124 NaNO₂. *Nitrosopumilus* sp. CCS1 and *Nitrospina* sp. Nb-3 were grown under multiple culture
125 conditions as indicated in the Results and Discussion. All strains were routinely grown in 60 mL
126 polycarbonate bottles (Nalgene) containing 50 mL culture medium, and bottles were incubated at
127 25 °C (with the exception of *Ca. Nitrosopelagicus brevis*, which was always incubated at 22°C)
128 in the dark without agitation.

129 The artificial seawater medium contained 18.54 g L⁻¹ NaCl, 4.7 g L⁻¹ MgSO₄ × 7H₂O,
130 3.55 g L⁻¹ MgCl₂ × 6H₂O, 1.03 g L⁻¹ CaCl₂ × 2H₂O, 0.51 g L⁻¹ KCl, 0.14 g L⁻¹ NaHCO₃. The
131 natural seawater medium consisted of aged seawater collected from the Santa Barbara Channel
132 (approx. 10 m depth, 0.2 µm pore size filtered and autoclaved). Artificial and natural seawater
133 were supplemented with 2.6 mg L⁻¹ K₂HPO₄, 250 µg L⁻¹ FeNaEDTA, 30 µg L⁻¹ H₃BO₃, 20 µg L⁻¹
134 MnCl₂ × 4H₂O, 20 µg L⁻¹ CoCl₂ × 6H₂O, 24 µg L⁻¹ NiCl₂ × 6H₂O, 20 µg L⁻¹ CuCl₂ × 2H₂O, 144
135 µg L⁻¹ ZnSO₄ × 7H₂O, 24 µg L⁻¹ Na₂MoO₄ × 2H₂O. The pH was adjusted to 7.8-8.0 with NaOH
136 or HCl. Due to the pH decrease associated with ammonia oxidation, culture medium with high
137 initial NH₄⁺ concentrations (>250 µM) was buffered to pH 7.8 by addition of 10 mM HEPES

138 (54457, Sigma-Aldrich). Ammonia-oxidizing archaea cultures were supplemented with 50 U L⁻¹
139 catalase (Sigma-Aldrich, Cat. Nr. C9322) to reduce oxidative stress and nitrite-oxidizing bacteria
140 cultures were supplemented with 50 ng L⁻¹ cyanocobalamin. To test the effect of reduced
141 inorganic and organic nitrogen compounds on *Nitrospina* sp. Nb-3, NH₄Cl (50 μM) or tryptone
142 (150 mg L⁻¹) were added to the culture medium.

143 NO₂⁻ concentrations were measured using the Griess-Ilosvay colorimetric method
144 (Strickland and Parsons 1972) and enumeration of cells was performed on an Guava Easy-Cyte
145 flow cytometer (EMD Millipore) following SYBR Green staining as previously described (Bayer
146 et al. 2021).

147

148 ***Cellular carbon and nitrogen content measurements***

149 To determine C : N ratios, between 100-500 mL of culture was filtered onto combusted (450°C,
150 4h) glass fiber filters (Advantec, GF-75, 25mm; 0.3 μm nominal pore size). Filters were acidified
151 with HCl (10% v/v), dried (60°C, 24h), and packed into tin capsules prior to being analyzed on a
152 CHN elemental analyzer (Exeter Analytical, CEC 440HA). The instrument was calibrated with
153 acetanilide following manufacturer protocols.

154 Cellular carbon (C) content was calculated using both, CHN elemental analyzer (only for
155 large cells) and ¹⁴C-DIC incorporation measurements (see below), divided by the number of
156 newly produced cells. Additionally, C content of the archaeal strain *Nitrosopumilus* sp. CCS1
157 was calculated from a dilution series of concentrated cells as described in (White et al. 2019).
158 Cells were concentrated using tangential flow filtration (Ultracell 30 kDa membrane, Pellicon,
159 Millipore Sigma) and a dilution series of 1.1 to 5.6 x10¹¹ cells L⁻¹ was constructed by
160 resuspending cell concentrates in culture medium (Fig. S1). The total organic C content for each

161 vial of the dilution series was directly measured by high temperature combustion using a
162 modified Shimadzu TOC-V as described in (Carlson et al. 2010). C content per cell was
163 calculated via linear regression of cell counts and elemental content over the dilution series,
164 where the slope of a Model II least squares regression is considered the elemental content per
165 cell (Fig. S1).

166

167 ***Combined DIC fixation and DOC release measurements***

168 DIC fixation was measured via the incorporation of [¹⁴C]-bicarbonate as previously described
169 (Herndl et al. 2005) with modifications. [¹⁴C]-bicarbonate (specific activity 56 mCi mmol⁻¹/2.072
170 x 10⁹ Bq mmol⁻¹, Perkin Elmer) was added to 5 mL of culture (between 10-60 µCi were added
171 depending on the activity of the culture). Different incubation times were tested (see Results
172 section) and all consecutive experiments were performed over the entire length of the growth
173 curve. For every culture condition, at least three replicate live samples and one formaldehyde-
174 fixed blank (3% v/v) were incubated in temperature-controlled incubators in the dark. Due to
175 radiation safety procedures which preclude measurements of radioactive samples in general-use
176 equipment, parallel incubations without [¹⁴C]-tracer additions were used to determine cell
177 abundance and nitrite concentration (see above). Great care was taken to ensure the exact same
178 culture conditions to reduce potential biological heterogeneity between replicates.

179 Incubations were terminated by adding formaldehyde (3% v/v) to 5 mL of sample. After
180 30-60 min, every sample was individually filtered onto 25 mm, 0.2 µm pore size polycarbonate
181 filters (Millipore) and rinsed with 0.5 mL of artificial seawater using a glass filtration set
182 (Millipore). The individual filtrates (5.5 mL per sample) were collected and transferred to
183 scintillation vials to determine the fraction of [¹⁴C]-dissolved organic carbon ([¹⁴C]-DOC).

184 Excess [¹⁴C]-bicarbonate from the filters was removed by exposing them to fumes of
185 concentrated HCl (37 %) for 24 h. The filters were transferred to scintillation vials and 10 mL of
186 scintillation cocktail (Ultima Gold, Perkin Elmer) was added. The filtrates were acidified to pH
187 ~2 with HCl (25 %) as previously described (Marañón et al. 2004), and filtrates were kept for 24
188 h in open scintillation vials placed on an orbital shaker before 10 mL scintillation cocktail was
189 added to each vial. Samples were shaken for ca. 30 sec and incubated in the dark for at least 24 h
190 prior to counting the disintegrations per minute (DPM) in a scintillation counter (Beckman
191 Coulter LS6500) for 15 min.

192 Total radioactivity measurements were performed to verify added [¹⁴C]-bicarbonate
193 concentrations by pipetting 100 μ l of sample into scintillation vials containing 400 μ l beta-
194 phenylethylamine (to prevent outgassing of ¹⁴CO₂). Scintillation cocktail was added, vials were
195 shaken for ca. 30 sec and immediately measured in the scintillation counter.

196
197 The resulting mean DPM of the samples were corrected for the DPM of the blank, converted into
198 organic carbon fixed over time and corrected for the DIC concentration in the culture media.
199
200 DIC fixation rates were calculated using the following formula:

201
202
$$(DPM_s - DPM_b) \times DIC_w / (DPM_{tr} \times \text{incubation time})$$

203
204 where DPM are the disintegrations per minute measured in the scintillation counter, for the
205 sample (s) and the blank (b). DIC_w denotes the dissolved inorganic carbon concentration in

206 culture medium and DPM tracer (tr) is the DPM for the [¹⁴C]-bicarbonate added to the
207 incubations.

208

209 ***DIC concentration measurements***

210 Total alkalinity (TA) of unfixed natural and artificial seawater medium was measured via an
211 open-cell endpoint titration using a Mettler-Toledo T5 autotitrator, and pH was measured
212 spectrophotometrically using a Shimadzu UV-1280 UV-VIS spectrophotometer as described
213 previously (Dickson et al. 2007; Hoshijima and Hofmann 2019). Dissolved inorganic carbon
214 (DIC) concentrations were calculated from TA and pH using the CO2SYS software (Pelletier
215 2007). To calculate DIC concentrations of HEPES-buffered media, TA values were taken from
216 unbuffered artificial seawater medium and the pH was re-measured after adding HEPES.

217

218 ***Calculations of Gibbs free energy (ΔG)***

219 The effective Gibbs free energy (ΔG) for ammonia and nitrite oxidation was calculated for the
220 culture conditions in this study using the following formula:

221
$$\Delta G = \Delta G^0 + RT \ln Q$$

222

223 where R is the ideal gas constant (8.314 J mol⁻¹ K), Q is the reaction quotient, and T is the
224 temperature in Kelvin. ΔG^0 values were obtained from (Amend and Shock 2001).

225

226 Q was calculated based on the following measurements and estimates: NO_2^- concentrations were
227 measured directly (see above); $[\text{NO}_3^-]$ and $[\text{NH}_4^+]$ were estimated from the decrease or increase
228 in $[\text{NO}_2^-]$, respectively; NH_3 concentrations were calculated based on $[\text{NH}_4^+]$, pH of the culture

229 medium, and the acid association constant ($pK_a = 9.4$); and O_2 concentrations were estimated to
230 be 235 μM under completely oxic conditions during our incubations. A correction for ionic
231 strength was applied according to (Amend and LaRowe 2019). Calculations can be found in the
232 Supporting Information (Table S1).

233

234 ***Statistical analyses***

235 Pairwise comparisons were performed with a two-sided Mann-Whitney U Test
236 (pairwise.wilcox.test) using the R software environment (R Core Team 2013). P values were
237 adjusted for multiple comparisons using the Benjamini-Hochberg correction
238 (p.adjust.method="fdr") (Benjamini and Hochberg 1995).

239

240 **Results and Discussion**

241 ***Elemental composition of cultured nitrifiers***

242 We determined the cellular carbon (C) content of cultured isolates of ammonia-oxidizing
243 archaea, ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to six different
244 genera. The cellular C contents of ammonia-oxidizing archaea were $\sim 11\text{-}17$ fg C cell $^{-1}$ (Table 1),
245 which is slightly higher than values reported for natural populations in the deep Atlantic Ocean
246 (~ 8.39 fg cell $^{-1}$, (Herndl et al. 2005)) and an enrichment culture from the Baltic Sea (9 fg cell $^{-1}$,
247 (Berg et al. 2014)), but much lower than values reported for ammonia-oxidizing archaea from
248 hypoxic shelf waters of the Gulf of Mexico (50 ± 16 fg cell $^{-1}$, (Kitzinger et al. 2020)). All
249 investigated marine ammonia- and nitrite-oxidizing bacteria had higher cellular C quotas
250 compared to archaeal nitrifiers (Table 1), with *Nitrospina* exhibiting the lowest ($\sim 28\text{-}55$ fg C
251 cell $^{-1}$) and *Nitrococcus* the highest ($\sim 272\text{-}1207$ fg C cell $^{-1}$) values (Table 1). The C content of

252 ammonia-oxidizing archaea cells remained fairly constant during different growth phases, while
253 C contents of all investigated nitrite oxidizer strains drastically decreased (~40-70%) from early
254 exponential growth to stationary phase, which was supported by the observation of smaller cells
255 in stationary compared to exponentially growing cultures (data not shown). Cell sizes of natural
256 populations of Nitrospinae bacteria have been reported to be 4-fold (Kitzinger et al. 2020) and
257 50-fold (Pachiadaki et al. 2017) larger than cells of ammonia-oxidizing archaea, potentially
258 reflecting these variations in cell size and C content during different growth phases.

259 Due to the small cell sizes of ammonia-oxidizing archaea and the potential to lose some
260 cells via filtration through 0.2 μm pore size filters, we compared the cellular C content of
261 *Nitrosopumilus* sp. CCS1 to values obtained from a filtration-independent method using a
262 dilution series of concentrated cells (see Methods section). There was no difference between the
263 cellular C content of exponentially growing cells of strain CCS1 when using either method (12.0
264 \pm 2.0 vs. 12.5 fg cell $^{-1}$, see Table 1). Additionally, we quantified the amount of strain CCS1 cells
265 passing through 0.2 μm filter sizes via flow cytometry and found that 0.2 μm polycarbonate
266 filters had very high retention efficiency with only 0.14 \pm 0.03% of cells not being recovered,
267 further confirming that our results are not biased by the applied filtration procedure.

268 The molar C : N ratios of all investigated nitrifiers were in the range of 3.4-4.6 : 1 (Table
269 1), with the exception of previously published values of *Nitrosopumilus maritimus* NAOA6
270 (Meador et al. 2020) and two ammonia-oxidizing bacteria strains (Glover 1985). The values
271 observed are lower than average values of heterotrophic marine bacteria cultures (~5 : 1)
272 including *Pelagibacter ubique* (~4.6 : 1) (White et al. 2019), *and references therein*, with
273 *Nitrospina* cells exhibiting the lowest average C : N ratio (~3.4) of all cultured nitrifiers in our
274 study (Table 1). These low cellular C : N ratios are surprising considering the observation of

275 glycogen storage deposits in cells of *Nitrospina gracilis*, *Nitrococcus mobilis*, and *Nitrospira*
 276 *marina* (Watson and Waterbury 1971; Watson et al. 1986), as well as polyhydroxybutyrate
 277 storage in *Nitrococcus mobilis* (Watson and Waterbury 1971). Cellular N contents in our study
 278 might be underestimated as measurements were performed on acidified samples, which could
 279 lead to partial hydrolyzation of proteins and amino acids. However, C : N ratios obtained from
 280 non-acidified cell pellets of *Nitrosopumilus adriaticus* and *Nitrosopumilus piranensis* (Bayer et
 281 al. 2019c) are comparable to those obtained for *Nitrosopumilus* sp. CCS1 in this study (Table 1),
 282 suggesting a negligible bias for at least some of the studied species.

283
 284
 285
 286
 287
 288

Organism	C : N (mol mol ⁻¹)	Cellular C content (fg C cell ⁻¹)			Ref.
		Early exponential	Late exponential	Stationary	
Ammonia-oxidizing archaea					
<i>Ca. Nitrosopelagicus brevis</i> U25	n.d.	n.d.	10.8	n.d.	this study
<i>Nitrosopumilus</i> sp. CCS1	4.03 ± 0.32	11.8 ± 0.2	12.0 ± 2.0/ 12.5 ^{&}	12.9 ± 2.0/ 16.3 ± 0.2 [§]	this study
<i>Nitrosopumilus adriaticus</i> NF5	3.91	n.d.	16.7 ± 7.5	17.3 ± 2.3	this study, ¹
<i>Nitrosopumilus piranensis</i> D3C	3.98	n.d.	16.3	17.2 ± 1.9	this study, ¹
<i>Nitrosopumilus maritimus</i> NAOA6	5.8/5.9 ⁺	n.d.	n.d.	34 ± 14/ 17 ± 6 ⁺	²
Ammonia-oxidizing bacteria					
<i>Nitrosomonas</i> sp. C-15	4.31 ± 0.11	n.d.	145.7 ± 11.1	115.2 ± 3.8	this study
<i>Nitrosomonas marina</i> C-25	4.38 ± 0.14	n.d.	302.4 ± 10.0	159.7 ± 13.4	this study
<i>Nitrosomonas marina</i>	5.59-6.11*	241	139	133	³
<i>Nitrosococcus oceani</i>	3.58-4.95*	1115	961	919	³
Nitrite-oxidizing bacteria					
<i>Nitospina gracilis</i> Nb-3	3.41 ± 0.05	50.8 ± 3.9	40.1 ± 2.5	28.4 ± 4.6	this study

<i>Nitrospina gracilis</i> Nb-211	3.43 ± 0.18	$54.9 \pm 4.9^{\#}$	n.d.	30.4 ± 3.4	this study
<i>Nitrospira marina</i> Nb-295	4.22 ± 0.03	$153.5 \pm 18.1/$ $155.2 \pm 6.5^{\#}$	69.5 ± 7.5	57.8 ± 6.2	this study
<i>Nitrococcus mobilis</i> Nb-231	4.60 ± 0.13	$994.6 \pm 315.4/$ $1206.6 \pm 156.1^{\#}$	442.9 ± 38.0	272.1 ± 60.7	this study
<i>Nitrococcus mobilis</i>	3.07-4.75*	1226	671	384	3

289

290 ¹ Bayer et al. (2019c); ² Meador et al. (2020); ¹ Glover (1985)

291

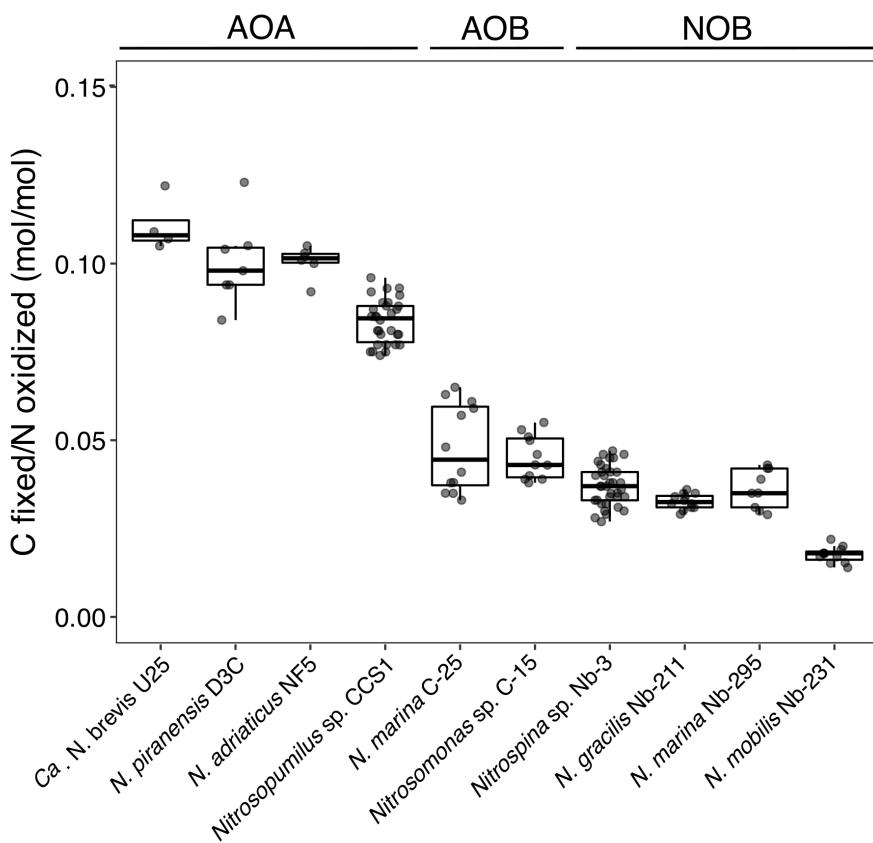
292 *Range of values obtained during different growth conditions

293 & Value obtained from TOC dilution series (see Materials and Methods section and Fig. S1)

294 # Values obtained from CHN elemental analyzer measurements (see Materials and Methods section)

295 § Grown in HEPES-buffered medium

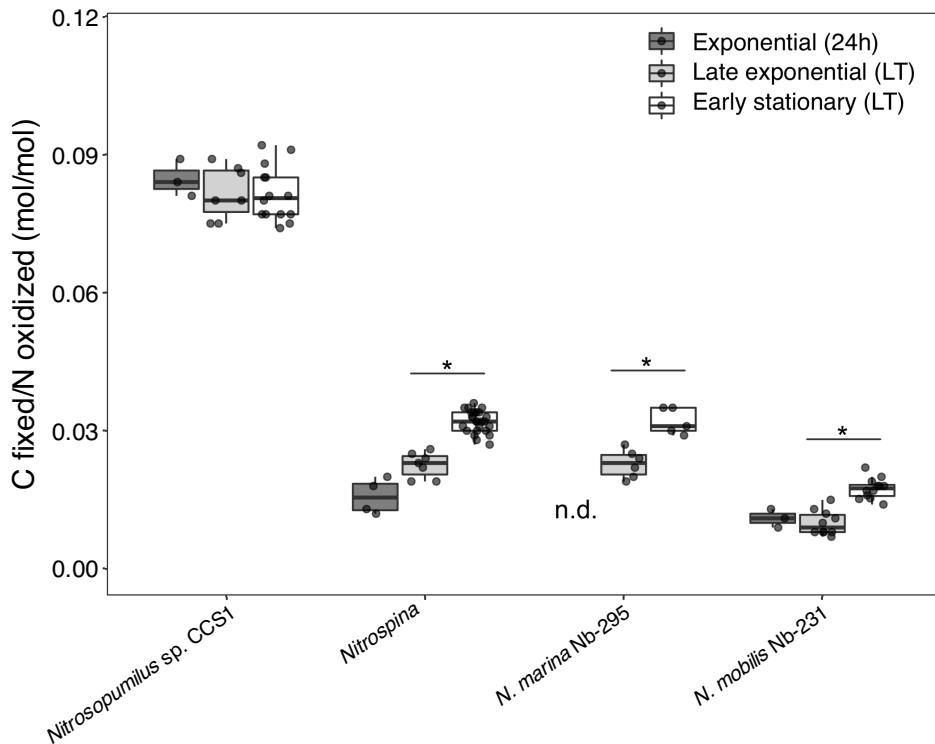
296 + Values obtained under phosphate-replete and phosphate-deplete conditions (P replete/ P deplete)


297

298 **DIC fixation yields of marine nitrifiers**

299 We conducted combined measurements of DIC fixation, DOC release and ammonia/nitrite
 300 oxidation rates of ten nitrifier cultures. The biological variability of NO_2^- and DIC fixation
 301 measurements between replicate bottles across all nitrifier strains and culture conditions was
 302 5.2 ± 3.7 and $4.8 \pm 3.2\%$, respectively. Here, we use the term ‘DIC fixation yield’ to describe the
 303 number of moles of inorganic carbon (CO_2 or HCO_3^-) that are fixed for every mole of N (NH_3 or
 304 NO_2^-) oxidized, including the proportion that is released/lost as DOC.

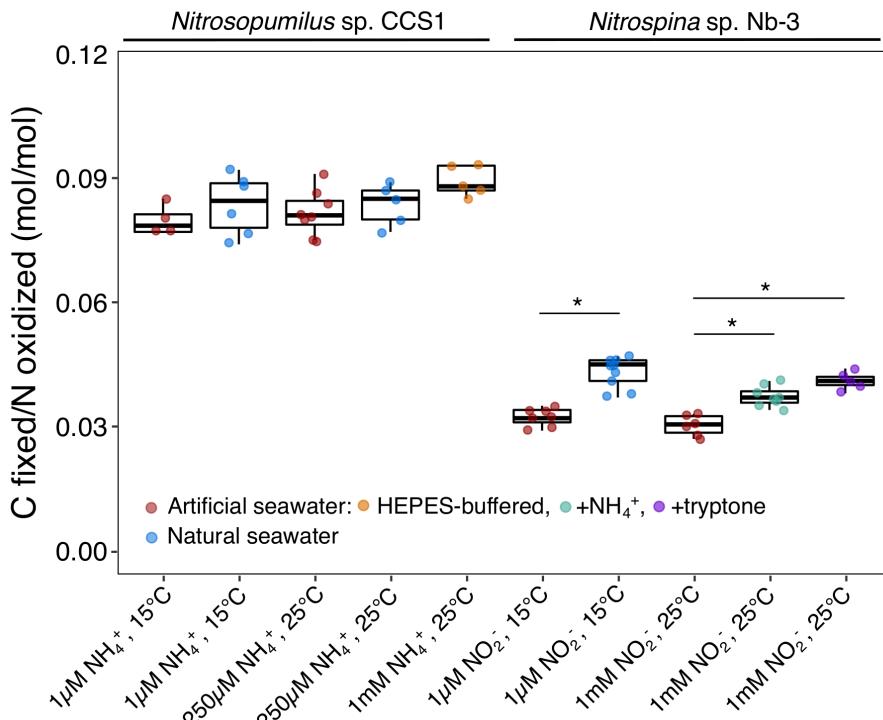
305 Marine ammonia-oxidizing archaea, including three axenic *Nitrosopumilus* strains and
 306 one *Ca. Nitrosopelagicus* enrichment culture, exhibited the highest DIC fixation yields
 307 (mean \pm sd= 0.091 ± 0.012 , $n=47$) in our study, which were on average ~ 2 -times higher than those
 308 of marine ammonia-oxidizing bacteria (mean \pm sd= 0.047 ± 0.010 , $n=23$) (Fig. 1). Ammonia-
 309 oxidizing archaea encode the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle for
 310 DIC fixation (Walker et al. 2010), which is suggested to be the most energy-efficient aerobic
 311 autotrophic DIC fixation pathway (Könneke et al. 2014). In contrast, ammonia-oxidizing bacteria
 312 use the Calvin-Benson-Bassham (CBB) cycle (Utåker et al. 2002; Stein et al. 2007), which has a


313 higher ATP requirement and an estimated 20% loss of fixed DIC due to the oxygenase side-
 314 reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase (Berg 2011). DIC fixation yields of
 315 two *Nitrosopumilus* strains were recently reported to be up to ten times higher (0.18-1.2,
 316 (Medor et al. 2020)) compared to values in our study and previously published values of
 317 *Nitrosopumilus adriaticus* NF5 (0.1, (Bayer et al. 2019c)) and a *Nitrosarchaeum* enrichment
 318 culture (0.1, (Berg et al. 2014)). However, such high values would require unrealistically high
 319 ATP yields (up to 2.4 moles ATP per mole NH₃ oxidized) compared to reported estimates of
 320 0.15-0.28 ATP/NH₃ (mol/ mol) (Li et al. 2018).

321
 322 **Fig.1** Comparison of DIC fixation yields of ten different phylogenetically diverse marine nitrifiers.
 323 Plotted values include both, the fraction of C incorporated into biomass and the fraction of C released as
 324 DOC. For nitrite-oxidizing bacteria, only measurements conducted over the entire length of the growth
 325 curve (until stationary phase) are shown (see Fig. 2). Values obtained from cultures grown under different
 326 conditions (see Fig. 3 and Fig. S3) are included in this plot.

327
328 DIC fixation yields of marine nitrite-oxidizing bacteria (*Nitrospina/Nitrospira*:
329 mean \pm sd=0.036 \pm 0.005, n=47; *Nitrococcus*: mean \pm sd=0.018 \pm 0.002, n=11) were lower
330 compared to those of ammonia oxidizers (Fig. 1). *Nitrococcus mobilis*, which uses the CBB
331 cycle for DIC fixation (Füssel et al. 2017) had ~2-times lower DIC fixation yields compared to
332 *Nitrospina* and *Nitrospira* which use a O₂-tolerant version of the reverse TCA cycle (Lücker et
333 al. 2010, 2013). Zhang et al. (2020) measured ~1.7-times lower DIC fixation yields of *Nitrospina*
334 *gracilis* 3/211 and a terrestrial *Nitrospira* isolate compared to values in our study. We observed
335 that radiotracer incubations conducted over the entire length of the growth curve (until early
336 stationary phase, see Fig. S2) resulted in ~1.4 to 1.7-times higher DIC fixation yields of nitrite
337 oxidizers compared to incubations conducted until late exponential growth (when NO₂⁻ was
338 completely oxidized) (Fig. 2), suggesting that, in contrast to *Nitrosopumilus* sp. CCS1 where
339 ammonia oxidation and DIC fixation were tightly coupled, nitrite oxidation might be partly
340 decoupled from DIC fixation in nitrite-oxidizing bacteria. This observation was also supported
341 by an increase of cell numbers after NO₂⁻ was completely depleted (Fig. S2). While incubation
342 times <72 h are typically favored over longer times for environmental measurements to avoid
343 cross-feeding of reaction products, our results indicate that DIC fixation yields of nitrite
344 oxidizers might be underestimated using these established protocols (Fig. 2).

345



346
347
348
349
350
351
352
353
354

Fig. 2 Comparison of DIC fixation yields obtained from 24 h radiotracer incubations during exponential growth, and long-term (LT) radiotracer incubations carried out until either late exponential growth or early stationary phase. Measurements of both *Nitrospina* strains (Nb-3 and Nb-211) were combined in this plot. Statistical significance (adj. P -value <0.01) of within-condition comparisons are indicated by an asterisk (*). Statistical results of all pairwise comparisons are reported in Table S2. Representative growth curves can be found in the Supporting Information (Fig. S2).

355 We further explored the effect of multiple culture conditions, including environmentally
356 relevant conditions of low substrate concentrations (1 μ M) and low temperature (15°C), on DIC
357 fixation yields of *Nitrosopumilus* sp. CCS1 and *Nitrospina* sp. Nb-3. We observed that
358 *Nitrospina* sp. Nb-3 was ~1.4-times more efficient in converting energy to growth when grown
359 in natural seawater compared to artificial seawater medium, which was not observed for
360 *Nitrosopumilus* sp. CCS1 (Fig. 3). We hypothesize that reduced N compounds present in natural
361 seawater (ammonium and/or organic N compounds) might be responsible for the observed
362 differences due to the metabolic costs of six reduced ferredoxins associated with assimilatory

363 NO_2^- reduction in *Nitrospina* and *Nitrospira* (Lücker et al. 2013; Bayer et al. 2021). Those
364 reduced ferredoxins could instead be used as electron donors for DIC fixation via the rTCA cycle
365 (Berg 2011). Additions of ammonium or tryptone to artificial seawater medium likewise resulted
366 in significantly higher DIC fixation yields (Fig. 3, Fig. S3), corroborating this hypothesis.
367 Environmental populations of *Nitrospinae* have previously been shown to favor ammonium and
368 the organic N sources urea and cyanate over nitrite (Kitzinger et al. 2020). Our data suggest that
369 in addition to urea and cyanate, marine nitrite-oxidizing bacteria can assimilate more complex
370 organic N sources such as peptides and/or amino acids thereby saving energy that can instead be
371 invested in C assimilation. We cannot exclude the possibility that some of the organic C present
372 in natural seawater or added via tryptone might also be assimilated, however, the observed
373 higher net DIC fixation yields suggest that organic C assimilation plays – if at all – a very minor
374 role in marine nitrite oxidizers. Furthermore, we observed slightly higher DIC fixation yields of
375 *Nitrosopumilus* sp. CCS1 in HEPES-buffered artificial seawater compared to unbuffered culture
376 medium (Fig. 3), which coincided with higher cellular C quota (Table 1). While we cannot
377 explain these observations, the differences in DIC fixation yield did not seem to be caused by
378 variations in pH, which remained constant in unbuffered culture medium containing low
379 substrate concentrations (1 μM NH_4^+).

380
381
382
383
384
385
386
387
388

Fig. 3 DIC fixation yields of *Nitrosopumilus* sp. CCS1 and *Nitrospina* sp. Nb-3 under different culture conditions (substrate concentrations: 1 μ M, 250 μ M, 1 mM; temperature: 15°C, 25°C) and culture media (natural seawater, artificial seawater, HEPES-buffered artificial seawater). Plotted values include both, the fraction of C incorporated into biomass and the fraction of C released as DOC. Ammonium (50 μ M) or tryptone (150 mg L⁻¹) served as additional, reduced nitrogen source for *Nitrospina* sp. Nb-3. Statistical significance (adj. *P*-value <0.01) of within-condition comparisons are indicated by an asterisk (*). Statistical results of all pairwise comparisons are reported in Table S2.

389 The theoretical Gibbs free energy release (ΔG) estimated for conditions in our study was
390 3.6-times higher for ammonia compared to nitrite oxidation (Table 2), yet DIC fixation yields of
391 *Nitrosopumilus* sp. CCS1 and *Ca. Nitrosopelagicus* brevis U25 (Table 2) were only 2 to 2.6-
392 times higher compared to *Nitrospina* sp. Nb-3. Similar observations were made by Kitzinger et al
393 (2020) who reported that Nitrospinae bacteria in low O₂ waters of the Gulf of Mexico are more
394 efficient in translating energy gained from nitrite to C assimilation than ammonia-oxidizing
395 archaea are in translating energy gained from ammonia oxidation. Thermodynamic properties

396 and the efficiency of the DIC fixation pathway itself can contribute to realized energy yields.
 397 Additional factors include the requirement of four out of six generated electrons by ammonia
 398 monooxygenase to reduce molecular oxygen in ammonia oxidizers (Stahl and de la Torre 2012;
 399 Caranto and Lancaster 2018). When considering that a maximum of 53.8% of the energy
 400 released from catabolism are available to ammonia oxidizers for growth (González-Cabaleiro et
 401 al. 2019), ammonia-oxidizing archaea are estimated to have slightly higher DIC fixation
 402 efficiencies compared to nitrite-oxidizing bacteria encoding the rTCA cycle (Table 2). While
 403 oxygen protection likely increases the energy demands of the rTCA cycle (Berg 2011), our
 404 results indicate that the cycle might also be highly efficient under oxic conditions that are found
 405 in most regions of the global ocean.

406

407 **Table 2.** Thermodynamic considerations and comparison of DIC fixation efficiencies and biomass yields
 408 of marine ammonia-oxidizing archaea and nitrite-oxidizing bacteria grown under environmentally
 409 relevant conditions (substrate concentration: 1 μ M; temperature: 15°C) in artificial and natural seawater
 410 medium. Gibbs free energy calculations for NH_3 oxidation and NO_2^- oxidation can be found in Table S1.

411

	<i>Ca. Nitrosopelagicus</i> U25 [§]	<i>Nitrosopumilus</i> sp. CCS1	<i>Nitrospina</i> sp. Nb-3		
Culture medium	Natural seawater	Artificial seawater	Natural seawater	Artificial seawater	Natural seawater
Gibbs free energy (kJ mol ⁻¹)	280 / 151*	276 / 149*	276 / 149*	77	77
DIC fixation yield (mol mol ⁻¹)	0.111 \pm 0.008	0.080 \pm 0.004	0.085 \pm 0.008	0.032 \pm 0.002	0.043 \pm 0.004
DIC fixation efficiency (μ mol C kJ ⁻¹)	396 \pm 29 / 735 \pm 53*	290 \pm 15 / 537 \pm 27*	308 \pm 29 / 570 \pm 54*	416 \pm 26	558 \pm 52
Biomass yield ^{&} (gBio gN ⁻¹)	0.187 \pm 0.019	0.135 \pm 0.010	0.143 \pm 0.019	0.056 \pm 0.005	0.076 \pm 0.010

412

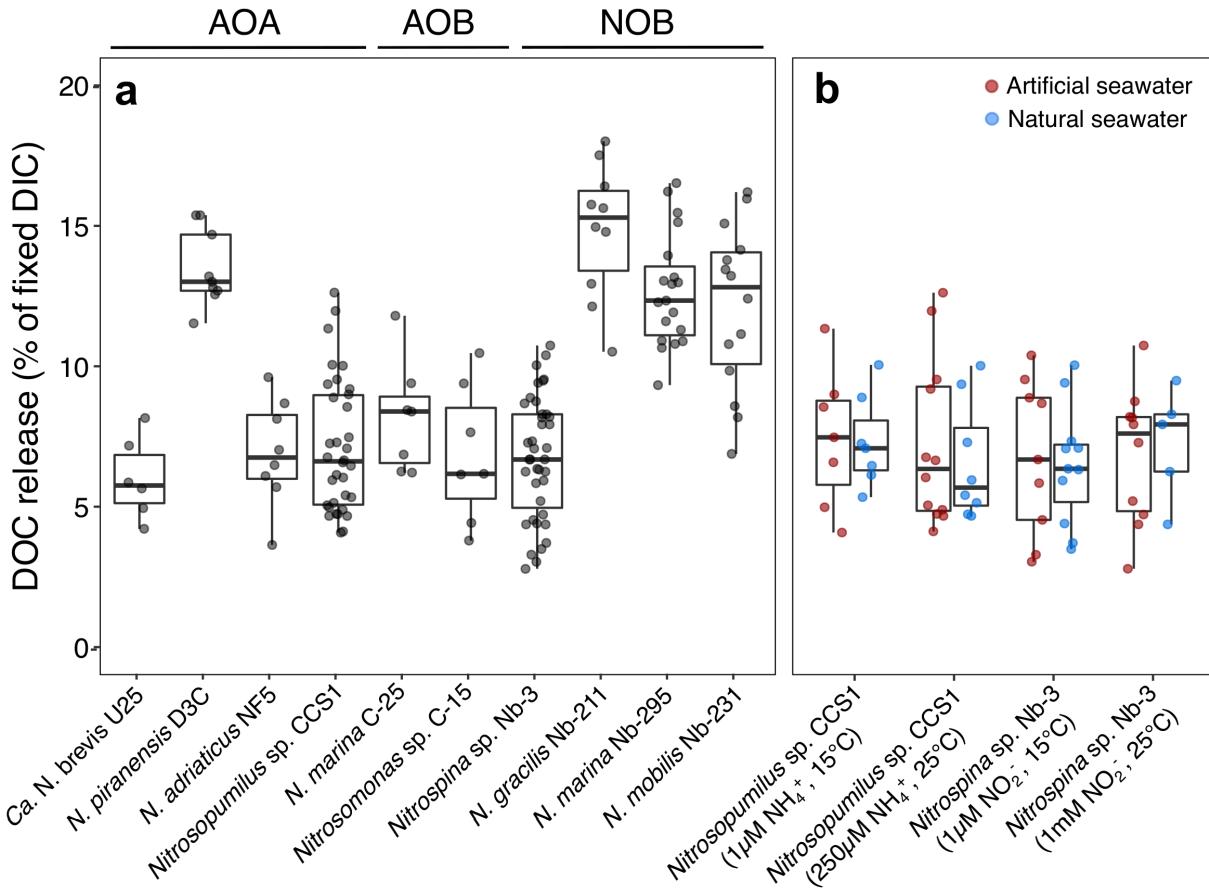
413

414 [§]*Ca. Nitrosopelagicus* U25 was grown at 22°C with initial substrate concentrations of 50 μ M.

415 [&]The average chemical formula of bacterial biomass ($\text{CH}_{1.7}\text{O}_{0.4}\text{N}_{0.2}$, (Popovic 2019)) was adjusted using the C:N
416 ratios from Table 1 (Ammonia-oxidizing archaea: $\text{CH}_{1.7}\text{O}_{0.4}\text{N}_{0.25}$; *Nitrospina*: $\text{CH}_{1.7}\text{O}_{0.4}\text{N}_{0.29}$).
417 *When considering 53.8% of the energy released is available for growth according to González-Cabaleiro et al.
418 2019.

419

420 Multiple studies have used estimates of DIC fixation yields to infer DIC fixation rates
421 associated with nitrification in diverse marine and estuarine environments (e.g., Dore and Karl
422 1996; Lam et al. 2004; Lee et al. 2015), and a value of 0.1 for archaeal ammonia oxidation has
423 widely been used in the literature (Wuchter et al. 2006; Reinhäler et al. 2010; Middelburg 2011)
424 without direct experimental evidence. Previous measurements of DIC fixation yields were
425 mainly derived from cultures of ammonia and nitrite oxidizers that are not representative for the
426 majority of nitrifiers found in marine environments and were highly variable (ammonia-
427 oxidizing bacteria: 0.033-0.130; nitrite-oxidizing bacteria: 0.013-0.031; (Prosser 1990) *and*
428 *references therein*). The variations in DIC fixation yields we observe for marine nitrifiers across
429 different species and culture conditions are comparably low within ammonia-oxidizing archaea
430 ($\text{mean} \pm \text{sd} = 0.091 \pm 0.012$; $n=47$) and *Nitrospina/Nitrospira* ($\text{mean} \pm \text{sd} = 0.036 \pm 0.005$; $n=56$),
431 suggesting that these values are more constrained than previous estimates and particularly useful
432 for modelling approaches in marine systems.


433

434 ***DOC release by chemolithoautotrophs***

435 We measured DOC release rates of ten nitrifier cultures and tested how different culture
436 conditions affected the amount of DOC released in proportion to the amount of fixed DIC. All
437 investigated strains released DOC during exponential growth, and DOC release ceased when
438 cultures reached stationary phase (as determined by comparing the total amount of released DOC
439 until late exponential vs stationary phase, see Fig. S4), suggesting that DOC release is a feature

440 of metabolically active nitrifiers. This is in agreement with earlier observations of amino acid
441 release by exponentially growing *Nitrosopumilus* cells (Bayer et al. 2019a). The amount of
442 chemoautotrophically fixed DIC that was released as DOC by nitrifiers made up on average ~5-
443 15% (Fig. 4a). This is within the range observed for phytoplankton, which released 2-10% and 4-
444 42% of their photosynthetically fixed DIC in culture and environmental studies, respectively
445 (Carlson 2002, *and references therein*). To assess the potential stimulation of DOC release
446 during the 30-60 min of formaldehyde fixation (see Methods section), we compared the fraction
447 of fixed DIC released as DOC between 24 h and long-term (7 and 10-day long) incubations (Fig.
448 S5). If DOC release was occurring during the fixation period, it would make up a larger fraction
449 of the total DOC release in 24 h compared to long-term incubations. However, we did not
450 observe any significant differences between incubation times (Fig. S5), suggesting that
451 formaldehyde fixation did not bias our results.

452 DOC release varied between closely related species (Fig. 4a). *Nitrosopumilus piranensis*
453 released more DOC compared to the two other investigated *Nitrosopumilus* species, which is in
454 agreement with (Bayer et al. 2019b) who reported higher amino acid release rates of *N.*
455 *piranensis* compared to *N. adriaticus*. Differences in the amount of released DOC have also been
456 recently reported between the closely related aquarium strain *Nitrosopumilus maritimus* SCM1
457 (9-19% of fixed DIC) and the environmental strain *Nitrosopumilus maritimus* NAOA6 (5% of
458 fixed DIC) (Medor et al. 2020). Within nitrite oxidizers, *Nitrospina* sp. Nb-3 consistently
459 released less DOC compared to *N. gracilis* Nb-211 and the two phylogenetically more distantly
460 related species *N. marina* and *N. mobilis*.

461
462
463 **Fig. 4** DOC release by marine nitrifiers as a fraction of fixed DIC. **a)** Comparison of DOC release by ten
464 different phylogenetically diverse marine nitrifiers. Values obtained from cultures grown under different
465 conditions (see panel b) are included in this plot. DOC release by *Ca. N. brevis* might be underestimated
466 due to the presence of heterotrophic bacteria that could take up some of the released DOC. **b)** Comparison
467 of DOC release by *Nitrosopumilus* sp. CCS1 and *Nitrospina* sp. Nb-3 grown under different culture
468 conditions (substrate concentrations: 1 μM, 250 μM, 1 mM; temperature: 15°C, 25°C) in artificial or
469 natural seawater medium. Statistical results of all pairwise comparisons are reported in Table S2.
470

471 The fraction of released DOC remained constant across different culture conditions
472 including environmentally relevant conditions of low substrate concentration (1 μM) and at low
473 temperature (15°C) in natural seawater (Fig. 4b). This suggests that DOC release is not an
474 artifact of unrealistic culture conditions but likely a feature exhibited by nitrifier populations in
475 the environment. However, given the differences in DOC release between closely related

476 cultured species (Fig. 4a) and the greater diversity of nitrifiers observed in the ocean, it is
477 possible that DOC release might differ in more complex natural environments, particularly of
478 marine nitrite oxidizers for which environmentally relevant clades escaped cultivation thus far
479 (Pachiadaki et al. 2017). Additionally, *in situ* pressure conditions could further affect DOC
480 release by nitrifiers in nature. While the composition of DOM released by bacterial nitrifiers is
481 currently unknown, a fraction of the DOM released by ammonia-oxidizing archaea has been
482 shown to consist of labile compounds, such as amino acids, thymidine and B vitamins, that can
483 be limiting for heterotrophic microbes in open ocean waters (Bayer et al. 2019a).

484

485 **Conclusions**

486 Our results suggest that DIC fixation yields of marine nitrite oxidizers might be underestimated
487 by conventional <72 h-long tracer incubations, due to a partial decoupling between NO_2^-
488 oxidation and C assimilation over short timescales. Additionally, DIC fixation yields of
489 *Nitrospina* were positively affected by the presence of ammonium or complex organic N
490 compounds, which might influence metabolic interactions with ammonia oxidizers and/or
491 heterotrophic prokaryotes in the environment, suggesting a potentially underappreciated role for
492 competition in the N cycle (Santoro 2016).

493 DIC fixation yields of marine nitrifiers obtained in our study will help to further constrain
494 the relationship between C and N fluxes in the nitrification process and inform theoretical
495 models about how to connect observations at microscale to regional and global scales. Using a
496 mean global value of organic C export from the euphotic zone of $\sim 6 \text{ Pg C yr}^{-1}$ (Siegel et al.
497 2014) and a mean C:N ratio of sinking marine particles (at the surface) of ~ 7.1 (Schneider et al.
498 2003), we estimate that the resulting global ocean organic N export of $\sim 0.85 \text{ Pg yr}^{-1}$ could fuel

499 up to 0.13 Pg C y⁻¹ of chemoautotrophic DIC fixation (0.094 Pg C y⁻¹ by ammonia-oxidizing
500 archaea and 0.037 Pg C y⁻¹ by nitrite oxidizers) in the dark ocean, which is in the lower range of
501 previous estimates (0.15-1.4 Pg C y⁻¹, see Table S3 and references therein). Furthermore, we
502 show that nitrifiers release significant amounts of DOC under environmentally relevant
503 conditions, equating to fluxes of 0.006-0.02 Pg C y⁻¹ of fixed DIC released as DOC. Elucidating
504 the lability and fate of the DOM released by nitrifiers will be crucial to understand its
505 implications for the marine carbon cycle.

506

507 **Acknowledgements**

508 We thank Thomas Reinthaler for advice on DIC fixation measurements and for sharing his lab
509 protocols, and Elisa Halewood and Janice Jones for support and advice with setting up the DIC
510 fixation method in the lab. We also thank Sylvia Kim for total alkalinity and pH measurements,
511 Keri Opalk for TOC measurements, Kenneth Marchus for elemental (CHN) analyses,
512 Christopher Sedlacek for sending culture stocks of *N. adriaticus* and *N. piranensis*, Claus Pelikan
513 for advice on statistical analyses, and Holger Daims for advice on bioenergetic considerations.
514 Frederica Valois and John B. Waterbury are acknowledged for their decades-long commitment
515 and maintenance of the nitrifier culture collection at the Woods Hole Oceanographic Institution.
516 This research was supported by a Simons Foundation Early Career Investigator in Marine
517 Microbiology and Evolution Award (345889) and a US National Science Foundation (NSF)
518 award OCE-1924512 to AES. BB was supported by the Austrian Science Fund (FWF) Project
519 Number: J4426-B (“The influence of nitrifiers on the oceanic carbon cycle”). Support for CAC
520 was provided by Simons Foundation International’s BIOS-SCOPE program.

521

522

523 The authors declare no conflict of interest.

524

525

526 **References**

527 Amend, J. P., and D. E. LaRowe. 2019. Minireview: demystifying microbial reaction energetics.
528 Environmental Microbiology **21**: 3539–3547. doi:10.1111/1462-2920.14778

529 Amend, J. P., and E. L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic
530 and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews **25**: 175–243.
531 doi:10.1016/S0168-6445(00)00062-0

532 Baltar, F., J. Arístegui, E. Sintes, J. M. Gasol, T. Reinthaler, and G. J. Herndl. 2010. Significance
533 of non-sinking particulate organic carbon and dark CO₂ fixation to heterotrophic carbon
534 demand in the mesopelagic northeast Atlantic. Geophysical Research Letters **37**: L09602.
535 doi:10.1029/2010GL043105

536 Bayer, B., R. L. Hansman, M. J. Bittner, B. E. Noriega-Ortega, J. Niggemann, T. Dittmar, and G.
537 J. Herndl. 2019a. Ammonia-oxidizing archaea release a suite of organic compounds
538 potentially fueling prokaryotic heterotrophy in the ocean. Environmental Microbiology **21**:
539 4062–4075. doi:10.1111/1462-2920.14755

540 Bayer, B., M. Kellom, F. Valois, J. B. Waterbury, and A. E. Santoro. 2022. Complete Genome
541 Sequences of Two Phylogenetically Distinct *Nitrospina* Strains Isolated from the Atlantic
542 and Pacific Oceans. Microbiology Resource Announcements. doi:10.1128/mra.00100-22

543 Bayer, B., C. Pelikan, M. J. Bittner, T. Reinthaler, M. Könneke, G. J. Herndl, and P. Offre.
544 2019b. Proteomic Response of Three Marine Ammonia-Oxidizing Archaea to Hydrogen
545 Peroxide and Their Metabolic Interactions with a Heterotrophic Alphaproteobacterium.
546 mSystems **4**: e00181-19. doi:10.1128/mSystems.00181-19

547 Bayer, B., M. A. Saito, M. R. McIlvin, S. Lücker, D. M. Moran, T. S. Lankiewicz, C. L. Dupont,
548 and A. E. Santoro. 2021. Metabolic versatility of the nitrite-oxidizing bacterium *Nitrospira*
549 marina and its proteomic response to oxygen-limited conditions. ISME Journal **15**: 1025–
550 1039. doi:10.1038/s41396-020-00828-3

551 Bayer, B., and others. 2016. Physiological and genomic characterization of two novel marine
552 thaumarchaeal strains indicates niche differentiation. *ISME Journal* **10**: 1051–1063.
553 doi:10.1038/ismej.2015.200

554 Bayer, B., J. Vojvoda, T. Reinthaler, C. Reyes, M. Pinto, and G. J. Herndl. 2019c.
555 *Nitrosopumilus adriaticus* sp. nov. and *Nitrosopumilus piranensis* sp. nov., two ammonia-
556 oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria.
557 *International Journal of Systematic and Evolutionary Microbiology* **7**: 1892–1902.
558 doi:10.1099/ijsem.0.003360

559 Benjamini, Y., and Y. Hochberg. 1995. Controlling the False Discovery Rate: A Practical and
560 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B*
561 (Methodological) **57**: 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x

562 Berg, C., L. Listmann, V. Vandieken, A. Vogts, and K. Jürgens. 2014. Chemoautotrophic growth
563 of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic
564 Sea. *Frontiers in Microbiology* **5**: 786. doi:10.3389/fmicb.2014.00786

565 Berg, I. A. 2011. Ecological aspects of the distribution of different autotrophic CO₂ fixation
566 pathways. *Applied and Environmental Microbiology* **77**: 1925–1936.
567 doi:10.1128/AEM.02473-10

568 Bock, E., and M. Wagner. 2013. Oxidation of Inorganic Nitrogen Compounds as an Energy
569 Source, p. 83–118. *In* E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt, and F.
570 Thompson [eds.], *The Prokaryotes: Prokaryotic Physiology and Biochemistry*. Springer
571 Berlin Heidelberg.

572 Buchwald, C., A. E. Santoro, R. H. R. Stanley, and K. L. Casciotti. 2015. Nitrogen cycling in the
573 secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica. *Global*
574 *Biogeochemical Cycles* **29**: 2061–2081. doi:10.1002/2015GB005187

575 Caranto, J. D., and K. M. Lancaster. 2018. Nitric oxide is an obligate bacterial nitrification
576 intermediate produced by hydroxylamine oxidoreductase. *Proceedings of the National*
577 *Academy of Sciences* **115**: E8325–E8325. doi:10.1073/pnas.1812827115

578 Carini, P., C. L. Dupont, and A. E. Santoro. 2018. Patterns of thaumarchaeal gene expression in
579 culture and diverse marine environments. *Environmental Microbiology* **20**: 2112–2124.
580 doi:10.1111/1462-2920.14107

581 Carlson, C. A. 2002. Chapter 4 - Production and Removal Processes, p. 91–151. In D.A. Hansell
582 and C.A. Carlson [eds.], *Biogeochemistry of Marine Dissolved Organic Matter*. Academic
583 Press.

584 Carlson, C. A., D. A. Hansell, N. B. Nelson, D. A. Siegel, W. M. Smethie, S. Khatiwala, M. M.
585 Meyers, and E. Halewood. 2010. Dissolved organic carbon export and subsequent
586 remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin.
587 *Deep-Sea Research Part II: Topical Studies in Oceanography* **57**: 1433–1445.
588 doi:10.1016/j.dsr2.2010.02.013

589 Choy, C. A., B. N. Popp, C. C. S. Hannides, and J. C. Drazen. 2015. Trophic structure and food
590 resources of epipelagic and mesopelagic fishes in the north pacific subtropical Gyre
591 ecosystem inferred from nitrogen isotopic compositions. *Limnology and Oceanography* **60**:
592 1156–1171. doi:10.1002/lno.10085

593 Dickson, A. G., C. L. Sabine, and J. R. Christian, eds. 2007. *Guide to best practices for ocean*
594 *CO₂ measurements*. Sidney, British Columbia, North Pacific Marine Science Organization,
595 p. 191 (PICES Special Publication 3, IOC/CCP Report 8). doi: 10.25607/OPB-1342

596 Dore, J. E., and D. M. Karl. 1996. Nitrification in the euphotic zone as a source for nitrite,
597 nitrate, and nitrous oxide at Station ALOHA. *Limnology and Oceanography* **41**: 1619–
598 1628. doi:10.4319/lo.1996.41.8.1619

599 Füssel, J., and others. 2017. Adaptability as the key to success for the ubiquitous marine nitrite
600 oxidizer *Nitrococcus*. *Science Advances* **3**: e1700807. doi:10.1126/sciadv.1700807

601 Giering, S. L. C., and others. 2014. Reconciliation of the carbon budget in the ocean’s twilight
602 zone. *Nature* **507**: 480–483. doi:10.1038/nature13123

603 Glover, H. E. 1985. The relationship between inorganic nitrogen oxidation and organic carbon
604 production in batch and chemostat cultures of marine nitrifying bacteria. *Archives of*
605 *Microbiology* **142**: 45–50. doi:10.1007/BF00409235

606 González-Cabaleiro, R., T. P. Curtis, and I. D. Ofíñeru. 2019. Bioenergetics analysis of
607 ammonia-oxidizing bacteria and the estimation of their maximum growth yield. *Water*
608 *Research* **154**: 238–245. doi:10.1016/j.watres.2019.01.054

609 Hannides, C. C. S., B. N. Popp, C. Anela Choy, and J. C. Drazen. 2013. Midwater zooplankton
610 and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope
611 perspective. *Limnology and Oceanography* **58**: 1931–1946. doi:10.4319/lo.2013.58.6.1931

612 Hansman, R. L., S. Griffin, J. T. Watson, E. R. M. Druffel, A. E. Ingalls, A. Pearson, and L. I.
613 Aluwihare. 2009. The radiocarbon signature of microorganisms in the mesopelagic ocean.
614 *Proc Natl Acad Sci U S A* **106**: 6513–6518. doi:10.1073/pnas.0810871106

615 Herndl, G. J., T. Reinthaler, E. Teira, H. van Aken, C. Veth, A. Pernthaler, and J. Pernthaler.
616 2005. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean.
617 *Appl Environ Microbiol* **71**: 2303–2309. doi:10.1128/AEM.71.5.2303

618 Hoshijima, U., and G. E. Hofmann. 2019. Variability of seawater chemistry in a kelp forest
619 environment is linked to in situ transgenerational effects in the purple sea urchin,
620 *Strongylocentrotus purpuratus*. *Front Mar Sci* **6**: 62. doi:10.3389/fmars.2019.00062

621 Kitzinger, K., and others. 2020. Single cell analyses reveal contrasting life strategies of the two
622 main nitrifiers in the ocean. *Nature Communications* **11**: 767. doi:10.1038/s41467-020-
623 14542-3

624 Könneke, M., and others. 2014. Ammonia-oxidizing archaea use the most energy-efficient
625 aerobic pathway for CO₂ fixation. *Proc Natl Acad Sci U S A* **111**: 8239–8244.
626 doi:10.1073/pnas.1402028111

627 Koops, H.-P., B. Böttcher, U. C. Möller, a Pommerening-Röser, and G. Stehr. 1991.
628 Classification of eight new species of ammonia-oxidizing bacteria. *Journal of General
629 Microbiology* **137**: 1689–1699.

630 Lam, P., J. P. Cowen, and R. D. Jones. 2004. Autotrophic ammonia oxidation in a deep-sea
631 hydrothermal plume. *FEMS Microbiology Ecology* **47**: 191–206. doi:10.1016/S0168-
632 6496(03)00256-3

633 Lee, D. Y., M. S. Owens, M. Doherty, E. M. Eggleston, I. Hewson, B. C. Crump, and J. C.
634 Cornwell. 2015. The Effects of Oxygen Transition on Community Respiration and Potential
635 Chemoautotrophic Production in a Seasonally Stratified Anoxic Estuary. *Estuaries and
636 Coasts* **38**: 104–117. doi:10.1007/s12237-014-9803-8

637 Li, F., and others. 2018. Genome-scale metabolic model analysis indicates low energy
638 production efficiency in marine ammonia-oxidizing archaea. *AMB Express* **8**: 0–11.
639 doi:10.1186/s13568-018-0635-y

640 Lomas, M. W., and F. Lipschultz. 2006. Forming the primary nitrite maximum: Nitrifiers or
641 phytoplankton? *Limnology and Oceanography* **51**: 2453–2467.
642 doi:10.4319/lo.2006.51.5.2453

643 Lücker, S., B. Nowka, T. Rattei, E. Speck, and H. Daims. 2013. The genome of *Nitrospina*
644 *gracilis* illuminates the metabolism and evolution of the major marine nitrite oxidizer.
645 *Frontiers in Microbiology* **4**: 27. doi:10.3389/fmicb.2013.00027

646 Lücker, S., and others. 2010. A *Nitrospira* metagenome illuminates the physiology and evolution
647 of globally important nitrite-oxidizing bacteria. *Proc Natl Acad Sci U S A* **107**: 13479–
648 13484. doi:10.1073/pnas.1003860107

649 Marañón, E., P. Cermeño, E. Fernández, J. Rodríguez, and L. Zabala. 2004. Significance and
650 mechanisms of photosynthetic production of dissolved organic carbon in coastal eutrophic
651 ecosystems. *Limnology and Oceanography* **49**: 1652–1666. doi:10.4319/lo.2004.49.5.1652

652 Meador, T. B., N. Schoffelen, T. G. Ferdelman, O. Rebello, A. Khachikyan, and M. Könneke.
653 2020. Carbon recycling efficiency and phosphate turnover by marine nitrifying archaea.
654 *Science Advances* **6**: eaba1799. doi:10.1126/sciadv.aba1799

655 Middelburg, J. J. 2011. Chemoautotrophy in the ocean. *Geophysical Research Letters* **38**: 94–97.
656 doi:10.1029/2011GL049725

657 Pachiadaki, M. G., and others. 2017. Major role of nitrite-oxidizing bacteria in dark ocean carbon
658 fixation. *Science* **358**: 1046–1051. doi:10.1126/science.aan8260

659 Pelletier, G. L. E. W. D. 2007. CO2SYS.xls: A calculator for the CO2 System in Seawater for
660 Microsoft Excel/VBA . Washington State Department for Ecology, Olympia, WA;
661 Brookhaven National Laboratory, Upton, NY.

662 Popovic, M. 2019. Thermodynamic properties of microorganisms: determination and analysis of
663 enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32
664 microorganism species. *Heliyon* **5**. doi:10.1016/j.heliyon.2019.e01950

665 Prosser, J. I. 1990. Autotrophic Nitrification in Bacteria, p. 125–181. *In* A.H. Rose and D.W.
666 Tempest [eds.]. Academic Press.

667 Qin, W., and others. 2017. *Nitrosopumilus maritimus* gen. nov., sp. nov., *Nitrosopumilus*
668 *cobalaminigenes* sp. nov., *Nitrosopumilus oxyclinae* sp. nov., and *Nitrosopumilus*
669 *ureiphilus* sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota.
670 *International Journal of Systematic and Evolutionary Microbiology* **67**: 5067–5079.
671 doi:10.1099/ijsem.0.002416

672 R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for
673 Statistical Computing, Vienna, Austria. <http://www.R-project.org>.

674 Reinthaler, T., H. M. van Aken, and G. J. Herndl. 2010. Major contribution of autotrophy to
675 microbial carbon cycling in the deep North Atlantic's interior. *Deep-Sea Research Part II: Topical Studies in Oceanography* **57**: 1572–1580. doi:10.1016/j.dsr2.2010.02.023

676 Santoro, A. E. 2016. The do-it-all nitrifier. *Science* **351**: 342–343. doi: 10.1126/science.aad9839

677 Santoro, A. E., and K. L. Casciotti. 2011. Enrichment and characterization of ammonia-oxidizing
678 archaea from the open ocean: Phylogeny, physiology and stable isotope fractionation. *ISME Journal* **5**: 1796–1808. doi:10.1038/ismej.2011.58

680 Santoro, A. E., K. L. Casciotti, and C. A. Francis. 2010. Activity, abundance and diversity of
681 nitrifying archaea in the central California Current. *Environmental Microbiology* **12**: 1989–
682 2006. doi:10.1111/j.1462-2920.2010.02205.x

683 Santoro, A. E., R. A. Richter, and C. L. Dupont. 2019. Planktonic Marine Archaea. Annual
684 Review of Marine Science **11**: 131–158. doi:10.1146/annurev-marine-121916-063141

685 Santoro, A. E., and others. 2013. Measurements of nitrite production in and around the primary
686 nitrite maximum in the central California Current. *Biogeosciences* **10**: 7395–7410.
687 doi:10.5194/bg-10-7395-2013

688 Schneider, B., R. Schlitzer, G. Fischer, and E. M. Nöthig. 2003. Depth-dependent elemental
689 compositions of particulate organic matter (POM) in the ocean. *Global Biogeochemical Cycles* **17**. doi:10.1029/2002gb001871

690 Siegel, D. A., K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld, and P. W. Boyd.
691 2014. Global assessment of ocean carbon export by combining satellite observations and
692 food-web models. *Global Biogeochemical Cycles* **28**: 181–196.
693 doi:10.1002/2013GB004743.Received

694 Stahl, D. A., and J. R. de la Torre. 2012. Physiology and Diversity of Ammonia-Oxidizing
695 Archaea. *Annual Review of Microbiology* **66**: 83–101. doi:10.1146/annurev-micro-092611-
696 150128

697 Stein, L. Y., and others. 2007. Whole-genome analysis of the ammonia-oxidizing bacterium,
698 *Nitrosomonas eutropha* C91: Implications for niche adaptation. *Environmental Microbiology* **9**: 2993–3007. doi:10.1111/j.1462-2920.2007.01409.x

699 Strickland, J. D. H., and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Fish.
700 Res. Bd. Can., Bull. No. 167.

701

702

703

704 Tolar, B. B., M. J. Ross, N. J. Wallsgrove, Q. Liu, L. I. Aluwihare, B. N. Popp, and J. T.
705 Hollibaugh. 2016. Contribution of ammonia oxidation to chemoautotrophy in Antarctic
706 coastal waters. *ISME Journal* **10**: 2605–2619. doi:10.1038/ismej.2016.61

707 Utåker, J. B., K. Andersen, Å. Aakra, B. Moen, and I. F. Nes. 2002. Phylogeny and functional
708 expression of ribulose 1,5-bisphosphate carboxylase/oxygenase from the autotrophic
709 ammonia-oxidizing bacterium *Nitrosospira* sp. isolate 40KI. *Journal of Bacteriology* **184**:
710 468–478. doi:10.1128/JB.184.2.468-478.2002

711 Walker, C. B., and others. 2010. *Nitrosopumilus maritimus* genome reveals unique mechanisms
712 for nitrification and autotrophy in globally distributed marine crenarchaea. *Proc Natl Acad
713 Sci U S A* **107**: 8818–8823. doi:10.1073/pnas.0913533107

714 Ward, B. B. 2011. Nitrification in the Ocean, p. 325–346. *In* B.B. Ward, D.J. Arp, and M.G.
715 Klotz [eds.], *Nitrification*. ASM Press.

716 Watson, S. W., E. Bock, F. W. Valois, J. B. Waterbury, and U. Schlosser. 1986. *Nitrospira
717 marina* gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. *Archives of
718 Microbiology* **144**: 1–7. doi:10.1007/BF00454947

719 Watson, S. W., and M. Mandel. 1971. Comparison of the morphology and deoxyribonucleic acid
720 composition of 27 strains of nitrifying bacteria. *Journal of Bacteriology* **107**: 563–569.
721 doi:10.1128/jb.107.2.563-569.1971

722 Watson, S. W., and J. B. Waterbury. 1971. Characteristics of two marine nitrite oxidizing
723 bacteria, *Nitrospina gracilis* nov. gen. nov. sp. and *Nitrococcus mobilis* nov. gen. nov. sp.
724 *Archiv für Mikrobiologie* **77**: 203–230. doi:10.1007/BF00408114

725 White, A. E., S. J. Giovannoni, Y. Zhao, K. Vergin, and C. A. Carlson. 2019. Elemental content
726 and stoichiometry of SAR11 chemoheterotrophic marine bacteria. *Limnology &
727 Oceanography Letters* **4**: 44–51. doi:10.1002/lol2.10103

728 Wuchter, C., and others. 2006. Archaeal nitrification in the ocean. *Proc Natl Acad Sci U S A*
729 **103**: 12317–12322.

730 Zhang, Y., and others. 2020. Nitrifier adaptation to low energy flux controls inventory of
731 reduced nitrogen in the dark ocean. *Proc Natl Acad Sci U S A* **117**: 4823–4830.
732 doi:10.1073/pnas.1912367117

733