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We investigate the intermittent dynamics of momentum transport and its underlying time
scales in the near-wall region of the neutrally stratified atmospheric boundary layer in
the presence of a vegetation canopy. This is achieved through an empirical analysis of
the persistence time scales (periods between successive zero-crossings) of momentum
flux events, and their connection to the ejection–sweep cycle. Using high-frequency
measurements from the GoAmazon campaign, spanning multiple heights within and
above a dense canopy, the analysis suggests that, when the persistence time scales (tp)
of momentum flux events from four different quadrants are separately normalized by
Γw (integral time scale of the vertical velocity), their distributions P(tp/Γw) remain
height-invariant. This result points to a persistent memory imposed by canopy-induced
coherent structures, and to their role as an efficient momentum-transporting mechanism
between the canopy airspace and the region immediately above. Moreover, P(tp/Γw)

exhibits a power-law scaling at times tp < Γw, with an exponential tail appearing for
tp ≥ Γw. By separating the flux events based on tp, we discover that around 80 % of the
momentum is transported through the long-lived events (tp ≥ Γw) at heights immediately
above the canopy, while the short-lived ones (tp < Γw) only contribute marginally
(≈ 20 %). To explain the role of instantaneous flux amplitudes in momentum transport,
we compare the measurements with newly developed surrogate data and establish that the
range of time scales involved with amplitude variations in the fluxes tends to increase as
one transitions from within to above the canopy.
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1. Introduction

Primarily motivated by the requirement for improved parametrization of land–atmosphere
exchange in weather and climate models, the characteristics of turbulent transport in
vegetation canopies continues to be a subject of enquiry (Harman & Finnigan 2007;
Bonan et al. 2018). Challenges in this context arise because, compared to canonical
rough-wall boundary layers, where momentum absorption occurs entirely as friction
at the wall, the innate porosity of a vegetation canopy and vertically distributed drag
exerted by its foliage on the flow introduce additional characteristic length scales that
modulate the turbulence structure (Raupach & Thom 1981; Finnigan 2000). Within the
canopy, fine-scale turbulence is ‘energized’ by wake production in the lee of individual
canopy elements, a process that has been modelled as a von Kármán vortex shedding
mechanism (Poggi & Katul 2009; Ghannam et al. 2015, 2020). The drag discontinuity
at the canopy top results in an inflection point in the mean velocity profile, potentially
inducing Kelvin–Helmholtz instabilities that penetrate the canopy volume, as in a mixing
layer (Finnigan 2000; Poggi et al. 2004b). This superposition of a wide range of eddy
scales manifests itself in a highly intermittent velocity field (Cava & Katul 2009; Keylock
et al. 2020), encoding the effects of both energy-containing coherent structures and
smaller-scale inertial motion. The scale-wise dynamics of the intermittent statistics of this
velocity field within and above the canopy, and its role in momentum transport, are a main
focus of the work here.

Time-series analysis of turbulent fluctuations in laboratory and numerical experiments
has generally focused on the scaling laws of velocity differences (e.g. structure functions),
dissipation rates and their anomalous behaviour at small scales (pertaining to inertial
subrange and dissipation scales) in homogeneous and isotropic turbulence (Sreenivasan
1985; Kraichnan 1990; Frisch & Kolmogorov 1995; Sreenivasan & Antonia 1997). In
the context of inhomogeneous and non-Gaussian canopy turbulence, two main aspects
of the flow have become especially relevant: (i) large-amplitude variability in turbulent
fluctuations and the underlying ejection–sweep cycle (Watanabe 2004; Wallace 2016);
and (ii) local frequency oscillations (zero-crossing properties) to identify the tendency
of turbulence events to cluster together (Sreenivasan & Bershadskii 2006; Cava et al.
2012). The former relies on quadrant analysis and conditional sampling of turbulent
velocity fluctuations to disentangle the role of canopy-induced organized structures on
the ejection–sweep cycle that modulates the momentum flux, u′w′ (e.g. Raupach & Thom
1981; Gao, Shaw & Paw 1992; Thomas & Foken 2007; Cava & Katul 2009; Chamecki
2013). Here, u′ and w′ are the longitudinal (streamwise) and vertical (wall-normal) velocity
fluctuations around their local time average (denoted by an overbar). Time-series analysis
of measurements from a large corpus of field campaigns and laboratory experiments
showed that sweeping motion, viz. downbursts associated with high horizontal momentum
(u′ > 0) swept into the canopy (w′ < 0), dominate momentum transport. However, these
sweeping events are short-lived and therefore lead to intense amplitude fluctuations
(Thomas & Foken 2007; Chamecki 2013), compared to quiescent and low-amplitude
ejections (u′ < 0 and w′ > 0). This asymmetry between sweeps and ejections is tied to
canopy-induced coherent structures in the flow (e.g. Finnigan 2000; Cava et al. 2012;
Patton et al. 2016), and is often used to explain the non-local (or counter-gradient) nature
of turbulent fluxes in canopies (e.g. Poggi, Katul & Albertson 2004a; Chamecki et al.
2020).

A complementary aspect of time-series analysis aims at isolating the amplitude
fluctuations in turbulent signals using zero-crossing properties, called persistence analysis
(Bray, Majumdar & Schehr 2013; Ghannam et al. 2016; Chowdhuri, Kalmár-Nagy &
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Banerjee 2020a). Borrowed from the study of spatially extended non-equilibrium systems
(Majumdar 1999), persistence represents the probability that a stochastic process (e.g. here
u′, w′, or even u′w′) remains in a certain state (below/above a prescribed threshold) up
to some time tp. As turbulent velocity fluctuations are driven by a spectrum of scales,
spanning a wide range of coherent structures, they tend to exit and re-enter such states as
time evolves. The time scale tp therefore becomes a random variable with a probability
density function (p.d.f.) P(tp), the scaling of which is indicative of the nature of the
underlying dynamics (Sreenivasan & Bershadskii 2006).

Earlier theoretical and experimental studies for many dynamical systems showed that
the persistence probability decays as a power law at late times, although this scaling is
usually non-trivial (Majumdar 1999). For instance, the study by Kailasnath & Sreenivasan
(1993) suggested a double-exponential scaling for P(tp) in turbulent boundary layers with
two distinct time scales, where at long times the time scale becomes independent of the
Reynolds number (Re). In contrast, a variety of field experiments in high-Re flows in the
atmospheric surface layer (ASL) and roughness sublayer (RSL) of plant canopies suggest
a power-law scaling for P(tp) at short times, and an exponential tail with a cutoff time
scale comparable to the turbulence integral time scale (Cava & Katul 2009; Cava et al.
2012; Chamecki 2013; Chowdhuri et al. 2020a). Notwithstanding all this, the connection
between these dominant persistence time scales and the flow structure, often aided by
the use of Taylor’s frozen turbulence hypothesis (Taylor 1938), remains an outstanding
topic. This is particularly the case in the context of RSL turbulence, where the role of
canopy-induced coherent structures in the flux generation mechanism is of paramount
significance.

In this study, we revisit the connections between the turbulence structure in the
vicinity of vegetation canopies and the persistence in measured velocity fluctuations that
underlie the mechanisms of momentum flux transport. The central hypothesis rests on
the conditional sampling of the velocity field to disentangle the role of low-amplitude
but persistent ejections, and intense but short-lived sweeps, in shaping the dominant time
scales of the flow relative to the integral scales. More specifically, we aim to answer the
following questions: (1) Can the scaling properties of persistence behaviour be related
to the presence of coherent turbulence structures in a canopy flow? (2) How important
is the role of instantaneous flux amplitudes associated with the u′w′ events of different
persistence time scales while explaining the momentum transport in a canopy flow?
(3) Does there exist any range of event time scales for which the amplitude variability
in u′w′ contributes most to the momentum transport within and above the canopy heights?

To carry out our research objectives, sonic anemometer measurements from a dense
vegetation canopy in the Amazon forest are used, and these span multiple heights within
and above the canopy to investigate the role of canopy drag on the distribution of
persistence times. The details of this dataset and the processing steps are outlined in § 2.
In order to delineate the mechanisms of intermittent momentum transport, persistence
analysis is employed on the dataset and the obtained results are presented in § 3. Finally,
in § 4, conclusions are drawn and future research directions are provided.

2. Dataset and methodology

2.1. Field data
We use the observational dataset from the GoAmazon experiment (Fuentes et al. 2016;
Freire et al. 2017; Gerken et al. 2018; Ghannam et al. 2018). The data were collected during
a field campaign at the Cuieiras Biological Reserve, located ≈ 60 km north-northwest of

942 A51-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

41
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.414


S. Chowdhuri, K. Ghannam and T. Banerjee

the city of Manaus, Brazil, between March 2014 and January 2015 at a 50 m tall tower
surrounded by a dense primary forest. The average canopy height at the measurement site
is h ≈ 35 m. The leaf area index (LAI), which is defined as the total one-sided leaf area
(half the total foliage area) per unit ground surface area, was estimated to be between 6.1
and 7.3 m2 m−2 (Fuentes et al. 2016). The atmospheric boundary layer depth δ, especially
over a tropical area like the Amazon, can be of the order of 1000–2000 m, such that the
friction Reynolds number Re = (u∗δ)/ν ≈ 107, where u∗ is the friction velocity at the
canopy top and ν is the kinematic viscosity of air. A more readily available quantity is the
local Reynolds number based on the canopy height, viz. Reh = (u∗h)/ν ≈ 105. In either
definition, the Reynolds number of the flow is extremely large compared to those achieved
in laboratory experiments or numerical simulations.

Regarding the instrumentation part, high-frequency time series of the three wind
velocity components and sonic temperature within and immediately above the canopy
were measured by nine time-synchronized triaxial sonic anemometers (CSAT3, Campbell
Scientific, Logan, Utah). The measurement frequency was 20 Hz, and measurement
heights were z/h = {0.2, 0.39, 0.52, 0.63, 0.7, 0.9, 1, 1.15, 1.38}, where z is the height
referenced to the ground surface. For all the nine sonic anemometers, the data were divided
into 30 min blocks and a double-coordinate rotation was applied to align the x-axis with
the direction of the mean velocity (Kaimal & Finnigan 1994). Turbulent fluctuations in the
wind components (u′, v′ and w′ in the streamwise, cross-stream and vertical directions,
respectively) and in the sonic temperature (T ′) were computed by subtracting the mean.

Four additional criteria were also imposed to select data blocks for subsequent analysis:
(i) mean wind direction at the highest anemometer is within ±90◦ from the axis of the
anemometer, such that the wind faces the anemometer directly; (ii) there exists an inertial
subrange following a 2/3 power law in the second-order structure functions (Kolmogorov
1941); (iii) stationarity of the horizontal wind as proposed by Vickers & Mahrt (1997); and
(iv) near-neutral stratification, specified by the condition |(z − d)/L| ≤ 0.5 at and above
the canopy top (z/h = 1, 1.15 and 1.38), where d is the displacement height assumed
constant (d = 2h/3), and L is the Obukhov length. Note that Ghannam et al. (2018)
estimated the displacement height for this canopy as the centroid of the drag force and
found a consistent value of d ≈ 0.67h. The criterion |(z − d)/L| ≤ 0.5 for near-neutral
stability is similar to that used in Cava & Katul (2009) and Cava et al. (2012).

In the present study, a total of 93 data blocks (30 min runs) that meet the above
criteria are analysed, where each block consists of time-synchronized measurements from
nine observation heights. For these data blocks, the momentum (u′w′) and heat (w′T ′)
fluxes were fairly constant above the canopy, i.e. corresponding to the heights z/h ≥ 1.
Additionally, the friction velocity at the canopy top (u∗) was estimated to be equal
to 0.46 m s−1 after taking an ensemble average over the 93 near-neutral runs, with a
run-to-run variation between 0.4 and 0.6 m s−1. This ensemble mean of u∗ is typical
of canopy turbulence under near-neutral conditions (e.g. Chamecki 2013).

2.2. Persistence analysis
For these selected near-neutral runs, we apply persistence analysis on the streamwise
and vertical velocity fluctuations (u′ and w′) and on the instantaneous momentum flux
signals (u′w′). In a time-series analysis, persistence is defined as the probability that the
local value of a fluctuating field does not change sign (or equivalently its state) up to
a certain time t (e.g. Bray et al. 2013; Chowdhuri et al. 2020a; Chowdhuri, Kumar &
Banerjee 2020b). Therefore, the foundation of persistence analysis is completely rooted
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Phase angle (θu′w′ ) u′–w′ plane Quadrant type Quadrant name

0 ≤ θu′w′ ≤ π/2 u′ > 0, w′ > 0 Counter-gradient Outward-interaction (OI)
π/2 ≤ θu′w′ ≤ π u′ < 0, w′ > 0 Co-gradient Ejection (E)

−π ≤ θu′w′ ≤ −π/2 u′ < 0, w′ < 0 Counter-gradient Inward-interaction (II)
−π/2 ≤ θu′w′ ≤ 0 u′ > 0, w′ < 0 Co-gradient Sweep (S)

Table 1. Various parameters to describe the four quadrants of u′–w′.

in the temporal domain, unlike the Fourier or wavelet methods, allowing one to directly
define the time scales from the switching properties of the signal rather than employing
any mathematical functions. Moreover, as discussed in Platt, Spiegel & Tresser (1993), the
abrupt or aperiodic switching between qualitatively different kinds of states is related to
an aspect called on–off intermittency in the parlance of fluid turbulence.

By combining such a concept with the definition of persistence, one can infer that
persistence analysis offers unique flexibility to study the time scales associated with
on–off intermittency. Eventually, this inference boils down to studying separately the time
scales of positive and negative fluctuations in any turbulent signals or the ones linked
to different transport modes of turbulent fluxes (occurring aperiodically). Depending
on the context, persistence is also referred to as distributions of the first-passage time,
or survival probability distributions, or return-time distributions, or the distributions of
the inter-arrival times between successive zero-crossings (Laurson, Illa & Alava 2009;
Castellanos et al. 2013; Grebenkov, Holcman & Metzler 2020; Kumar et al. 2020).

A graphical demonstration of persistence is provided in figure 1(a,b), where nearly
120 s long sections of u′ and w′ signals are shown for a particular 30 min time series
from near-neutral conditions, at height z/h = 0.70. From figure 1(a), one can see that
the u′ signal displays persistent positive or negative values (with respect to the mean) for a
particular amount of time, denoted as tp. Since tp can also be interpreted as the inter-arrival
time between the subsequent zero-crossings, those are identified by using the telegraphic
approximation (TA) as

(x′)TA = 1
2

(
x′(t)
|x′(t)| + 1

)
, x = u, w, (2.1)

and locating the points where the TA series changes its value from 0 to 1 or vice versa (see
the right-hand side axes of figure 1a,b). More importantly, the interaction between the
persistence patterns in u′ and w′ signals give rise to the time scales of the u′w′ quadrant
cycles, as shown in figure 1(c). Depending on when the u′ and w′ signals switch from 0 to
1 or vice versa, the residence times in four quadrants are decided. The four quadrants can
be identified in figure 1(c) through the bar plots of four different colours (see the legend
in figure 1b), where +1 is used for counter-gradient quadrants and −1 for co-gradient
quadrants (see the right-hand side axis of figure 1c). In table 1 of Appendix A one can find
the descriptions associated with the four different quadrants of the u′w′ signal.

2.2.1. Probability density functions
To characterize the statistical properties of the time scales, we compute the p.d.f.s of tp (i.e.
P(tp)) or the persistence p.d.f.s, corresponding to the u′, w′ and u′w′ signals. For computing
these p.d.f.s, standard statistical procedures are adopted, which involve logarithmic
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Figure 1. The 20 Hz time series of (a) u′, (b) w′ and (c) u′w′ are shown at height z/h = 0.7 for durations of
2.5–125 s, to explain the concept of persistence time scale (tp). In all three panels, the right-hand side of the
y-axis represents the telegraphic approximation (TA) of the original time series. For the u′w′ time series, four
distinct states are possible where the flux values reside, based on the ejection, sweep, outward-interaction and
inward-interaction quadrants.

binning (see Chowdhuri et al. (2020a) for a detailed explanation). By combining all the
93 near-neutral runs, we encounter more than 105 number of zero-crossing events for each
signal. The persistence p.d.f.s are constructed over this large number of event ensembles,
and therefore remain statistically quite robust. Moreover, in our computations of P(tp),
we use 60 logarithmic bins of tp by following Chowdhuri et al. (2020a). To get an idea
about how many events are associated with each bin, we evaluated the histograms of
tp for the u′, w′ and u′w′ signals (not shown). From such histograms, we could notice a
preponderance in the number of events for the bins that represented short time scales, and
a number significantly larger than 100 for events corresponding to the larger time scales.
After obtaining the persistence p.d.f.s, we next investigated how much each persistence
pattern from one of the four quadrants of u′–w′ contributed to the momentum flux.

2.2.2. Flux contributions
For estimating the quadrant contributions to the momentum flux against the persistence
time scales, one first identifies the persistence patterns from any of the four quadrants (see
figure 1c), estimates their time scales (tp) and then computes the amount of instantaneous
momentum flux (u′w′) carried within such patterns. Following Chowdhuri et al. (2020b),
this operation can be mathematically expressed as

〈u′w′|[tp{bin} < tp < tp{bin} + d log(tp)]〉 =
∑

u′w′

N × d log(tp)
, (2.2)

where tp{bin} is the logarithmically binned value of tp, d log(tp) is the bin width and N
is the number of samples in a 30 min run. The division by N and d log(tp) is performed
in (2.2) to ensure that, when integrated over all the possible tp values, the result would
be the momentum flux contribution from a particular u′–w′ quadrant. Moreover, since
d log(tp) = dtp/tp and is used in the denominator, the flux distribution in (2.2) can be
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considered as a premultiplied one with tp. Henceforth, to be more concise, the quantity on
the left-hand side of (2.2) is simply denoted as 〈u′w′|tp〉. Note that, in figure 5(e–h), where
we show this quantity, a suitable normalization scheme is employed to non-dimensionalize
both the persistence time scales and their associated flux values.

The plot of the quantity 〈u′w′|tp〉 against tp is equivalent to what is generally referred
to as size–duration scaling relation in the context of avalanche dynamics, where one
expects the avalanche sizes to scale with the duration as a power law (Laurson et al. 2009;
Castellanos et al. 2013; Benzi et al. 2022). The avalanche sizes are basically considered as
the integrated quantities of signal values up to a certain duration tp, and therefore share a
perfect resemblance with our momentum flux distributions defined in (2.2). Some previous
studies have analytically shown that, for a Brownian motion, the size–duration scaling
relationship is a power law with an exponent 1.5 (Laurson et al. 2009). By exploiting this
fact, Castellanos et al. (2013) identified specific regions in a turbulent plasma flow, which
were governed by non-diffusive transport mechanisms.

Apart from the connection with Brownian motions, these plots also provide an idea
whether accounting for only the zero-crossing or persistence properties is enough when
one contemplates flux modelling. For instance, let us assume a flux event from any one of
the quadrants that persists for time tp before switching its state. Additionally, consider
the point that the amplitude variability is negligible for this particular event, i.e. the
instantaneous u′w′ values are nearly constant over that duration. In such a case, the flux
carried within that event should be directly proportional to its time scale tp. Further, if this
is true for all the events of different persistence time scales, then the flux contributions can
be predicted from the persistence p.d.f.s alone. Therefore, under these circumstances, one
may expect that the flux contributions would scale similarly as the persistence p.d.f.s. On
this note, Laurson et al. (2009) analytically showed that, if the persistence p.d.f.s follow a
power law with an exponent −α, then the size–duration scaling would exhibit an exponent
+α if the amplitude variations are absent. More discussions on these aspects are presented
in § 3.2.3.

3. Results and discussion

We begin by discussing the vertical profiles of bulk flow statistics and properties of
momentum transport within and above the canopy. To gain insights on the time scales
of turbulence structures associated with momentum transport, persistence analysis is
employed. Based on the statistical characteristics of such time scales, two distinct event
classes (indicative of certain flow structures) are recognized and their contributions to the
momentum flux are investigated separately. We conclude by dissecting the role of u′w′
amplitude variability from persistence effects, in order to explain momentum transport
associated with the flux events in canopy flows.

3.1. Statistical description of the flow

3.1.1. Vertical profiles
Figure 2 shows the vertical profiles of some flow statistics plotted against the normalized
height (z/h). Unless otherwise specified, the statistical quantities in figure 2 and in the rest
of the article are ensemble averages over the selected 93 data blocks from near-neutral
conditions, and the velocity scale u∗ is the friction velocity computed at the canopy top.
To denote the spread, the error bars in figure 2 represent one standard deviation from the
ensemble mean.
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Figure 2. Ensemble-averaged profiles of (a) mean velocity (ū/u∗), (b) velocity variances (σ 2
α/u2∗, where α = u,

v or w), (c) momentum fluxes (α′w′/u2∗, where α = u or v), (d) correlation coefficients (rαw), (e) flux fractions
(u′w′X/u2∗) and ( f ) time fractions (Tf X) corresponding to each of the four u′–w′ quadrants (here X denotes any
one of the four quadrants). The ordinate axis is the normalized height z/h, and u∗ is the friction velocity at the
canopy top. The error bars in all the panels denote one standard deviation from the averaged values.

Overall, the statistics depicted in figure 2 are in agreement with field observations
and large-eddy simulation experiments reported in previous studies (e.g. Finnigan 2000;
Dias-Junior, Marques Filho & Sa 2015; Patton et al. 2016; Banerjee, De Roo & Mauder
2017; Brunet 2020). The normalized profile of the mean wind speed (ū/u∗) displays a sharp
gradient in the upper part of this dense canopy, and attains a value of ū/u∗ = 4 at z/h = 1,
increasing up to 6 at z/h = 1.38 in the RSL (figure 2a). The streamwise, cross-stream and
vertical velocity variances (σ 2

u,v,w/u2∗) also remain close to zero at heights deep within the
canopy but approach the near-neutral values of σu,v/u∗ ≈ 2 and σw/u∗ ≈ 1.25 (Finnigan
2000) at heights z/h ≥ 1 (figure 2b). Interestingly, the cross-stream velocity variances
(σ 2

v /u2∗) agree well with the near-neutral limit, while a small deviation is observed for the
streamwise ones (σ 2

u /u2∗).
The strong shear in ū is reflected in the streamwise momentum flux (u′w′/u2∗) profile

(figure 2c), where ≈ 90 % of momentum is absorbed in the upper 30 % of the canopy,
with a constant value atop (|u′w′| → u2∗ at z/h ≥ 1). On the other hand, the cross-stream
momentum fluxes (v′w′) remain nearly zero throughout the canopy heights. This suggests,
for our near-neutral canopy flow set-up, that the shear stress vector aligns well with the
mean wind direction (Pan & Patton 2017). If one considers the correlation coefficients
(ruw and rvw), the ruw values remain substantially larger than rvw while being slightly
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Intermittent momentum transport in dense canopy flows

positive at the lowest three levels (figure 2d). The slight positive values of ruw at the lowest
canopy heights agree well with the observations of Dupont & Patton (2012). Moreover, at
heights z/h ≥ 1, ruw approximately approaches −0.4, in agreement with Finnigan (2000)
and Dupont & Patton (2012). Hereafter, while referring to the momentum flux, we only
imply u′w′.

Although in subsequent sections more information is provided about u′w′, the simplest
way to start is by investigating the quadrant contributions to the time-averaged momentum
flux values and how much time does the flow spend in each quadrant (see table 1 explaining
the four different quadrants). To compute the amount of flux carried by each quadrant and
the fraction of time spent in each, we use

u′w′X
u2∗

=
∑

[(u′w′)IX]
Nu2∗

,

Tf X =
∑

IX

N
(X = E, S, OI, II),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where

IX =
{

1, if {u′, w′} ∈ X,

0, otherwise,
(3.2)

and N is the total number of points in a 30 min run (36 000 in our case). The results
related to these aspects are presented in figure 2(e, f ). By evaluating figure 2(e, f ), it can
be inferred that the differences in characteristics between the ejection and sweep motions
remain most prominent for the mid-canopy heights, such as z/h = 0.63, 0.70 and 0.90.
However, as z/h approaches 1 and above, this distinction becomes hardly noticeable.
Specifically, at heights z/h = 0.63 to 0.90, the flux contributions from the sweep quadrant
remain larger than those from the ejection quadrant (figure 2e), despite the fact that the
flow spends more time in the ejection quadrant (figure 2f ). Therefore, at those heights, the
short-lived sweeps appear to be a little more intense than the long-lived ejections.

3.1.2. P.d.f.s and quadrant analysis
To further unravel the statistical character of the velocity fluctuations (u′ and w′), we
present the p.d.f.s of these quantities in figure 3(a,b). It is worth remarking that in
these figures and the ones that follow, grey squares of various shades denote the heights
within the canopy (z/h < 1), whereas the heights at and above the canopy (z/h ≥ 1) are
represented by blue, red and pink circles. Before computing these p.d.f.s, we normalized
u′ and w′ with their respective standard deviations, so that the results can be compared
with a standard Gaussian distribution (see the cyan dash-dotted lines in figure 3a,b). In
figure 3(a,b), the p.d.f.s P(u′/σu) and P(w′/σw) develop a prominent heavy tail (with
respect to a Gaussian) towards the positive and negative side, respectively, at z/h values
between 0.63 and 0.90. Other than these heights, the p.d.f.s mostly remain close to
Gaussian.

In addition to the p.d.f.s, we present the skewness (Su,w) and kurtosis (Ku,w) of u′ and
w′ signals (figure 3c,d). Physically, skewness is associated with asymmetry in the p.d.f.s
whereas kurtosis is related to intermittency. For a non-intermittent signal, kurtosis is 3,
which corresponds to a Gaussian distribution. Therefore, to imply intermittency, instead of
showing the kurtosis values directly, one can subtract 3 from them (figure 3d). Regarding
skewness, the positive (negative) values denote whether the signal is more dominated by
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Intermittent momentum transport in dense canopy flows

the large positive (negative) fluctuations, i.e. if the p.d.f. has a fat tail towards the positive
(negative) side. From both p.d.f.s and skewness plots (figure 3a–c), it is abundantly clear
that, at mid-canopy heights, the fluctuations in u′ and w′ signals are influenced by large
positive and negative values, respectively. Because such extreme values are present, Ku,w
values at z/h = 0.63, 0.70 and 0.90 remain well above 3, thereby indicating strongly
intermittent signals (figure 3d). Moreover, for both u′ and w′, the maximum Su,w (≈ ±1)
and Ku,w values (≈ 7) are located at a height z/h = 0.63. This observation is in agreement
with Dupont & Patton (2012), which they interpreted as an indication of the penetration
by the canopy-scale coherent structures resulting in strong sweeps and weak ejections at
mid-canopy heights. Our results from figure 2(e, f ) support this interpretation.

We next investigate how the height variations in P(u′/σu) and P(w′/σw) impact the
distributions of the instantaneous momentum flux. Since we are interested in fluxes and not
in correlation coefficients, u2∗ is used as a scaling factor for the p.d.f.s of u′w′ rather than σu
and σw (figure 3e). While observing figure 3(e), one can notice that P[(u′w′)/u2∗] gradually
develops large negative tails with increasing z, indicating a more frequent occurrence of
the extreme values in −u′w′. This can be further confirmed through the vertical profiles
of skewness in u′w′ (not shown). Such plots corroborate the fact that, except at the lowest
three measurement heights, the skewness values are negative, meaning that large negative
events (ejections and sweeps) dominate the u′w′ signal. Therefore, to better understand the
role of ejections and sweeps in momentum transport, we introduce polar quadrant analysis.
For a detailed description of this particular methodology, see Appendix A and figure 10
therein.

In figure 3( f ) we show the ensemble-averaged phase angle p.d.f.s P(θu′w′),
corresponding to all nine measurement heights. The dotted green line in figure 3( f )
represents a uniform distribution P(θu′w′) = 1/(2π), whose significance will be discussed
in figure 7(a–c). From figure 3( f ) one can see that, for the lowest three heights, the
behaviour of P(θu′w′) is mainly dominated by the two peaks residing in the outward-
and inward-interaction quadrants. But as the heights increase, the peaks in P(θu′w′)
shift towards the ejection and sweep quadrants. Moreover, at mid-canopy heights (z/h
between 0.63 and 0.90), the peaks of P(θu′w′) remain larger for the ejection quadrant.
This is consistent with figure 2( f ), where one observed at those heights that the ejection
motions occupied more time with respect to the other three quadrants. Apart from that,
at heights z/h ≥ 1, the sweep and ejection peaks in P(θu′w′) are confined to the angles
−π/4 < θu′w′ < 0 and 3π/4 < θu′w′ < π, respectively. This outcome has an important
consequence when one considers the flux distributions associated with the phase angles.

The flux distributions (see (A5) in Appendix A) are shown in figure 3(g), where they
are normalized by u2∗ and ensemble-averaged over all the near-neutral runs. By attentively
observing the flux behaviours at heights z/h = 0.63 to 0.90, one can conclude that, while
the p.d.f. peaks remain larger for the ejections (figure 3f ), the flux contributions are higher
for the sweeps (figure 3g). Note that this apparent distinction between the ejection and
sweep quadrants gradually fades as one approaches the heights z/h ≥ 1 (figure 3f ,g). All
such findings are in accordance with figure 2(e, f ). Furthermore, from figure 3( f ,g), it can
be seen that the maximum flux contributions and p.d.f. peaks from the ejection and sweep
quadrants are concentrated around those phase angles that lie on the left-hand side plane of
the −45◦ slope line (see the dashed black line in figure 10). This indicates that the events
from ejection and sweep quadrants, which contribute most to the momentum flux, are in
fact associated with larger magnitudes of u′ than w′. Such features appear more prominent
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at heights z/h ≥ 1, thereby promoting the increasing importance of u′ fluctuations on the
momentum transport as the heights approach the canopy top.

Hitherto, the statistics of velocity fluctuations (u′ and w′) and momentum (u′w′) are
presented for heights within and above the GoAmazon canopy. The growing importance
of ejection and sweep motions with increasing heights, and their differing contributions
towards the time fractions and momentum fluxes, lead us to ask: Is there any particular
time scale involved that differentiates the ejection and sweep characteristics observed so
far? Answering such a question is not straightforward, since, during quadrant analysis,
any time dependence is masked and therefore no information can be obtained about
the time scales of the associated turbulence structures. Additionally, the ejection and
sweep events are not distributed uniformly over time but rather appear intermittently
(Narasimha et al. 2007). To overcome these issues, persistence analysis is proposed,
which can evaluate the time scales of the intermittently occurring momentum-transporting
events.

3.2. Persistence time scales
As the logic dictates, we first employ persistence analysis to characterize the time scales of
the streamwise and vertical velocity fluctuations (u′ and w′). Thereafter, to study how the
two interacting signals u′ and w′ determine the time scales of momentum-transporting
events, a quadrant decomposition of persistence time scales is carried out. A detailed
summary on the concepts of persistence analysis and its various implementation strategies
is presented in § 2.2. In what follows, we discuss how the distributions of normalized
persistence time scales behave across the nine heights within and above the canopy, when
one considers the velocity and momentum flux signals.

3.2.1. Persistence p.d.f.s of velocity fluctuations
In figure 4(a,b), the persistence p.d.f.s of u′ and w′ signals are presented in log–log
plots for all the nine measurement heights. Note that, before plotting the p.d.f.s, the
persistence time tp was scaled with a global time scale h/u∗ and denoted as τp. Since
h/u∗ is height-invariant, such a scaling of tp would allow one to investigate how P(τp)
changes with height. This scaling also has a distinct advantage if one compares the results
with those of Chamecki (2013), who used a similar strategy to normalize the u′ and w′
persistence p.d.f.s while studying non-Gaussian turbulence in canopy flows. To distinguish
the heights within and above the canopy, an identical colour scheme to that in figure 3 is
used in figure 4 as well.

By inspecting Pu′(τp) and Pw′(τp), one could immediately notice that these p.d.f.s
follow a power law for nearly two decades up to a time scale τp < 0.1, and then there
is an exponential drop. Although not explicitly mentioned, the plots of Chamecki (2013)
suggest the same limit for a power-law distribution in the persistence p.d.f.s of u′ and w′.
Moreover, Chamecki (2013) pointed out that in his dataset – at short time scales – the
persistence p.d.f.s of either u′ or w′ did not display any substantially different behaviour
with increasing heights. For the GoAmazon data, we also observe the same up to the time
scales τp < 0.1.

Interestingly, the inter-event distribution times between earthquakes have also been
reported to follow a power-law distribution and the range is found to be limited up to
the mean values of such times (e.g. Kumar et al. 2020). However, for canopy turbulence,
the threshold time scale (τp = 0.1) up to which the power law exists in Pu′(τp) and Pw′(τp)

is nearly 10 times larger than the mean values of τp, denoted as τp. To illustrate this point,
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Figure 4. (a,b) Persistence p.d.f.s for the events in (a) u′ and (b) w′, corresponding to the heights within
and above the canopy. The normalized persistence time scales (tpu∗)/h are denoted as τp and their p.d.f.s are
constructed over the ensemble of 93 half-hour blocks from near-neutral conditions. A power law of exponent
−1.5 is fitted to the persistence p.d.f.s of u′ events and shown as dash-dotted black lines. The green shaded
regions in (a,b) denote the range of τp, over which it varies across the nine heights. (c,d) Vertical profiles of
normalized integral time scales (Γx, where x = u or w) for u′ and w′ signals, respectively. (e, f ) Persistence
p.d.f.s of u′ and w′, but where the time scales (tp) are normalized by Γx. The grey shaded regions in (e, f )
correspond to time scales tp/Γx ≥ 1. The power laws with exponents −1.6 and −1.25 (dash-dotted green
lines) are fits redrawn from the SLTEST data (Chowdhuri et al. 2020a).

the green-shaded regions in figure 4(a,b) indicate the range of possible values over which
τp would vary when all the nine measurement heights are considered together. As one
could notice from the green-shaded regions, for both velocity signals, τp displays little to
no variations with height (τp = 0.01 to 0.03) with the values being significantly smaller
than τp = 0.1. This apparent difference with earthquakes suggests that the characteristics
of the persistence p.d.f.s are sensitive to the details of the physical system for which
they are evaluated. Next, we provide further evidence that this sensitive dependence of
persistence p.d.f.s on the configurations of the underlying system remains true even when
one considers a turbulent flow setting.

For instance, the results of Chamecki (2013) were obtained for a near-neutral turbulent
flow over a corn canopy having h = 2.05 m and an LAI of 3.3 m2 m−2. However,
unlike Chamecki (2013), we do not observe any significant difference in the features of
persistence p.d.f.s when positive and negative fluctuations in u′ and w′ are considered
separately. From supplementary figure S1(a,b) (available at https://doi.org/10.1017/jfm.
2022.414) one could infer that the p.d.f.s Pu′>0(τp) and Pu′<0(τp) behave almost similarly
to Pu′(τp) in figure 4(a). An identical conclusion can be drawn if one considers w′ signals
(see figure S1c,d). Therefore, the statistical character of the persistence time scales of u′
and w′ signals appears to be different between the GoAmazon canopy and corn canopy
of Chamecki (2013). Given this premise, one may additionally ask whether this difference
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Intermittent momentum transport in dense canopy flows

also gets reflected in the power-law exponents of the persistence p.d.f.s, an aspect that
deserves a thorough investigation.

In our case, since the power-law portions of persistence p.d.f.s collapse with height, a
single exponent can be determined by performing a linear regression for the range 10−3 ≤
τp ≤ 10−1 on the log–log plots of Pu′(τp). Although this is regarded as standard practice
(e.g. Katul et al. 1994; Chowdhuri et al. 2020a; Benavides et al. 2022), estimating the
accuracy of the power-law exponent is not a trivial task and involves a lot of complicated
steps (Clauset, Shalizi & Newman 2009). Nevertheless, to tackle this issue, we adopted a
simple procedure. We first carried out the linear regressions for all the nine heights, thereby
providing nine values of power-law exponents associated with each z/h. Note that, for all
such fittings, the R2 values were more than 0.98. In the next step, to estimate the error, we
computed the spread (standard deviation) around the mean over nine values of power-law
exponents, eventually yielding a value of −1.5 ± 0.03. For illustration purposes, the black
dash-dotted line in figure 4(a) represents the mean, which is −1.5. A similar process
was repeated for Pw′(τp), and no discernible difference in the power-law exponent was
observed when compared with Pu′(τp) (black dash-dotted lines in figure 4a,b).

Since Chamecki (2013) did not provide the values of power-law exponents, we compare
our findings with other studies conducted on canopy turbulence (Cava & Katul 2009; Lee
2011; Cava et al. 2012) and on an aerodynamically smooth ASL flow. Specifically, for
the ASL flow, we directly use the Surface Layer Turbulence and Environmental Science
Test (SLTEST) experimental dataset, whose details are underlined in Chowdhuri et al.
(2020a,b) and Chowdhuri, Prabhakaran & Banerjee (2020c). The SLTEST site was flat,
horizontally homogeneous barring any obstacles, and having a smooth surface with an
aerodynamic roughness length less than 5 mm (Chowdhuri et al. 2020a,b,c). Therefore,
the SLTEST dataset provides a perfect platform to compare the persistence properties with
the GoAmazon site, which has roughness elements in the form of a tall canopy. As noted in
previous studies, the near-neutral runs from the SLTEST experiment were selected based
on the criterion −z/L < 0.2 (Chowdhuri et al. 2020a,b,c).

Without employing any scaling, the studies by Cava & Katul (2009) and Lee (2011)
discovered that, in a near-neutral canopy flow set-up (h = 28, 14 and 8.5 m and LAI = 9.6,
3 and 1 m2 m−2), the persistence p.d.f.s of velocity components showed a log-normal
distribution. On the other hand, the studies by Cava et al. (2012) and Chowdhuri et al.
(2020a) used the Eulerian integral time scales (Γx, x = u or w) to normalize tp, due to
the following physical reasons. First, the use of Γx allows one to judge whether the tp
values are smaller or larger than the inertial subrange, since the scales smaller than Γx
are generally associated with such behaviours (Kaimal & Finnigan 1994; Manshour et al.
2016). Second, the power-law exponents of the persistence p.d.f.s are typically explained
in a framework of self-organized criticality and connected with the spectral slope in the
inertial subrange, subjected to corrections accounting for small-scale intermittency (Cava
et al. 2012; Chowdhuri et al. 2020a; Huang, Katul & Hultmark 2021). Therefore, it is
prudent to use the values of Γu and Γw for renormalizing the persistence time scales, tp.

We compute the integral time scales by following the standard procedure that involves
integrating the autocorrelation coefficients of any turbulent signal up to the lags until the
first zero-crossing occurs (Li, Katul & Bou-Zeid 2012; Huang et al. 2021). In Appendix B,
u and w spectral information is presented, from which one can confirm that the time scales
smaller or larger than the integral scales do indeed correspond to the inertial subrange or
energy-production range (see figure 11d,e). Furthermore, to check whether our estimates of
Γu and Γw match with Finnigan (2000), we convert those to normalized length scales using
local mean wind speed (ū) and h. The vertical profiles of these quantities are shown in
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figure 4(c,d), where the error bars denote the spread around the ensemble mean. Typically,
the profiles behave similarly to those in Finnigan (2000), with the integral scales of u′
being substantially larger than those of w′. Moreover, at z/h = 1, the integral length scale
of u′ remains equal to the canopy height (figure 4c) whereas for w′ a departure is observed
from the stipulated value of h/3 (figure 4d). We next describe the features of persistence
p.d.f.s when the time scales are scaled as tp/Γx.

The overall character of u′ and w′ persistence p.d.f.s under the new scaling scheme
(figure 4e, f ) does not differ much from the old one (figure 4a,b). The power laws are
followed up to the time scales tp < Γx and the exponents remain similar to before (−1.5).
This is in sharp contrast to the momentum flux events, for which the effect of different
scaling on its persistence time scales remains quite significant (discussed in § 3.2.4). If the
power-law exponent of −1.5, as obtained for the GoAmazon dataset, is compared with that
from Cava et al. (2012), who considers many different canopy types, a large discrepancy
could be noted. For instance, from Cava et al. (2012) it becomes evident that, depending
on the canopy type (h = 16–28 m and LAI = 7–9.6 m2 m−2), the exponents of Pu′(tp/Γu)

and Pw′(tp/Γw) can vary between −1.6 and −1.9, with often the two not being the same.
On the other hand, to assess the same in a near-neutral ASL flow over an

aerodynamically smooth surface, we overlay Pu′(tp/Γu) and Pw′(tp/Γw) from the SLTEST
experiment (Chowdhuri et al. 2020a) on those already obtained from the GoAmazon
canopy. This result is presented in supplementary figure S2(a,b), and also in figure 4(e, f ),
where we show only the power-law fits from the SLTEST dataset as green dash-dotted
lines. For the near-neutral SLTEST dataset, Chowdhuri et al. (2020a) estimated the
power-law exponents of Pu′(tp/Γu) and Pw′(tp/Γw) to be equal to −1.6 and −1.25,
respectively. However, when those are overlaid on the GoAmazon dataset, displaying an
exponent of −1.5, there is hardly any difference for the u′ signal (figure 4e and figure S2a).
But for the w′ signal, a conspicuous difference is noted between the GoAmazon and
SLTEST datasets (figure 4f and figure S2b).

From the above discussion, it is apparent that the power-law exponents of the persistence
p.d.f.s are far from universal owing to their dependence on the surface types over which
a near-neutral atmospheric turbulent flow is studied. Other than the small time scales,
the behaviour of the persistence p.d.f.s at large time scales (energy-production scales) is
also of interest. For instance, at time scales τp ≥ 0.1 or tp ≥ Γw, a bulge is noticed in the
persistence p.d.f.s of w′, corresponding to the heights within the canopy (figure 4b, f ).
However, for u′, such a distinctive feature remains largely absent (figure 4a,e). To examine
the tails of the persistence p.d.f.s in greater detail, one can investigate the complementary
cumulative distribution functions (c.c.d.f.s).

The c.c.d.f.s are denoted as 1 − Fx(T ), where Fx(T ) (x = u′, w′) represents the
conventional cumulative distribution function (c.d.f.) while T indicates the normalized
time scales τp or tp/Γx. The results related to the c.c.d.f.s of τp and tp/Γx for both the
velocity signals are shown in supplementary figure S3. At large time scales (τp ≥ 0.1 or
tp ≥ Γu), the c.c.d.f.s of u′ are found to be weakly dependent on height (figure S3a,c).
Conversely, for w′, at τp ≥ 0.1, a clear separation is observed in their c.c.d.f.s between
the heights within and above the canopy (figure S3b). It is interesting to note that this
separation becomes a little less obvious when the tp values are scaled with Γw (figure S3d).

So far, the deliberations rendered on the u′ and w′ persistence characteristics develop an
intriguing premise regarding the nature of tp, related to the four different quadrants of u′w′
signals. Certainly, one can ask the following:
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Intermittent momentum transport in dense canopy flows

(i) Owing to the interaction between the persistence patterns in the u′ and w′
signals, how would P(tp) behave when the four different quadrants of the
momentum-transporting events are considered separately?

(ii) How does the differing influence of heights on Pu′(tp) and Pw′(tp) affect the vertical
evolution of the persistence patterns in u′w′ signals and is any quadrant-wise change
observed in such patterns?

(iii) Does there exist any particular scaling that can collapse the persistence p.d.f.s of
u′w′ signals, when all nine measurement heights are considered together?

3.2.2. Quadrant decomposition of the persistence time scale
To explore these research questions, in figure 5(a–d) we present the persistence p.d.f.s
of the momentum-transporting events, separately for the four different u′–w′ quadrants
(table 1). To compute these p.d.f.s, the individual residence times in the four quadrants are
evaluated (see the graphical illustration in figure 1c), and thereafter have been normalized
with a particular time scale. Similar to the u′ and w′ signals, we initially use the global
time scale h/u∗ to normalize tp (denoted as τp) so that the height variations can be clarified
better. Note that, although the time scales of different quadrant events are investigated for
the first time in canopy turbulence, there are a handful of studies in low-Re engineering
flows where such an analysis has been undertaken, albeit in a different form. For instance,
Lozano-Durán, Flores & Jiménez (2012) employed a concept similar to persistence to
study the sizes of the positive and negative momentum-transporting events in a direct
numerical simulation (DNS) of a turbulent channel flow. In their work, the authors defined
the sizes of the events as connected regions in a three-dimensional space.

From figure 5(a) and (b), which depict Pu′w′(τp) from ejection and sweep quadrants,
respectively, one could notice that these p.d.f.s remarkably collapse onto each other for all
the nine heights within and above the canopy. The goodness of the collapse can even be
verified from the c.c.d.f.s of the same, shown in supplementary figure S4(a,b). This finding
is non-trivial due to the reasons underlined next. First and foremost, irrespective of the fact
that at heights deep within the canopy almost no streamwise momentum is transported
(u′w′ → 0, figure 2c,e), the time scales of ejection and sweep events display a height
invariance. To confirm whether this outcome is a consequence of coherent structures in
canopy flows, we generate randomly shuffled surrogates of u′ and w′ signals and recompute
Pu′w′(τp). To briefly explain the shuffling procedure, one can select the time series of
any signal and then operate a random permutation to disrupt the underlying temporal
arrangement, thereby creating a surrogate dataset that does not possess any relationship
among the signal data points (Chowdhuri, Iacobello & Banerjee 2021). In this process,
the signal’s p.d.f. remains precisely conserved although the appearance of the data points
becomes random.

We find that the persistence p.d.f.s generated from randomly shuffled sequences of
u′ and w′ (green dash-dotted lines with triangle markers) markedly disagree with the
observed ones (except for the smallest τp values, which most likely represent noise) at
all the nine heights. Since any temporal coherence is destroyed through random shuffling,
the disagreement of Pu′w′(τp) with its randomly shuffled surrogate physically suggests
that the coherent structures, which constitute the ejection and sweep motions, extend
their footprints deep within the canopy. Despite the presence of such coherent motions
at heights deep inside the canopy, they do not transport any momentum, as almost all are
absorbed by the foliage (Dwyer, Patton & Shaw 1997). In the words of Townsend (1961)

942 A51-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

41
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.414


S. Chowdhuri, K. Ghannam and T. Banerjee

and Bradshaw (1967), these motions could be referred to as inactive ones since they have a
negligible impact on the flux transport, i.e. they contribute insignificantly to the total flux.

Moreover, up to τp < 0.1, the same power law with an exponent −1.5, as observed in
Pu′(τp) and Pw′(τp), also appears in the persistence p.d.f.s of u′w′ events from ejection
and sweep quadrants (figure 5a,b). This power-law exponent does not match with the
observations of Katul et al. (1994) and Chowdhuri et al. (2020c) from a near-neutral
ASL flow. Both of these studies found that, at short time scales, the persistence p.d.f.s
of momentum- and heat-transporting events follow a power law with an exponent −1.4.
For a visual demonstration, one can consult supplementary figure S2(c), keeping in mind
that the scaling of tp is with Γw. In that plot, the persistence p.d.f.s of u′w′ events
(considering all four quadrants together) from the SLTEST dataset are overlaid on the
GoAmazon one, and a clear difference between the two could be noted in the power-law
section.

Apart from these high-Re atmospheric flows (Re ≈ 107), Kailasnath & Sreenivasan
(1993) found that, in the inertial layer of a moderate-Re (between 2800 and 13 000)
flat-plate boundary layer, the persistence p.d.f.s of the u′w′ signal closely followed the
same p.d.f.s of w′, with both displaying a nearly identical single-exponential function.
Therefore, no indication of a power law was evident in their studies. Conversely, from
the DNS results of a turbulent channel flow (Re ≈ 5000), Lozano-Durán et al. (2012)
found that the p.d.f.s of streamwise lengths of negative momentum events (comprising
ejections and sweeps) followed a power-law distribution with an exponent between −4/3
and −5/3. These results together with those from ASL and canopy flows extend our
previous conclusion on u′ and w′ persistence p.d.f.s to the u′w′ signals. In other words,
they reinforce the fact that the statistical character of these p.d.f.s is indeed dependent on
the flow type that is being studied. Physically, the reason behind such a dependence may lie
in the structural discrepancies between the RSL of canopy flows and the inertial sublayer
(ISL) of a rough- or smooth-wall boundary layer. In the ISL of wall-bounded turbulent
flows, the ejection and sweep motions are typically associated with hairpin structures
(Adrian, Meinhart & Tomkins 2000; Ganapathisubramani, Longmire & Marusic 2003;
Hommema & Adrian 2003; Adrian 2007; Fiscaletti, De Kat & Ganapathisubramani 2018)
and, by employing persistence analysis, one expects to provide insights into their time
scales (Kailasnath & Sreenivasan 1993). However, the presence of a canopy in the RSL
alters the structures of these hairpins (Finnigan, Shaw & Patton 2009). Notwithstanding
different opinions on how exactly such modification occurs (Bailey & Stoll 2016), it
appears that these modified hairpin structures cause a difference in the persistence results
when one compares the RSL and ISL flows.

Continuing with figure 5, one can see that, contrary to the ejection and sweep quadrants,
Pu′w′(τp) from the counter-gradient quadrants (outward and inward interaction) show a
considerable amount of height dependence (figure 5c,d). Such a sensitive dependence on
z is more clearly visible in the corresponding c.c.d.f.s (supplementary figure S4c,d). By
further comparing the features of persistence p.d.f.s among the four different quadrants, we
find that, at heights deep within the canopy, the occurrence of large-duration events from
counter-gradient quadrants is statistically as likely as those from the ejection and sweep
quadrants. On the other hand, at z/h ≥ 1, Pu′w′(τp) of outward- and inward-interaction
quadrants drop off quite rapidly at large τp values as compared to the co-gradient
quadrants. This observation suggests that, at heights above the canopy, the long-duration
events are primarily dominated by the ejection and sweep motions. Note that such
separation in persistence p.d.f.s between the co- and counter-gradient quadrants mainly
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happens at large τp values (τp > 0.1), while at small τp (τp < 0.1) the quadrant-wise
distinction remains hardly noticeable. Unlike the exponents, this finding is in qualitative
agreement with the results obtained from near-neutral ASL flows (Chowdhuri et al.
2020b,c) and with the DNS of a turbulent channel flow (Lozano-Durán et al. 2012).

Overall, the quadrant-decomposed features of persistence help one to comprehend the
interaction between the structures in the u′ and w′ signals, generating the dynamics of the
momentum-transporting events. While plotting the persistence p.d.f.s corresponding to the
ejection and sweep quadrants, we note that these p.d.f.s are height-invariant. However,
the same is not true for the outward- and inward-interaction quadrants, for which a
strong sensitivity to the heights is noticed. Concerning the velocity signals, the p.d.f.s of
persistence time scales associated with u′ show little to no height dependence (figure 4a).
On the other hand, a clear bulge is observed in the persistence p.d.f.s of w′ at time scales
τp ≥ 1 (figure 4b). Therefore, at those time scales, the persistence p.d.f.s of w′ differ
between the in- and above-canopy measurement locations, meaning that they depend on
z, unlike the u′ one. One may ask why such a bulge observed in the persistence p.d.f.s of
the w′ signal does not get reflected in the time-scale distributions of co-gradient motions?
Given that height invariance is the common factor, we hypothesize that the distributions
of the persistence time scales of ejection and sweep motions are most likely dominated by
the positive and negative patterns in the u′ signal. In contrast, the patterns in the w′ signal
exert their influences to decide the nature of the persistence p.d.f.s of counter-gradient
quadrants, ultimately resulting in the observed differences with height.

Notwithstanding these valuable insights, one needs to remember that the persistence
analysis provides information on the time-scale distribution of the flux events but not on
the flux values themselves. This limitation arises because the amplitude variations are
not accounted for in the persistence p.d.f.s. Hence, to establish the role of quadrant-wise
persistence patterns towards momentum transport, additional analysis is required (see
§ 2.2.2).

3.2.3. Flux contributions from persistence patterns
Figure 5(e–h) individually depict the quadrant contributions to the momentum flux against
the normalized persistence time scale τp, corresponding to all the nine measurement
heights. Similar to persistence p.d.f.s, the momentum flux distributions are far from a
random configuration, thus accounting for the dynamical flow structures. Moreover, upon
considering amplitudes, one can see that, notwithstanding the excellent collapse observed
in the p.d.f.s of ejection and sweep time scales (figure 5a,b), momentum flux distributions
against τp show a clear dependence on z (figure 5e, f ). To emphasize such dependences,
the absolute values of 〈u′w′|τp〉/u2∗ are plotted in figure 5(e–h) on a logarithmic scale.

At time scales τp < 0.1, flux distributions corresponding to ejections and sweeps display
a distinct power-law behaviour (figure 5a,b). However, in these plots, the power-law
exponents appear to be different from 1.5 (shown in dash-dotted black lines). There are
a couple of consequences of this result – the first one is from a modelling standpoint
while the other one is speculative. Regarding the first, persistence p.d.f.s and associated
flux distributions display exponents whose absolute values do not match. As discussed in
§ 2.2.2, this indicates that the information about persistence is not sufficient and amplitude
variability of the instantaneous momentum fluxes should be taken into account while
computing the flux contributions from individual events of different time scales. We shed
further light on this issue in § 3.3.
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Considering the second point, which is related to Brownian motions (Castellanos
et al. 2013), one may argue that the presence of amplitudes causes a departure from
a local gradient-diffusion parametrization (Banerjee et al. 2017; Li, Liu & Huai 2022)
and thus precludes the phenomenological use of a turbulent diffusivity (analogous to
Brownian motion) to describe momentum transport. However, more evidence is needed
to support this argument and providing such evidence remainsbeyond the scope of this
study. Interestingly, unlike ejections, for the sweep motions, the slopes of 〈u′w′|τp〉/u2∗
gradually become steeper as z/h approaches 1. This behaviour of the sweep events
documents a change in the small-scale dynamics from heights within the canopy to
above it.

At larger time scales, the power-law behaviour disappears, with 〈u′w′|τp〉/u2∗ attaining
peaks at τp ≈ 0.2 and τp ≈ 0.1 for the ejection and sweep quadrants, respectively
(figure 5e, f ). On the other hand, no clear peaks are noticed for the counter-gradient
quadrants and the flux distributions remain mostly confined to the scales τp < 0.1 at
z/h ≥ 1 (figure 5g,h). This is consistent with figure 5(c,d) where it was shown that, at
heights above the canopy (contrary to those within), the large-time-scale (τp > 0.1) events
become highly infrequent for outward- and inward-interaction quadrants. As a whole,
the features of figure 5 make one wonder whether the apparent distinction that exists
between the persistence properties of co-gradient and counter-gradient quadrants could be
resolved if a different scaling were to be used other than h/u∗. Put differently, it remains
unclear if the persistence time scales of co-gradient motions scale differently than the
counter-gradient ones.

3.2.4. An alternative scaling with integral scales
Since the persistence time scales of u′w′ events are a result of the interaction between
the positive and negative patterns in the component signals (u′, w′), there could be
two alternative possibilities to scale the tp of the four different quadrants. From our
foregoing discussion in § 3.2.2, it appears that the time scales associated with the co-
or counter-gradient motions may scale separately with Γu or Γw.

To confirm this hypothesis, one first attempts to scale tp with Γu. However, under such
scaling, both the persistence p.d.f.s and c.c.d.f.s (supplementary figure S5) exhibit a poorer
collapse with height than what was being reported in figure 5(a–d). For instance, regarding
the counter-gradient quadrants, one notices that the persistence time scales inside the
canopy well exceed Γu, while the opposite remains true for heights z/h ≥ 1 (figure S5).
On the other hand, the distributions of persistence time scales collapse the best for all four
quadrant events when normalized by the integral time scale of the vertical velocity (Γw).
For demonstration purposes, the persistence p.d.f.s of tp/Γw are presented in figure 6(a–d)
while the corresponding c.c.d.f.s can be found in supplementary figure S6. To denote the
apparent mismatch with the SLTEST dataset, the dash-dotted lines (black and green) in
figure 6(a) indicate both the power-law exponents −1.5 and −1.4.

The collapse of quadrant-wise persistence p.d.f.s under the Γw scaling physically
suggests that eddy structures whose time scales are comparable to Γw participate in the
momentum transport (either actively or inactively) both within and above the GoAmazon
canopy. In fact, one can argue that this result from persistence analysis adds significant
value to the information obtained from the u–w co-spectra (see the discussion in § 3.3.1).
Although previous researchers have commented that the integral scale of vertical velocity
is comparable to the canopy height h (Finnigan et al. 2009), our results show that if h
is used in place of Γw the persistence p.d.f.s of counter-gradient events do not collapse
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Figure 6. (a–d) Persistence p.d.f.s for the four different u′–w′ quadrant events, where the time scales are scaled
as tp/Γw. In panel (a), a power law with exponent −1.4 (dash-dotted green lines) is shown, which is a fitting
result to the SLTEST data as obtained from Chowdhuri et al. (2020c). (e, f ) Cumulative contributions to the
time fractions and momentum fluxes shown against the time scales (tp/Γw) of the u′w′ events. The two green
dash-dotted vertical lines denote the time scales tp/Γw = 0.5 and 2, respectively. The grey shaded regions in
all panels correspond to time scales tp/Γw ≥ 1.

with height. Contrarily, for ejections and sweeps, this difference is insignificant. While
converting Γw to a length scale, Taylor’s hypothesis is needed, which often is questionable
in canopy turbulence (Finnigan et al. 2009; Everard et al. 2021). It could be possible
that the discrepancy between the two scalings for the counter-gradient quadrants is a
result of the failure of Taylor’s hypothesis. Interestingly, the co-gradient quadrant results
remain unaffected by this. Moreover, when normalized by Γw, the distinction between
the power-law and exponential drop in Pu′w′(tp/Γw) becomes quite evident at tp/Γw = 1,
irrespective of the quadrant type.

From these newly scaled persistence p.d.f.s, we can conclude that the u′w′ events remain
statistically self-similar up to the time scales tp/Γw < 1. However, such self-similarity
is destroyed at scales tp/Γw ≥ 1 due to the presence of large-scale coherent structures.
Therefore, it can be stipulated that tp/Γw = 1 represents a threshold to separate two distinct
event classes, one whose statistical characteristics show a power-law behaviour and one for
which a deviation is noted from the power law. Furthermore, to assess whether the statistics
of momentum flux events remain sensitive to the choice of the threshold while separating
the two event classes, one may consult figure 6(e, f ).

In figure 6(e, f ), the cumulative contributions to the time fractions (F[Tf |(tp/Γw)]) and
momentum fluxes (F[u′w′|(tp/Γw)]) are shown, if one considers the persistence time scales
of all four quadrants together. In order to explain the features better, as an example, we
focus on the x-axis value tp/Γw = 1. Corresponding to this time scale, the y-axis value in
figure 6(e) indicates how much fraction of the time would be occupied if only those events
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were taken into account whose time scales lie in the range tp/Γw ≤ 1. A similar inference
could be drawn by focusing on figure 6( f ) but for the momentum flux contributions.
Because the cumulative effects are presented, the y-axis values in figure 6(e, f )
converge towards 1 and the time-averaged momentum flux (u′w′/u2∗, figure 2c),
respectively.

Regarding the sensitivity to the threshold, the two vertical green dash-dotted lines in
figure 6(e, f ) denote the time scales tp/Γw = 0.5 and tp/Γw = 2. By reading the values
on the vertical axes associated with these scales, it can be identified how much the time
fractions and flux contributions would have changed if, instead of fixing the threshold at
tp/Γw = 1, one had fixed it at 0.5 or 2. Upon completion of such a task, nearly a ±20 %
change can be noted for both these quantities. Keeping this in mind, we next present results
to address the connection between the persistence time scales and bulk statistical features
of momentum transport reported in figures 2 and 3.

3.3. Scale separation and amplitude variations

3.3.1. Short- and long-lived events
In figure 7, we demonstrate how the two event classes, distinguished by their normalized
time scales tp/Γw < 1 (short-lived events) and tp/Γw ≥ 1 (long-lived events), affect the
bulk properties of momentum transport (shown in figures 2e, f and 3f ,g). To construct
these plots, we conditionally sample the u′ and w′ values, pertaining to the events that
persist for times smaller or larger than the threshold, tp/Γw = 1. Henceforth, we denote
the signals sampled from the short- and long-lived events as {u′

S, w′
S} and {u′

L, w′
L},

respectively. In this regard, one may note that u′ = u′
S + u′

L, w′ = w′
S + w′

L and u′w′ =
u′

Sw′
S + u′

Lw′
L.

To investigate the impact of these two event classes on quadrant statistics, figure 7(a,b)
represent the phase angle p.d.f.s separately for the short- and long-lived events. These plots
are designed in such a way that, when summed over P(θu′

Sw′
S
) and P(θu′

Lw′
L
), one would

recover the phase angle p.d.f.s of figure 3( f ). Similar to figure 3( f ), we use 60 bins of
θu′w′ to compute P(θu′

Sw′
S
) and P(θu′

Lw′
L
). Irrespective of the event type, when 93 half-hour

blocks are considered together, the samples corresponding to each quadrant angle p.d.f.
turn out to be close to 105, a significantly large number to ensure statistical robustness.

As opposed to P(θu′
Lw′

L
), one cannot recognize any apparent asymmetry among the four

different quadrants in P(θu′
Sw′

S
). Particularly, for the large-scale events, the P(θu′

Lw′
L
) values

at all but the lowest three heights remain clearly skewed towards the ejection quadrants
with respect to sweeps (figure 7b). These p.d.f. features can be further connected to the
turbulence organization. For instance, an equipartition of the phase angle p.d.f.s among the
four different quadrants indicates that the organizational structure of turbulence associated
with such events is close to random. In order to quantify the organizational state of
these two event classes, we compute the normalized Shannon entropy of θu′

Sw′
S

and θu′
Lw′

L
.

Using information theory (Shannon 1948; Banerjee et al. 2018; Ghannam et al. 2020), the
normalized Shannon entropy (HN) of θu′w′ can be defined as

HN(θu′w′) = − 1
ln(Nb)

Nb∑
i=1

Pi(θu′w′) ln[Pi(θu′w′)], (3.3)

where Nb is the number of bins over which the θu′w′ values are divided (60 in our case),
and Pi(θu′w′) is the probability of occurrence of a particular binned value θu′w′ . For a
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Figure 7. (a,b) P.d.f.s of quadrant angles for events whose duration remains in the range (a) tp/Γw < 1
(short, u′

Sw′
S) and (b) tp/Γw ≥ 1 (long, u′

Lw′
L). (c) Normalized Shannon entropies of the quadrant angles for

the two event classes. (d,e) Quadrant distributions of the momentum flux for the two event classes. ( f ) The
contributions to the time fractions and momentum fluxes from the short- (S) and long-lived (L) events.

uniform distribution, HN(θu′w′) is equal to 1, and therefore the departure from unity could
be regarded as a metric quantifying discrepancy with an equipartition configuration of
θu′w′ .

In figure 7(c), we plot the vertical profiles of HN values corresponding to the short-
(blue lines with squares) and long-lived (red lines with circles) events. These profiles
confirm that, relative to the short-lived events, the long-lived ones gradually become
more organized as z/h approaches 1. We also compare these values with HN(θu′w′)
(black lines with triangles), obtained from the full signal without any scale separation.
Since HN(θu′w′) ≈ 1, one can conclude that, without separating the events based on their
persistence time scales, it is impossible to extract information about the organization
pattern of the coherent structures. After establishing this important point, to further unravel
the event characteristics, we scrutinize the plots involving quadrant flux distributions in the
phase-angle space (figure 7d,e).

Similar to figure 7(a,b), the summed flux distributions of short- and long-lived events
in figure 7(d,e) yield the total, as shown in figure 3(g). Indeed, the flux distributions in
the phase-angle space portray a sharp contrast between the short- and long-lived events.
Excluding the lowest three heights, the sweep quadrants control the momentum transport
at scales tp/Γw < 1 (figure 7d). In fact, for the mid-canopy heights (z/h between 0.63
and 0.9), the flux contributions from the short-lived sweep events greatly exceed the
ejections. Accordingly, this finding suggests that the influence of sweep motions over the
flux fractions at mid-canopy heights (figure 2e) is caused by those events which persist
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for times tp/Γw < 1. On the contrary, the dominance of ejections in the time fractions
(figure 2f ) can be attributed to those events whose persistence time scales are tp/Γw ≥ 1.

However, for z/h values between 0.9 and 1.38, flux contributions from ejections
and sweeps at scales tp/Γw < 1 remain significantly small when compared to the
long-lived counterparts. Conversely, for the counter-gradient quadrants, in agreement with
figure 5(g,h), they only exert their influence on momentum transport for the short-lived
events while appearing almost absent at scales tp/Γw ≥ 1. To quantify these features,
we investigate the contributions from these two event classes (considering all the four
quadrants together) to the time fractions and momentum fluxes with increasing z/h
(figure 7f ).

In figure 7( f ), the quantity Tf |x denotes the contributions to the time fractions from
the events whose time scales are selected based on the condition x, i.e. whether tp <

Γw (short-lived) or tp ≥ Γw (long-lived). Similarly, (u′w′|x)/u2∗ in figure 7( f ) indicates
normalized contributions to the time-averaged momentum flux from the short- or
long-lived events. We use different coloured lines to differentiate between the vertical
profiles of time fractions and flux contributions in figure 7( f ) (see the legend). Since time
fractions are positive definite quantities while the momentum fluxes are predominantly
negative, the vertical zero line in figure 7( f ) separates the two. Furthermore, if the
flux contributions are summed from these two event classes, one would obtain the
total time-averaged momentum flux. To illustrate this point, we show black triangles in
figure 7( f ), which represent the vertical profile of (u′w′)/u2∗ in figure 2(c) without any
error bars.

From figure 7( f ), one can see that the long-lived events occupy around 40 % of the
time, while the rest is dominated by the short-lived ones. This allows one to infer
that not much change exists in the time fractions between these two event classes,
as both remain close to 0.5. However, flux contributions from these two events show
remarkable differences. For instance, at heights with z/h values between 0.9 and 1.38,
almost all the momentum fluxes are carried within the long-lived events (≈ 80 %), while
the short-lived ones only contribute marginally (≈ 20 %). The appearance of long-lived
events as the primary carrier of momentum flux agrees well with the results obtained from
near-neutral ASL flows (Chowdhuri et al. 2020c) and low-Re DNS of turbulent channel
flows (Lozano-Durán et al. 2012; Lozano-Durán & Jiménez 2014). In spite of not being
conceptually the same, the u–w co-spectra in figure 11( f ) (in Appendix B) indicate that
nearly all the momentum transport is associated with periods larger than Γw. An analogous
connection between the event-based and Fourier analyses was observed by Lozano-Durán
et al. (2012) too for a turbulent channel flow. They mentioned that the length scales
obtained from their event-based analysis could indeed be related to the spectrum of wall
shear stress, thereby implying that such scales were the carriers of the Reynolds-stress
fluctuations. Moreover, in the context of atmospheric turbulence, Huang et al. (2021)
presented an analogy between the turbulence spectra and the shape of persistence p.d.f.s.
Therefore, from this perspective, the fact that persistence time scales smaller than Γw
hardly contribute to the momentum is in qualitative agreement with the assumption of
quasi-isotropic conditions in inertial-subrange turbulence (Wyngaard & Coté 1972).

In general, long-lived events are the signatures of the coherent structures and,
particularly for the ISL of a wall-bounded flow, they have been linked to the presence of
attached eddies or hairpin structures (Lozano-Durán et al. 2012; Lozano-Durán & Jiménez
2014). Notwithstanding the fact that in the RSL of a canopy flow the hairpin structures get
modified (Finnigan et al. 2009), we do find an agreement between ISL and RSL flows
when the contributions of long events to the momentum fluxes are considered. Since u′w′
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Figure 8. A 60 s section time series of absolute values of u′w′ is shown to illustrate the concept of ignoring
the amplitude variations in the flux values. The four different quadrant states are colour-coded, as indicated in
the legend.

persistence p.d.f.s differ between the two flows but the flux contributions qualitatively
match, this points towards a complicated role of amplitude variations in momentum
transport. In fact, the amplitudes of the long-lived events should be substantially stronger
than those of the short-lived ones, so that, despite their similar contributions to Tf , they
nearly carry almost all the flux (figure 7f ). Therefore, from both figures 5 and 7, the
importance of amplitudes is abundantly evident. This outcome also raises a couple of
questions whose answers are not trivial, such as the following:

(i) Does there exist a range of persistence time scales for which the effect of u′w′
amplitudes is felt most strongly while evaluating the event contributions to the
momentum transport?

(ii) Do the scale-wise amplitude variations in u′w′ depend on the quadrant type of the
flux events? For example, does the amplitude variability associated with the time
scales of ejection events appear stronger than that of the sweeps?

To tackle these issues, we separate the effect of amplitude variations from persistence by
developing a method that involves surrogate datasets.

3.3.2. Amplitude variations
To explain our method, let us consider a 60 s time series of the instantaneous momentum
flux (shown as black lines in figure 8) at a particular height, z/h = 0.7. In figure 8, the
different quadrant states are colour-coded using the same scheme as in figure 1(c). Now,
to generate the surrogate data, all the points of u′w′ are replaced by the quantity

u′w′
s =

∑
u′w′

NP − NN
sgn(u′w′), (3.4)

where u′w′
s are the constant surrogate values, NP and NN are the number of positive and

negative samples, and sgn represents a function that is +1 (for u′w′ > 0) or −1 (for
u′w′ < 0) depending on the argument. Note that, if the values of u′w′

s are summed and
then divided by the total number of samples, one would simply obtain the time-averaged
momentum flux for that 30 min run. Furthermore, if the persistence p.d.f.s of the four
quadrant states are evaluated from u′w′

s, they remain exactly the same as the original ones.
Therefore, by employing such surrogate data, momentum transport at any time scale can
only be explained through persistence, without focusing on the amplitude variability.

Consequently, if one compares the flux distributions plotted against tp/Γw between the
original and surrogate data of u′w′, then any existing difference could be directly related to
amplitude variability. Since cumulative distributions are preferred when any two statistical
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Figure 9. (a–d) Quadrant decomposition of the absolute differences between u′w′ distributions (L1|(tp/Γw))
shown against the persistence time scales tp/Γw, when evaluated for the original and surrogate time series
of u′w′. Note that the original time series preserve both the persistence and amplitude effects, whereas the
surrogate ones only contain the persistence effects. For better visualization, the logarithms of L1|(tp/Γw) are
used. (e) Vertical profiles of the summed L1 values shown separately for each quadrant.

quantities are compared (Chamecki 2013), we compute the accumulated values of the
fluxes against the persistence time scales, separately for the four quadrants. Thereafter, for
each quadrant, we take the absolute difference between the cumulative flux distributions
as obtained from the original and surrogate datasets. This is a standard procedure while
comparing any two statistical distributions (Chowdhuri et al. 2021). Mathematically, such
an operation can be expressed as

L1|(tp/Γw) = ∣∣F[u′w′|(tp/Γw)] − F[u′w′
s|(tp/Γw)]

∣∣, (3.5)

where the F functions indicate the cumulative flux distributions at a particular scale tp/Γw
and L1|(tp/Γw) is the absolute difference between the original (u′w′) and surrogate (u′w′

s)
datasets at that scale.

In figure 9(a–d), we show how L1|(tp/Γw) varies quadrant-wise when plotted against
the persistence time scales tp/Γw and normalized heights z/h. For a better visualization,
we use the logarithm of L1|(tp/Γw) while plotting the contours (figure 9a–d). To highlight
the threshold scale tp/Γw = 1 and z/h = 1, two black dotted lines (horizontal and vertical)
are drawn in figure 9(a–d). The red-shaded contours in figure 9(a–d) denote the regions
where the largest difference exists between the two cumulative distributions, i.e. where the
amplitudes play a stronger role.

By inspecting the contour plots (figure 9a–d), it is recognized that for the lowest three
levels local amplitude effects are negligible across any time scales, as no presence of red
regions can be detected. This indicates that there is almost no temporal variability in the
u′w′ time series at heights deep within the canopy. Moreover, since the time-averaged
momentum flux is itself low at those heights (figure 2c), the instantaneous flux values
remain low too due to the consequence of how the surrogate data are defined in (3.4).

942 A51-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

41
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.414
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Therefore, despite the fact that the organizational structure of the flux events remains the
same as at the other heights (evident from the vertical collapse of persistence p.d.f.s in
figure 6), no contribution is made to the momentum transport at any time scale. Such a
phenomenon shares a resemblance with the concept of inactive turbulence as proposed by
Townsend (1961) and Bradshaw (1967).

However, as the heights increase, the range of time scales involved with the red-shaded
regions also tends to increase. In fact, at heights z/h ≥ 1, a broad range of time scales
between 0.1 < tp/Γw < 10 engulf the red regions, indicating the strong presence of
amplitudes at such scales. Interestingly, this apparent increase in the range of time scales
with height is quite clear for the ejection quadrants as opposed to the rest. For the other
three quadrants, a slight break in the red regions is observed between the mid-canopy and
above-canopy heights, thereby implying a subtle change in the amplitude effects.

To further characterize the height variations, in figure 9(e), we show the vertical profiles
of

∑
L1|(tp/Γw) (summed over all tp/Γw values), separately for the four quadrants (shown

as different coloured lines). Although the amplitude effects become increasingly important
with z, unlike figure 9(a–d), we do not observe any particular dominance from whichever
of the four quadrants. Nevertheless, upon closer inspection, the L1 values of ejection
motions are found to be somewhat greater than the sweeps. Thus, the amplitude effects
appear to be a little stronger for the ejections as compared to the sweeps.

In conclusion, our results from surrogate analysis provide a novel viewpoint by pointing
out the range of time scales that are associated with amplitude variability in u′w′
time series. Moreover, we observe that this range is sensitive to the quadrant type and
measurement heights. This outcome is compelling enough to make one ponder what type
of eddy processes might give rise to such a phenomenon. In wall-bounded turbulence,
local amplitude variability in either velocity fluctuations or instantaneous momentum flux
is usually associated with a modulation effect by the large-scale structures from the outer
layer (Hutchins & Marusic 2007; Baars et al. 2015; Gomit, De Kat & Ganapathisubramani
2018; Laskari et al. 2018). On the other hand, for canopy turbulence, Perret & Patton
(2021) have identified the similar presence of an amplitude modulation effect but with a
change in its mechanism for heights within and above the canopy. To explain this change,
they propose a theory that involves forward and backward scattering of turbulent kinetic
energy. Quite possibly, our observation, showing that the range of time scales involved with
amplitude variability of u′w′ increases with height, could be related to such mechanisms.
However, pursuing that further is beyond the scope of this study.

4. Conclusion

In a dense canopy flow, for the first time, we present a statistical description of the time
scales involved with intermittent momentum transport at multiple heights (both within and
above the canopy), by using the GoAmazon field-experimental dataset. To compute these
time scales, we invoke the concept of persistence, defined as the probability that the local
value of a fluctuating field does not change sign up to a certain time. Since the computation
of persistence time scales is completely rooted in the temporal domain (unlike Fourier
transformation, a non-local decomposition), this analysis procedure provides a unique
opportunity to study the time scales of different quadrant events separately. By applying
persistence analysis, we seek to answer the research questions posed in the Introduction,
and in that respect the main findings from our study can be listed as below:

(i) The probability distributions of persistence time scales (tp), associated with the four
quadrant events, are height-invariant when tp values are normalized by the integral
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scale of vertical velocity (Γw). The collapse of quadrant-wise persistence p.d.f.s
under the Γw scaling physically suggests that the eddy structures whose time scales
are comparable to Γw transport momentum both within and above the GoAmazon
canopy. However, if the time-averaged fluxes are considered, then at heights deep
within the dense canopy the u′w′ values are approximately 0 due to the presence
of the foliage. To resolve this issue, it is proposed that the coherent structures,
which reside above the canopy transporting momentum, extend their footprints down
to heights as small as z/h = 0.2. Since u′w′ are practically non-existent at those
heights, the footprints of the coherent structures do not transport any momentum
and therefore they act as inactive motions. On the other hand, if, instead of Γw,
canopy height and friction velocity are used as scaling parameters, then only the
time-scale distributions of ejections and sweeps collapse while the counter-gradient
ones display a clear dependence on height.

(ii) The time scales of momentum-transporting events show a power-law signature up
to tp < Γw, punctuated with an exponential drop corresponding to scales tp ≥ Γw.
From our analysis, we find that the exponent of this power law is nearly equal to
−1.5. Upon comparing this value with those for other types of atmospheric and
engineering flows, we conclude that such exponents are far from universal owing to
their dependence on the surface types over which they are studied.

(iii) Based on the statistical features of u′w′ persistence p.d.f.s, two different event
classes are recognized. For one of those classes, the time scales of short-lived
u′w′ events (tp < Γw) follow a power-law behaviour, thereby indicating the presence
of statistically self-similar flow structures. On the other hand, the time scales of
long-lived events (tp ≥ Γw) display a clear deviation from a power law, which can
be associated with the existence of large-scale coherent structures. It is discovered
that around 80 % of the momentum is transported through the long-lived events at
heights immediately above the canopy, while the short-lived ones only contribute
marginally (≈ 20 %).

(iv) To explore any connection between persistence and amplitude variability while
evaluating the flux contributions from u′w′ events, a surrogate dataset is used. By
employing this dataset, we establish that a wide range of persistence time scales are
involved with amplitude variations in u′w′ as one transitions from within to above
the canopy. In fact, at heights z/h ≥ 1, the events with time scales in the range
0.1 < tp/Γw < 10 are associated with strong variations in u′w′ values. However,
for mid-canopy heights, this range is mostly restricted between 1 < tp/Γw < 10.
Therefore, as the heights approach the canopy top, the strong amplitude effects
pervade up to time scales that are much smaller than Γw at least by an order
of magnitude. We hypothesize that such height-dependent relationships between
persistence time scales and variability in instantaneous u′w′ values could be the
consequence of an amplitude modulation effect as proposed by Perret & Patton
(2021) for canopy flows.

In summary, the above results are quite useful to deduce the nuances of intermittent
momentum transport in dense canopy flows and hopefully pave the way towards the
development of better parametrization schemes, accounting for the intermittency aspect.
Currently, we only consider near-neutral conditions, but in future more stratification
regimes (highly convective to stably stratified) will be surveyed, to assess the varying
effects of shear and buoyancy on the time scales of intermittent flux transports. A
limitation of the present study is the lack of three-dimensional information due to the
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usage of point-wise temporal measurements that only span vertically up to nine heights.
Therefore, we cannot explicitly examine the connection between the spatial geometry of
coherent structures and persistence time scales. However, in our future efforts, large-eddy
simulation results of a dense canopy flow will be analysed to shed light on this aspect.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.414.
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Appendix A. Polar quadrant analysis

As opposed to quadrant analysis in Cartesian coordinates, in polar quadrant analysis the
quadrant plane is envisaged as a phase space, where each point is designated with two
parameters, such as the phase angle and amplitude (Mahrt & Paumier 1984; Chowdhuri
et al. 2020c). In Cartesian quadrant analysis, the coupling between the u′ and w′ signals
is usually studied through their joint probability density functions (j.p.d.f.s), plotted for
a particular height (e.g. Li & Bou-Zeid 2011; Chamecki 2013; Wallace 2016). However,
a systematic investigation of changes in the nature of coupling between u′ and w′ with
increasing height would require a visual inspection of u′–w′ j.p.d.f.s at all such heights.
This procedure becomes cumbersome when multiple heights are involved. As compared
to the Cartesian analysis, a distinct advantage of polar quadrant analysis is that it allows
one to inspect the height variations in quadrant plots quite easily.

Figure 10 graphically illustrates the concept of the u′–w′ quadrant plane from the
perspective of a polar reference frame. As mentioned before, each point on the u′–w′
quadrant plane can be associated with an amplitude ru′w′ and phase angle θu′w′ , expressed
as

θu′w′ = arctan(w′/u′), (A1)

ru′w′ =
√

w′2 + u′2. (A2)
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Ejection Outward-interaction

Inward-interaction Sweep

π/2 ≤ θu′w′ ≤ π

–π ≤ θu′w′ ≤ –π/2 –π/2 ≤ θu′w′ ≤ 0

0 ≤ θu′w′ ≤ π/2

(u′, w′)
ru′w′ = �w′2 + u′2

θu′w′ = arctan (w′/u′)
u′

w′

Figure 10. An example to explain the concepts of polar quadrant analysis. A momentum flux event can be
described through two quantities, which are amplitude ru′w′ and phase angle θu′w′ . Moreover, each of the four
quadrants can be identified through the ranges in the phase angle θu′w′ .

The values of θu′w′ vary between −π and π and their ranges are related to the four different
quadrants, as demonstrated in table 1.

In the polar coordinate system, the instantaneous momentum flux u′w′ associated with
each point is expressed as

u′w′ = ru′w′ cos(θu′w′) × ru′w′ sin(θu′w′) =⇒ 1
2 r2

u′w′ sin(2θu′w′). (A3)

In (A3), since r2
u′w′ is a positive definite quantity, the distribution of u′w′ fluxes among the

four quadrants is primarily decided by θu′w′ . On this note, the p.d.f.s of θu′w′ (i.e. P(θu′w′))
are related to the fraction of time spent by the signal in a particular quadrant state. This is
because

Tf X =
∫ π

−π

P(θu′w′)IX(θu′w′) dθu′w′, (A4)

where Tf X is the time fraction spent in quadrant X (X could be any one of the four
quadrants) and IX(θu′w′) is the identity function, which is unity when θu′w′ lies within
quadrant X or zero elsewhere. To compute P(θu′w′) from the present data at hand, we use
60 bins of θu′w′ , spanning between −π and π (Chowdhuri et al. 2020c). Note that, for
each 30 min run, the total possible values of θu′w′ are equal to the number of samples,
i.e. 36 000. Since the p.d.f.s P(θu′w′) are averaged over 93 half-hour blocks of near-neutral
runs, this results in close to half-a-million samples when all the ensemble members are
considered together.

In addition to P(θu′w′), the u′w′ fluxes associated with θu′w′ can be computed as

〈u′w′|{θu′w′(i) < θu′w′ < θu′w′(i) + dθu′w′ }〉 =
∑

u′w′(i)
N dθu′w′

, (A5)
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Figure 11. The ensemble-averaged (a,d) u, (b,e) w spectra and (c, f ) u–w co-spectra for the near-neutral runs,
where the spectral amplitudes are normalized by u2∗ but the frequencies are scaled in two different ways. The
spectral frequencies in (a–c) are scaled by h and ū(h) (mean velocity at canopy top), whereas in (d–f ) the
integral time scales are used, such as Γu and Γw.

where i is the bin index, dθu′w′ is the bin width and N is the total number of samples in
a 30 min run (36 000 in our case). The division by N and dθu′w′ is to ensure that, when
integrated over θu′w′ , it would yield u′w′. For brevity, the quantity on the left-hand side of
(A5) is denoted as 〈u′w′|θu′w′ 〉. Another important aspect is that, if, in the ejection or sweep
quadrant, θu′w′ lies to the left or right of the black dashed line (w′ = −u′, figure 10), then
we can infer that −u′w′ fluxes associated with those phase angles (see (A5)) are dominated
by the magnitudes of u′ rather than of w′.

Appendix B. u, w spectra and u–w co-spectra

In this appendix, we report the ensemble-averaged u, w spectra and u–w co-spectra from
the near-neutral conditions, corresponding to the heights within and above the canopy
(figure 11). These results highlight how the spectra and co-spectra compare with the
previous studies and whether the u–w co-spectra complement the information obtained
from persistence analysis of the u′w′ signal. Note that while plotting the spectra and
co-spectra, the frequencies (f ) are scaled in two ways, first by h and ū(h) (canopy height
and mean velocity at canopy top) and second by the Eulerian integral time scales (Γx,
where x = u, w). Although two different scalings are used for f , the premultiplied spectral
and co-spectral amplitudes (f Sxx( f ), where x = u, w, and f Suw( f )) for both cases are
scaled by u2∗, where u∗ is the friction velocity at the canopy top. The scaling fh/ū(h) is to
ensure that the peak frequency values of u, w spectra and u–w co-spectra can be compared
with the other experimental results of Dupont & Patton (2012) and Su et al. (1998),
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respectively (figure 11a–c). On the other hand, the scaling of f by Γx is to provide a context
while comparing the results obtained from persistence analysis with the more conventional
spectral methods (figure 11d–f ).

As one may note, in both figures 11(a,b) and 11(d,e), irrespective of the scalings used,
a well-defined inertial subrange with −2/3 slope can be observed in the u, w spectra at
all the heights except the three lowest ones. In figure 11(a–c), for heights z/h ≥ 1, the
spectral and co-spectral amplitudes attain their peaks at those scaled frequency values
which match exceptionally well with the previous studies of Dupont & Patton (2012) and
Su et al. (1998) from near-neutral conditions. To illustrate this point, the peak values of
fh/ū(h) from Dupont & Patton (2012) and Su et al. (1998) are marked as vertical black
dashed lines in figure 11(a–c).

In contrast to figure 11(a–c), the vertical black dashed lines in figure 11(d–f ) represent
the threshold f Γx = 1, which is used to demarcate the periods larger or smaller than
the integral scales. From figure 11(d–f ), one can see that the peaks of spectral and
co-spectral amplitudes are located around those periods that are larger than the integral
scales. Particularly, in accordance with Kaimal & Finnigan (1994), the spectral amplitudes
of both u and w attain their peaks at f Γx = 1/(2π) for all nine measurement heights (cyan
dashed lines in figure 11d,e). By focusing on u–w co-spectra in figure 11( f ), a qualitative
resemblance can be noted with figure 7( f ), where we presented the flux contributions from
short- and long-lived events separately. In figure 7( f ), we found that almost 80 % of the
streamwise momentum fluxes are carried by those persistence patterns whose time scales
are larger than the integral scale of vertical velocity. This finding agrees quite well with
the result obtained from u–w co-spectra in figure 11( f ), where the periods larger than Γw
mostly contribute to the u′w′ flux.
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