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Abstract—For distributed learning among collaborative users,
this paper develops and analyzes a communication-efficient
scheme for federated learning (FL) over the air, which incor-
porates 1-bit compressive sensing (CS) into analog-aggregation
transmissions. To facilitate design parameter optimization, we
analyze the efficacy of the proposed scheme by deriving a
closed-form expression for the expected convergence rate. Our
theoretical results unveil the tradeoff between convergence per-
formance and communication efficiency as a result of the ag-
gregation errors caused by sparsification, dimension reduction,
quantization, signal reconstruction and noise. Then, we formulate
a joint optimization problem to mitigate the impact of these
aggregation errors through joint optimal design of worker
scheduling and power scaling policy. An enumeration-based
method is proposed to solve this non-convex problem, which is
optimal but becomes computationally infeasible as the number
of devices increases. For scalable computing, we resort to the
alternating direction method of multipliers (ADMM) technique
to develop an efficient implementation that is suitable for large-
scale networks. Simulation results show that our proposed 1-bit
CS based FL over the air achieves comparable performance to
the ideal case where conventional FL without compression and
quantification is applied over error-free aggregation, at much
reduced communication overhead and transmission latency.

Index Terms—Federated learning, analog aggregation, 1-bit
compressive sensing, convergence analysis, joint optimization.

I. INTRODUCTION

Centralized machine learning (ML) that collects distribute
data from edge devices (local workers) to a parameter server
(PS) for data analysis and inference is costly in communi-
cations for big data applications. Although the adoption of
approximate data aggregation instead of exact data aggregation
proposed by [2], [3] can effectively reduce communication
costs, the privacy issues exposed by data collection cannot
be ignored. As an alternative, federated learning (FL) is
a promising paradigm that enables many local workers to
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collaboratively train a common learning model under the
coordination of a PS in wireless networks [1], [4], [5]. In
FL, local devices (workers) and the PS exchange individually
updated model parameters in each iteration, until convergence.
Without exchanging raw datasets during the iterations between
the PS and local workers, FL offers distinct advantages on
protecting user privacy and leveraging distributed on-device
computation compared to traditional learning at a centralized
data center.

In FL, model updates shared between local workers and
the PS can be extremely large, e.g., the VGGNet architec-
ture has approximately 138 million model parameters [6].
As a result, model compression has been considered in the
literature to reduce the communication load per worker, such
as sparsification, quantization and communication censoring
schemes. sparsification schemes only keep the large values
of local updates to reduce the communication load [7], [8].
Quantization is to compress the continuous-valued update
information to a few finite bits so that it can be effectively
communicated over a digital channel [9]–[11]. Communication
censoring is to evaluate the importance of each update in order
to avoid less informative transmissions [12]–[16]. All these
useful strategies are investigated predominantly for FL with
digital communications.

However, the communication overhead and transmission
latency of FL over digital communication channels are pro-
portional to the number of active workers, and thus cannot
be applicable in large-scale environments. To overcome this
problem, an analog aggregation model is recently proposed for
FL [17]–[28] by allowing multiple workers to simultaneously
transmit their updates over the same time-frequency resources
and then applying a computation-over-the-air principle [29]. It
benefits from the fact that FL only relies on the averaged value
of distributed local updates rather than their individual values.
Exploiting the waveform superposition property of a wireless
multiple access channel (MAC), analog aggregation automati-
cally enables to directly obtain the averaged updates required
by FL, which propels the prosperity of analog aggregation
based FL over the air (FLOA). In [17], a broadband analog
aggregation scheme was designed for FLOA, in which a set
of tradeoffs between communication and learning are derived
for broadband power control and device scheduling, where the
learning metric is set as the fraction of scheduled devices. In
[21], a power control policy was proposed to minimize the
mean square error (MSE) of the aggregated signal. Similarly,
a joint design of device scheduling and beamforming was
presented in [18] for FLOA in multiple antenna systems, which
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aims to maximize the number of selected workers under the
given MSE requirements. Based on one-bit gradient quantiza-
tion, a digital version of broadband over-the-air aggregation
was proposed, and the effects of wireless channel hostilities
on the convergence rate was analyzed in [19]. In [23], [24],
the gradient sparsification, and a random linear projection
for dimensionality reduction of large-size gradient in narrow-
band channels was considered to reduce the communication
requirements. The power allocation scheme in [23], [24] scales
the power of the vectors containing the gradient information
of different devices to satisfy the average power constraint. In
[26], [28], a robust power control scheme for FLOA against
Byzantine attacks.

Despite the prior work, some fundamental questions re-
main unanswered, which however prevent from achieving
communication-efficient and high-performance FLOA. Firstly,
the quantitative relationship between FL and analog aggre-
gation communication is not clear [20], [22]. Simple maxi-
mization of the number of participated workers is learning-
agnostic and hence not necessarily optimal, which decouples
the optimization of computation and communication, e.g., the
works in [18], [27]. Secondly, to facilitate power control, most
existing works are developed based on a strong assumption
that the signals to be transmitted from local workers, i.e.,
local gradients, can be normalized to have zero mean and unit
variance [17]–[19], [21]. However, gradient statistics in FL
vary over both training iterations and feature dimensions, and
are unknown a priori [30]. Thus, it is infeasible to design an
optimal power control without prior knowledge of the local
gradients at the PS, especially for the uncoded linear analog
modulation in FLOA. Thirdly, sparsification is introduced for
communication efficiency in FLOA [23], [24] as a means of
lossy compression of local gradients, which may introduce
aggregation errors, but the impact of these aggregation errors
on FL is not yet clear, let alone how to alleviate their side
effects.

To solve the aforementioned issues, in this paper, we
introduce 1-bit compressive sensing (CS) for efficient FLOA,
by developing an optimized practical worker selection and
power control policy. To the best of our knowledge, this is
the first work to introduce 1-bit CS [31]–[33] into FLOA for
high communication efficiency, where both the dimension of
local gradients and the number of quantization bits can be
reduced significantly. Further, thanks to the 1-bit quantization,
our power control becomes feasible since it hinges on the
quantized values of known magnitude, without relying on
any prior knowledge or assumptions on gradient statistics or
specific distribution. More importantly, our work provides an
essential interpretation on the relationship between FL and
analog aggregation with 1-bit CS techniques to enable joint
optimization of computation and communications. Our main
contributions are outlined below1:
• We propose a one-bit CS analog aggregation (OBCSAA)

technique for efficient FL. In our OBCSAA, we elabo-
rately design a set of compression, analog aggregation

1Part of this paper has been presented at the 2021 IEEE International
Conference on Communications Workshops (ICC Workshops), Montreal,
Canada, Jun. 14-23, 2021 [1].

transmission, signal reconstruction solutions to achieve
communication-efficient FL.

• We derive a closed-form expression for the expected
convergence rate of our OBCSAA. This closed-form ex-
pression measures the performance tradeoff as a result of
the aggregation errors caused by sparsification, dimension
reduction, quantization, signal reconstruction and additive
white gaussian noise (AWGN), which provides a fresh
perspective to design analog wireless systems.

• Guided by the theoretical results, we formulate a joint
optimization problem of computation and communication
to optimize the worker selection and power control. Given
the practical limitation on allowable peak transmit power
and available bandwidth, this optimization problem aims
to mitigate the aggregation errors. To solve this non-
convex optimization problem, we propose two solutions:
the enumeration-based method and the alternating di-
rection method of multipliers (ADMM) approach for
the scenarios of small networks and large networks,
respectively.

It is worth noting that, there exist related works that apply
1-bit CS to FL [34], analyze the convergence of FL algorithms
with information compression methods [35]–[41] and optimize
the convergence errors [38]. However, they are originally
designed for the vanilla FL over digital-communication links,
which cannot be directly applied to FLOA settings of this
work. In fact, there is a big difference between vanilla FL
and FLOA from the aspects of local-gradient aggregation
and global-gradient computation. In vanilla FL over digital
communications, the knowledge of local updates at individual
workers can be extracted and leveraged for resource opti-
mization and algorithm design, which is however inaccessible
in FLOA due to the analog aggregation nature. This major
difference as well as the physical-layer aspects of wireless
connections gives rise to technical challenges to deal with
in the approach design and system optimization for FLOA,
including the design for 1-bit CS, optimizing the commu-
nication resource allocation and transmission scheduling in
practical implementation, as they are not yet fully considered
and well explored by the current literature [17]–[19], [21],
[23], [24]. Compared to [17], [18], [21] that consider the
fraction of scheduled devices as the learning metric which
separates communication and computation, our learning metric
is learning convergence with respect to CS and communication
factors, which hence provides the exact relationship between
communication and computation. Different from [17]–[19],
[21] developed on the assumption that the local updates have
to follow independent and identically distributed (IID) with
zero mean and unit variance, our work adopts 1-bit CS,
which enables to achieve power control for individual workers
even without any gradient statistical information required by
[17]–[19], [21]. Compared to [23], [24], our work not only
applies the 1-bit quantization after dimensionality reduction,
but also provides convergence analysis on 1-bit CS based
FLOA, which leads to joint optimization of computation and
communications. Through signal reconstruction, we recover
the sum of sparse original local gradients for training, which
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is different from the existing work [19] that uses quantized
local gradients. In short, our work is a holistic integration of
gradient sparsification, dimensionality reduction, quantization
and signal reconstruction for efficient FLOA.

We evaluate the proposed OBCSAA in solving image
classification problems on the MNIST dataset. Simulation
results show that our proposed OBCSAA achieves comparable
performance to the existing work [19] and the ideal case
where FL is implemented by perfect aggregation over error-
free wireless channels, with much enhanced communication
efficiency.

The rest of this paper is organized as follows. The system
model of 1-bit compressive sensing for FL over the air
is presented in Section II. The closed-form expression of
the expected convergence rate is derived in Section III to
quantify the impact of the aggregation errors on FL. A joint
optimization problem of communication and FL to optimize
worker selection and power control are studied in Section
IV. In Section V, we provide discussions on the convergence
analysis and algorithm design guideline of our work in the
stochastic gradient descent (SGD) case. Numerical results are
presented in Section VI, and conclusions are drawn in Section
VII.

II. SYSTEM MODEL

We consider a wireless FL system consisting of a single PS
and U local workers. Exploiting wireless analog aggregation
transmissions with 1-bit CS, the PS and all local workers
collaboratively train a shared learning model.

A. FL Model

Suppose that the union of all training datasets is denoted as
D =

⋃
iDi, where Di = {xi,k,yi,k}Ki

k=1 is the local dataset
and Ki = |Di| is the number of data samples at the i-th
worker, i = 1, . . . , U . In Di, the k-th data sample and its label
are denoted as xi,k and yi,k, k = 1, 2, ...,Ki, respectively. The
objective of the training procedure is to minimize the global
loss function F (w;D) of the global shared learning model
parameterized by w = [w1, . . . , wD] ∈ RD of the dimension
D, i.e.,

P1: w∗ = arg min
w∈RD

F (w;D), (1)

where F (w;D) = 1
K

∑U
i=1

∑Ki

k=1 f(w; xi,k,yi,k) is the sum
of K =

∑U
i=1Ki sample-wise loss functions defined by the

learning model. Note that the solution w∗ can be a local
optimum or a saddle point in the non-convex case, or the
global optimum in the convex case.

To avoid directly uploading the raw local datasets to the
PS for centralized training, the learning procedure in (P1) is
conducted in a distributed manner by an iterative gradient-
averaging algorithm [4], [42]. Specifically, at each iteration t,
a first-order algorithm, such as the gradient descent (GD)2, is

2In this work, we take the basic gradient descent as an example, which
can be extended to the stochastic gradient descent (SGD) by using a mini-
batch at each worker for training, as shown in Section V. Note that SGD
works more computation-efficient at the cost of more iterations and hence
more transmissions compared to GD.

applied at local workers in parallel to minimize the local loss
functions

Fi(wi;Di) =
1

Ki

Ki∑
k=1

f(wi; xi,k,yi,k), i = 1, ..., U, (2)

where wi = [w1
i , . . . , w

D
i ] ∈ RD is the local model parameter.

Each local worker updates its local gradient from the received
global learning model given its own local dataset:

gi =
1

Ki

Ki∑
k=1

∇f(wi; xi,k,yi,k), i = 1, ..., U, (3)

where ∇f(wi; xi,k,yi,k) is the gradient of f(wi; xi,k,yi,k)
with respect to wi.

Then the local gradients are sent to the PS, which are
aggregated as the global gradient:

g =
1

K

U∑
i=1

Kigi, (4)

and the global gradient g is sent back to the local workers,
which is then used to update the shared model as

w = w − αg, (5)

where α is the learning rate.
The FL implements (3), (4) and (5) iteratively3, until it

converges or the maximum number of iterations is reached.

B. Analog Aggregation Transmission Model

In the scenarios of FL applied over large-scale networks
and for training a high-dimensional model parameters, the
transmissions between the PS and local workers consume a
lot of communication resources and cause training latency.
Meanwhile, due to the transmit power and bandwidth limita-
tions posed by practical wireless communications, the digital
communication approach of transmitting and reconstructing all
the gradient entries one-by-one in an individual manner is an
overkill. Thus, in order to reduce the transmission overhead
and speed up communication time, we propose to apply 1-bit
compressive sensing [31]–[33] in FL over the air, which is
motivated by two facts. One is that the gradients involved in
large-size learning problems usually turn out to be compress-
ible with only a small number of entries having significant
values [7], [43], [44]. The other is that FL is usually running
in an average-based distributed learning mechanism. In our
work, through gradient sparsification, the compression nature
of CS allows to reduce the dimensionality of the transmitted
gradient vectors. Meanwhile, analog aggregation enables all
local workers to simultaneously use the same time-frequency
resources to transmit their updates to the PS. Further, the 1-
bit quantization not only minimizes the quantization overhead,
but also circumvents the unrealistic requirement on known
distribution of local gradients. The procedure of the proposed
1-bit CS method for FL is elaborated next.

3Practical implementation involves updating over a mini-batch of samples
per iterations and multiple rounds of iterations before communications.
However, they do not affect the conceptual development in this paper.
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1) Sparsification: Before transmission at the t-th iteration,
all local workers set all but the κ elements of their local gi,t’s
to 0, resulting in κ-level sparsification denoted by

g̃i,t = sparseκ(gi,t), (6)

where sparseκ(·) is a sparsification operation of a vector
such that g̃i,t is of length D and sparsity order κ. In our paper,
we perform the top-κ sparsification strategy as an example,
i.e., elements with the largest κ magnitudes are retained while
other elements are set to 0.

2) Dimensionality Reduction: To transmit the non-zero en-
tries of their sparsified local gradient vectors, the workers need
to transmit the indices and values of the non-zero entries to the
PS separately, which results in additional data transmissions.
To avoid this overhead, we use a similar method as in [24] that
all workers employ the same measurement matrix Φ ∈ RS×D
(S � D) that is a random Gaussian matrix. Note that
the specific κ-nonzero indices of sparse gradients after the
top-κ sparsification are usually different worker by worker4,
which results in an increased sparsity-level κ̄ (> κ) for the
superposed gradient signal. For reliable reconstruction of the
compressed gradients, it is desired that the restricted isometry
property (RIP) condition be met, that is, κU ≤ S � D and
each entry of Φ i.i.d. follows N (0, σ2

sp), where κU is the
upper bound of the sparsity of the combined sparse gradient,
i.e., κU > κ̄. In addition, Φ is shared between the workers
and the PS before transmission.

3) Quantization: Next, 1-bit quantization is applied to
Φg̃i,t’s, so that the resulting compressed local gradient C(gi,t)
at each worker is given by

C(gi,t) = sign(Φsparseκ(gi,t))

= sign(Φg̃i,t), i = 1, ..., U, (7)

where C(·) represents the overall effective operation including
top-κ sparsification, CS compression, and 1-bit quantization.
We denote C(gi,t) = [c1i,t, ..., c

s
i,t, ..., c

S
i,t]

T , where csi,t = ±1
due to 1-bit quantization.

4) Analog Aggregation Transmission: After collecting the
compressive measurements as in (7), all the workers, subject
to power control, transmit their local C(gi,t)’s in an analog
fashion, which are aggregated over the air at the PS to im-
plement the global gradient updating step in (4). Specifically,
each local C(gi,t) at worker i is multiplied by a power control
factor pi,t, and then sent to the PS over the air. When all
participating users transmit synchronously, the received signal
vector at the PS is given by

yt =

U∑
i=1

hi,tpi,tC(gi,t) + zt, (8)

where zt ∼ N (0, σ2I) is AWGN vector, and hi,t denotes the
channel coefficient between the i-th local worker and the PS

4When distributed workers have i.i.d. data, their κ-nonzero indices turn to
appear with large overlapping.

at the t-th iteration5.
Power control includes both worker selection and transmit

power scaling. Let βi,t denote the worker selection indicator,
i.e., βi,t = 1 indicates that the i-th worker at the t-th iteration
is scheduled to the FL algorithm, and βi,t = 0, otherwise. To
implement the averaging gradient step in (4), the signal vector
of interest at the PS at the t-th iteration is given by

ydesiredt =

∑U
i=1Kiβi,tC(gi,t)∑U

i=1Kiβi,t
. (9)

To obtain the signal vector of interest, we design the power
control factor pi,t as

pi,t =
βi,tKibt
hi,t

, (10)

where bt is a power scaling factor. Through this power scaling,
the transmit power at the i-th local worker satisfies the power
limitation PMax

i as

|pi,tcsi,t|2 =

Å
βi,tKibt
hi,t

csi,t

ã2
=
β2
i,tK

2
i b

2
t

h2i,t
≤ PMax

i , (11)

where csi,t is eliminated, due to csi,t = ±1.

Remark 1. As we can see from (11), the power is independent
of the specific local gradient, which enables the optimization
of power control in the absence of any the prior knowledge
of the gradients or gradient statistics. This is one of our
motivation to incorporate 1-bit CS into FL over the air.

After applying the power control pi,t and substituting (10)
into (8), the received signal vector of (8) can be rewritten as

yt =

U∑
i=1

Kibtβi,tC(gi,t) + zt. (12)

Upon receiving yt, the PS estimates the signal vector of
interest via a post-processing operation as6

ŷdesiredt =(

U∑
i=1

Kiβi,tbt)
−1yt

=(

U∑
i=1

Kiβi,t)
−1

U∑
i=1

Kiβi,tC(gi,t) + (

U∑
i=1

Kiβi,tbt)
−1zt

=ydesiredt +
zt∑U

i=1Kiβi,tbt
, (13)

where (
∑U
i=1Kiβi,tbt)

−1 is the post-processing factor.

5In this paper, we consider block fading channels, where the channel state
information (CSI) remains unchanged within each iteration in FL, but may
independently vary from one iteration to another. We assume that the CSI is
perfectly known at both the PS and local workers so that the channel phase
offset can be compensated at the local workers before they transmit their
gradient updates.

6It is noted that this channel inversion method can be improved by
adopting truncated channel values in the policy, which leads to better learning
performance for FL over deep fading channels [17].
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5) Reconstruction: After obtaining ŷdesiredt from (13), the
PS needs to use a CS reconstruction algorithm C−1(·) to
estimate the global gradient ĝt = C−1(ŷdesiredt ). Many
options for C−1(·) are available, such as the binary iterative
hard thresholding (BIHT) algorithm [32], the fixed point
continuation algorithms [45], the basis pursuit algorithms [46]
and other greedy matching pursuit algorithms [47]. Then the
PS broadcasts the estimated ĝt to all the local workers for
updating the shared model parameter as follows

wi,t+1 = wi,t − αĝt, i = 1, 2, ..., U. (14)

Comparing (14) and (5), aggregation errors may be intro-
duced in 1-bit CS based FL over the air, due to analog ag-
gregation transmissions, top-κ sparsification, CS compression,
and 1-bit quantization.

III. THE CONVERGENCE ANALYSIS

In this section, we study the effect of analog aggregation
transmissions and 1-bit CS on FL over the air, by analyzing
its convergence behavior.

A. Basic Assumptions

To facilitate the convergence analysis, we make the follow-
ing standard assumptions on the loss function and gradients.

Assumption 1 (Lipschitz continuity, smoothness): The
gradient ∇F (w) of the loss function F (w) is L-Lipschitz
[48], that is,

‖∇F (wt+1)−∇F (wt)‖ ≤ L‖wt+1 −wt‖, (15)

where L is a non-negative Lipschitz constant for the continu-
ously differentiable function F (·).

Assumption 2 (twice-continuously differentiable): The
function F (w) is twice-continuously differentiable and L-
smoothness. Accordingly, the eigenvalues of the Hessian ma-
trix of F (w) are bounded by [48]:

∇2F (wt) � LI. (16)

Assumption 3 (sample-wise gradient bounded): The
sample-wise gradients at local workers are bounded by their
global counterpart [49], [50]

‖ ∇f(wt) ‖2≤ ρ1 + ρ2 ‖ ∇F (wt) ‖2, (17)

where ρ1 ≥ 0 and 0 ≤ ρ2 < 1.
Assumption 4 (local gradient bounded ): The local

gradients are bounded by [51]

‖gi,t‖2 ≤ G2,∀i, t, (18)

where G is positive constant.

B. Convergence Analysis

We first analyze the total error between the recovered
averaged gradient in (14) and the ideal one in (5), including
the errors caused by sparsification, quantization, AWGN and
reconstruction algorithms. Based on the above Assumption 4,
we derive the following Lemma 1 to delineate the total error.

Lemma 1. The total error et = ĝt − gt at the t-th iteration
in FL is bounded by

E‖et‖2 = E(‖ĝt − gt‖2) ≤ 2

U∑
i=1

βi,t
D − κ
D

G2

+ 2C2

Ñ
1 + (1 + δ)

D − κ
SD

G2 +
σ2Ä∑U

i=1Kiβi,tbt
ä2é , (19)

where 0 < δ < 1 is the constant in the RIP condition, C =
2$
1−% , $ = 2

√
1+δ√
1−δ and % =

√
2δ

1−δ .

Proof. The proof of Lemma 1 is provide in Appendix A.

Remark 2. Lemma 1 indicates that a larger κ leads to a
smaller error, which suggests that sparsification is applied at
the expense of accuracy. And a larger S leads to a smaller
error because of less compression.

Next we present the main theorem for the expected conver-
gence rate of the 1-bit CS based FL over the air with analog
aggregation, as in Theorem 1.

Theorem 1. Given the power scaling factor bt, worker selec-
tion vectors βi,t, and the learning rate α = 1

L , we have the
following convergence rate at the T -th iteration.

1

T

T∑
t=1

‖ ∇F (wt−1) ‖2≤ 2L

T (1− 2ρ2(U +K))
E[F (w0)− F (w∗)]

+
2L

T (1− 2ρ2(U +K))

T∑
t=1

Bt,

(20)

where

Bt =
ρ1(U +K)

∑U
i=1Ki(1− βi,t)
LK

+ 2

U∑
i=1

βi,t
D − κ
LD

G2

+
2C2

L

Ñ
1 + (1 + δ)

D − κ
SD

G2 +
σ2Ä∑U

i=1Kiβi,tbt
ä2é ,

(21)

and w∗ is a feasible solution to the problem P1.

Proof. The proof of Theorem 1 is provide in Appendix B.

In Theorem 1, the expected gradient norm is used as an
indicator of convergence [52]–[54]. That is, the FL algorithm
achieves a τ -suboptimal solution if:

1

T

T∑
t=1

‖ ∇F (wt−1) ‖2≤τ, (22)

which guarantees the convergence of the algorithm to a
stationary point. If the objective function F (w) is non-convex,
then FL may converge to a local minimum or a saddle point.

From Theorem 1, we have

1

T

T∑
t=1

‖ ∇F (wt−1) ‖2≤
2L

T (1− 2ρ2(U +K))
E[F (w0)− F (w∗)]

+
2L

T (1− 2ρ2(U +K))

T∑
t=1

Bt
T→∞−→ 2L

T (1− 2ρ2(U +K))

T∑
t=1

Bt.

(23)
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The error floor at convergence is given by (23). Obviously,
minimizing this error floor can improve the convergence
performance of FL. Capitalizing on this theoretical result, we
provide joint optimization of communication and computation
next.
Remark 3. As we can see from Theorem 1, the maximization
of the number of participating workers is not necessarily the
optimal solution to achieving the best convergence perfor-
mance. This is because, the more the number of participating
workers, the larger the learning errors. Thus, it is necessary
to select the participating workers properly, instead of simply
maximizing the number of participating workers.
Remark 4. If we do not consider sparsification and the signals
transmitted by local workers can be perfectly recovered, then
κ = D holds, reducing the second term of the right hand of
(21) to be 0. When more participating workers selected, more
terms of the worker selection vector become βi,t = 1 for
selected worker i, which results in a smaller Bt in (21) and
a lower error floor in (23). Thus, it is desired to maximize
the number of participating workers to mitigate the noise
effect. However, the selection of participating workers needs
to satisfy their individual power constraints. Thus, a proper
power scaling factor bt is needed.
Remark 5. From (21) and (23), we can see that a larger bt
leads to more reduction of the negative impact of AWGN on
learning performance. However, The larger bt, the less number
of local workers can participate FL. Thus, we need to jointly
optimize βi,t and bt.
Remark 6. Obviously, the larger the sparsity ratio (i.e., the
larger κ), the better the convergence performance. Also, the
error floor decreases as the compressed dimension size S
increases. However, the efficiency of communication decreases
as κ and S increase. Thus, we need to balance learning
performance and communication efficiency, and then set the
values of these two variables κ and S for the desired tradeoff
in practical demands.
Remark 7. In the non-i.i.d. case, the factor ρ1 in Assumption
3 would become larger. As shown in (23), a larger ρ1 leads to
a larger error floor, resulting in worse learning performance.

IV. MINIMIZATION OF THE ERROR FLOOR FOR
FEDERATED LEARNING ALGORITHM

In this section, we formulate a joint optimization problem
to minimize the error floor in (23) for 1-bit CS based FL
over the air. In solving such a problem, we first develop an
optimal solution via discrete programming, and then propose
a computationally scalable ADMM-based suboptimal solution
for large-scale wireless networks.

A. Joint Optimization Problem Formulation

In the deployment of FL over the air, the error floor in
(23) is accumulated over iterations, resulting a performance
gap between F (wt−1) and F (w∗). Thus, we design an online
policy to minimize this gap at each iteration, which amounts
to iteratively minimizing Bt under the constraint of transmit
power limitation in (11).

At each iteration t, the PS aims to determine the
power scaling factor bt and the scheduling indicator βt =
[β1,t, β2,t, ..., βU,t] in order to minimize Rt, for given values
of the factors (i.e., C, S, and κ) related to 1-bit CS. Discarding
irrelevant terms, minimizing Bt is equivalent to minimizing

Rt =
ρ1(U +K)

∑U
i=1Ki(1− βi,t)
K

+ 2C2(

U∑
i=1

Kiβi,tbt)
−2σ2

+ 2

U∑
i=1

βi,t
D − κ
D

G2. (24)

The joint optimization problem is thus formulated as

P2: min
bt,βt

Rt (25a)

s.t.
β2
i,tK

2
i b

2
t

h2i,t
≤ PMax

i , βi,t ∈ {0, 1}, i = 1, 2, ..., U.

(25b)

To implement the optimization algorithm for solving the above
problem at the PS, the number of local samples and the
maximum power at each worker should be sent to the PS
by the local workers before the process of FL. These numbers
are fixed and never change in the iterative process.

B. Optimal Solution via Discrete Programming

As a mixed integer programming (MIP), P2 is non-convex
and challenging to solve due to the coupling of the real-valued
power scaling factor bt and the binary-valued scheduling
indicator βt. Note that once βt is given, the problem P2
reduces to a convex problem, where the optimal power scaling
bt can be efficiently solved using off-the-shelf optimization
algorithms, e.g., interior point method [55]. Accordingly, a
straightforward method is to enumerate all the 2U possibilities
of βt and output the one that yields the lowest objective value.
This enumeration-based method is summarized in Algorithm
1.

Algorithm 1 Optimal solution via the enumeration-based
method
Initialization:
{PMax

i , hi,t,Ki}Ui=1, Φ, G, κ.
Ensure:

The optimal solution {b∗t ,β∗t }.
1: Repeat
2: Select βt from its possibility;
3: Given βt, solve P2 to find {bt};
4: If the objective value is lower under this {bt,βt}, then

update {b∗t ,β∗t };
5: Until {all the possible of βt are enumerated}
6: return {b∗t ,β∗t }.

Remark 8. The enumeration-based method may be applicable
for a small number of workers, e.g., U ≤ 10; however, it
quickly becomes computationally infeasible as U increases.
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C. ADMM-based Suboptimal Solution

The enumeration-based method proposed in the last subsec-
tion is simple to implement, because the computation involves
basic function evaluations only. However, large-scale networks
with a large network size U makes it susceptible to high
computational complexity. To address the problem, we propose
an ADMM-based algorithm to jointly optimize the local
worker selection and power control. As we will show later,
the proposed ADMM-based approach has a computational
complexity that scales linearly in U .

The main idea is to decompose the combinatorial optimiza-
tion P2 into U parallel smaller integer programming problems.
Nonetheless, conventional decomposition techniques, such as
dual decomposition, cannot be directly applied to P2 due to the
coupled variables {bt,βt} and the constraint (25b) among the
workers. To eliminate these coupling factors, we first introduce
an auxiliary vector rt = [r1,t, r2,t, ..., rU,t] and define two
auxiliary functions as

Q1(rt) = 2C2(

U∑
i=1

Kiri,t)
−2σ2, (26)

and

Q2(βt) =
ρ1(U +K)

∑U
i=1Ki(1− βi,t)
K

+ 2

U∑
i=1

βi,t
D − κ
D

G2.

(27)

Then we introduce another auxiliary vector qt =
[q1,t, q2,t, ..., qU,t] and reformulate P2 as the following P3.

P3: min
bt,{ri,t,qi,t,βi,t}Ui=1

Q1(rt) +Q2(βt) +

U∑
i=1

Q3,i(ri,t)

(28a)
s.t. ri,t = βi,tqi,t, i = 1, 2, ..., U, (28b)

qi,t = bt, i = 1, 2, ..., U, (28c)
ri,t > 0, bt > 0, i = 1, 2, ..., U,

(28d)
βi,t ∈ {0, 1}, i = 1, 2, ..., U, (28e)

where

Q3,i(ri,t) =

 0, ri,t ∈
ß
ri,t

∣∣∣∣ ∣∣∣∣Kiri,t
hi,t

∣∣∣∣2 ≤ PMax
i

™
,

∞, otherwise.

(29)

Here, the constraints (28b) and (28c) are introduced to
decouple βi,t and bt while guaranteeing that P3 and P2 are
equivalent.

By introducing multipliers, ξi,t ≥ 0’s and ςi,t ≥ 0’s to
the constraints in (28b) and (28c), we can write a partial

augmented Lagrangian of P3 as

L(bt,βt, rt,qt, ξt, ςt)

=Q1(rt) +Q2(βt) +

U∑
i=1

Q3,i(ri,t)

+

U∑
i=1

ξi,t(ri,t − βi,tqi,t) +
c

2

U∑
i=1

(ri,t − βi,tqi,t)2

+

U∑
i=1

ςi,t(qi,t − bt) +
c

2

U∑
i=1

(qi,t − bt)2, (30)

where ξt = [ξ1,t, ξ2,t, ..., ξU,t], ςt = [ς1,t, ς2,t, ..., ςU,t], and
c > 0 is a fixed step size. The corresponding dual problem is

P4: max
{ξi,t,ςi,t}Ui=1

M(ξt, ςt) (31a)

s.t. ξi,t ≥ 0, ςi,t ≥ 0, i = 1, 2, ..., U,
(31b)

where M(ξt, ςt) is the dual function, which is given by

M(ξt, ςt) =

min
bt,{ri,t,qi,t,βi,t}Ui=1

L(bt, rt,qt,βt) (32a)

s.t. ri,t > 0, bt > 0, qi,t > 0,

βi,t ∈ {0, 1}, i = 1, 2, ..., U. (32b)

The ADMM technique [56] solves the dual problem P4 by
iteratively updating {rt, bt}, {qt,βt}, and {ξt, ςt}. We denote
the values at the l-th iteration as {r{l}t , b

{l}
t }, {q

{l}
t ,β

{l}
t }, and

{ξ{l}t , ς
{l}
t }. Then, the variables are sequentially updated at the

(l + 1)-th iteration as follows:
1) Step 1: Given {q{l}t ,β

{l}
t }, and {ξ{l}t , ς

{l}
t }, we first

minimize L with respect to {rt, bt}, where

{r{l+1}
t , b

{l+1}
t } = arg min

rt,bt
L(rt, bt). (33)

Notice that (33) is a convex problem, which can be solved
to obtain the optimal solution, e.g., by using the projected
Newton’s method [55]. On the other hand, this optimization
problem in (33) can also be decomposed into U + 2 parallel
convex subproblems. Specifically, let Q1(rt) = 2C2(rt)

−2σ2

in place of Q1 in (26), and rt =
∑U
i=1Kiri,t be an ex-

tra constraint. Then (33) can be solved by solving U + 2
parallel subproblems (due to U + 2 optimization variables,
i.e., rt, r1,t, ..., rU,t, bt). Since the complexity of solving these
U + 2 subproblems does not scale with U , thus the overall
computational complexity of Step 1 is O(U).

2) Step 2: Given {r{l+1}
t , b

{l+1}
t }, and {ξ{l}t , ς

{l}
t }, we then

minimize L with respect to {qt,βt}, where

{q{l+1}
t ,β

{l+1}
t } = arg min

qt,βt

L(qt,βt). (34)

This optimization can be decomposed into U parallel sub-
problems. In each subproblem (e.g., the i-th subproblem), by
considering βi,t = 0 and βi,t = 1, respectively, the i-th
subproblem is expressed as

{qi,t}{l+1} =


arg min

qi,t
L (qi,t, 0), βi,t = 0,

arg min
qi,t
L (qi,t, 1), βi,t = 1,

(35)
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where

L (qi,t, 0) =
ρ1(U +K)Ki

K
+ {ξi,t}{l}{ri,t}{l+1}

+
c

2

Ä
{ri,t}{l+1}

ä2
+ ςi,t

Ä
qi,t − {bt}{l+1}

ä
+
c

2

Ä
qi,t − {bt}{l+1}

ä2
, (36)

and

L (qi,t, 1) = (1 + δ)
D − κ
D

G2 +
c

2

Ä
qi,t − {bt}{l+1}

ä2
+ {ξi,t}{l}

Ä
{ri,t}{l+1} − qi,t

ä
+ ςi,t

Ä
qi,t − {bt}{l+1}

ä
+
c

2

Ä
{ri,t}{l+1} − qi,t

ä2
. (37)

For both βi,t = 0 and βi,t = 1, (35) solves a strictly convex
problem, and hence is easy to obtain the optimal solution.
Accordingly, we can simply select between βi,t = 0 or βi,t =
1 that yields a smaller objective value in (35) as {βi,t}{l+1},
and the corresponding optimal solution of {qi,t}{l+1}. After
solving the U parallel subproblems, the optimal solution to
(34) is given by {q{l+1}

t ,β
{l+1}
t }. Notice that the complexity

of solving each subproblem in (34) scales with U , and thus
the overall computational complexity of Step 2 is O(U).

3) Step 3: Finally, given {r{l+1}
t , b

{l+1}
t } and

{q{l+1}
t ,β

{l+1}
t }, we maximize L with respect to {ξt, ςt},

which is achieved by updating the multipliers as follows

{ξi,t}{l+1} = {ξi,t}{l} + c
(
{ri,t}{l+1}

− {βi,t}{l+1}{qi,t}{l+1}
)
, i = 1, ..., U, (38)

{ςi,t}{l+1} = {ςi,t}{l} + c
Ä
{qi,t}{l+1}

−{bt}{l+1}
ä
, i = 1, ..., U. (39)

Obviously, the computational complexity of Step 3 is O(U)
as well.

The ADMM method implements the above Steps 1 to 3 iter-
atively until meeting a specified stopping criterion. In general,
the stopping criterion is specified by two thresholds [56]: an
absolute tolerance (e.g.,

∑U
i=1 |{qi,t}{l+1} − {bt}{l+1}|) and

a relative tolerance (e.g., |{bt}{l+1} − {bt}{l}|). The pseudo-
code of the ADMM based method solving (P3) is summarized
in Algorithm 2.
Remark 9. The proposed Algorithm 2 is guaranteed to con-
verge, because the dual problem P4 is convex. Its convergence
is insensitive to the step size c [57]. Due to the potential duality
gap of non-convex problems, Algorithm 2 may not exactly
converge to the primal optimal solution to P3, Thus, the dual
optimal solution {b∗t ,β∗t } is an approximate solution to P3.
Remark 10. In this work, the complexity is evaluated with re-
sponse to the number of workers U , that is, how it scales when
U increases asymptotically. In this sense, the computational
complexity of one ADMM iteration (including the 3 steps) is
O(U), because the highest complexity of these three steps is
O(U). This complexity O(U) scales linearly in U rather than

Algorithm 2 ADMM-based suboptimal solution

Initialization:
{PMax

i , hi,t,Ki}Ui=1, Φ, G, κ.
Ensure:

The optimal solution {b∗t ,β∗t }.
1: Repeat
2: Update {r{l+1}

t , b
{l+1}
t } by solving (33);

3: Update {q{l+1}
t ,β

{l+1}
t } by solving (34);

4: Update {ξ{l+1}
t , ς

{l+1}
t } by using (38), and(39);

5: Until {the convergence threshold is satisfied or the max-
imum number of iterations is reached}.

6: return {b∗t ,β∗t }.

an exponential complexity O(2U ) in the enumeration-based
method.

V. THE SGD CASE

In this section, we focus on the convergence behavior and
algorithm design principle of our work in the SGD case,
i.e., using the mini-batch SGD algorithm to update learning
models. Here, we provide the expected convergence rate of
the 1-bit CS based FL over the air with analog aggregation
for the mini-batch gradient descent with a constant mini-batch
size Kb, while the results directly apply to the standard SGD
by setting Kb = 1. Theorem 2 summarizes the convergence
behavior of the 1-bit CS based FL over the air with analog
aggregation for the SGD case.

Theorem 2. Given the power scaling factor bt, worker se-
lection vectors βi,t, and the learning rate α = 1

L , we have
the following convergence rate for the SGD case at the T -th
iteration.

1

T

T∑
t=1

‖ ∇F (wt−1) ‖2≤

2LK2

T (K2 − 2ρ2(ϑ+ 2UK2))
E[F (w0)− F (w∗)]

+
2LK2

T (K2 − 2ρ2(ϑ+ 2UK2))

T∑
t=1

Bsgd
t , (40)

where

Bsgd
t =

ρ1

(
ϑ+ 2UK2

Ä∑U
i=1 βi,t

ä−1)
LK2

+
2

L

(
C2

S
εt +

U∑
i=1

βi,t
D − κ
D

G2

)
, (41)

and ϑ = 2U2K2
b +K − 4KUKb − UKb.

Proof. The proof of Theorem 2 is provide in Appendix C.

Per Theorem 2, we minimize Bsgd
t to reduce the perfor-

mance gap at each iteration, which is equivalent to minimizing
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Rsgd
t = Uρ1

(
U∑
i=1

βi,t

)−1
+ C2(

U∑
i=1

Kbβi,tbt)
−2σ2

+

U∑
i=1

βi,t
D − κ
D

G2. (42)

For given values of the factors (i.e., C, S, and κ) related to
1-bit CS, the joint optimization problem for the SGD case is
thus formulated as

P5: min
bt,βt

Rsgd
t (43a)

s.t.
β2
i,tK

2
b b

2
t

h2i,t
≤ PMax

i , βi,t ∈ {0, 1}, i = 1, 2, ..., U.

(43b)

To solve the above optimization problem P5, we can also
apply the enumeration-based method and the ADMM-based
method as described in Section IV. For the ADMM-based
method, the defined two auxiliary functions are formulated
as

Qsgd
1 (rt) = Uρ1

(
U∑
i=1

ri,t

)−1
+ C2(

U∑
i=1

Kiri,t)
−2σ2, (44)

and

Qsgd
2 (βt) =

U∑
i=1

βi,t
D − κ
D

G2. (45)

Then, the rest of the solving procedure can be developed in
a way similar to the GD case as in Section IV.C, which we
thus omit here.

Remark 11. From Rsgd
t in (42), we can see that the larger Kb,

the lower Rsgd
t , i.e., the better learning performance.

VI. SIMULATION RESULTS AND EVALUATION

In the simulations, we evaluate the performance of the
proposed 1-bit CS based FL over the air for an image
classification task. The simulation settings are given as follows
unless specified otherwise. We consider that the FL system has
U workers, which is varying from 4 to 20 in our simulations,
and set their maximum peak power to be P Max

i = 10 + i
mW for any i ∈ [1, U ]. The wireless channels between the
workers and the PS are modeled as i.i.d. Rayleigh fading,
by generating hi,t’s from an normal distribution N (0, 1) for
different i and t. Without loss of the generality, the variance of
AWGN at PS is set to be σ2 = 10−4 mW. Unless otherwise
specified, we perform top κ = 1000 sparsification, and the
dimension of compressed local C(gi)’s is set to S = 10000
for 10 workers. The elements of the measurement matrix Φ
are generated from N (0, 1/S). The BIHT algorithm in [32]
is selected as an example for the signal reconstruction at the
PS.

We consider the learning task of handwritten-digit recog-
nition using the well-known MNIST dataset7 that consists

7http://yann.lecun.com/exdb/mnist/

of 10 classes ranging from digit “0” to “9”. In the MNIST
dataset, a total of 60000 labeled training data samples and
10000 test samples are available for training a learning model.
In our experiments, we train a multilayer perceptron (MLP)
with a 784-neuron input layer, a 64-neuron hidden layer, and
a 10-neuron softmax output layer. We adopt cross entropy
as the loss function, and rectified linear unit (ReLU) as the
activation function. The total number of parameters in the
MLP is D = 50890. The learning rate α is set as 0.1. We
randomly select 3000 distinct training samples and distribute
them to all local workers as their different local datasets, i.e.,
Ki = K̄ = 3000, for any i ∈ [1, U ].

For comparison, we use a benchmark where the transmis-
sion of local gradient updates is always reliable and error-free
to achieve perfect aggregation, i.e., overlooking the influence
of the wireless channel. This benchmark is an ideal case,
which is named as perfect aggregation. Also, we compare
our proposed scheme with the existing analog aggregation
based work (named as OBDA) in [19] that adopts the idea
of signSGD [58]. For performance evaluation, we provide the
results of training loss and test accuracy versus communication
rounds under different parameter settings as follows.

In Fig. 1, we first explore the impact of different sparsi-
fication operators on our proposed OBCSAA by evaluating
the training loss and test accuracy of the MLP. It is observed
that our proposed OBCSAA can provide desired performance
(which approaches to that of OBDA and perfect aggregation),
with a degree of sparsification, e.g., κ = 1000, where the
sparsity ratio is 1000/50890. As κ increases, when all FL
algorithms converge, the training loss decreases and the test
accuracy increases. This is because that the larger κ is, the less
gradient update information loses per communication round.

Fig. 2 shows the impact of the reduced dimension size S on
the performance of our proposed OBCSAA under κ = 1000,
where the performance increases as S increases. When S is
large enough, performance barely increases. This is because
that the larger S is, the more conducive to signal reconstruc-
tion. When S is large enough, the optimal performance of
the reconstruction algorithm is achieved. In fact, the larger
S is, the more communication resources are needed. Thus,
there is a tradeoff between FL performance and communica-
tion efficiency. Compared with the traditional uncompressed
FL adopting digital communications, our proposed OBCSAA
under S = 5000 and κ = 1000 occupies only one channel
and 5000

50890 transmission time, while the performance is less
than 5 and 10 percent lower than that of OBDA and perfect
aggregation. These results illustrates that our OBCSAA under
appropriate parameters can greatly reduce the communication
overhead and transmission latency while ensuring comparable
FL performance to the idealized and orthogonal transmission
cases.

The performance of the proposed enumeration-based
method and ADMM for OBCSAA under different U are
compared in Fig. 3, where the enumeration-based method has
better performance compared to ADMM. This results precisely
demonstrate the effectiveness of our joint optimization scheme,
which can alleviate the impact of aggregation errors on FL.
Besides, we can see that the performance is higher, when the
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Fig. 1: The performance of our proposed OBCSAA under different
sparsification operators compared to perfect aggregation without

sparsification.

total number of local workers U is larger. This is because an
increase in the number of workers leads to an increased volume
of data available for the FL algorithm and more workers with
high channel gain can be selected.

In Fig. 4, we evaluate the test accuracy of our proposed
OBCSAA compared with benchmarks for the SGD case with
varying total numbers of local workers, where we fix the mini-
batch size Kb = 64. As we can see from Fig. 4, the perfor-
mances of all the schemes are increasing as the total number
of local workers increases. While the total number of local
workers continues to increase, the performance improvement
for all methods shrinks and flattens out eventually. This is
because the data samples turn to be sufficient for accurate
training when U exceeds a certain level.

In Fig. 5, we further compare the communication efficiency
together with the learning accuracy achieved by our pro-
posed OBCSAA with that of an existing analog compression
scheme [23], called CA-DSGD, which reflects the tradeoff
between the communication cost and the learning accuracy.
The communication cost is denoted as S

D , where the larger
S indicates the higher communication cost. According to Fig.
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Fig. 2: The performance of our proposed OBCSAA under different S.

5, to obtain a desired learning accuracy, the communication
cost consumed by our proposed OBCSAA is less than that
of CA-DSGD. In other words, given the same communication
cost, our proposed OBCSAA can achieve a higher learning
accuracy than CA-DSGD. Thanks to the joint optimization of
power control and worker selection, our OBCSAA achieves a
better tradeoff between learning and communication than CA-
DSGD where only a fixed power allocation is adopted without
worker selection.

VII. CONCLUSION

This paper studies a communication-efficient FL based on
1-bit CS and analog aggregation transmissions. A closed-form
expression is derived for the expected convergence rate of the
FL algorithm. This theoretical result reveals the tradeoff be-
tween convergence performance and communication efficiency
as a result of the aggregation errors caused by sparsification,
dimension reduction, quantization, signal reconstruction and
noise. Guided by this revelation, a joint optimization problem
of communication and learning is developed to mitigate aggre-
gation errors, which results in an optimal worker selection and
power control. An enumeration-based method and an ADMM

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3209190

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: George Mason University. Downloaded on December 23,2022 at 23:11:14 UTC from IEEE Xplore.  Restrictions apply. 



11

0 50 100 150 200
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ai

ni
ng

 lo
ss

Exhaustive method for OBCSAA with U = 8
ADMM method for OBCSAA with U = 8
Exhaustive method for OBCSAA with U = 4
ADMM method for OBCSAA with U = 4

(a) Training loss

0 50 100 150 200
Communication rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
es

t 
ac

cu
ra

cy

Exhaustive method for OBCSAA with U = 8
ADMM method for OBCSAA with U = 8
Exhaustive method for OBCSAA with U = 4
ADMM method for OBCSAA with U = 4

(b) Test accuracy

Fig. 3: The performance of joint optimization solving methods for our
proposed OBCSAA under different U .

method are proposed to solve this challenging non-convex
problem, which can obtain the optimal solution for small-scale
networks and sub-optimal solution for large-scale networks,
respectively. Simulation results show that our proposed FL
can greatly improve communication efficiency while ensuring
desired learning performance.

APPENDIX A
PROOF OF LEMMA 1

Proof. Under the Assumption 4, the sparsification error esi,t ∈
RD,∀i, t satisfies

E‖esi,t‖2 = E‖g̃i,t − gi,t‖2 ≤
D − κ
D

G2. (46)

Since Φ satisfies the RIP condition [59],

(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2, (47)
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Fig. 4: The performance comparison of different methods under various total
numbers of local workers in the SGD case with κ = 1000 and S = 10000.
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where x is a k-sparse vector, then the quantization error eqi,t ∈
RS is derived as

E‖eqi,t‖
2 = E‖sign(Φg̃i,t)−Φg̃i,t‖2

≤ E(‖sign(Φg̃i,t)‖2 + ‖Φg̃i,t‖2)

≤ S + (1 + δ)
D − κ
D

G2. (48)

When the PS obtains ŷdesiredt in (13), it reconstructs the
signal ĝt, in the presence of norm-limited measurement error
ert . It has been shown that robust reconstruction can be
achieved by solving [31]:

ĝt = arg min
g̃t

‖g̃t‖1 s.t. ‖ŷdesiredt −Φg̃t‖2 ≤ εt. (49)

where εt is a small value that bounds the norm of the
reconstruction error, and is typically set empirically [31]. We
opt to set εt in a more principled way by the expected norm,
as follows:
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E‖ŷdesiredt −Φg̃t‖2 = E

∥∥∥∥∥ŷdesiredt −
∑U
i=1Kiβi,t(Φg̃i,t)∑U

i=1Kiβi,t

∥∥∥∥∥
2

=E

∥∥∥∥∥
∑U
i=1Kiβi,te

q
i,t∑U

i=1Kiβi,t
+

zt∑U
i=1Kiβi,tbt

∥∥∥∥∥
2

=E

∥∥∥∥∥eq1,t +
zt∑U

i=1Kiβi,tbt

∥∥∥∥∥
2

≤E‖eq1,t‖2 + E

∥∥∥∥∥ zt∑U
i=1Kiβi,tbt

∥∥∥∥∥
2

≤S + (1 + δ)
D − κ
D

G2 +
Sσ2Ä∑U

i=1Kiβi,tbt
ä2

.
=εt. (50)

In this case, the reconstruction error norm is bounded by

‖ĝt − g̃t‖2 ≤
C2

S
εt, (51)

where C is the constant depending on the properties of the
measurement matrix Φ but not on the signal [60]. According
to the Theorem 1.2 in [59], if Φ has δ ≤

√
2− 1, C can be

given by

C =
2$

1− %
, (52)

where $ = 2
√
1+δ√
1−δ and % =

√
2δ

1−δ .
It is noted that g̃t in (51) is the desired sparse global gradient

after the worker selection. As a result, the total error at the
t-th iteration in FL is given by

E‖et‖2 = E(‖ĝt − gt‖2) = E(‖ĝt − (g̃t + est )‖2)

≤ E(‖ĝt − g̃t‖+ ‖est‖)2 ≤ E(2‖ĝt − g̃t‖2 + 2‖est‖2)

≤ 2
C2

S
εt + 2

U∑
i=1

βi,t
D − κ
D

G2

= 2C2

(
1 + (1 + δ)

D − κ
SD

G2 +
σ2Ä∑U

i=1Kiβi,tbt
ä2)

+ 2

U∑
i=1

βi,t
D − κ
D

G2, (53)

where est =
∑U
i=1 βi,te

s
i,t.

APPENDIX B
PROOF OF THEOREM 1

Proof. To prove Theorem 1, we first rewrite F (wt) as the
expression of its second-order Taylor expansion, which is
given by

F (wt) = F (wt−1) + (wt −wt−1)T∇F (wt−1)

+
1

2
(wt −wt−1)T∇2F (wt−1)(wt −wt−1)

(a)

≤F (wt−1) + (wt −wt−1)T∇F (wt−1) +
L

2
‖ wt −wt−1 ‖2,

(54)

where Assumption 2 is applied in the step (a).

After recovering the desired ĝt from the received signal by
solving (49), then the common model is updated by

wt =wt−1 − αĝt

=wt−1 − α(∇F (wt−1)− o), (55)

where

o =∇F (wt−1)− ĝt. (56)

Given the learning rate α = 1
L (a special setting for simpler

expression without losing the generality), then the expected
optimization function of E[F (wt)] from (54) can be expressed
as

E[F (wt)] ≤E
ï
F (wt−1)− α(∇F (wt−1)− o)T∇F (wt−1)

+
Lα2

2
‖ ∇F (wt−1)− o ‖2

ò
(b)
=E[F (wt−1)]− 1

2L
‖ ∇F (wt−1) ‖2 +

1

2L
E[‖ o ‖2],

(57)

where the step (b) is derived from the fact that

Lα2

2
‖ ∇F (wt−1)− o ‖2=

1

2L
‖ ∇F (wt−1) ‖2

− 1

L
oT∇F (wt−1) +

1

2L
‖ o ‖2 . (58)

According to (53), it has ‖et‖2 ≤ 2C2

S εt +

2
∑U
i=1 βi,t

D−κ
D G2. Then we derive E[‖ o ‖2] as follows

E[‖ o ‖2] = E[‖∇F (wt−1)− ĝt‖]
=E[‖∇F (wt−1)− gt − et‖]

=E

[∥∥∥∥∑U
i=1

∑Ki
k=1∇f(wt−1;xi,k,yi,k)

K

− (
U∑

i=1

Kiβi,t)
−1

U∑
i=1

Ki∑
k=1

βi,t∇f(wt−1;xi,k,yi,k)− et

∥∥∥∥2
]

≤E

[∥∥∥∥ U∑
i=1

(
1

K
− βi,t∑U

i=1Kiβi,t
)

Ki∑
k=1

∇f(wt−1,xi,k,yi,k)− et

∥∥∥∥2
]
.

(59)

Applying the triangle inequality of norms: ‖X + Y‖ ≤
‖X‖+‖Y‖, the submultiplicative property of norms: ‖XY‖ ≤
‖X‖‖Y‖, and the Jensen’s inequality: (

∑n
i=1 ai)

2 ≤
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n
∑n
i=1 a

2
i , we further derive (59) as follows

E[‖ o ‖2] ≤ E[2‖et−1‖2]

+ E

[
2

∥∥∥∥∥
U∑
i=1

(
1

K
− βi,t∑U

i=1Kiβi,t
)

Ki∑
k=1

∇f(wt−1,xi,k,yi,k)

∥∥∥∥∥
2]

≤ 2E[‖et−1‖2] + E

[
2(U +K)

U∑
i=1

(
1

K

− βi,t∑U
i=1Kiβi,t

)2
Ki∑
k=1

‖∇f(wt−1,xi,k,yi,k)‖2
]

≤ 4C2

S
εt + 4

U∑
i=1

βi,t
D − κ
D

G2 + 2(U +K)

U∑
i=1

(
1

K

− βi,t∑U
i=1Kiβi,t

)2
Ki∑
k=1

‖∇f(wt−1,xi,k,yi,k)‖2. (60)

Applying (17) in Assumption 3 to (60), we further derive
the following result as

E[‖ o ‖2] ≤ 2(U +K)

U∑
i=1

(
1

K
− βi,t∑U

i=1Kiβi,t
)2Ki(ρ1

+ ρ2‖∇F (wt−1)‖2) +
4C2

S
εt + 4

U∑
i=1

βi,t
D − κ
D

G2

= 2(U +K)(
1∑U

i=1Kiβi,t
− 1

K
)(ρ1 + ρ2‖∇F (wt−1)‖2)

+
4C2

S
εt +

U∑
i=1

4βi,t
D − κ
D

G2

≤
2(U +K)

∑U
i=1Ki(1− βi,t)
K

(ρ1 + ρ2‖∇F (wt−1)‖2)

+
4C2

S
εt + 4

U∑
i=1

βi,t
D − κ
D

G2. (61)

Substituting (61) to (57), we have:

E[F (wt)] ≤ E[F (wt−1)]− 1

2L
+

2(U +K)
∑U
i=1Ki(1− βi,t)

2LK
(ρ1 + ρ2‖∇F (wt−1)‖2)

+
4C2εt
2LS

+ 4

U∑
i=1

βi,t
D − κ
2LD

G2 ‖ ∇F (wt−1) ‖2

=E[F (wt−1)] +
ρ1(U +K)

∑U
i=1Ki(1− βi,t)
LK

+

Å
ρ2(U +K)

∑U
i=1Ki(1− βi,t)
LK

− 1

2L

ã
‖ ∇F (wt−1) ‖2

+
2

L
(
C2

S
εt +

U∑
i=1

βi,t
D − κ
D

G2). (62)

Summing up the above inequalities from t = 1 to t = T ,
we get

E[F (wt)− F (w0)] ≤−
T∑
t=1

At ‖ ∇F (wt−1) ‖2 +

T∑
t=1

Bt,

(63)

where

At =
1

2L
−
ρ2(U +K)

∑U
i=1Ki(1− βi,t)
LK

, (64)

Bt =
ρ1(U +K)

∑U
i=1Ki(1− βi,t)
LK

+
2

L

(
C2

S
εt +

U∑
i=1

βi,t
D − κ
D

G2

)
. (65)

The inequality (63) can be also written as

T∑
t=1

At ‖ ∇F (wt−1) ‖2 ≤ E[F (w0)− F (wt)] +

T∑
t=1

Bt

≤ E[F (w0)− F (w∗)] +

T∑
t=1

Bt.

(66)

Since 1
2L −

ρ2(U+K)
L ≤ At ≤ 1

2L , we have

1

T

T∑
t=1

(
1

2L
− ρ2(U +K)

L
) ‖ ∇F (wt−1) ‖2

≤ 1

T

T∑
t=1

At ‖ ∇F (wt−1) ‖2

≤ 1

T
E[F (w0)− F (w∗)] +

1

T

T∑
t=1

Bt. (67)

As a result, we get

1

T

T∑
t=1

‖ ∇F (wt−1) ‖2≤ 2L

T (1− 2ρ2(U +K))

T∑
t=1

Bt

+
2L

T (1− 2ρ2(U +K))
E[F (w0)− F (w∗)]. (68)

The proof is completed.

APPENDIX C
PROOF OF THEOREM 2

Proof. For the SGD method, the local gradient of the i-th
worker is calculated at the t-th iteration as

gi,t = EDi

ñ∑Kb

k=1∇f(wt−1,xi,k,yi,k)

Kb

ô
, i = 1, 2, ..., U,

(69)

where EDi
[·] is the expectation, which represents that the i-th

worker randomly chooses Kb samples from its local dataset
Di to compute the local gradient.

Given (69), the desired signal vector at the PS at the t-th
iteration in (9) for the GD case is now expressed as

ydesiredt =

∑U
i=1Kbβi,tC(gi,t)∑U

i=1Kbβi,t
=

∑U
i=1 βi,tC(gi,t)∑U

i=1 βi,t
. (70)
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Accordingly, the estimation of the signal vector of interest
via a post-processing operation in (13) is written as

ŷdesiredt = (

U∑
i=1

Kbβi,tbt)
−1yt

=(

U∑
i=1

Kbβi,t)
−1

U∑
i=1

Kbβi,tC(gi,t) + (

U∑
i=1

Kbβi,tbt)
−1zt

=ydesiredt +
zt∑U

i=1Kbβi,tbt
, (71)

where (
∑U
i=1Kbβi,tbt)

−1 works as the post-processing factor.

Then, we get the norm boundary εsgdt defined in (49) as

εsgdt
.
= E‖ŷdesiredt −Φg̃t‖2

=E

∥∥∥∥∥ŷdesiredt −
∑U
i=1Kbβi,t(Φg̃i,t)∑U

i=1Kbβi,t

∥∥∥∥∥
2

(72)

=E

∥∥∥∥∥
∑U
i=1 βi,te

q
i,t∑U

i=1 βi,t
+

zt∑U
i=1Kbβi,tbt

∥∥∥∥∥
2

=E

∥∥∥∥∥eq1,t +
zt∑U

i=1Kbβi,tbt

∥∥∥∥∥
2

≤E‖eq1,t‖2 + E

∥∥∥∥∥ zt∑U
i=1Kbβi,tbt

∥∥∥∥∥
2

≤S + (1 + δ)
D − κ
D

G2 +
Sσ2Ä∑U

i=1Kbβi,tbt
ä2 . (73)

Thus, the total error at the t-th iteration in FL is bounded
by

E‖et‖2 = E(‖ĝt − gt‖2) = E(‖ĝt − (g̃t + est )‖2)

≤ E(2‖ĝt − g̃t‖2 + 2‖est‖2)

≤ 2C2

S
εsgdt + 2

U∑
i=1

βi,t
D − κ
D

G2

= 2C2

(
1 + (1 + δ)

D − κ
SD

G2 +
σ2Ä∑U

i=1Kbβi,tbt
ä2)

+ 2

U∑
i=1

βi,t
D − κ
D

G2. (74)

Let Ni,t denote the set of the samples that are not chosen
by the i-th worker at the t-th iteration, E[‖o‖2] can be derived

as

E[‖ o ‖2] = E[‖∇F (wt−1)− ĝt‖]
=E[‖∇F (wt−1)− gt − et‖]

=E

[∥∥∥∥∑U
i=1

∑Ki
k=1∇f(wt−1;xi,k,yi,k)

K

− (

U∑
i=1

Kbβi,t)
−1

U∑
i=1

βi,tEDi

[
Kb∑
k=1

∇f(wt−1,xi,k,yi,k)

]
− et

∥∥∥∥2
]

≤E

[∥∥∥∥ U∑
i=1

(
1

K
− βi,t∑U

i=1Kiβi,t
)EN i,t

 ∑
k∈N i,t

∇f(wt−1;xi,k,yi,k)


+

∑U
i=1 E[

∑
k∈Ni,t

∇f(wt−1;xi,k,yi,k)]

K
− et

∥∥∥∥2
]

≤ E

[
2

∥∥∥∥ U∑
i=1

(
1

K
− βi,t∑U

i=1Kiβi,t
)EN i,t

 ∑
k∈N i,t

∇f(wt−1;xi,k,yi,k)


+

∑U
i=1 E[

∑
k∈Ni,t

∇f(wt−1;xi,k,yi,k)]

K

]∥∥∥∥2
]
+ 2‖et‖2,

≤

(
4

U∑
i=1

Kb

)
U∑

i=1

Å
1

K

− βi,t

(
U∑

i=1

Kbβi,t

)−1 ã2
EN i,t

 ∑
k∈N i,t

‖∇f(wt−1;xi,k,yi,k)‖2


+ 2
‖
∑U

i=1 E[
∑

k∈Ni,t
∇f(wt−1;xi,k,yi,k)]‖2

K2
+ 2‖et‖2.

(75)

Applying (17) in Assumption 3 to (75), we further derive
the following result as

E[‖ o ‖2] ≤ 4UKb

U∑
i=1

(
1

K
− βi,t

(
U∑
i=1

Kbβi,t

)−1)2

Kb(ρ1

+ ρ2‖∇F (wt−1)‖2)

+ 2

∑U
i=1(Ki −Kb)(ρ1 + ρ2‖∇F (wt−1)‖2)

K2
+ 2‖et‖2

≤ 4UKb

U∑
i=1

(
Kb

K2
− 2Kb

1

K
βi,t

(
U∑
i=1

Kbβi,t

)−1

+Kbβi,t

(
U∑
i=1

Kbβi,t

)−2)
(ρ1 + ρ2‖∇F (wt−1)‖2)

+ 2

∑U
i=1(Ki −Kb)(ρ1 + ρ2‖∇F (wt−1)‖2)

K2
+ 2‖et‖2

≤ 4UKb

(
UKb

K2
− 2

1

K
+

(
U∑
i=1

Kbβi,t

)−1)
(ρ1

+ ρ2‖∇F (wt−1)‖2) + 2
(K − UKb)(ρ1 + ρ2‖∇F (wt−1)‖2)

K2

+
4C2

S
εsgdt + 4

U∑
i=1

βi,t
D − κ
D

G2. (76)
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Substituting (76) to (57), we have:

E[F (wt)] ≤
ϑ+ 2UK2

Ä∑U
i=1 βi,t

ä−1

LK2
(ρ1 + ρ2‖∇F (wt−1)‖2)

+
4C2εsgdt

2LS
+ 4

U∑
i=1

βi,t
D − κ
2LD

G2

+ E[F (wt−1)]−
1

2L
‖ ∇F (wt−1) ‖2

=E[F (wt−1)] +
ρ1
(
ϑ+ 2UK2

Ä∑U
i=1 βi,t

ä−1
)

LK2

+

Ñ
ρ2
(
ϑ+ 2UK2

Ä∑U
i=1 βi,t

ä−1
)

LK2
− 1

2L

é
‖ ∇F (wt−1) ‖2

+
2

L
(
C2

S
εt +

U∑
i=1

βi,t
D − κ
D

G2). (77)

where ϑ = 2U2K2
b +K − 4KUKb − UKb.

Summing up the above inequalities from t = 1 to t = T ,
we get

E[F (wt)− F (w0)] ≤−
T∑
t=1

Asgd
t ‖ ∇F (wt−1) ‖2 +

T∑
t=1

Bsgd
t ,

(78)

where

Asgd
t =

1

2L
−
ρ2

(
ϑ+ 2UK2

Ä∑U
i=1 βi,t

ä−1)
LK2

, (79)

Bsgd
t =

ρ1

(
ϑ+ 2UK2

Ä∑U
i=1 βi,t

ä−1)
LK2

+
2

L

(
C2

S
εt +

U∑
i=1

βi,t
D − κ
D

G2

)
. (80)

The inequality (78) can be rewritten as

T∑
t=1

Asgd
t ‖ ∇F (wt−1) ‖2 ≤ E[F (w0)− F (wt)] +

T∑
t=1

Bsgd
t

≤ E[F (w0)− F (w∗)] +

T∑
t=1

Bsgd
t .

(81)

Since 1
2L −

ρ2(ϑ+2UK2)
LK2 ≤ Asgd

t ≤ 1
2L , we have

1

T

T∑
t=1

Å
1

2L
− ρ2(ϑ+ 2UK2)

LK2

ã
‖ ∇F (wt−1) ‖2

≤ 1

T

T∑
t=1

Asgd
t ‖ ∇F (wt−1) ‖2

≤ 1

T
E[F (w0)− F (w∗)] +

1

T

T∑
t=1

Bsgd
t . (82)

As a result, we get

1

T

T∑
t=1

‖ ∇F (wt−1) ‖2

≤ 2LK2

T (K2 − 2ρ2(ϑ+ 2UK2))
E[F (w0)− F (w∗)]

+
2LK2

T (K2 − 2ρ2(ϑ+ 2UK2))

T∑
t=1

Bsgd
t . (83)

The proof is completed.
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