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Abstract—This paper develops an efficient solution for super-
resolution two-dimensional (2D) harmonic retrieval from multiple
measurement vectors (MMYV). Given the sample covariance ma-
trix constructed from the MMYV, a gridless compressed sensing
approach is proposed based on the atomic norm minimization
(ANM). In the approach, our key step is to perform a redundancy
reduction (RR) transformation that effectively reduces the large
problem size at hand, without loss of useful frequency information.
For uncorrelated sources, the transformed 2D covariance matrices
in the RR domain retain a salient structure, which permits a
sparse representation over a matrix-form atom set with decoupled
1D frequency components. Accordingly, the decoupled ANM (D-
ANM) framework can be applied for super-resolution 2D frequency
estimation. Moreover, the resulting RR-enabled D-ANM technique,
termed RR-D-ANM, further allows an efficient relaxation under
certain conditions, which leads to low computational complexity
of the same order as the 1D case. Simulation results verify the
advantages of our solutions over benchmark methods, in terms of
higher computational efficiency and detectability for 2D harmonic
retrieval.

Index Terms—Super-resolution, 2D harmonic retrieval, MMV,
RR transformation, D-ANM.

Manuscript received February 5, 2021; revised July 7, 2021 and December 31,
2021; accepted January 25, 2022. Date of publication February 14, 2022; date
of current version March 18, 2022. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Ketan Rajawat. This
work was supported in part by the U.S. NSF under Grants 1527396, 1939553,
2003211, 2128596, and 2136202, in part by Virginia Research Investment Fund
CCI under Grant 223996, in part by the China NSFC under Grants 61871218,
61801211, and 61471191, and in part by the ASPIRE Project, Project 14926
within the OTP Program of NWO-TTW. This work was presented at the 28th
European Signal Processing Conference, Amsterdam, The Netherlands, January
2021 [1]. (Corresponding author: Yue Wang.)

Yu Zhang is with the Key Laboratory of Radar Imaging and Microwave
Photonics, Ministry of Education, Nanjing University of Aeronautics and As-
tronautics, Nanjing 211100, China, and also with the Electrical and Computer
Engineering Department, George Mason University, Fairfax, VA 22030 USA
(e-mail: skywalker_zy @163.com).

Yue Wang and Zhi Tian are with the Electrical and Computer Engineer-
ing Department, George Mason University, Fairfax, VA 22030 USA (e-mail:
ywang56 @gmu.edu; ztianl @ gmu.edu).

Geert Leus is with the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, 2826 CD Delft, The
Netherlands (e-mail: g.j.t.leus@tudelft.nl).

Gong Zhang is with the Key Laboratory of Radar Imaging and Microwave
Photonics, Ministry of Education, Nanjing University of Aeronautics and As-
tronautics, Nanjing 211100, China (e-mail: gzhang @nuaa.edu.cn).

Digital Object Identifier 10.1109/TSP.2022.3150964

, Fellow, IEEE, and Gong Zhang

, Senior Member, IEEE, Zhi Tian
, Member, IEEE

, Fellow, IEEE,

I. INTRODUCTION

WO-DIMENSIONAL (2D) harmonic retrieval has broad
T applications in speech processing [2], wireless communi-
cations [3], radar systems [4], [5], etc. A number of classical
high-resolution methods have been developed, mostly based on
statistical analysis of the sample covariance [6]-[12]. These
methods usually require a large number of measurements in
order to well approximate the desired statistics, which may
not work effectively in modern applications of a large prob-
lem size and limited sampling resources such as short sens-
ing time and compressive measurements. In recent decades,
compressed sensing (CS) based techniques that utilize signal
sparsity have attracted much interest and have been widely
applied for signal recovery from compressive measurements,
based on either a single measurement vector (SMV) [13], [14] or
multiple measurement vectors (MMYV) [15]-[20]. The CS based
methods with MMV are further classified into two categories:
sample-based methods (where the observed signals are directly
adopted as the multiple inputs to CS techniques) [15], [16], and
covariance-based methods (where the covariance matrix of the
observed signals is calculated and then fed into subsequent CS
recovery operations) [17]-[19]. While the former work well for
a single or few snapshots, the latter are computationally much
more efficient when the number of MMV is large. Compared
with the classical subspace methods [8], [9], the CS approaches
with MMV exhibit several advantages: robustness to noise, no
requirement on the known number of sources a priori, and high
sample efficiency.

However, the traditional CS approaches critically hinge on
an on-grid assumption that the signal frequency components
reside exactly on some predefined grid in the spectral domain.
Such on-grid CS solutions offer limited frequency resolution
and may suffer from severe performance degradation due to
the basis mismatch [21]. To circumvent this issue, a super-
resolution technology based on the atomic norm minimization
(ANM) principle has been developed for line spectral esti-
mation from compressive measurements [22], [23], for both
the SMV and MMV cases [24]-[27]. These ANM techniques
utilize the Vandermonde structure of a uniform geometry by
enforcing a Toeplitz structure in a semidefinite programming
(SDP) based convex optimization problem, which allows super-
resolution harmonic retrieval via Vandermonde decomposition.
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When the number of MMYV is large, an alternative covariance-
based gridless technique, termed low-rank structured covariance
reconstruction (LRSCR), was proposed for the 1D case [27],
which builds on the sample covariance matrix, at computational
complexity that is independent of the number of measurement
vectors. It is worth noting that the LRSCR jointly incorporates
two important properties, i.e., the low-rankness and the Toeplitz
structure of the covariance matrix. In contrast, classical struc-
tured covariance estimation techniques do not explicitly impose
low-rankness [28], [29].

The goal of this paper is to bring the benefits of ANM to
2D harmonic retrieval problems in the presence of MMV, when
the problem size is large yet sampling resources are limited.
Along this line, the ANM techniques originally developed for
1D scenarios have been extended to 2D scenarios [30]. In
vectorization-based ANM (V-ANM), the main idea is to vector-
ize the 2D data matrix and then cast the two-level Vandermonde
structure of the data into a proper SDP formulation under the
ANM objective. This technique has been further extended to
higher-dimensional harmonic retrieval through generalized Van-
dermonde decomposition on multi-level Toeplitz matrices [31],
and applies to both the SMV and MMV scenarios [32]. Un-
fortunately, the computational complexity of V-ANM scales
exponentially with the dimensionality, and increases drastically
as the number of MMV grows. In contrast, the decoupled atomic
norm minimization (D-ANM) algorithm [33], by virtue of its
frequency decoupling strategy, effectively reduces the computa-
tional complexity to be comparable to that of a 1D ANM solu-
tion, without loss of optimality. The advantage in computation
comes with a stricter yet still mild conditions on the frequency
separation and the number of identifiable frequencies [34]. How-
ever, D-ANM only applies to the SMV case [33], [34]. To the
best of our knowledge, there is still a lack of computationally
efficient gridless 2D harmonic retrieval techniques for MMV
problems.

To fill this gap, this paper aims at developing decoupling-
based 2D harmonic retrieval techniques for the MMV case, by
exploiting the structural information of the sample covariance
matrix effectively and efficiently. The sample covariance en-
compasses useful information of all MMV, and can be con-
verted to an SMV form through vectorization. However, it
is quite challenging to directly solve this straightforward but
naive vectorization-based ANM problem, because the large
problem size in the 2D scenario results in unacceptably huge
computational complexity. In addition, the frequency resolution
would remain the same as that of the SMV case, even in the
presence of MMV. To overcome these challenges, we propose
an efficient super-resolution 2D harmonic retrieval method with
MMV, termed redundancy-reduction (RR) transformation based
D-ANM-Relaxation (RR-D-ANM-R). In doing so, our contri-
butions are summarized as follows.

e For 2D harmonic retrieval, given the inherent two-level
Toeplitz structure of the covariance matrix in the uncorre-
lated case, we propose a RR transformation to concisely
express the vectorized covariance matrix as a RR vector
of much reduced length via linear projection. This RR
vector can be sparsely represented by a decoupled atom
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set, which facilitates its efficient decomposition for 2D
harmonic retrieval with a much reduced problem size.

e Based on the RR transformation, we propose a novel for-
mulation for gridless 2D harmonic retrieval with MMV
via a customized D-ANM (RR-D-ANM). Further, to make
the problem tractable, we equivalently reformulate the
original formulation as a solvable convex form based on the
existence and uniqueness of the generalized Vandermonde
decomposition of the covariance matrix.

e Capitalizing on the strong structured constraint introduced
by the RR-enabled D-ANM framework, the RR-D-ANM
further allows efficient relaxation as RR-D-ANM-R, which
is guaranteed by our theoretical analysis for noise-free and
noisy cases. It leads to considerable reduction of complex-
ity atanegligible loss in estimation performance, compared
with the RR-D-ANM.

e Based on several structured matrices recovered by our
gridless 2D MMYV techniques, we design three harmonic
retrieval methods for different practical implementation
needs. Also, for the noisy case, we provide the construction
of a noise-tolerance constraint for the proposed formula-
tions, when the number of MMV is adequately large and
the noise statistics are unavailable in practice.

The rest of this paper is organized as follows. Section II first
presents the signal model and problem formulation for 2D har-
monic retrieval with MMV, and then reviews the relevant prior
work on V-ANM, D-ANM and LRSCR. Section III proposes
an efficient gridless 2D harmonic retrieval framework based on
the RR transformation, under which the RR-enabled D-ANM
solutions are developed in the transformed domain. Section IV
discusses related design issues. Section V presents simulation
results, followed by conclusions in Section VI.

Notations: a, a, A, A and \A denote a scalar, a vector, a
matrix, a set and the complement of the set A. (-)7, (-)*, and
() are the transpose, conjugate, and conjugate transpose of
a vector or matrix. conv(.A) means the convex hull of a set A.
Real(a) and |a| denote the real value and the absolute value of a,
respectively. The sign of a is defined as sign(a) = exp(jo(a))
where ¢(a) denotes the phase of a. ||al|o, ||a||1 and ||a||2 are the
£y, £1 and ¢5 norms of a. diag(a) generates a diagonal matrix
with the diagonal elements constructed from a. vec(-) stacks
all the columns of a matrix into a vector and vecd(A) returns a
vector consisting of the diagonal elements of A only. vec™*(+)
is the inverse operation of vec(-). e, is the vector with only
the a-th element being one and zeros elsewhere. I, is an a-size
identity matrix. S(A) indicates a unique mapping from A to a
two-level Toeplitz matrix T, . || A/, Tr(A), Rank(A) are the
Frobenius norm, the trace and the rank of A. ® is the Kronecker
product. ® is the Khatri-Rao product. ¢;; € {1, 0} is the Dirac
delta function. E{-} denotes expectation.

II. SIGNAL MODEL AND PRIOR ART

This section presents the signal model and problem statement
of 2D harmonic retrieval with MMV. A brief review of related
prior works is provided to highlight their limitations.
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A. Signal Model

Consider a 2D harmonic retrieval problem where the signal
of interest x(¢) € CN™M is a linear mixture of K 2D sinusoidal
components in the form of [1]

K
:Z Nan(f1,i) @ an(f2,)] Zsz a,p fl
i—1 i=1

=(AN © Anm)s(t),

where s;(t) is the complex amplitude of the i-th source, f=
[f1,i, f2,i]T € (—3, £]? consists of its digital frequencies along
the two orthogonal dimensions, and L is the number of measure-
ment vectors. The 2D manifold vector a,, (f*) = ay(f1.:) ®
ap(f2,;) is made of Vandermonde-structured manifold vectors
an(f1:) and ap(fa,;) of size N and M, respectively:'

t=1,...,L, ()

an(fii)=[Lexp(j2mf1,),...,exp(j2m(N—1)f1,:)]",

M (f20)=[1,exp(j27 fa,0), ..., exp(j2m(M—1) fa;)]".
(2)
Further, s(t) = [s1(t),...,sx ()T, fo=1fn1, - for]T
for n=1,2, Ay =An(f1)=lan(f11), - an(f1,K)],

and Ay = Ap(f2) = [anm(f21),-- - anm(f2.x)]- In a ma-
trix form, (1) becomes X =(An®Ap)SL, where X =
[2(1),...,z(L)] e CNM*L & —=[s(1),...,s(L)] € CE*L,

Note that the signal vector (¢) may arise from the vectoriza-
tion of a matrix X (t) € CM>*¥ via x = vec(X), where

:Zsz Jans (foi)ak (f1:)=Andiag(s(t) AL (3)
=1

For instance, X (¢) can be the samples collected from an M X
N rectangular array at the ¢-th snapshot, when K plane-wave
signals impinge on the array. The equivalence between (1) and
(3) derives from the properties of Kronecker and Khatri-Rao
products for a diagonal S,

vec(ASB) = (BT @ A)vec(S) = (BT ® A)vecd(S). (4)

In many applications, x(t) is not observed directly, but
through subsampling or linear compression via a measure-
ment matrix J € CM*NM with M'<N M, such as in bistatic
multiple-input and multiple-output (MIMO) radar systems with
sparse linear array [5] and in hybrid millimeter-wave massive
MIMO systems [20], [37]-[39]. Inflicted by an additive noise
n(t), the SMV data y(t) € CM' is given by

y(t) = Jz(t) + n(t). )

Collecting all y(¢)’s and n(t)’s to form matrices Y ;, and N 1,
respectively, the MMV model is

Y., =JX,+NL=JANOAN)SL+ N5. (6)

!'When non-ideal geometries are encountered, e.g. antenna systems with per-
turbation, array manifold separation can be applied to retrieve the Vandermonde
structure through a Bessel or Fourier approximation [35], [36].
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Given random s(t), the desired frequency information lies in
the covariance of y(¢), defined by

R, =E{y(t)y(t)"} = JR,J" + R, 7

where R, and R,, are the covariance of x(t¢) and n(t), respec-
tively. Denoting R, = E{s(t)s(t)"}, we have

R, :]E{ac(t)w(t)H}:(AN ® AM)RS(AN ® AM)H ®)

This paper considers uncorrelated signal sources, that is,
E{si(t)s;(t)} = r,»éij, V1 S i,j S K. Since T Z 0, Vi, RS is
a positive semidefinite (PSD) diagonal matrix:

R, = diag(r) = 0, wherer = [rq,... ,TK]T >0. (9

In practice, R, is approximated by its sample covariance

. 1

R, = ZYLYf. (10)
The goal of 2D harmonic retrieval is to recover the unknown
frequency pairs { f*}; from either Y1, or R,, corresponding to
the sample-based or the covariance-based approach.

B. Prior Art

We now review existing approaches for 2D harmonic retrieval,
with focus on gridless CS techniques. The limitations of these
techniques for the MMV case motivate this work.

1) Statistical Subspace Methods: The 2D frequency esti-
mates can be jointly acquired from the signal subspace of R,
by utilizing the two-level Vandermonde structure exhibited in
R, in (8) [10]-[12]. However, traditional subspace methods
require L to be large in order to accurately estimate the sought
covariance via sample averaging. For instance, to approximate
R, in (7) by (10), it requires L > M " in the worst case when
K(<M’) is unknown a priori. Besides, they may suffer from
degraded estimation accuracy in the presence of subsampling or
compression, i.e., M’ < N M. This means that both the number
of MMV L and the compressive sample vector length M’ have
to be sufficiently large. Hence, traditional subspace methods
usually experience low sample efficiency.

2) Sample-Based Vectorized 2D ANM (V-ANM): Gridless
CS builds on the tenet that the signal of interest can be concisely
expressed as a linear combination of a few simple atoms over
a known atom set, and atomic norm minimization (ANM) is
able to reveal the atomic composition under some conditions. In
V-ANM, the signal of interest is (¢) in the SMV case or X 1,
in the MMYV case. Based on (1), a vectorization-based atom set
is defined as [30], [31]

1
A, = {ma2D<f> VF = [, folT € (=1, 42 } an

Accordingly, the atomic norm of « (to replace x(t) hereafter)
over the atom set A, is defined as

|z 4, =inf{l > 0:x € lconv(A,)}, (12)
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which seeks the sparsest (under the ¢;-norm measure) decompo-
sition of & over A,,. If the frequencies are adequately separated
to meet the separation condition [30], [31], then the atomic
decomposition yields the true signal structure in (1), through
the following V-ANM formulation
& = argmin||z| ;, st ly — Jz|5 < u, (13)

where (4 is a user-specified parameter for error tolerance.

Calculation of the atomic norm is difficult, particularly when
the atom set is of infinite size. Fortunately, .4, possesses a special
structure indicated by the Vandermonde vectors in (2), which
leads to a SDP reformulation of V-ANM for computationally
tractable solutions. Provided that K < min{/N, M} in addition
to the separation condition, the SDP-based V-ANM for both
SMV (L = 1) and MMV is [30]-[32]

~ ~ o~ . 1
{g,,,V, X} =argmin_ ~(Tr(T,,(u,,)) + Tr(V))
w, V.Xr 2
T2D (u2D) XL

Y —JIXL|% <p (14

Here T, (u,, ) € CNM*NM j5 3 Hermitian two-level Toeplitz
matrix parameterized by u,,, € C2NM~-(N+M)+1 which con-
sists of the distinct entries (the conjugate entries are not included)
inits first M columns [30]. Once u,, is acquired from (14), the
2D frequencies can be extracted from T, , (u,, ) via generalized
Vandermonde decomposition [31]. Alternatively, traditional 2D
subspace methods can be adopted for accurate frequency estima-
tion from the well-conditioned T, , (., ,, ) in lieu of the unknown
R,.
Note that the V-ANM is a sample-based approach, building
on Y ;. Moreover, T, (u,,) can be constructed even when
strong compression is present with M’ < NM, and for few
snapshots L < N M. Hence, V-ANM enjoys high sample ef-
ficiency. However, its computational cost scales exponentially
in the signal dimensionality, because of the multi-level Toeplitz
matrix involved. The PSD matrix in the first constraint of (14) is
ofsize (NM + L) x (NM + L), whichresults in a complexity
order of O((NM + L)**L?) in SDP implementation [40].

Furthermore, the exact equivalence between the SDP formula
in (14) and the original ANM entails an extra condition, that
is, Rank(T, , (u,,,)) < min{N, M}. This results from the fact
that the equivalence between the PSD property of the two-level
Toeplitz matrices and the existence and uniqueness of their gen-
eralized Vandermonde decomposition only holds under such a
condition [31]. Since this constraint cannot be explicitly imposed
in the SDP, some checking mechanism has to be applied to
the solution of (14), which incurs extra operations [31], [41].
Overall, V-ANM is applicable to problems of small size only,
because of its very high computational cost.

3) Sample-Based Decoupled 2D ANM (D-ANM): The dis-
advantage of V-ANM is overcome by a D-ANM approach [33],
[34], which operates on the matrix-form signal X (t) =
vec 1(x(t)) in (3). Accordingly, it introduces a matrix-form
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atom set

Ag = {an(f)al(f)|Vf = [f1, )7 € (=4, 42}. (19)

Similar to (13), under a certain separation condition [34], the
true frequency components of X (to replace X (¢) hereafter)
correspond to its sparsest decomposition, and can be found by
calculating || X|| 4, via the following D-ANM [33], [34]:

X = argmin || X 4, st.|ly Jvec(X)|3 <p.  (16)

Utilizing the inherent Vandermonde structure, (16) is equiva-

lent to the following SDP when K < min{N, M} [33], [34]

~ o~ == . 1
{ur, w0, X} = ar%(’ur?lg o, W(TY(T(M))
Ug € cM
T X
+ Tr(T(u2))) st { )((“5) T(ul)] =0
ly — Jvec(X)|3 < n, (17)

where T(u,,), n = 1,2, forms a one-level Hermitian Toeplitz
matrix with u,, being its first column. Following (17), f,, can
be extracted from the estimated T(w,,) individually, n = 1,2,
via standard 1D Vandermonde decomposition. While the sep-
aration condition of D-ANM is more restrictive than that of
V-ANM, D-ANM reduces the complexity order to be compara-
ble to a 1D problem at O(N2M?(N + M)?-), noting that the
PSD constraint in (17) is of size (N + M) x (N + M) only.
Remarkably, the decoupling in computation not only retains
performance optimality, but also facilitates frequency pairing,
because u; and wus are jointly recovered from the SMV data
y. However, the D-ANM framework in (17) only works for the
SMV case with x collected from a single snapshot. It is not
straightforward to directly extend (17) to the MMV case.

4) Covariance-Based LRSCR: For harmonic retrieval, the
essence of the ANM approach is to construct a structured matrix
T,, (u,,) from the data set Y that possesses the desired
properties of the idealized signal covariance R, including being
low rank, PSD, and two-level Hermitian Toeplitz. Alternative
to sample-based V-ANM, R, with these properties can be
extracted from the sample covariance Ry, through an LRSCR
formulation [42] as follows:
min

R, = arg
RI=T2D(u

Tr(R,)

2p)
N H 2
s.t. HRy —JR,J HF <

R, =0, (18)

where 1/ is similarly defined as . Note that the LRSCR in (18)
permits a SDP reformulation, similar to the form of (14). For
both (18) and its SDP counterpart, the size of any PSD constraint
involved is independent of L, which dictates the complexity
order of the LRSCR to be O((NM)*?). This is lower than that
of the V-ANM when L is large, but still quite high for practical
use in large-size problems when /N and/or M go large.
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In summary, the aforementioned super-resolution schemes
for the MMV case encounter major limitations in terms of ei-
ther sample efficiency or computational efficiency. The existing
D-ANM is efficient in both accounts, but is only applicable
to the SMV case and subject to stricter frequency separation
conditions. In large-scale problems such as spatial frequency
estimation in massive MIMO systems [43], [44], the number of
samples is limited due to both real-time processing constraints
and sampling costs. Meanwhile, the complexity order has to be
amenable for affordable implementation. Therefore, our goal in
this work is to develop new efficient super-resolution harmonic
retrieval techniques for MMV, by exploiting the mechanism of
D-ANM in a covariance-based manner. Moreover, in the existing
2D harmonic retrieval based on the generalized Vandermonde
decomposition of the covariance matrix, the number of iden-
tifiable sources is limited to be K < min{M, N}, which is
too conservative, considering the extra information that MMV
can provide beyond SMV. Accordingly, we aim to loosen the
conservative conditions for guaranteeing exact 2D solutions
in the MMV case, by effectively capitalizing on the inherent
structure of covariance matrices.

III. REDUNDANCY-REDUCTION TRANSFORMATION BASED
DECOUPLED ATOMIC NORM MINIMIZATION

This section develops a super-resolution 2D frequency esti-
mation scheme based on the D-ANM scheme, in the presence
of MMV. Redundancy-reduction transformation of the signal
covariance is introduced, which effectively reduces the compu-
tational cost to be comparable to that of a 1D problem.

A. Redundancy-Reduction Transformation

To take advantage of the low complexity of the D-ANM
for the SMV case, we turn to r, = vec(R,) € CNM) a5 the
structured signal vector of interest. This vector can be approxi-
mated by vec(+ X 1 X ¥ ), which retains the useful 2D frequency
information in all the columns of X .. Hence, an MMV problem
based on X ; can be alternatively solved as an SMV problem
based on 7, which is amenable to the D-ANM.

However, the benefit of adopting 7, as the signal of inter-
est comes at the expense of a much enlarged signal length
of (NM)?, which incurs a high computational cost when N
and/or M go large. To circumvent this issue, we propose a
RR transformation to concisely express r,, by removing the
redundancy in the entries of r,. The basic idea is to establish
a linear mapping that projects the vectorized covariance matrix
r, with repeated entries onto an RR vector z with no repeated
entries. A similar thought can be found in our previous work
on 1D problems where we establish the linear mapping between
the covariance matrices in the compressed and uncompressed
domains for compressive cyclic feature detection [45], [46] and
DOA estimation [47]. In this work, the RR transformation for
the 2D case is much more involved, and critically hinges on the
underlying multi-level Vandermonde structures of the manifold
vectors that have not been studied under the context of RR, as
derived next.
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The inherent redundancy in 7, is due to the uncorrelated
sources, which yields R, = diag(r) with only K nonzero en-
tries. By vectorizing both sides of (8), it follows that

T:EZZH (an(fri)@anm(f2:)) @(an(f1i)@anr (f2,)) -

19)
Concerning each summand in (19), an equality arises:
(an(fri) ® an(f24))" @ (an(fii) ® anr(fz,i))
= ¥(ay(f14) ® ay(f2)), (20

where a'y (f1,;) €C*V~! and a/y;(f2;) € C*M~1 are given by

an(fi)= [e72" VD g N DT

(21)
In  (20), the matrix Y=(IN®QE®Iy)(Gy®
Gp)e RN*M*x@N-1)@M-1) s the redundancy-reduction
(RR) transformation matrix that is determined by N and M
only, where E = ZjM:l(ef @Iy®e;) e RNMxNM g the
commutation matrix, Gy is defined as

T 2 (9N
Gy =[G%,,....GY ] e RV,

Ay foi)= [€72m M2 g M )

(22)

with the ¢-th block matrix GNJ' = [ONX(N—i)ﬂ Iy, ONx(i—l)]s
i=1,...,N, and Gy € RM**2M1) ig defined similarly as
(22). The derivation of (20) is provided in Appendix A.

By defining the Kronecker product term in the right hand side
of (20) as

a, (f') = ay(f1.:) ® ay(fa), (23)
(19) can be rewritten as
K .
r, = Wz, where z:Z ral (f')=(Ay © Ay)r (24)
i1

where Ay = Al (f1) = [y (f11),. .., ay(f1x)] and Ay,
= A\ (f2) = [a)y(f2,1), .., @)y (f2,x)], and 7 = vecd(R,).
It follows from (4) that

z=(Ay oA, vecd(R,) =vec(A ) R,AL ) =vec(Z) (25)

where Z = A, R, A'L.
Moreover, z can be observed through the vectorized version
of R, in (7) by noting

r, = vec(R,) = vec(JR,J" + R,))= (J* @ J)r, + 1,

=(J )Pz+r,=Tz+r, (26)

where T' = (J* @ J)® € CM*¢ with ¢ = (2N — 1)(2M —
1), and r,, = vec(R,,) is the noise term.

It is worth noting the importance of (24) and (26) as the
equivalent signal and measurement models in the RR domain.
Accordingto (21) and (25), the RR vector z, or its matrix form Z,
contains all the harmonic information. Further, z is covariance-
based constructed from MMYV, but it takes on an SMV form
that is crucial for ensuing low-complexity algorithm design.
It is the RR transformation matrix W that linearly maps the
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original r,, of a large size N?M? to a much smaller vector z of
size (2N — 1)(2M — 1), without loss of any useful information.
Further, the dimensionality is reduced as well. As indicated by
(19), 7, in the original domain is structurally complex consisting
of four nested Vandermonde vectors, which is difficult to tackle.
In contract, the RR vector z is modeled to retain the two-level
Vandermonde structure in its manifold vector @/, _ (f*) of (23),
parameterized by the unknown frequencies of interest. More
importantly, compared with (2), (21) suggests two enlarged
virtual samplers of length (2N — 1) and (2M — 1) respectively.
In this sense, the unknown frequency pairs can be retrieved
through the decomposition of the estimated z or Z, at enhanced
frequency resolution. With (26), the MMV Y , is capsulated by
the transformed SMV 7, = vec(R,) = vec(+Y 1 Y }), which
is linearly related to the RR vector z. Now, the task boils down
to reconstructing the 2D structure of z or Z in the RR domain
from 7.

B. RR-Based 2D MMYV via Customized D-ANM

In the RR domain, the covariance-based z in (24) bears a
similar form as that of « in (1), and hence can be mathematically
treated as a single sample vector. An intricate difference is
that the coefficients 7 = [r1,...,7x]7 in z are nonnegative as
indicated by (9), whereas = has complex-valued coefficients.
Hence, all the sample-based gridless CS techniques for the
simple SMV case, including the 2D V-ANM and D-ANM re-
viewed in Section II-B, can be applied, with extra care on the
nonnegativeness of 7.

Considering the computational efficiency of D-ANM over
V-ANM, we aim to develop a D-ANM solution to extract the
structural information of the RR vector z. To this end, we inspect
its matrix form Z in (25):

=

Z = vec!

ZrzaM f2zaN fii) Z

=1 =1

where A/(fz) = a’I\/[(fg,i)a’]i,F(fu) S C(QMil)X(QNil). It is
easy to find that Z has a sparse linear atomic representation
over the following matrix-form atom set of infinite size:

)v VfE (_%’%]2}‘

Accordingly, we introduce a new matrix-form atomic norm

={A(f 27)

121,

= inf{z Tk
k

ZrkA’(ka A(fF)y e Ay > ONk} .
k
(28)

Note that this norm of (28) differs from || - || 4, in (16) of the
standard D-ANM [33], [34], because of the extra constraint 7~ >
0.

Given Z, it is possible to retrieve the components {7, f*}
of its sparest representation by calculating its atomic norm,
which leads to line spectrum estimation. In the presence of
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noise-inflicted SMYV, it boils down to

> . + 2
Z = arg min HZHA'dS't' |ry —Tvec(Z); < B, (29)

where [ indicates the noise tolerance threshold. This is a cus-
tomized D-ANM defined on the norm || - Hj,d ,in liew of || - |,
used in the D-ANM formula in (16). To illustrate the intricate
difference, we rewrite (29) in an equivalent form:

min Zl|l gy =|lr 30a
2o 1Z]| 4, = |Ir[lx (30a)
st. |r, —Dvec(Z)|3 < B (30b)

Z = A)y(f2)diag(r) A% (f1) (30c)

r>0. (30d)

Here (30a) and (30b) are in the same form as (16), (30c) is
implicit in the objective function of both (16) and (29), but
becomes an explicit constraint because of the new nonnegative
constraint (30d). Without (30d), the SDP implementation of the
D-ANM in (17) can be used to reformulate (30) into a convex
problem. However, due to the extra constraint on 7 in (30d), this
problem becomes intractable. This is because 7 is intertwined
with the other variable Z in the form of (30c).

To solve (30) in a tractable manner, we seek to reformulate
7 > 0 to an equivalent form with respect to Z. To this end, we
note from (24) that Z = vec!(z) in the RR domain is linearly
related to R, = vec ! (r,), via

R, = vec '(r,) = vec ' (¥z) = vec ' (Tvec(Z)). (31)

When there exists a unique generalized Vandermonde decom-
position of R,, it holds that » > 0 if and only if R, = 0.
Fortunately, the desired decomposition property of R, can be
guaranteed, thanks to its connection to Z via (31) and the specific
structure of Z in (30c). Specifically, according to D-ANM
theory [34], the decomposition of Z in (30c) is unique when
K <2min{N, M} — 2. Here, R, represented in the form of
(31) is a two-level Toeplitz matrix that is uniquely determined
by Z through the proposed RR transformation as a one-to-one
mapping between R, and Z. Thus, R, has aunique generalized
Vandermonde decomposition.

Moreover, R, >~ 0 can be expressed by the following PSD
constraint parameterized by Z:

vec ! (Wvec(Z)) = 0. (32)

Replacing (30d) by (32), and reformulating (30a)-(30c) into a
decoupled SDP form as in (17) [34], we reach the following
equivalent SDP formula for (29) when K < 2min{N, M} — 2:

{EvaN’ﬁM}

1
= arg 1ILI11VIILM NG (Tr(T(un)) + Te(T(unr)))  (33a)
s.t. [T(gff ) T(lZLN)} =0, (33b)
HveC(Ry) - I‘vec(Z)Hz <8, (33c¢)
vec ! (Wvec(Z)) = 0. (33d)
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Eq. (33) is the SDP-based D-ANM solution for the MMV case
inthe RR domain, which we term as RR-D-ANM. It lumps all the
measurements Y 7, into a single vector 7, in a covariance-based
manner, and decouples the frequency-dependent variables into
two 1D terms without loss of optimality by utilizing the specific
structure of Z through D-ANM.

Remark 1: Note that the virtual manifold vectors w and
uys have enlarged sizes of 2N — 1 and 2M — 1, compared
with the sizes N and M for V-ANM and D-ANM in Sec-
tion II-B. As a result, (33) can operate under the condition
K < 2min{N, M} — 2, which is twice looser than that in [31],
[41]. Thus, when min{N, M} —1 < K < 2min{N, M} — 2,
the extra checking mechanisms applied in [31], [41] can be
skipped if using (33). ]

It is worth noting that although the PSD matrix in (33b) is
of size 2(N + M — 1) x 2(N + M — 1), which is on the same
order of size (N + M) x (N + M) of D-ANM for the SMV
case in (17), the extra PSD constraint in (33d) is still of size
MN x MN. As a result, the overall complexity order of the
proposed RR-D-ANM remains to be comparable to that of the
V-ANM and the LRSCR. Next, to reduce the computational
complexity, an efficient relaxation of the proposed method is
proposed to balance the computational cost and estimation per-
formance.

C. Efficient Relaxation

Since the PSD constraint in (33d) contributes to most of the
computational cost, an efficient relaxation of (33) is to drop
(33d), which results in the following RR-D-ANM-Relaxation
(RR-D-ANM-R)

{Z*,’UJ;(V,’U,RI}

1
= arg Z.'LII,III\/i.ILM 27\/6 (TI(T(UN)) + TI‘(T(UA{))) (34a)
s.t.[ ZH T(uN)} =0, (34b)
Hvec(Ry) - I‘vec(Z)Hz < B. (34¢)

Next, we will show that, under certain conditions, the solution
Z* obtained through RR-D-ANM-R reaches the ground truth in
the noise-free case, and asymptotically approaches the ground
truth in the noisy case with high probability.

1) Noise-Free Case: We start from the ideal noise-free case
in the absence of any additive noise or finite sample error.
According to (26), we have

vec(R,) = T'vec(Z). (35)
By replacing the error tolerance inequality (34c) with the equal-
ity constraint in (35), we have the RR-D-ANM-R for the noise-
free case. For this problem, we can state the following theorem
providing the fundamental limits of RR-D-ANM-R on sample
efficiency when M = N.

Theorem 1: Let T' € CN'*N=D% with 2N — 1 > 1024 be
a random matrix with rows v chosen independently from a

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

distribution obeying the isotropy and incoherence properties’

12
E(yy!T) = llbsﬁpKaQXfLWTH2<(2N D)

v =N 09

for some fixed ¢ > 1. Assume that the signs sign(r;) of
the complex coefficients ; € C of the unknown vec(Z) =
PO rial, (f"), defined as sign(r;) = r;/|r;|, are randomly
located on the complex unit circle with its phase ¢(r;) being
symmetrically distributed around 0 between [—, 7]. Also as-
sume that all the frequency pairs f° = [f1,, f2.:]7 obey the
minimum separation condition
n1fii— ful > ominlfoi— gl > v G

min |f1; — f1,| > —,min|fa; — fai| > —.

it 1, 1.j N ] 2, 2,5 N
Then, the RR-D-ANM-R? returns the true Z with a probability
at least 1 — 9, as long as

N' > C¢K log?((2N - 1)/9), (38)

with C' being a constant.

Proof: A sketch of proof is provided in Appendix B, which
is similar to the proofs of Theorem 1 in [48] and Theorem 6.1
in [34]. (]

Theorem 1 provides a design guideline of isotropic and in-
coherent subsampling matrices. Specifically, the measurement
vector length N’, which dictates the allowable compression, is
lower bounded by a function of N and § in (38). To construct T’
that satisfies (36), we note the definition of I" in (26):

T — (J* ® J)‘I’ e (CM’2><(2N—1)(2]\/I—1). (39)

Suppose that a random selection matrix is adopted for sub-
sampling in (6) as J = I (where I is generated by ran-
domly keeping only M’ rows of I s with the indices from
Q c{1,2,..., NM}). Then, I is also a random selection ma-
trix but with some repeated rows. Let IV € CNV'*(2N-1)(2M-1)
with N’ < M’? be a submatrix of I" by keeping only the N’
distinct rows of T'. Then I satisfies the isotropy and incoherence
properties in (36). If N’ is chosen to further satisfy (38), then we
are able to build I' in (39) through an appropriate choice of J,
which allows RR-D-ANM-R to return the ground truth Z with
a probability at least 1 — ¢ in the noise-free case.

2) Noisy Case: We now analyze the performance bound for
the estimate of Z under the finite sample effect and the additive
white Gaussian noise in (6) satisfying N(0, o). The noise tol-
erance constraint in (34c) has to be imposed in RR-D-ANM-R,
which can be rewritten equivalently as (c.f. our recent work
in [49]):

|2, gsz)07| <s. (40)

’In [48], the authors claim that the assumption 2N — 1 > 1024 is made
merely for convenience, and that it can be dropped at the cost of a slightly
higher constant in the minimum-separation condition.

3In the original RR-D-ANM, the coefficients ; are constrained to be positive
real numbers as in (9), which is a special case of the symmetry assumption
by viewing the distribution of ¢(r;) as a delta function centered at 0. Hence,
Theorem 1 developed for the RR-D-ANM-R also applies to the RR-D-ANM as
a special case, even though the bound (38) can be loose.
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where S(-) defines the mapping R, = S(Z). Adopting J =
I, (40) can be further rewritten as

2

R, - Sa(2)|| <5, o

where Sq(Z) = IqS(Z)Iq denotes the submatrix sampled
from S(Z) with the index set €2.

To provide theoretical analysis on the error bound for the esti-
mate of Z, we reformulate the RR-D-ANM-R into a Lagrangian
form as

. 2
mZin7'||ZHA,d—l—%HRy—SQ(Z)—&QIQHF, 42)
where 7 > 0 is the regularization parameter and the noise es-
timate 62 is obtained as the smallest eigenvalue* of R,,. Note
that (42) is equivalent to the original RR-D-ANM-R with the
constraint of (41) in the absence of 621, since their solutions
are the same for all possible choices of the regularization pa-
rameters [15]. The introduction of the noise estimate 621, is
to deduce that the solution of (42) can asymptotically approach
the ground truth, as stated by the following theorem.

Theorem 2: Let Z*, o2 be the ground truth, and Z be the
optimal solution to (42), respectively. Set

InL
7> 2(C1Tr(Sq(Z7)) + Cao®)M' 4/ HT

for some constant C; and Cs. If © is a complete sparse ruler
such that the unobserved entries of S(Z) can be deduced from
the observed ones, then with probability at least 1 — 5L~ the
solution Z to (42) satisfies

1

. <T (SK + M’) .

Proof: The proof is provided in Appendix C. (I

Note in Theorem 2 that the observation set £2 is deterministic
for a given J = I o, and that 8 K" is much larger than ﬁ Our
algorithm yields reliable estimate of the RR matrix Z as long
as the number of measurement vectors L is on the order of
(Tr(Sa(Z*)) + 02)?M"? K2, The mean squared error (MSE)
in (44) diminishes as L increases, and as L — oo, the ground
truth Z* can be exactly recovered, which means the estimate
Z of the proposed RR-D-ANM-R is statistically consistent in

L. Moreover, since the frequency pair estimates {fl}, can be
uniquely determined by the optimal solution of the proposed
RR-D-ANM-R (which will be introduced in the next subsec-

tion), the estimates {fl},» is also statistically consistent in L. In
fact, simulation results will show that even with a relatively
small number of MMV, the slight performance loss of the
RR-D-ANM-R is acceptable considering its huge complexity
reduction, which will be evaluated through complexity analysis
and comparison in Section IV-B. Hence, the RR-D-ANM-R
offers a nice tradeoff between accuracy and complexity.
Remark 2: There are guidelines on the choice of the noise
tolerance threshold §. If the Gaussian noise () in (5) is colored

(43)

Z-z (44)

4The noise power can be well estimated as the smallest eigenvalue of the
observed sample covariance, especially when L is large [50].
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with known distribution N(0, diag(o?)), then 3 in (33c) and
(34c) can be set as = Allo*||1, where the scalar \ is chosen
such that the inequality constraint (33c) or (34c) holds with
high probability [50], [51]. Further, if the number of MMV L
is sufficient and Y in (6) is a full or partial observation of X,
i.e., J=I Ny or J=Igq, then (3 can be set using the covariance
matrix sparse representation method in Proposition 1 of [18]. B

Remark 3: Although the separation and sampling conditions
introduced for RR-D-ANM-R are more restrictive than those
of RR-D-ANM, V-ANM and LRSCR, RR-D-ANM-R is the
most computationally efficient. Moreover, when the separation
and sampling conditions are too strict, the reweighted ANM
techniques [51], [52] can be employed in RR-D-ANM-R to
enhance the sparsity and resolution. Note in this context that the
separation conditions for gridless CS methods are usually more
restrictive than those of classical statistical subspace methods,
while the former are more sample efficient than the latter. H

D. Harmonic Retrieval

Given the estimate of Z by solving (33) or (34), the desired R,
can be sequentially estimated from (31). Then, the 2D harmonics
can be retrieved from R, using the Matrix Pencil and Pairing
(MaPP) method [31], which is computationally expensive due
to the high dimension of R,,.

To overcome this problem, we note that both (33) and (34)
yield the estimates of not only Z, but also T(w /) and T(uy ).
These estimates form an augmented matrix in the form of

(45)

RA:[T@LM) z }

ZH T(UN)

Next, we develop three efficient harmonic retrieval methods
based on T(wys) and T(uys), Z, and R 4, respectively.

1) Vandermonde Decomposition Based Harmonic Retrieval:
Since T(wys) and T(u ) contain the unknown frequencies, the
Vandermonde decomposition based methods such as MUSIC,
ESPRIT [53]-[55] can be employed for 1D harmonic retrieval
in each dimension. Subsequently, a pairing operation needs to
be done to obtain the frequency pairs [33], [34].

2) Z--Based Harmonic Retrieval: Based on (30c), Z can be
regarded as a cross-correlation matrix collected from an array
with A’;, Ay, and diag(r) being the two manifold matrices and
signal correlation matrix respectively. Hence, conventional 2D
DOA estimation algorithms based on cross-correlation [56] can
be crafted with the proposed RR-D-ANM solutions for harmonic
retrieval. In this paper, we adopt the joint-SVD algorithm [56]
in simulations.

3) Ra-Based Harmonic Retrieval: According to the decou-
pled atomic norm theory [33], [34], we have

Ry [ ZH T(uN)}
- [Vt | v [V
N N

= HR.H", (46)
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where H = [2N — 1AL, V2M —1AMT and R, =
%Rs. Note that R4 in (46) can be regarded as a covariance
matrix with H and R/, being its manifold matrix and signal
correlation matrix respectively. Then, some conventional
covariance-based 2D DOA estimation algorithms such as
2D-ESPRIT for L-shaped arrays [8], can be incorporated into
the proposed RR-D-ANM solutions.

Remark 4: All the reconstructed matrices in (33) and (34)
are low rank, and their rank values are equal to the number of
frequency pairs. In the three proposed harmonic retrieval meth-
ods, either an eigenvalue decomposition (EVD) or singular value
decomposition (SVD) is taken on these low-rank matrices. Note
that these harmonic retrieval methods are not directly applicable
to the original data of interest. It is the main contribution of this
work to construct these structured matrices from the original
data by the proposed RR-D-ANM or RR-D-ANM-R. Further,
from these low-rank matrices, we can determine the number
of frequency pairs. This is a standard model order selection
problem, for which some mature techniques are available, such
as Akaike information criterion (AIC), minimum description
length (MDL), etc. A simple strategy is to count the number of
eigenvalues or singular values that are larger than a predefined
threshold, while a suggested threshold is 0.05\,,,4. [50], where
Amaz 18 the maximum value of the eigenvalues or the singular
values. In this sense, the proposed methods can be carried out
without prior knowledge of the number of frequency pairs. W

Remark 5: Note that the three proposed harmonic re-
trieval methods have different behaviors in terms of estima-
tion accuracy and computational complexity. The Vandermonde
decomposition-based method is computationally efficient, but
requires an extra pairing operation. The R 4-based method is
computational expensive relative to the other two. In contrast,
the Z-based method is not only computationally efficient, but
also can achieve automatic pairing. ]

In all, the proposed RR-D-ANM-R is not only computation-
ally efficient, but also amenable to broad applications.

IV. DISCUSSIONS

This section discusses two issues: one is the choice of the
error tolerance parameter and the other is the computational
complexity analysis for the proposed techniques.

A. Alternative Error Tolerance Constraint for Sufficient MMV

When noise is present, the noise tolerance constraint in (33c)
and (34c¢), parameterized by a threshold 3, needs to be chosen
properly for performance guarantee. Remark 2 provides guide-
lines when the noise statistics is known, and the measurements
are collected either in full (J=1Ips) or through random se-
lection (J=Ig). However, when J represents other forms of
samplers and the noise statistics are unavailable or unreliable in
practice, it becomes difficult to choose the value of 3. To address
this challenge, we next design an alternative error tolerance
constraint to replace that of (33c) and (34c), where an alternative
user-specified parameter for bounding the observation errors can
be set for any form of J and without knowing the noise statistics.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Let us express the noise n2(t) in the compressive measurement
as n(t) = Jno(t) for any J, where ng(t) € CVM*1 is the
front-end noise prior to compression and can be modeled as
circular Gaussian noise with distribution N(0, diag(o'2)). This
model subsumes the noncompression case with J=1I n ;. Ac-
cordingly, we have Y = J X, ,, in (6) and R, = JRmeH
in (7), where X,, = X + Ny and R, ,, = R, + diag(o?).
Then, similar to (10), we have an = %XanLI given L MMV.
We seek to quantify the residual error Rgm — R, , caused by
both additive noise and finite samples. According to the covari-
ance matrix fitting criterion [29], when the complex amplitude
vector s(t) in (1) is a circular Gaussian random variable with
zero mean, the vectorization form of this residual error follows
an asymptotic normal (AsN) distribution:

1
vec(Ry ., — Ry.n) «~ AsN(O, ZRf,n @ Ryp). (47)
Accordingly, Vec(Ry — R,), with Ry given in (10), obeys
an AsN distribution as well, in the form of vec(R,—R, )

AsN(O0, %Rg ® R,). Per the definition of asymptotic Chi-

square (Asy~) distributions, we have
LT o1 A ? 202,712
(fRy ®@R,) 2vec(R, — R,)|| « Asx“(M'"). (48)
2

Thus, the following inequality holds with probability 1 — p:
2

Snpa
2

(49)

1.7 ~ 1 ~
H(LRy ® Ry) 2vec(R, — R,)

where the user-specified parameter 1), can be uniquely deter-
mined from (48) by the degrees of freedom M’ *and a prefixed
allowable deviation probability p < 1, independent of noise
variance o°3.

Adopting (49) as an alternative error tolerance constraint
to replace (33c) and (34c), and replacing R, in (49) by
vec 1 (Ivec(Z) + (J* @ J)vec(diag(a?))), the proposed RR-
D-ANM and RR-D-ANM-R can be implemented without know-
ing the noise statistics. In fact, this alternative formulation allows
to estimate the noise variance as a byproduct, at the cost of
introducing another unknown variable 03 into (33) and (34).

B. Computational Complexity

We now analyze the computational complexity of the pro-
posed techniques, compared with other existing 2D gridless
methods with MMV. In SDP-based solutions [40], the computa-
tional complexity is dictated by the number of decision variables
and the sizes of PSD matrices. Specifically, if there are a total of
ny variables and the size of the PSD matrix is ny X ns, then the
SDP can be solved in O(n?n3°) flops in the worst case [57].
Accordingly, the computational complexity for solving the SDP
formulation (14) of the V-ANM is O((N M + L)*®L?).In con-
trast, the computational complexity of solving our RR-D-ANM
(33) is O((NM)*5), which is much lower than that of (14)
especially for a large number of snapshots L. Note that the
complexity of our RR-D-ANM remains the same as that of
the LRSCR of (18), because the largest PSD constraint of each
formula has a comparable size, i.e., T,, (uzp) =0 in (18) and
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TABLE I
COMPLEXITY ORDER OF 2D-MMYV GRIDLESS CS METHODS

Solution Complexity (N#M) Complexity (N=M)
V-ANM (14) O((NM+L)*>L?) O(NYL55)
LRSCR (18) O(NM)*?3) O(N?)

RR-D-ANM (33) O((NM)*5) O(N?)
RR-D-ANM-R (34) | O((NM)?(N+M)%5) O(N®3)

vec 1 (Wvec(Z)) = 0 in (33). Nevertheless, the proposed RR-
D-ANM can adopt more efficient frequency-retrieval options
such as the Z-based method developed in Section III-D, whereas
the LRSCR has to be followed by MaPP applied on the large-size
R, [31].

Further, the LRSCR in (18) critically replies on the single PSD
constraint T, , (uz2p) > 0to guarantee the desired structure of its
solution, and hence cannot remove this constraint that dominates
the computational complexity. In contrast, the D-ANM compo-
nent already enforces the strong structure of the covariance ma-
trix, so that the larger-size PSD constraint (33d) can be omitted
to balance computational complexity with performance, leading
to the RR-D-ANM-R in (34). With the remaining smaller-size
PSD constraint (34b), the computational complexity of the RR-
D-ANM-R drops down to O((N M )?(N+M)?5), which is 2.5
orders lower than that of the RR-D-ANM and LRSCR, when
N=M. A comprehensive comparison of the computational
complexity among different 2D gridless CS solutions with MMV
is summarized in Table 1.

Moreover, all the aforementioned methods can be imple-
mented via fast algorithms such as the alternating direction
method of multipliers (ADMM) [58] or the iterative Vander-
monde decomposition and shrinkage thresholding IVDST) [59]
techniques, to further reduce the computational complexity in
algorithm implementation.

V. SIMULATIONS

This section presents numerical results of the proposed grid-
less 2D harmonic retrieval techniques in MMV scenarios. Exist-
ing methods such as conventional MUSIC [60] and the LRSCR
of (18) [42] incorporated with the MaPP algorithm for fre-
quency estimation and pairing [31], as well as the Cramer-Rao
bound (CRB) under full observations [61] are also simulated as
benchmarks. In the conventional MUSIC, the peak searching
step is set to be 0.01. In contrast, both the Z-based algo-
rithm designed in Section III-D and the MaPP algorithm can
be employed for auto-paring the harmonic retrieval for the
proposed RR-D-ANM and its relaxation version RR-D-ANM-
R. Note that the sample-based ANM has poorer performance
than the covariance-based LRSCR, while the LRSCR is more
computation-efficient in MMV scenarios since its complexity
is independent of the number of MMV [27]. Hence, we only
run and compare the LRSCR as the benchmark in simulations
and omit the computation-heavy V-ANM. Unless specifically
stated, in simulations, we consider the scenarios where the
number of MMV is sufficient, the separation and sampling
conditions are satisfied for all gridless methods and the number
of source signals is known a priori. With sufficient MMV, all
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Fig. 1. Phase transition of the proposed RR-D-ANM-R with respect to the
number of compressive measurements and the number of sources when M =
N=T1.

optimization-based methods apply the alternative error tolerance
constraint presented in Section IV-A, thanks to its applicability
in the absence of known noise statistics.

In each trial of the Monte Carlo simulations, the MMV
data Y is obtained through (6), where the measurement
matrix J is a random matrix, the frequencies f are randomly
generated under the separation condition, the source signals
s(t) are assumed to have same amplitude, and the noise
n(t) = Jng(t) is circular Gaussian noise with n(¢)
satisfying N(0,02I ). Then, the sample covariance is
calculated through (10) as the input to the covariance-based
solutions, including MUSIC, LRSCR, RR-D-ANM, and
RR-D-ANM-R. The root mean squared error (RMSE) measures
the estimation accuracy of 2D harmonic retrieval as RMSE =
# S (5 Sl (= A+ (B = f54)%)%, where
M, ff i and fQ" 1. denote the number of Monte-Carlo trials, and
the estimates of J1'y and f3', in the n-th experiment.

A. Efficient Relaxation

First, we evaluate the effectiveness of the proposed RR-D-
ANM-R as an efficient relaxation of the original RR-D-ANM.
For the noise-free case, we examine the phase transition of
the proposed RR-D-ANM-R with respect to the number of
compressive measurements and the number of sources. In the
simulations, we apply I in (39) as a random selection matrix
and randomly generate the 2D frequencies. For each Monte
Carlo trial, it is considered to be a successful recovery of Z
from (34), if the normalized mean squared error (NMSE) of
the solution Z* has || Z* — Z*||2/||Z*||2 < 107°. As shown in
Fig. 1, RR-D-ANM-R works well and retrieves the ground truth
Z* with high probability under the satisfied separation and sam-
pling conditions, where the phase transition border corresponds
to the fundamental limits of RR-D-ANM-R on sample efficiency
revealed by Theorem 1. For the noisy case, Fig. 2 shows that
the proposed RR-D-ANM outperforms its relaxation RR-D-
ANM-R, which indicates the role of the PSD constraint of the
covariance in enhancing the estimation performance. Further,
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Fig. 2. RMSE vs M’ for MUSIC, RR-D-ANM and RR-D-ANM-R, when
M=N=5, L=200, K=3 and SNR=5dB.
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4 <+ MUSIC

Fig. 3.  RMSE vs (insufficient) MMV for MUSIC, RR-D-ANM and RR-D-
ANM-R, when M=N=5, M'=15, K=3 and SNR=10dB.

the performance gap between RR-D-ANM and RR-D-ANM-R
diminishes as the number of measurements M’ goes large, which
reveals a desired tradeoff between accuracy and complexity that
can be achieved by RR-D-ANM-R. Classical MUSIC is also
tested and always provides the worst estimation performance,
which reflects the limitation of classical MUSIC in sample
efficiency when M’ <N M. Moreover, Fig. 3 presents the RMSE
of these approaches for different numbers of insufficient MM V.
In this simulation, instead of using the alternative error tolerance
constraint proposed for sufficient MMV, we consider that the
noise statistics are known a priori, and then the Lagrangian
formulations of the proposed RR-D-ANM and RR-D-ANM-R
with the regularization parameters set according to Theorem 2
are employed to generate the curves in Fig. 3. It shows similar
trends as in Fig. 2 and RR-D-ANM-R can obtain a comparable
performance (the gap is less than 0.01) to RR-D-ANM when
L > 9, which means the RR-D-ANM-R can be a good alterna-
tive even for small L.
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Fig. 4. RMSE vs K for RR-D-ANM, RR-D-ANM-R and LRSCR, when
M=N=5, M'=15, SNR=5dB, L=200.
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Fig. 5. RMSE vs SNR for RR-D-ANM, RR-D-ANM-R and LRSCR with

M=N=5, M'=15, K=3 and L=200.

B. Estimation Accuracy

In this subsection, the estimation performance of the proposed
methods is evaluated. We first present the RMSE performance of
the aforementioned methods with varying number of harmonics.
For the LRSCR, when the conservative condition on the number
of sources is unsatisfied, i.e., K > min{N, M} — 1, the extra
checking mechanism is used as proposed in [31]. In Fig. 4,
for the curve of LRSCR, after K goes larger than 4, it no
longer plots reasonable results of RMSE, given the fact that
it cannot be computed sometimes. This is because the check-
ing mechanism outputs the “false” status, which indicates it
judges that the generalized Vandermonde decomposition of the
estimated covariance matrix from the LRSCR does not exist.
Meanwhile, the RR-D-ANM and RR-D-ANM-R both work
properly without using an extra checking mechanism as long
as K < 2min{N, M} — 2.

Next, we focus on the case when the conservative condition
on the number of sources of the LRSCR is satisfied, i.e., K <
min{N, M} — 1. As shown in Fig. 5, again, the RR-D-ANM
outperforms the RR-D-ANM-R, and the gap becomes small as
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Fig. 6. RMSE vs (sufficient) MMV for RR-D-ANM, RR-D-ANM-R and
LRSCR with M = N =5, M’ = 15, K = 3 and SNR = 10dB.

the SNR increases. Moreover, the LRSCR (which always uses
MaPP) obtains a better performance than the RR-D-ANM plus
Z-based method, but this gap disappears when RR-D-ANM
plus MaPP is used, as shown by the overlapping square and
triangle marks in Fig. 5. In other words, the LRSCR and the
RR-D-ANM lead to the same solutions when the generalized
Vandermonde decomposition of the solutions exists. On the
other hand, the harmonic retrieval method via MaPP results
in a higher computational cost than the Z-based method es-
pecially as M and N go large. In addition, the gap between
the RR-D-ANM-R plus MaPP and RR-D-ANM plus MaPP
methods is much smaller than that between the RR-D-ANM-R
plus Z-based and RR-D-ANM plus Z-based methods in Fig. 5.
This reflects a tradeoff between the accuracy and complexity of
specific 2D harmonic retrieval algorithms, and it can be used as
a guideline for the choice among different 2D harmonic retrieval
algorithms, thanks to the widely applicability of our proposed
methods. In fact, the trivial gap between the two curves of
RR-D-ANM-R and RR-D-ANM observed in both Figs. 2 and 3
will diminish when the MaPP method is employed for harmonic
retrieval. The CRB under full observations, i.e., J = I s 1S
also provided as the optimal benchmark for the noncompression
case. Note that the gaps between the CRB and the gridless
CS methods become small as the signal-to-noise ratio (SNR)
increases, which verifies the sample efficiency of the gridless
CS methods. Fig. 6 presents the RMSE performance of these
approaches for different numbers of sufficient MMV, which
shows similar trends as in Fig. 5.

C. Computational Complexity

The computational complexity of the proposed methods and
the benchmark methods is tested and compared in this sub-
section, where all methods use an off-the-shelf SDP-based
solver [62]. As shown in Fig. 7, the complexity in terms of
runtime® of the proposed RR-D-ANM is almost the same as that

3 All simulations are conducted in Matlab 2013b on a computer with a 4-core
Intel i7-6500 U 2.50 GHz CPU and 8 GB memory.
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Fig. 7. Computational complexity of RR-D-ANM, RR-D-ANM-R and
LRSCR in terms of runtime with L=200, SNR=10dB and M'=| &M | 11.

of the LRSCR. Meanwhile, the complexity of the RR-D-ANM-
R stays much lower than the others. These results verify the
analysis on complexity order of the different methods presented
in Section IV-B. Thus, 1) RR-D-ANM is a nice alternative
to the LRSCR when min{N, M} — I<K<2min{N, M} — 2
with small N and M; 2) RR-D-ANM-R offers a good tradeoff
between accuracy and complexity as /N and M go large regard-
less of L.

VI. CONCLUSION

In this paper, a gridless framework based on the D-ANM
technique is proposed to efficiently achieve super-resolution 2D
harmonic estimation with MMV. Given the sample covariance
matrix collected from MMV, we first establish an RR trans-
formation to linearly map the originally large-size covariance
matrix to a small-size RR vector, whose sparse representation
enables to reformulate the complex 2D MMV harmonic retrieval
as an RR-based D-ANM problem that can be resolved efficiently.
In addition, we analyze the computational complexity of the
proposed techniques compared with other gridless methods.
Simulation results indicate the advantages of our solutions over
the existing ones with wider applicability at lower complexity.

APPENDIX A
DERIVATION OF (20)

Each summand of (19) can be written as

(an(fii) ® an(f2:)” @ (an(fi,i) ® an(f2,))
ay(fi:) ® (ay(f2,) ® an(fri) ® ar(f2,i)

(Inan(f1,) ® (E(an(fii) ® aj(f2,i) ® an(f2,0)
={In@E®Iy)(Gray(fii) @ (Guay(f2)))
=InN®EQIN)(Gy®Gun)(ay(fii)® ahy(fi))
= ¥(aly(f1i) ® ah(f2)),

(50)
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where the second equation applies the propertya @ b = K(b®
a),Ya € CN*1 b c CM*1  and the third equation applies

a’(f)@a(f) = Ga'(f).

APPENDIX B
PROOF SKETCH OF THEOREM 1

The proof of Theorem 1 is similar to the proof of Theorem 1
n [48]. The road map of this proof is to guarantee that the
dual polynomial of the compression case is close to that of
the noncompression case. We first apply the principle of dual
polynomial constructions and then prove the existence of their
dual certificates. Specifically, we will first characterize proper-
ties of a dual polynomial that suffices to certify the optimality
and uniqueness of the solutions to the noncompression case
and the compression case, and then present a dual construc-
tion scheme for these two cases. For the compression case,
the dual construction scheme produces a polynomial based on
the dual polynomial constructed for the noncompression case.
Finally, we provide in Lemma 1 the sufficient conditions on the
compressed measurement matrix I' in (26) for guaranteeing the
existence of the dual certificate, which concludes the proof of
Theorem 1.

A. Optimality Conditions for Dual Polynomial

For the noncompression case, the primal problem of D-ANM
can be expressed as

st.Z =27, (5D

min
z

where Z = AyR, Al € C7*/ with J = 2N — 1. Define the
dual norm of || - [| 4, as
]

sup (A'(f), Z (52)

Al(f)eA,

= suw (Q.Z), =
A1zl SCRE

)R

where the real inner product is defined as (Q,Z), =
Real((Q, Z)) with the inner product being defined as (Q, Z) =

Tr(ZH Q) = vec” (Z)vec(Q). Then, following the standard
Lagrangian procedure as in [22], we can obtain the dual problem
of D-ANM as

W <L (53)

maax <§, Z>R s.t. H§| )

For the noncompression case, the optimization problem (51)
has a trivial solution, but we can still apply duality to certify the
optimality of a particular decomposition. Following standard
analysis (see [23], [24]), the optimal solution of (51) is unique
if there exists a dual polynomial in the form of

@(f) = <§» A,(f)> = ‘12D(f)q,

with complex coefficients § = vec(Q) € C/* satisfying the
following set of conditions

Q(fY) =sign(r),Vf €S
Q(f) < 1L,Vf ¢S,

(54)

(55)
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where S = {f!,..., fX} denotes the unknown set of true
frequencies. Moreover, we will construct a dual polynomial
satisfying above conditions in the next subsection.

Next, we consider the compression case which can be written
in the form

mZin ||ZHA11 s.t.vec(R,) = I'vec(Z). (56)

Then, the dual problem of (56) can be achieved via the standard
lagrangian procedure [22] as

mgx (Q,Ry), s.t. ||vec’1(I‘Hvec(Q)) <1 (57)

L, <
Moreover, following a similar analysis as in [23], [24], we have

that Z is the unique optimal solution of (56) if there exists a dual
polynomial in the form of

Qf) = (vec™ (T vec(Q), A'(£))
= <Fan a’/2D(f)> = azp(f)FHQ>

with complex coefficients g = vec(Q) € CV' satisfying the
following set of conditions

Q(f") = sign(ry),Vf' € S
Q(f) < L,Vf ¢&S. (59)

Thus, to prove Theorem 1, we now need to show that such a
dual certificate exists under appropriate conditions and this is
the subject of the next subsection.

(58)

B. Construction of Dual Polynomial

To construct such a dual polynomial satisfying (55), note that
Q(F) isrequired to be a 2D-trigonometric polynomial, and based
on the analysis in [30], [48], the dual polynomial of (54) takes
the form

(10) f o fz)

HMN

K
fol

K
7 ~(01) i
+> B (f = 1), (60)
i=1
where @;, 8y;, B, are coefficients chosen such that Q(f) in-
terpolates the points sign(r;) at the f;. G(f) is the 2D Fejér’s
kernel defined as

G(f) = K(J)E(f2), ©1)
where K (f) is the squared Fejér kernel defined as
([ sin(Rr f) 4 1 D ok f
K(f) = (Rsin(ﬂ f)> = ﬁkgpgkeﬂ (62)

with R := g +1,J = 2P + 1, and coefficients

() @

é(im)( f) is the partial derivative of G(f) given by
Gliniz) ey _ 91102G(f)

1 min(k+R,R)

gkzﬁ Z

s=max(k—R,—R)
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Inspired by the construction of @), we now design a dual
polynomial for the compression case. Specifically, following the
analysis in [48], we propose to construct the dual polynomial of
(58) as

K K
)= Z%’G(oo)(f, )+ ZﬁuG(lo)(f, )
i=1 i—1

K
+ Z B2iGony (f, F1),

(64)

i=1
where G (f, f') = (DHTgm(f?), ayp(f)) with m =
(mima) € {0,1}*,  g(f) =g((f1, f2)) = g'(/1) ©g'(f2)
with  g'(f) = %lg- Peﬂﬂ( foo gpe?¥ PN and
gm(.f) = mlmz)(flan) gml (fl) ®glm,2 (fQ) being the

partial derlvatwe of g(f).

Now, with the constructed dual polynomials in (60) for the
noncompression case and in (64) for the compression case, we
are ready to state the following lemma to conclude the proof of
Theorem 1.

Lemma 1: Let S ={f',..., f&} be an arbitrary set of
points obeying the minimum separation condition (37). Let
u = [sign(r1),...,sign(rx)]? be a random vector, whose en-
tries are chosen independently from symmetric distributions on
the complex unit circle. Pick § > 0, and let I" be a random matrix
that obeys the concentration inequality

S [CCSTRUIE 7R,
Klog(%)

(65)

for all f% f€[-0.5,05)2, all m,nc{0,1}? with

[m1, [In]: < 2.
Here, al}, (f) represents the partial derivative of a’,, (f) and

K=+|K®()] = \/%. Moreover, suppose that for

f? € [-0.5,0.5)2, there is a constant ¢ such that

. ¢ )

P r ). T'a! > <2

[fe[rg%?éb)QK 9(00)(£'), Tasp(£))] = K- |=3%
(66)

Then, with probability at least 1 — 4, there exists a trigonometric
polynomial in (58), with complex coefficients g obeying the
conditions in (59).

Proof: The proof of Lemma 1 follows similar steps as pro-
posed in the proof of Lemma 1 in [48]. We omit the details here
and only list the key steps as follows:

1) We show that under the minimum separation condition in
(37), there exists a choice of coefficients @;, 31; and S5,
such that Q( f) satisfies the conditions in (55).

We show that, with probability at least 1 — %, there exists
a choice of coefficients «;, 51; and o; such that Q(f*) =
sign(r;) and the derivative w.r.t. f* vQ(f*) = 0 for all
f! € S under the minimum separation condition in (37).
Finally, we conclude the proof by showing that with the
chosen coefficients with probability at least 1 — g, (f)
is close to Q(f) forall f € [—0.5,0.5)*\S, which in turn

2

~

3

~
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implies the polynomial Q( f) obeys |Q(f)| < 1 uniformly
forall f € [—0.5,0.5)%\S with probability at least 1 — 3.
According to the union bound, the two events in the above 2)
and 3) happen simultaneously with a probability at least 1 — 6.
That is, the dual certificate in (59) holds with a probability at
least 1 — §, which concludes the proof of Lemma 1. O
Moreover, following the analysis in Section IV-B in [48],
we can also show that under the fundamental limits on sample
efficiency in (38), the isotropy and incoherence conditions in
(36) imply the conditions in (65) and (66) of Lemma 1, which
in turn implies the existence of an appropriate dual certificate
satisfying the conditions in (59) and then concludes the proof of
Theorem 1.

APPENDIX C
PROOF OF THEOREM 2

To prove Theorem 2, we introduce the following lemma.

Lemma 2: Suppose that z(t) is a Gaussian random pro-
cess with zero mean and covariance matrix X. Let X =
1/L Zthl z(1)zH (1) be the sampled covariance matrix and Ay,
and )\, be the eigenvalue of 3 and ¥, respectively. Then with
probability at least 1 — 5L~1, we have

InL

152 - Bl < 20T(E)y/ =,
N InL
e — M| < Tr(z),/%,

for all k£ and some constant C'.
Proof: The proof of Lemma 2 can be found in [63]. ]
Then, we can state that

(67)

o) 10 = 1],

_ HRy —80(Z") — 0T + 0T g — 52IQHF

IN

|y~ Sa(z) ~o*Ia| + |o*Ia - 5°1al,
* 2 InL 2 21 /7m

< (C\TH(Sa(Z%)) + Cao?) ,/%

is satisfied with probability at least 1 — 5L, where R, =
Ry — %I, the first inequality is based on the triangle inequal-
ity, and the second and the third inequality is based on Lemma 2.
Moreover, denote the model subspace of Z* spanned by its
column and row spacesf and V as M (U, V) (using M hereafter
for notational simplicity), and its orthogonal complement as
M+ [64]. Decompose the error term Z—Z*=H, + H,into
two terms satisfying H; € M withRank(H;) < K and H €

M [64]. Defining = £ 2(CiTe(Sa(2°)) + Cao?)M' /5L,

we have

(68)

7> 2M ) Ry, — So(ZY) (69)

> HRL ~Sa(z9)||
F A
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Then, applying Lemma 1 of [64], we have from the observed ones, we have

||H2||A'd <3 ||H1||,4’d . (70)

Further, by the triangle inequality,

121, = |2 -
|77
’Ad
and by the optimality of Z,
R 10 - .12
7|2, + 57— sa2)] "
A, 2 F
* L# N 2]
<7|Z ||Afd+§HRL—SQ(Z ) ’ ; (72)
" [3]
which gives
~ N 2 N N 2 [4]
HRL —SQ(Z)HF - HRL - Sa(Z7) ‘
<2r(|2 - A
Moreover, since [6]
~ N 2
Ry _SQ(Z)HF (7]
I * * - 2 [8]
= |RL — Sa(Z") + Sa(Z¥) —SQ(Z)HF
. . [9]
= |Ry — Sa(Z® + HSQ SQ(Z)H
. § R [10]
2 <RL — Sa(Z7),80(2Z") - Sa(2) (74)
we obtain [11]
~ 2
HSQ(Z) ~ Sa(Z) ‘
" [12]

R

—2<RL — S0(2%),80(2%) —SQ(Z)>R [13]

. [14]
<or (Hz*—zH )
Ay

~ N [15]
+2||Ry - Sa(2)| _|[Sa(27) - sa(2)|),

[16]
<8t ||H1||A’d +

(2)-Sa(z"),

(2) - Sa(2), "

+ 15 |[Sa(2) - Sa(2)

where the first inequality is from (73) and the Cauchy-Schwartz  [19;
inequality, the second inequality is from (69) and (70), and the
third inequality is based on [ H 1[| y, < K'||H1 || following the
definition of D-ANM. Considering that 2 is a complete sparse
ruler such that the unobserved entries of S(Z) can be deduced

-
< 718K | H1||p + M’

< TSKHZ— z

(75) [18]
F )

[20]

(76)

)Z—Z*

< HSQ(Z) —Sa(Z7)

Hence, substituting (76) into (75), we have

)Z—Z*

<8K + M) , 77

which concludes the proof.
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