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Recovery Conditions of Sparse Signals Using
Orthogonal Least Squares-Type Algorithms

Liyang Lu
and Zhi Tian

Abstract—Orthogonal least squares (OLS)-type algorithms are
efficient in reconstructing sparse signals, which include the well-
known OLS, multiple OLS (MOLS) and block OLS (BOLS). In
this paper, we first investigate the noiseless exact recovery condi-
tions of these algorithms. Specifically, based on mutual incoherence
property (MIP), we provide theoretical analysis of OLS and MOLS
to ensure that the correct nonzero support can be selected during
the iterative procedure. Nevertheless, theoretical analysis for BOLS
utilizes the block-MIP to deal with the block sparsity. Furthermore,
the noiseless MIP-based analyses are extended to the noisy sce-
nario. Our results indicate that for K -sparse signals, when MIP or
SNR satisfies certain conditions, OLS and MOLS obtain reliable
reconstruction in at most K iterations, while BOLS succeeds in at
most (K /d) iterations where d is the block length. It is shown that
our derived theoretical results improve the existing ones, which are
verified by simulation tests.

Index Terms—Block sparsity, compressed sensing, mutual
incoherence property (MIP), orthogonal least squares (OLS), signal
recovery.

1. INTRODUCTION

N COMPRESSED sensing (CS) [1], [2], [3], the main task
I is to recover a high-dimensional sparse signal from low-
dimensional compressed measurements, which has a broad im-
pactin different fields [4], [S]. Specifically, it seeks to accurately
recover a K-sparse signal x € R with K nonzero elements
(K < N) from its linear measurement vector y = Dx [6],
[71, [8], where the measurement matrix D satisfies restricted
isometry property (RIP) [9], [10], [11], [12]. Exploiting the
signal sparsity, a large number of reconstruction algorithms have
been developed to exactly recover the original sparse signals
under different conditions on D [13], [14], [15], [16], [17], [18].

At present, there are two categories of sparse signal recovery
approaches: one exploits convex optimization techniques [19],
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[20] and the other is based on greedy matching pursuit [21],
[22], [23], [24], [25], [26]. Optimization-based algorithms, such
as the well-known basis pursuit (BP) [19], enjoy satisfactory
performance, at the cost of high computational complexity that
may not be amenable to practical implementation. On the other
hand, greedy algorithms, such as matching pursuit (MP) and
orthogonal MP (OMP) [27], [28], admit simple and fast im-
plementations, and hence have been widely used in practice.
Another popular family of greedy algorithms is the orthogonal
least squares (OLS) type, which is shown to have preferable
convergence property [29]. This paper focuses on the family of
OLS-type algorithms for sparse signal recovery, because of their
computational simplicity and competitive performance.

OLS is an iterative CS algorithm that picks out the support
of the sparse signal by updating only one index to the list per
iteration. Then, several variants are developed to enhance the
sparse recovery performance. In [16], multiple OLS (MOLS) is
proposed which selects multiple indices per iteration. In [30],
a block version of the OLS algorithm, named BOLS, is pro-
posed to utilize the block structure of the underlying signals. It
works well for practical scenarios where the nonzero support of
the sparse signal appears in clusters rather than spreading out
randomly [31], [32].

A fundamental problem in CS reconstruction s to characterize
the recovery capabilities of these algorithms, where RIP is
usually used as a representative metric. The authors in [15], [33]
exploit RIP to analyze the isometry constant of OLS for exactly
recovering a K -sparse signal in /K iterations. In [16], the authors
utilize RIP to obtain the recovery conditions for MOLS and show
its performance in noisy case. Furthermore, [34] uses similar
methodology to analyze MOLS and proposes a less restrictive
performance guarantee condition.

Unfortunately, to obtain the RIP constant of a given measure-
ment matrix is NP-hard. By contrary, a computationally friendly
approach is the mutual incoherence property (MIP) [13], [35],
[36]. This technique has been utilized to analyze the perfor-
mance guarantee of OMP-type algorithms in the last decade.
Compared with the OMP-type, the OLS-type algorithms are
more reliable and the performance is less dependent on the
amplitude distribution of nonzero entries [37]. However, the
analysis of OLS-type algorithms is more involved, because
their atom selection rules are more complicated than those of
the OMP-type algorithms. As a result, the study on OLS-type
algorithms with MIP tool is seldom in current literature. Though
the authors in [37] present the MIP-based conditions of OLS,
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the results only apply for decaying signals. To better understand
their recovery capabilities for general sparse signals and show
comparison with OMP-type algorithms [13], [14], itis necessary
to investigate the MIP-based performance for the OLS-type
algorithms.

Most work on MIP-based analysis is devoted to the recovery
of noiseless signals [13], [14]. Nevertheless, noise is always
present in practical applications [37], [38]. A fundamental ques-
tion is thus at what signal-to-noise ratio (SNR) levels the OLS-
type algorithms realize reliable recovery. Since the MIP metric
is powerful in assessing recovery performance, MIP analysis
can shed light on the target SNR levels for ensuring signal
reconstruction at high accuracy.

Based on the above observations, this paper focuses on the re-
covery conditions for OLS-type algorithms, both in the noiseless
and the noisy scenarios. Note that the mapping normalization
factor in OLS-type algorithms makes the analysis greatly differ-
ent from that of the OMP-type in [13], [14], which poses major
challenges [15], [29]. We shall show that the MIP technique is
effective to bound this mapping normalization factor. Another
major difference from the study in [13], [14] is that we consider
the noise effect. We develop the MIP and SNR-based recovery
conditions for correct atom selection when additive noise is
present. It is shown that the OLS-type algorithms can choose
all the correct atoms from the measurement matrix under these
conditions and thus guarantee their performance. The contribu-
tions of this paper are summarized as below.

1) For the noiseless case, we develop the MIP-based asymp-
totic exact recovery conditions (ERCs) of the OLS-type
algorithms. The derived conditions imply higher recon-
structible sparsity levels than those in [13], [14]. Our
analytical results reveal that the OLS-type algorithms can
recover any K -sparse or block k-sparse signal within K
or k iterations under the derived conditions, respectively.

2) In the noisy case, the recovery conditions are developed
for OLS-type algorithms by extending the noiseless re-
sults. The proposed noisy recovery conditions imply lower
signal power required for reliable recovery compared
to the known bound in [38]. These results unveil that
if the nonzero coefficients of a sparse signal are larger
than the derived bounds specified by the MIP and noise
variance, the OLS-type algorithms can achieve reliable
recovery.

3) Validating simulations are performed to confirm the de-
rived theoretical results. It is shown that the theoretical
guarantees in this paper lead to better bounds compared
with the existing ones. Empirical simulations indicate that
under the derived conditions, the OLS-type algorithms can
reliably reconstruct the original signals.

The rest of this paper is organized as follows. In Section II,
we introduce notations, CS background and OLS-type algo-
rithms. In Section III, we study the noiseless recovery con-
ditions for OLS-type algorithms. In Section IV, the noisy re-
covery conditions for OLS-type algorithms are derived. In Sec-
tion V, simulation tests are presented, followed by conclusions in
Section VI.
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II. PRELIMINARIES
A. Notations

We briefly summarize the notations in this paper. Vectors are
denoted by boldface lowercase letters, e.g., x, and matrices are
denoted by boldface uppercase letters, e.g., D. The ¢-th element
of x is denoted as x;. The element in the i-th row and j-th
column of matrix D is represented by D;;, and D; is the i-th
column of D. Dg is a sub-matrix of D that contains columns
indexed by S. D\ Dy is the residual matrix after all the columns
indexed by S are removed from D. D7 represents the transpose
of the matrix D. The ¢y-norm, ¢1-norm, ¢5-norm, ¢,,-norm and
3 o-norm of x are represented by ||x||o, ||x]]1, [|%]]2. ||%] |0 and
[|%]|2,00, respectively. The spectral norm of a matrix D is denoted
by p(D) = /Amax(DTD), where Apax(+) is the largest eigen-
value of its objective matrix. The set that includes the indices
of the nonzero elements in x is represented by supp(x), and
span(Dg) is the span of columns in Dg. The diagonalization of x
is denoted by diag(x). |S| stands for the cardinality of a set S and
|c| means the absolute value of a constant c. < -, - > represents
the inner product operation. The coherence, block-coherence
and sub-coherence of a specific matrix are represented by p, pp
and v, respectively. K denotes the overall sparsity of a sparse
signal. For a block sparse signal, & and d represent its block
sparsity and block length, respectively. I stands for the identity
matrix. If Dg has the full column rank, D, = (D{Dg) 'D{
represents the pseudoinverse of Dg. Pg = Dng denotes the
projection onto span(Dsg), and P§ = I — Pg is the projection
onto the orthogonal complement of span(Dg). Throughout the
paper, the columns in the measurement matrix are normalized
to have unit /5-norm.

B. Compressed Sensing and Sparse Signal Models
The basic model of CS is given as follows:
y = Dx, ey

where y € RM is the low-dimensional measurement vector,
D € RM*N s the measurement matrix and x € R" is the
signal vector with N > M. Generally, infinitely many choices
of x satisfy (1) for a given y because (1) is underdetermined.
Therefore, in order to guarantee uniqueness of x, CS considers
the case of sparse signals, i.e., there are only a few nonzero
elements in x relative to its dimension. The problem of obtaining
the sparse solution to (1) can be expressed as

min [[x||p s.t. y = Dx. (2)

This ¢y-norm minimization problem is non-convex and NP-hard.
Fortunately, the problem can be relaxed by its convex surrogate
{1 optimization [2],

min ||x||; s.t. y =Dx. 3)
Many methods mentioned in the first section can be applied to
solve (3).

When x is block sparse, block CS is proposed in [14], [39],
[40], [41] to recover the signal. Letting d denote the block length,
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Algorithm 1: Orthogonal Least Squares.

Input: D, y, total sparsity level K and residual tolerant
Output: x € RY,S C {1,2,..., N}

1: Initialization:!=0,r"=y,8°=0,x"=0

2: while/ < K and ||r!||2 > ¢ do

30 Setiltl = - argmin ||Pé,u{j}y||§
je{1,...,N}\8S!

4:  Augment S =Sty {i'*!}

5:  Bstimate x'*' = argmin ||y — Dx|3

x: supp(x)=St+1

6:  Update r't! =y — Dx!*!
7 l=1+1

8: end while

9: return S = S' and x = %!

the block sparse signal x is defined as

T
X = (X1 XdXdq1 - Xod o XN-d41- - Xn]T,  (4)

xT[1] xT[2) xT[Ng]

where N = Npd and x[i] € R? is the i-th block of x (i €
{1,2,...,Np}). A signal x is called block k-sparse if x has
k nonzero fs-norm blocks. The measurement matrix can be
rewritten as a concatenation of Ng column blocks, i.e.,

D=[D;---DgDgy1---Dyg---Dy_gy1---Dn], (5

D]

D[2] D[Ng]

where D[i] € R**9 is the i-th block of D. The next subsection
describes the OLS-type algorithms for reconstructing the sparse
x from y in (1).

C. OLS-Type Algorithms

1) OLS Algorithm: The standard OLS algorithm is given in
Algorithm 1. To facilitate the theoretical derivations in ensuing
sections, we rewrite Step 3 in Algorithm 1 in an alternative form:

PJS_ZDJ‘ rl
IP5:Djll2

D; o
[Pg. D2’

The derivation details can be found in [16], [42]. This formula
also offers a more intuitive explanation of OLS. Specifically, it
selects a candidate column that is most closely related with the
current residual after the column is orthogonally projected onto
the subspace span(Dg:).

2) MOLS Algorithm: In the [-th iteration, the support selec-
tion criteria of MOLS algorithm [16] is given as follows:

arg min Z HPézU{jM}YH%- %)
Qe \QM\:L]*MGQM

A4+1

1777 = argmax

jell,..,NI\S!

. (6)

arg max
jefl,..,N}\S!

+1 _
M o=

Owning to the selection of multiple candidates per iteration,
MOLS converges faster than OLS.

3) BOLS Algorithm: When x is block sparse, [30] proposes
a tailored BOLS algorithm, which seeks a block candidate that

4729

makes the most significant reduction in the residual power. The
support selection criteria of BOLS is given by

A1 1 2
g = HPslu{(qu)dH ..... de}YH27 ®)

where the entries in S’; correspond to the block indices of S'.
All these algorithms follow the same procedure, except that the
support selection criteria are different.

III. EXACT RECOVERY CONDITIONS
A. ERCs for OLS and MOLS Algorithms

In the absence of block sparsity, we provide the ERCs for
OLS and MOLS. Relevant concepts are defined below.

Definition 1 (Matrix coherence [13], [14]): The coherence
of a matrix D, which represents the similarity of its elements, is
defined as

p=max| <D;,D; > |. ©)
i,j#1
Definition 2 (Mixed norm [13], [14]): Given a matrix D €

RM>N ||D||;,1 equals the maximum absolute column sum of
D,ie.,
M
Dl = max > Dy, (10)
i=1

and ||D||,co represents the maximum absolute row sum of D,
i.e.,

N
|Dfoc,00 :maXZ|Dij‘~ (11)
i =
Let M = md and N = Ngd,
pe(D) = max }  p(Dli. j]) (12)
and
(13)

pr(D) = m?XZP(D[iajD7

where m is an integer and D[z, j] is the (3, j)-th block of D.

Without loss of generality, suppose that the first /' elements
of x are nonzero. With the set of the selected indices, i.e., S! =
{K —-1+1,...,K},inthe (I 4+ 1)-th iteration, we define

Qo = [Dy,Ds,...,Dg] € RM*K, (14)
Qois = Qo\ Qg € RM* KIS (15)

and
Q, = D\Qp € RM*V-H, (16)

Rg\s and Ry corresponding to Qs and Q are defined by

1 0
[IPg Dl

Ros = f(Qos) = (17)

1
P, Drill2
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and Ry = f(Q,). Using these arguments, we present the ERCs
for OLS and MOLS in the following theorems.

Theorem 1: Assume that OLS or MOLS has chosen [ correct
atoms after [ iterations. A sufficient condition for OLS to select
one correct atom or MOLS to select at least one correct atom in
the (I + 1)-th iteration is

1(QosRos) (QoRo)||1,1 < 1. (18)

Proof: See Appendix A. |
Then, we present the MIP-based sufficient condition to ensure
that Theorem 1 can be established in each iteration. To obtain
this sufficient condition, we give the subsequent lemmas. The
first one raises the bounds on the mapping normalization factor,
ie., |\P§,Di| |2, in terms of the MIP. The second one presents

the probability of a random event.
=, then —= = <[|PgDill2<1

Lemma 1: Suppose [ <

. 1 D) Kp !

fori € {1,2,...,N}\S , where 7 =(1- %) )
Proof: See Appendix B. |
Notably, under the same assumption made as in Lemma 1,

i.e., 11 < 7. the following bounds can be obtained by direct

calculations using the Lemmas 2 and 5 in [38]:

V1-Kp<|[PgDllz < 1. (19)

It is worthy of noting that %, > T =K since p < 2,
which means Lemma 1 improves the result (19).

Lemma 2: For a random matrix B € RM*K (K > 2)
whose entries are independently and identically distributed as
N(0, M) the following probability holds:

K— Ke 55t (CHog(14€)
P{HBTB—IHL&(T”}&— — ,
' 2 C\/r(K — 1)
(20)

. .. / — 2r2
where 7 is a positive constant and C = % -1

Proof: See Appendix C. |

Remark 1: Suppose that the matrix B in Lemma 2 is a sub
matrix of the Gaussian matrix H € RM*Y (N > M). Since
uw< ﬁ and 7T, which is given in Lemma 1, is monotonically
increasing with respect to y, then 7 is limited by an upper bound.
When K is fixed, we obtain

. M(K—T)>*r?
W TaE - T @D
Therefore,
Ke 55t (C-log(1+0))
lim 1— —¢ "~ —1. 22)
M-500 C\/n(E —1)

Theorem 2: Let 1 be the matrix coherence of the measure-
ment matrix D. The ERC (18) is satisfied if

K < 3—g+\/ﬁ+3_g_\f_£ , (23)
2 2 3
where g = SRR, p = 2058, 0= <l 4 40,
B=t 3B —dp?, =33 724 Ly 5= -1 -
22— 3~ Land A = ($)2 1 (3%
Proof: See Appendix D. |
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(a) Results of O/Q and P/P. (b) Results of P3/Q2 and P3/02.

Fig. 1. Ratios of different parameters with the decrease of

(1—w)/M.

Remark 2: Denote the right-side of (23) as K*(u). The upper
bound of K*() is K*(,/:2:5), where M and N are the
dimensions of the measurement matrix. Moreover, we have the
following observations. 1) When M is fixed, the upper bound
of K*(p) degrades with the increase of N. 2) When N is fixed,
the upper bound of K*(u) is improved with the increase of
M. 3) The upper bound is directly related to the number of
measurements M and the compression ratio w = % That is,
when N > 0 and M > 0, it holds that

K*(p) < ;(ﬁ—s— 1)

Proof: tis known that ;1 > | / 373"y [43]. Meanwhile, the

partial derivative of K*(u) withrespect to p satisfies VK™ (u) <
0. Therefore, K*(p) < K*(\/325%5 ).

When M is fixed, \/57tny = 77/ 1~ N1
proved with the increase of NV, leading to the degradation of

* . — N _1
K*(\/3252%5). When N is fixed, ,/MJ\([N%) =/ L= de-

creases with the increase of M, which causes the improvement

OfK*(\/m)

Moreover, in asymptotic case, we have

< (Ve 5) = (Vi p)

(24)

is im-

lim
M/N=w; M,N—0o0

N l1-w
=K\
(25)
Rewrite K* (1 / 1;—;) as follows:
1-w
K*(\/ ) \/Q+\/Q2+7D3
+§/—Qf\/Q2+P3+f, (26)

where Q = 2, P = £ and F = —% by replacing j as ./1’7“
in Theorem 2.

Meanwhile, the magnitudes of Q and P are mainly deter-
mined by their highest order terms, which can be verified by
the following simulations. We denote the highest order terms
in Q and P as Q and P respectively. The results are shown
in Fig. 1. When M is large enough, the ratio g—z converges
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to —1, indicating that 0? and P3 are on the same order and
can be well approximated by their highest order terms 0?2 and
P3 respectlvely Furthermore, when M is large enough, Q/ Q
and P /P are equal to 1, indicating that Q and P can be well
approximated by their highest terms, i.e., Q and P. In a word,

limpsyoe P2/ Q2 = limpy oo P2/ Q% = —1,

hm]w—)oo Q/Q - 17

27)

Based on the above arguments, we obtain

1—w
M—o0 M

lim K*(

Il
w
|
g
DO | =
NeJ
N
=
I‘
&
N
|

() () ()
- ((;29>2+<_;1)3> )

_|_§ i +g—2 M _|_]_
9 1—w 3 3\V1-w
]

In practice, a simple checking operation can be made to check
if the real sparsity K satisfies K < K* (). If so, the reliable re-
covery is possible; otherwise the recovery cannot be guaranteed.
K can be either a prior information, or a predefined approximate
value from experience, or an estimated value calculated based
on the measurement vector and the measurement matrix [44],
[45]. For all the cases, our theoretical results provide a way
to verify if a measurement matrix satisfies the exact recovery
condition via the computationally affordable MIP. Even when
the sparsity is unknown in advance, our theoretical results still
play as a guideline as preliminary judgments about whether the
recovery can be successful based on the estimated value, which
is meaningful for subsequent decision-making.

Remark 3: Similar to the derivation in Remark 2, we have

(28)

2 /(1
lim K*(p) == (= +1).
) = 3(u+>

It is known that the MIP-based sufficient condition for the ERC
of OMP derived by Tropp [13] is

K<1(1+1).
2 \p

Therefore, the sufficient condition for the ERC of OLS and
MOLS based on (29), i.e.,

K<2(1+1)
3\p

improves the result (30) in the case of low coherence, which in-
dicates OLS and MOLS algorithms can reconstruct more exactly
than OMP algorithm from the perspective of reconstructible
sparsity level.

(29)

(30)

3D
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It is proved in [37] that the optimal value of MIP-based
sufficient condition for decaying signals is K <2 L Ourresultin

Remark 3 indicates that K’ < £ (u + 1) 1s sufﬁc:1ent for general

sparse signals, which means that (31) is at most % times worse
than the optimal value. However, our analysis applies for general
sparse signals rather than for only decaying sparse signals.
Moreover, Remark 3 shows that our derived result improves
that in [13]. That is to say, our result exhibits stronger generality
and superiority.

To elucidate the role of our theoretical analysis in select-
ing measurement matrix, consider a practical sparse recovery
scenario, where the overall sparsity and the length of a sparse
signal are K =4 and N = 8192, respectively. We generate a
random Gaussian matrix with M = 2048, i.e., the compres-
sion rate is %, which is a widely used setting for compressed
measurement matrix in the literature of CS with coherence p
roughly equal to 0.109 [2]. Our theoretical result in Remark 3
indicates that the upper bound of the reconstructible sparsity
satisfies K*(p) &~ 6.78 > 4. It means that this Gaussian matrix
satisfies the exact recovery condition of OLS and MOLS. That
is, the OLS and MOLS algorithms can perform exact recovery
with this measurement matrix. In this sense, our theoretical
results offer a theoretical guarantee on the effectiveness of this
measurement matrix, which guides the actual implementation
of the recovery process. It is worth noting that our results offer
sufficient conditions, which is a common practice in the CS
literature. Not surprisingly, the OLS and MOLS algorithms may
still be able to perform exact recovery even when such conditions
are not met.

B. ERCs for BOLS Algorithm Exploiting Block Structure

The main difference of the analysis between BOLS and the
aforementioned two algorithms is that we consider the block
structure within the sparse signals. To do so, we adopt two inde-
pendent concepts of coherence: block-coherence that indicates
the inter-block global coherence properties of the measurement
matrix D, and sub-coherence that captures the intra-block local
coherence properties of D.

Definition 3 (Block-coherence [14]): The block-coherence of
D is defined as

i e 23]

max —— = (32)

where M][i, j] = DT[i]D[j]. It is similar to (9) by replacing
columns D; of D by its sub-blocks D{[i].

Definition 4 (Sub-coherence [14]): The sub-coherence of D
is defined as

v =maxmax | < D; D; > |,
U dj#i

Based on aforementioned definitions, we derive the following
Lemmas.

Lemma 3: Let k be the block sparsity level, d be the
block length, ;1 be the matrix coherence and v be the sub-
coherence. Suppose 1 < 77— 1,then < [|PgD;l[2 < 1for

i€{1,2,...,N}\S!, where Tp =(1-( V””“d DuvVkdu? 5 )

T(@Dv—(k-Lydu_
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Proof: See Appendix E. |

Lemma 4: For a random matrix B € RM*k (| > 2)
whose entries are independently and identically distributed as
N(0, 57). the following probability holds:

k—Tn)d ke~ 5+ (C-log(14C))
P{pC(BTB—I)<(7—B)T}>1_ €’ s
2 Cy/m(kd—1)

(34)
where 7 is a positive constant, d is the block length and C =
M(k-Tp)?d>7> _ 4

4(kd—1)2 :
The proof is omitted since it is similar to that of Lemma 2.
Remark 4: Similar to Remark 1, we have the following prob-

ability:

kef%((fflog(lj%?))

w(kd — 1)

lim 1— =1. (35)

M—o00 C

Intuitively, we give a geometric interpretation of BOLS in
terms of orthogonal projections as shown in Proposition 1 below
to facilitate the following derivation.

Proposition 1: Inthe (I + 1)-thiteration, the BOLS algorithm
identifies a block support index:

2
<Dy, vl >
gt = argmax | L(]B Ld+1 |
ine(loNehsy, \ PgDis-natll2
; 2
N ]zBC:l | <Dj,rl > |
o Pgio s 0Dl )
j=(ip—1)d+2 StU{(jp—1)d+1,....5—-1}J
(36)
Proof: See Appendix F. |

The ERC and the MIP-based sufficient condition for BOLS
are given in Theorem 3 and Theorem 4.

Theorem 3: Assume that BOLS has chosen [ correct blocks
after [ iterations. A sufficient condition for BOLS to select one
correct block in the (I + 1)-th iteration is

pe((Qo\sRo\s) (QoR0)) < 1, (37)
where R\g and Ry are given by
1 1
ROS:diag 3 yecey
' [PE&D > (P&, D2l
1
||P§lu{1,...,d71}DdH2 >
and
— 1 1
Ry = diag , ey
(||P§1Dkd+1||2 Pgirag 1y Prarall2
1
y T ) (39)
||P§lu{(2k71)d+1,4..,2kd—1}D2kd||2 )

if {1,..., kd} are support indices in Qp and {1,...,d} ¢ S’.
Proof: See Appendix G. |
Theorem 4: Let u be the matrix coherence, 11 be the block-

coherence and v be the sub-coherence of the measurement
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matrix D. The ERC (37) is satisfied if

kd<(§/(]3+\/E+SqB\/EﬁB),
2 2 3043

(40)
, g =

2704 6p—9apBeve+2B% _ 3apvs-B%
27(1‘?3 » PB = 30123

—uppd +3upp?, Be = (24 pp)p® — (dps + pp + 2)p0* +

where ¢ =

6upGu, v = —2u +2u% — (2dupG + 4G)u + 3upG>,
dp = —dupG? — 2G>, G=(d—1v—1—du and
Ap = () + (%)

Proof: See Appendix H. |

Remark 5: Theorem 4 applies to OLS when d = 1, which is
identical to Theorem 2.

While the main result in Theorem 4 appears to be cumber-
some, it accurately quantifies the performance bounds of BOLS
and offers adequate intuitions for a given problem setting. Along
this line, Remark 6 arises.

Remark 6: To clearly observe the relationship between the
upper bound of sparsity and matrix coherence, and the relation-
ship between the upper bound of sparsity and block-coherence,
let us consider the special case of a block structure matrix,
that is, the sub-coherence satisfies that v = (. Denote the right-
side of (40) as K} (u, pup). The upper bound of K (u, i)
is Kj (\/%5\/%) Depending on the assumptions
adopted, the corresponding analytical results for the upper bound
are given as follows. 1) When M is fixed, the upper bound
of K} (1, 1) decreases with the increase of N. 2) When N
is fixed, the upper bound of K7 (i, up) is improved with the
increase of M. 3) Letting w = %, and for M > 0and N > 0,
the upper bound of the theoretical threshold K (1, p1) satisfies

" M 5 1
Kp(p,np) S WA 1— + ¢ty

W(d) = {/—u+ Vur+v3
el l @

U= B+ A 24+ L andV= a1 Ad— 1,
Proof: By direct calculations, the theoretical threshold
K5 (u, pp) is improved with the decrease of u or pp, ie.,
VK75 (@) < 0and VK5 (up) < 0. In order to obtain the upper
bound of K7j(u, up), it is necessary to derive the minimum
value of pp.
For a given matrix Q € R%*4,

P(Q) = [|Ql|max;

where || - ||max represents the largest element of its objective.
Therefore, the block-coherence of a given matrix D satisfies

(41)

where

(43)

N-M

MBZHZl T
d=d\| M(N=1)

(44)
Finally, the proof of Remark 6 can be completed by using the
similar proof of Remark 2. |
In general, the derived upper bound is improved with the
increase of d and M. On the one hand, the results mean that
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the performance of the algorithm generally increases with the
increase of the number of measurements. On the other hand, the
larger d makes the block structure more powerful, leading to
better performance of BOLS.

Remark 7: Define the right-side of (40) as K5 (i, pup, v). In
asymptotic case, we have

21 7 1
li K7 =-(—+-d—=]. @45
o330 5o BB, V) 3 (HB * 6 6) (“43)

The well-known MIP-based sufficient condition for the ERC
of BOMP by using orthogonal block uncertainty relations in [14]

is
kd<1(1+d>.
2 \ 1B

Since d > 1 and up € [0, 1], the sufficient condition based on

45),1.e.,
2 1 7 1
kd< = (—+Ld— -
<3(u3+6 6)’

(46)

(47)

is improved compared with (46). This result implies that BOLS
performs better than BOMP from the perspective of recon-
structible sparsity level.

IV. Noisy RECOVERY CONDITIONS

In the noisy case, to guarantee reliable recovery, the SNR
should be sufficiently high for correct atom selection. Mean-
while, the level of MIP needs to be small, otherwise the atoms
cannot be separated well. Considering these issues, this section
presents the recovery conditions in the noisy case for the OLS-
type algorithms based on the theoretical results for the noiseless
case in Theorem 2 and Theorem 4.

The noisy form of the CS model (1) is given by

y =Dx + ¢, (48)

where € ~ N(0,021,;) is the Gaussian noise. Note that the
residual in the [-th iteration is

= (I-Pg)y=(1-Pg)Dx+ (I-Pgle. (49

Define s' = (I — Pg)Dx and n! = (I — Pg:)e as the signal
and noise parts of the residual, respectively. Then the analysis
of recovery conditions for OLS-type algorithms under the noisy
model (48) is investigated in the following subsections.

A. Noisy Recovery Conditions for OLS and MOLS Algorithms

To obtain the recovery conditions for the OLS and MOLS
algorithms in the noisy case, we first present the following
lemma.

Lemma 5: 1f the noiseless condition in (23) holds, then

2KTu
2— (K —=T)u
The proof of Lemma 5 follows directly from the proof of

Theorem 2 in Appendix D. Then, based on Lemma 5, the
following theorem holds.

<1

1(Qo\sRas) (QoRo)| 1,1 < (50)

4733

Theorem 5: Suppose that the condition in (23) holds and
the remaining nonzero vector Xp\g in the (I + 1)-th iteration
satisfies

ol > 2VE 1@ = (K = Two/M 5 2/ log 1
osll2 22— (K—-T)p—2KTp)(1—(K—-1p)

Then, in the noisy case, the OLS algorithm chooses one correct

atom and the MOLS algorithm chooses at least one correct atom

in the (I + 1)-th iteration with probability at least 1 — 7.
Proof: See Appendix I. |
Based on Theorem 5, we have the subsequent corollary.
Corollary 1: Suppose that the condition in (23) holds and all

the nonzero entries x; satisfy

22 — (K — T)p)or/M + 2¢/Mlog M
2— (K =T)p—2KTp)(1 - (K —1)u)
Then, in the noisy case, the OLS and MOLS algorithms choose
the true support set with probability at least 1 — ﬁ

Theorem 5 and Corollary 1 indicate that if the nonzero entries
are large enough, the OLS and MOLS algorithms choose the
correct atoms in the noisy case.

Remark 8: For MOLS algorithm, Theorem 5 and Corollary
1 present the strongest sufficient condition, i.e., they hold for all
L € [1,min{K, $£}] [16]. Since maxy(-) > gr|| - ||, where
gr € [1, L] denotes a nonlinear parameter with respect to L, the
conditions (51) in Theorem 5, and (52) in Corollary 1 are relaxed
to

|x;| > (52)

|[xo\s]2
>(1+%)\/K 12— (K — T)u)or/M + 2/Mlog M
(2= (K =T)p=2KTp)(1 - (K —-1)u)
(53)
and
|X/’|>(1+ 9L)(2 — (K — T)u)o/M +2/Mlog M

2= (K=T)p—2KTp)(1 - (K —-1Dp)

(54
respectively. If the nonlinear parameter gy, is equal to 1, (53) and
(54) correspond to the easiest-satisfied conditions. In this case,
a larger L leads to a smaller lower bound of ||xg\s||2 and [x;]
required for reliable recovery.

B. Noisy Recovery Conditions for BOLS Algorithm

Similarly, to derive the recovery conditions for the BOLS
algorithm in the noisy case, we give the following lemmas.
Lemma 6: 1f the noiseless condition in (40) holds, then

N ratis) QTBkduB
pC((QO\SRO\S) (QORO)) < 9 _ (]f _ TB)dMB

Lemma 7: The Gaussian noise € ~ N (0,0%I,) satisfies

{|| ||200<\fa\/M+2\/ M log M } I_M’ (56)

where d is the block length.

The proof of Lemma 7 can be extended from that of
Lemma 5.1 in [46]. Based on Lemmas 6 and 7, we obtain the
following Theorem 6.

<1. (55
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Theorem 6: Suppose that the condition in (40) holds and
the remaining nonzero vector Xg\g in the (I 4 1)-th iteration
satisfies

[Ixo\s| |2

N 2k —1(2 — (k — Tg)dug)Vdo/M + 2y/Mlog M
(2—(k—=Tg)dup — 2Tpkdup)(1 — (kd — 1)u) (5'7)

Then, in the noisy case, the BOLS algorithm chooses one correct
block in the (I 4 1)-th iteration with probability at least 1 — .

Proof: See Appendix J. |

The following corollary is derived from Theorem 6.

Corollary 2: Suppose that the condition in (40) holds and all
the nonzero blocks x[i] satisfy

2(2 — (k — Tp)dup)Vdo/M + 2/Mlog M
(2 - (k‘ - TB)d,LLB - QTBk‘d,uB)(l - (kd - 1)(/;23)

[Ix[i]ll2 >

Then, in the noisy case, the BOLS algorithm chooses the true

support set with probability at least 1 — ﬁ

V. SIMULATION TESTS

In this section, we present simulation tests to illustrate our
theoretical results shown in Section III and Section IV, and
compare them with the existing ones.

A. Simulation Tests for Noiseless Recovery Conditions

1) Comparisons of the Lower Bounds of ||[PgD;l|2: In
this subsection, we exploit simulations to illustrate Lemma 1,
Lemma 3 and compare them with (19) [38].

The simulation parameters satisfy (K — 1) < land p(kd —
1) < 1, which are given in Lemma 1, Lemma 3 and the precon-
dition of (19). Fig. 2 shows that our derived results are much
tighter than the existing bound which indicates that the follow-up
theoretical results based on these bounds, such as Theorems 2
and 4, are much sharper than the one using (19). Meanwhile,
it is observed that the lower bounds using sub-coherence in
Lemma 1 is much tighter than that just using conventional matrix
coherence. This means the characteristics of block structure
plays a role in improving the boundary.

2) Comparisons of the Sufficient Conditions for ERCs: The
simulations of Theorems 2 and 4 are conducted. We compare
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Theorem 2 with Theorem 3.5 in [13], and Theorem 4 with
Theorem 3 in [14] respectively.

Figs. 3-5 respectively present the existing bounds and our
derived bounds for OLS, MOLS, BOLS with d = 4 and BOLS
with d = 8. The results show that the upper bounds of K and kd
in Theorems 2 and 4 are higher than the existing bounds under
the same parameter settings, resulting in more reliable recon-
structible sparsity levels of OLS-type algorithms than those of
OMP-type algorithms. They also show that for the block sparse
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signals, the upper bounds of kd are improved with the increase
of d.

B. Simulation Tests for Noisy Recovery Conditions

In this subsection, we perform simulations to illustrate The-
orem 5, Theorem 6, and compare them with the existing bound
(Eqn. 10 [38]).

For fair comparison, ;¢ and K in Theorem 5 and the existing
bound are replaced by pup and k x d respectively. Then, the
lower bounds of ||x¢\g||2 as a function of the number of iteration
[ are presented in Fig. 6. It shows that the lower bounds in
Theorems 5 and 6 are smaller than the existing bound for an
arbitrary iteration number, which indicates that the conditions
required by OLS-type algorithms for reliable reconstruction are
more relaxed than that of OMP. Moreover, it implies that BOLS
performs better than OLS and MOLS.

C. Empirical Simulation Tests for the OLS-Type Algorithms

This subsection presents empirical tests on the performance
of OLS-type algorithms. For each problem setting, we perform
1,000 independent tests for each algorithm to calculate the
frequency of exact recovery. We adopt a Gaussian random matrix
D € RM*N (M =128 and N = 256) as our measurement
matrix with each entry being independently and identically
distributed as N (o,ﬁ). For each value of k, we generate a
block k-sparse signal, whose support is selected randomly and
the nonzero elements independently follow standard Gaussian
distribution, i.e., A'(0,1). The recovery is successful if the
reconstructed vector is within a certain small Euclidean distance,
which is set as 1076, of the original vector.

As shown in Fig. 7, BOLS outperforms other greedy
algorithms, which means that the utilization of the block
property exhibits competitive reconstruction performance.

4735

TABLE I
UPPER BOUNDS OF RECONSTRUCTIBLE SPARSITY LEVELS WITH THE
SETTINGS IN FIG. 7

Theoretical condition Simulation result
OLS K<82=K<8 K <12
MOLS K<82=K<8 K <32
BOLS (d=4) | kd < 18.1 = kd < 18 kd < 40
BOLS (d=8) | kd < 21.2=kd <21 kd < 48
K<1l/p+1 K <123 -

When the block length becomes larger, the performance of
BOLS is also improved. In Table I, we calculate the upper
bounds of the reconstructible sparsity levels in Remarks 3 and
7 for OLS-type algorithms. The coherence parameters are set to
be their lower bounds, i.e., u = ﬁ and up = \/ﬁ as given
in Section ITI-A [14]. It can be seen that the bound K < L + 1
is K < 12.3 in the simulation, which is more relaxed than the
sufficient conditions for OLS and MOLS, i.e., K < 8.2. This
means that the Neumann series is convergent in the proof proce-
dures. Evidently, the theoretical thresholds are more pessimistic
than the empirical results. However, this negativity is moderated
compared with the results in [14]. The theoretical thresholds
indicate that the frequencies of exact recovery are close to
100% for OLS and MOLS with K = 8, for BOLS (d = 4) with
kd = 18 and for BOLS (d = 8) with kd = 21. The empirical
results show that the frequencies of exact recovery close to
100% for OLS, MOLS, BOLS (d = 4) and BOLS (d = 8) up
to K =12, K = 32, kd = 40 and kd = 48 respectively.

VI. CONCLUSION

In this paper, we study the OLS-type algorithms in recon-
structing sparse signals in both noiseless and noisy cases. We
exploit MIP and asymptotic analysis to analyze exact recovery
conditions of OLS and MOLS for general sparse signals. An-
alytical results for BOLS are derived by exploiting the notions
of block-coherence and sub-coherence. The various notions of
coherence, describing the similarity among matrix columns, are
simpler and more intuitive than RIP. Our derived performance
guarantees reveal that the OLS-type algorithms perform reliable
recovery if the sparsity level is lower than the MIP-based con-
ditions in noiseless case, or if the power of nonzero coefficients
is larger than the conditions related to both MIP and noise
variance in noisy case. Due to the sharpness of the mapping
normalization factor bound, the developed theoretical results
improve the existing ones.

Note that our derived upper bounds of reconstructible sparsity
themselves do not rely on any prior sparsity information. Based
on these bounds, one future work is to design new blind recovery
algorithms when the real sparsity value is not available.

APPENDIX A
PROOF OF THEOREM 1

Proof: We first use mathematical induction to prove that
Theorem 1 is suitable for OLS. Assume that OLS has selected
[ atoms from Qq after [ steps (I € {1,..., K — 1}). Then, we
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derive a condition to guarantee that the next selected entry is
also correct.

Since the expression ||[(DR)7r!|| gives the largest magni-
tude attained among the inner products, where R = f(D). In
consequence, to see whether the next chosen index corresponds
to an atom in Qg\s, we need to examine whether the following
quotient holds:

< 1.

QyRo)Tr!].
ety - @B
8 = 1QusRo s
Following Tropp’s [13] and Soussen’s [29] analysis, we know
that r! € span(Qo\s) = span(Q sRq\s). Therefore,
((QosRos)") " (QosRos) ! =1
Substituting (60) into (59) yields
Z(r!,8h
_ 1(QoR0)" ((Qo\sRavs)") T (QovsRovs) 1|
[[(Qo\sRo\s) [
< 1(QoRo)" ((QusRoys) ") oo

= |‘(QO\SRO\S)T(QOﬁO)Hm-

Then, if the following condition holds, i.e.,

Z(r', 8" < [(Qo\sRos) (QoRo)|1,1 < 1,

OLS selects a correct atom from Qg s.

Next, we prove that the theorem is also valid for MOLS. Omit
some similar proof to that of OLS. For MOLS’s selecting at least
one correctindex [34], it needs to examine whether the following
quotient holds:

(59)

(60)

(61)

(62)

||(Q<)E0)Trl ‘ |L,1

Zu(r', 8" = <L,  (63)
1(QosRoys) 1|
where || - ||1,1 calculates the absolute sum of L largest elements
of its objective. Then, we have
ZM (I‘l s Sl)

< Lx 1(QoRo)”r!||o
~ (Qo\sRos) Tt ||

1(QoR0)T ((Qo\sRos)) T (QoysRovs) ']
I(Qo\sRos) 71t ||

< L % |[(Qo\sRas)"(QoRo)|11 < L,
and thus the proof of the theorem is completed. |

=L x

(64)

APPENDIX B
PROOF OF LEMMA 1
Proof: Note that for i € {1,2,..., N}\S!, D, = Pg/D; +
P$,D;. Then, [|D;||3 = ||[Ps:D;|[3 + ||Pg,D;|3 = 1 for nor-
malized matrix D. By rewriting Pg: and using submultiplica-
tivity of matrix norm, we have

|PsiDi||2 = [|Dsi(Ds:Dsi) ' Dg D2

< p(Dg:)p((D&Dg:) H)[ID&Dsll2. (65)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

By exploiting Lemma 2 in [38],

p(DSl) Y, )\max(DngSl) < V 1+ (K - 1)/“

Next, we derive the upper bound of the second term in the last
inequality of (65) and we express Dgl Dg: as Dgl Dg =1+A,
where A;; = 0 for all 7. Then, by applying Ger § gorin’s disc
theorem, we obtain

(66)

p(A) < (I—-Dp < (K-1pu<l. (67)

Using Neumann series expansion (Corollary 5.6.16 [47]), we
have (I+ A)~t = >"77 (—A)*. Therefore,

p(DEDs,) ™) =p (Z(M’“) <> (p(A))
k=0 k=0
I 1
STm ST w

(68)

Moreover, the upper bound of ||Dg, D;||; is calculated by

IDED;]2 < Vip? < VEp2. (69)
Combining (66), (68) and (69) yields
VI (K - py/Kp?
Finally, we obtain
(a)
1 > |[PgDill2 = /1 —||Ps:D;l[3
1+ (K - Du/EKp2\?
S 1o (VS IV K\ o
1—(K-1)n

The reason why (a) in (71) holds is that in the first iteration, S° =
@, and thus ||PJS'0D1H2 = HDZHQ =1.Forl > ]., ||PJS‘1D1||2 <
[|D;l|2 = 1. |

APPENDIX C
PROOF OF LEMMA 2

Proof: Define a’ = Bl ;B; e R"™' (j€{1,2,....K}),
where B.\j =B\B ;- Then, according to the central limit the-
orem, when M is sufficiently large, the entries of a’ are inde-
pendently and identically distributed as N (O, ﬁ) Meanwhile,

the random variable A’ = M||a’||3 ~ x% ;. Therefore,

(K — T)T}

Pl < 55

ZP{\/ﬁHaszS(KQT)T}

M(K—T)QTQ}_

1K —1) 72)

—p { il <

Moreover, the Lemma 4 in [48] indicates that for any C > 0,
e~ 53t (C-log(1+C))

(K —1)

P > (14C)(K — 1)} <

73
S (73)
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Hence,
K —
R R
K
; K-T)r
—1-P U(||aj|1>(2)>
7j=1
K
. K—-7)r
Zl—ZP{laJ||1>(2)}
j=1
K e 55t (C-log(140))
S , (74)
Cy/m(K—1)
whereC:Mfl.

1(K—-1)2

APPENDIX D
PROOF OF THEOREM 2

Proof: By exploiting submultiplicativity,
1(Qo\sRa\s) (QoRo)|[1.1
rrgix H(QO\SRO\S)Tainl

= max 1((QosRos)" QosRovs) ' (QoisRos) Gl lh

IN

11((Qo\sRo\s)" QoisRovs) 11

X HgiXH(QU\SRO\S)Tai”h (75)
where G; represents the i-th column of Q,Ro. Now let us
bound the term [|((Qo\sRo\s)” Qo\sRovs) *[|1,1 in the last
inequality of (75). Let the off-diagonal part of QOT\SQO\S be A,
ie., QOT\SQO\S = I + A.Then, according to Lemma 2, we have

K—-1-T K-T
14| < ¢ o E=Di g
2 2
Now the assumption (23) implies @ < 1. Then, by ex-

ploiting Neumann series expansion,
T ~1 _ _ ANk
Q5 sQois) 1 = H;f AM| = ey

Observe that

1((QosRos)" QoisRovs) 1,1

<[(Rovs) 11 11(QesQavs) Hlnall(Roys) Ml

7 1
< IQ5sQos) i < ——Fr
1*7+7

(78)
On the other hand, by the definition of matrix coherence, it is
straightforward to obtain

Hgt_xH(QO\SRO\S)TéiHl < KTup. (79)

4737
Combining (78) and (79), we get
P 2KTp
Ros)' R <—FF—— < 1 80
[[(Qo\sRo\s)" (QoRo)[1,1 < 5 (K- Tn (80)
By writing out 7, we obtain the following cubic inequality,
aK? + BK? + K 4+ 6 < 0, (81)

where «, 3, v and ¢ are given in the description of Theorem 2.
Finally, by exploiting Cardano formula to solve the valid solution
of the inequality (81) in real domain, the proof is completed. B

APPENDIX E
PROOF OF LEMMA 3

Proof: According to submultiplicativity of matrix norm,

IPs:D;||2 = ||Ds:(Dgi D) ' D& Dy |2

< p(Dgi)p((Dg:Dst) 1)[[DgDil2.  (82)
Similar to that in Appendix B, we have
p(Dgt) < /14 (kd —1)p (83)
and
ID&D; 2 < Vi < VVkdp?. (84)

Then, it remains to derive the upper bound of the second
term in the last inequality of (82) and we express Dngsz as
DngSz =TI+ A, where A is an [d X ld matrix with blocks
All,r] of size d x d such that A,;; = 0 for all i because of the
normalized matrix D. Since A[l, 7] = D, [I|Dg:[r] for all | #
r,and A[r,7] = D&, [r]Dg:[r] — I, we have

p(A)<(d—1v+ (1 —2)du < (d—1)v+ (k—1)du

< (kd —1)p < 1. (85)
Therefore, (I + A)~1 =377 (—A)" and we obtain
p((DgDs)) ™) =p (Z(—A)k> < (p(A)F)
k=0 k=0
_ 1
1-p(A)
< ! (86)
“1—(d-1)v—(k—1)dp
Hence,
kdu? + kd(kd — 1)
PsD,||2 < )
|| S! 1H2— (1*(d*1)V*(k*l)d/},)2 (87)
Finally, we have
1> [[PgDillz = /1~ [[Ps:Dil[3
kdu? + kd(kd — 1)p?
> — .
- (1-=(d—1)v—(k—1)du)?
(88)
|

Authorized licensed use limited to: George Mason University. Downloaded on December 24,2022 at 00:43:00 UTC from IEEE Xplore. Restrictions apply.



4738

APPENDIX F
PROOF OF PROPOSITION 1

Proof: From the geometric properties of a right triangle, we
get

iR 2
IPS((n-1)d+1,. iy Y I2

HIPsiis-vats, syl = Iy 89
Therefore, support selection step in BOLS is altered to
gt = argmax [[Psiy((p-1)att..jpapYl3 (90)

JjBe{l,..,.Ng}\Sl,

Without loss of generality, we assume the ¢ 5-th block contains
the indices {1, ..., d}, where d > 2. Then, thanks to the decom-
position characteristics [42] of [|Pgiq1,.. a1¥| 2, we have

IPsi,....apyll

2
| < Dg,r! > | )

HPélu{l,...,d—l}DdHQ

2
(a) <Dy, rt >
@ |Payl + (")

= |Psiq,... a1yl + <

HPélD1||2

2
+ d ( | < D]‘,I'l > | )
1 ’
j=2 ‘|Pslu{1,.‘.,jf1}DjH2
where equation (a) is derived by writing out ||[Pgi (1. 4-1} Y| |2
and we obtain (36).

oD

APPENDIX G
PROOF OF THEOREM 3

Proof: Based on Proposition 1, the atom selection indicator
of the BOLS algorithm is given by

(DaisRais) 1|20, 92)
where D, g =D\Dg € RM*V-ld) and  R.s €
RN -1d)x(N=1d) i5 oiven as follows:

R 0
R.\S - |: 8\5 R0:| . (93)

Similar to the assumption in Appendix A, to see whether the
next chosen index corresponds to an atom in Qg\g, we need to
examine whether the following quotient holds:

1(QoRo) T2,

Z(x!, 8h = <1 (94)
"8 = TQusRos) 1 o
Since Qo\sRo\s(Qo\sRo\s)T is Hermitian, we have
T T
((QO\SRO\S)T> (QosRos) ' =1" (95)
Substituting (95) into (94) yields
.7 T

Z(x', 8" < p, <(Q0Ro) ((QO\SRO\S)T) )

= pc((Qo\sRo\s)'(QoRa)). (96)
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The following proof of BOLS in selecting a new block index
in each step is similar to that in Section V-A [14]. Finally, we
complete the proof. |

APPENDIX H
PROOF OF THEOREM 4

Proof: By using submultiplicativity, we have

Pe ((QO\SRO\S)T (Qoﬁo»
= pec (((Qo\sRo\s)T QO\SRO\S) B (Qo\sRo\s)T Q0R0>

< Pe <((QO\SRO\S)T QO\SRO\S) 1)

% pe ((QosRos)" QuRo) -

Denote the off-diagonal part of QOT\SQO\S as A. Then, due
to Lemma 4,

o7

(k—1—Tg)dus - (k—Tp)dug
2 - 2 '
(k=Tp)dus
2

pe(A) < 98)

The result (40) now indicates that < 1 and thus
pe(A) < 1, which leading to the following Neumann series
expansion,

e ((@5sus) ) = (g(_A)k> <
1

S G Tz
1— I;MB

| Pc ((_A)k)

99)

Therefore,

o asms)
< pe (Rg\ls) Pe ((QasQo\s)1> Pe ((Rg\s)1>
< Pe <(Qg\sQ0\S)l)

2
< . 100
~2—(k—Tp)dugp (100
Note that
pe ((QosRos)” (QoFRo))
= Pe (Rg\ng\sQOﬁo)
< pe (Rg\s) Pc (Qg\sQO) Pc (ﬁo)
< Tpkdpp. (101)
Combining (100) and (101), we have
— 2Tpkd
pe((QuisRois) (QuRo)) < 53— 2
<1 (102)
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Simplify (102) and we get a cubic inequality with respect to
kd,

ap(kd)® + Bp(kd)® +ypkd + 65 <0,  (103)

where ap, Bp, vp and dp are given in the description of the
theorem. Finally, the proof is completed by exploiting Cardano
formula to calculate the solution of (103) in real domain. |

APPENDIX |
PROOF OF THEOREM 5

Proof: We first prove the theorem for OLS. It is clear that
a sufficient condition for OLS to select a correct atom in the
(I 4 1)-th iteration is

1(Qo\sRovs) ' llso > [[(QoRo) |-

By using the residual definition (49), a sufficient condition for
(104) is

(104)

1(QuisRoys)"s' [l — I(QR)"n'[|
> [[(QoRo)"s' [ + [[(QR) 0’|,
which implies

1(Qo\sRovs)"s' | = [[(QoRo) 8[| > 2/[(QR) 1.
(106)

(105)

Following the Lemma 4 in [38] and (18), we have
1(QosRaovs) sl = [[(QoR0)"'s'[|
> (1 - [(QosRos) (QoRo)|[1,1)11(Qo\sRovs) s |-

(107)
Combining (106), (107) and Lemma 5, the condition

2(2— (K = T)w)||(QR) ||
2—(K-T)u—-2KTp
(108)
ensures that OLS selects a correctatomin the (I 4 1)-thiteration.
Note that

||(Q0\SRO\S)TSZHOO
= [(QosRo\s)” (I — Ps:)DogysXo\s |l

< 1(Qo\sRos)” (I — Pgi)Dg\sxo\s| |2
- K -1

o (= (K~ Dp)lxos|l2
- K -1
where the last inequality follows from Lemmas 2 and 5 in [38].
Combining (108) and (109) yields

HXO S||2 > 2V K — 1(2 _ (K _ T)M)H(QR)THIHOO )
' 2= (K = T)u—2KTp)(1 — (K — 1)u)
(110)
Then, using Lemma 5.1 in [46], we obtain that (51) guarantees
OLS for selecting a correct atom in the (I + 1)-th iteration with
the probability at least 1 — ﬁ
For MOLS algorithm, the sufficient condition for selecting at
least one correct atom is

I(QosRos) s || >

) (109)
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LI (QosRos) " 'l > || (QoRo0)" ][22

> L|| (QoRo) " ¥'[|w,

where || - || 1 is defined in Appendix A. Then, by eliminating L
on both sides of the inequality (111), the proof is completed for
MOLS by using the similar procedures as described above. W

(111)

APPENDIX J
PROOF OF THEOREM 6

Proof: A sufficient condition for BOLS to select a correct
block in the (I + 1)-th iteration is

1(Qo\sRo\s) 1|20 > [1(QoR0) " r![|2,00- (112)
Similar to the proof in Appendix I,
1(Qo\sRovs)”'s[|2,00 — 1(QoRo)"'s'||2,5
> 2[|(QR)"n'||2,50 (113)

is the sufficient condition for (112). By using Lemma 4 in [38]
and (37), we have

1(QosRaovs) s [|2.0c = [[(QoRo)"'s'||2.00
> (1 - pc((Qo\sRos) (QoR0)))[|(QosRoys)”'s' 2,00

(114)
Combining (113), (114) and Lemma 6, the condition

22— (k — Tp)dup)|| QR)" 0|2,
2—(k—=Tp)dup —2Tpkdup
(115)
ensures that BOLS selects a correct block in the (I + 1)-th
iteration. Observe that

1(QosRos) s |2,

|(QosRos)”s'|

2,00 >

=1(Qo\sRo\s)” (I — Pgt)Dg\sxos |2,
1(Qo\sRo\s)” (I — Pgi)Dg\sxo\sl2

>

o k—1
1—(kd—1

> (1—( k)_HZ)HXO\st. 116

Combining (115) and (116) yields

2VEk—1(2—(k—Tp)dps)||(QR) 0’ |2,
2—(k—Tp)dup—2Tpkdup)(1—(kd — 1)p)
(117)
|

[Ixo\s 2> (

Finally, based on Lemma 7, the proof is completed.
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