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Abstract—In this paper, we focus on federated learning (FL)
over the air based on analog aggregation transmission in realistic
wireless networks. We first derive a closed-form expression for the
expected convergence rate of FL over the air, which theoretically
quantifies the impact of analog aggregation on FL. Based on
that, we further develop a joint optimization model for accurate
FL implementation, which allows a parameter server to select
a subset of edge devices and determine an appropriate power
scaling factor. Such a joint optimization of device selection and
power control for FL over the air is then formulated as an mixed
integer programming problem. Finally, we efficiently solve this
problem via a simple finite-set search method. Simulation results
show that the proposed solutions developed for wireless channels
outperform a benchmark method, and could achieve comparable
performance of the ideal case where FL is implemented over
reliable and error-free wireless channels.

Index Terms—Federated learning, analog aggregation, con-
vergence analysis, joint optimization, worker scheduling, power
scaling.

I. INTRODUCTION

Recently, federated learning (FL) has been proposed as a

well acknowledged approach for collaborative edge learning

[1], [2]. In FL, edge devices (local workers) train local models

from their own local data, and then transmit their local updates

to a parameter server (PS). After aggregating these received

local updates, the PS feeds back the averaged update to

the local workers. These iterative updates between PS and

workers, can be either model parameters for model averaging

[1] or parameters’ gradients for gradient averaging [2]. In

this way, FL relieves communication overhead and protect

user privacy compared to raw data sharing of traditional

collaborative learning, specially when the local data is in large

volume and privacy-sensitive. Existing work on FL focuses on

FL algorithms given idealized link assumptions, but the impact

of wireless environments on FL performance should be taken

into account in the design of FL deployed in real wireless

systems. Otherwise, the inherent characteristics of wireless

links may introduce unwanted training errors that dramatically

degrade the learning performance in terms of accuracy and

convergence rate.

To solve this problem, research efforts have been spent

on optimizing network resources used for transmitting model

updates in FL [3]. These works of FL over wireless net-

works adopt digital communications, using a transmission-

then-aggregation policy. Unfortunately, the communication

overhead and transmission latency become large as the number

of active workers increases. On the other hand, it is worth

noting that FL aims for global aggregation and hence only

utilizes the averaged updates of distributed workers rather

than the individual local updates from workers. Alternatively,

the nature of waveform superposition in wireless multiple

access channel (MAC) [4] provides a direct and efficient

way for transmission of the averaged updates in FL, also

known as analog aggregation based FL [5]–[10]. As a joint

transmission-and-aggregation policy, analog aggregation trans-

mission enables all the participating workers to simultaneously

upload their local model updates to the PS over the same

time-frequency resources as long as the aggregated waveform

represents the averaged updates, thus substantially reducing

the overhead of wireless communication for FL [11], [12].

While there exist works of analog aggregation based FL [5]–

[10], some of them mainly focus on designing transmission

schemes without optimization [5]–[8], where they adopt pres-

elected participating workers and fixed their power allocation.

Although optimization issues are considered in [9], [10],

the optimization is conducted on communication side alone,

without an underlying connection to FL. Noticeably, while the

optimization in existing works boils down to maximizing the

number of selected workers, our theoretical results indicate

that more workers is not necessary better over imperfect

links and with limited communication resources. Thus, unlike

these existing works, we seek to analyze the convergence

behavior of analog aggregation based FL, which interprets

the specific relationship between communications and FL

in the paradigm of analog aggregation. Such a meaningful

connection leads to a joint optimization framework for analog

communications and FL. This paper aims at a comprehensive

study on problem formulation, solution development, and

algorithm implementation for the joint design and optimization

of wireless communication and FL. Our key contributions are

summarized as follows:

• We derive closed-form expressions for the expected con-

vergence rate of FL over the air in the cases of convex

and non-convex, respectively, which not only interprets

but also quantifies the impact of wireless communications

on the convergence and accuracy of FL over the air. Also,

full-size gradient descent (GD) and mini-batched statisti-

cal gradient descent (SGD) methods are both considered

in this work.

• Based on the closed-form theoretical results, we formu-

late a joint optimization problem of learning, worker

selection, and power control, with a goal of minimizing

the global FL loss function. The optimization formulation
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Fig. 1: FL via analog aggregation from wirelessly distributed data.

turns out to be universal for the convex and non-convex

cases with GD and SGD. Further, for practical implemen-

tation of the joint optimization problem in the presence of

some unobservable parameters, we develop an alternative

reformulation that approximates the original unattainable

problem as a feasible optimization problem under the

operational constraints of analog aggregation.

• To efficiently solve the approximate problem, we iden-

tity a tight solution space by exploring the relationship

between the number of workers and the power scaling.

Thanks to the reduced search space, we propose a sim-

ple discrete enumeration method to efficiently find the

globally optimal solution.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a one-hop wireless network

consisting of a single PS at a base station and U user devices as

distributed local workers. Through FL, the PS and all workers

collaborate to train a common model for supervised learning

and data inference, without sharing local data.

A. FL Model

Let Di = {xi,k,yi,k}
Ki

k=1 denote the local dataset at the i-th
worker, i = 1, . . . , U , where xi,k is the input data vector, yi,k

is the labeled output vector, k = 1, 2, ...,Ki, and Ki = |Di|
is the number of data samples available at the i-th worker.

With K =
∑U

i=1 Ki samples in total, these U workers seek
to collectively train a learning model parameterized by a global
model parameter w = [w1, . . . , wD] ∈ RD of dimension D,
by minimizing the following loss function

(Global loss function)F (w;D) =
1

K

U∑

i=1

Ki∑

k=1

f(w;xi,k,yi,k), (1)

where the global loss function F (w;D) is a summation of K

data-dependent components, each component f(w;xi,k,yi,k)
is a sample-wise local function that quantifies the model

prediction error of the same data model parameterized by the

shared model parameter w, and D =
⋃

i Di.
In distributed learning, each worker trains a local model wi

from its local data Di, which can be viewed as a local copy
of the global model w. That is, the local loss function is

(Local loss function) Fi(wi;Di) =
1

Ki

Ki∑

k=1

f(wi;xi,k,yi,k), (2)

where wi = [w1
i , . . . , w

D
i ] ∈ RD is the local model parameter.

Through collaboration, it is desired to achieve wi = w = w∗,

∀i, so that all workers reach the globally optimal model w∗.
Such a distributed learning can be formulated via consensus
optimization as [1], [13]

P1: min
w

1

K

U∑

i=1

Ki∑

k=1

f(wi;xi,k, yi,k). (3)

To solve P1, this paper adopts a model-averaging algorithm
for FL [1], [13], where gradient descent is applied, and then
the local model at the i-th local worker is updated as

(Local model updating) wi = w −
α

Ki

Ki∑

k=1

∇f(w;xi,k,yi,k), (4)

where α is the learning rate, and ∇f(w;xi,k,yi,k) is the

gradient of f(w;xi,k,yi,k) with respect to w.
When local updating is completed, each worker transmits

its updated parameter wi to the PS via wireless uplinks to
update the global w as

(Global model updating) w =

∑U

i=1 Kiwi

K
. (5)

Then, the PS broadcasts w in (5) to all participating workers

as their initial value in the next round. The FL implements the

local model-updating in (4) and the global model-averaging in

(5) iteratively, until convergence.

B. Analog Aggregation Transmission Model

To avoid heavy communication overhead, we adopt analog

aggregation without coding, which allows multiple workers to

simultaneously upload their updates to the PS over the same

time-frequency resources. The local updates wi’s are aggre-

gated over the air to implement the global model updating step

in (5). Such an analog aggregation is conducted in an entry-

wise manner. That is, the d-th entries wd
i from all workers,

i = 1, ..., U , are aggregated to compute wd in (5), for any

d ∈ [1, D].
Let pi,t = [p1i,t, . . . , p

d
i,t, . . . , p

D
i,t] denote the power control

vector of worker i at the t-th iteration. Noticeably, the choice
of pi,t in FL over the air should be made not only to effectively
implement the aggregation rule in (5), but also to properly
accommodate the need for network resource allocation. Ac-
cordingly, we set the power control policy as

p
d
i,t =

βd
i,tKib

d
t

hd
i,t

, (6)

where hi,t is the channel gain between the i-th worker and the

PS at the t-th iteration1, bdt is the power scaling factor, and
βd
i,t is a transmission scheduling indicator. That is, βd

i,t = 1
means that the d-th entry of the local model parameter wi,t of
the i-th worker is scheduled to contribute to the FL algorithm
at the t-th iteration, and βd

i,t = 0, otherwise. Through power
scaling, the transmit power used for uploading the d-th entry
from the i-th worker should not exceed a maximum power

limit P
d,max
i = Pmax

i for any d, as follows:

|pdi,tw
d
i,t|

2 =

∣
∣
∣
∣
∣

βd
i,tKib

d
t

hd
i,t

w
d
i,t

∣
∣
∣
∣
∣

2

≤ P
max
i . (7)

1In this paper, we assume the channel state information (CSI) to be constant
within each iteration, but may vary over iterations. We also assume that the
CSI is perfectly known at the PS, and leave the imperfect CSI case in future
work.
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At the PS side, the received signal at the t-th iteration can
be written as

yt =

U∑

i=1

pi,t �wi,t � hi,t + zt =

U∑

i=1

Kibt � βi,t �wi,t + zt,

where � represents Hadamard product, hi,t =
[h1

i,t, h
2
i,t, ..., h

D
i,t], βi,t = [β1

i,t, β
2
i,t, .., β

D
i,t], bt =

[b1t , b
2
t , ..., b

D
t ], and zt ∼ CN (0, σ2I) is additive white

Gaussian noise (AWGN).
Given the received yt, the PS estimates wt via a post-

processing operation as

wt =

(
U∑

i=1

Kiβi,t � bt

)�−1

� yt =

(
U∑

i=1

Kiβi,t � bt

)�−1

� zt

+

(
U∑

i=1

Kiβi,t

)�−1 U∑

i=1

Kiβi,t �wi,t, (8)

where (
∑U

i=1 Kiβi,t � bt)
�−1 is a properly chosen scaling

vector to produce equal weighting for participating wi’s in (8)

as desired in (5), and (X)�−1 represents the inverse Hadamard

operation of X that calculates its entry-wise reciprocal. No-

ticeably, in order to implement the averaging of (5) in FL

over the air, such a post-processing operation requires bt to

be the same for all workers for given t and d, which allows

to eliminate bt from the first term in (8).

III. THE CONVERGENCE ANALYSIS OF FL WITH ANALOG

AGGREGATION

In this section, we study the effect of analog aggregation

transmission on FL over the air, by analyzing its convergence

behavior for both the convex and the non-convex cases. To

average the effects of instantaneous SNRs, we derive the

expected convergence rate of FL over the air, which quantifies

the impact of wireless communications on FL using analog

aggregation transmissions.

A. Convex Case

We first make the following assumptions that are commonly

adopted in the optimization literature [3], [14], [15].
Assumption 1 (Lipschitz continuity, smoothness): The

gradient ∇F (w) of the loss function F (w) is uniformly
Lipschitz continuous with respect to w, that is,

‖∇F (wt+1)−∇F (wt)‖ ≤ L‖wt+1 −wt‖, ∀wt,wt+1, (9)

where L is a positive constant.
Assumption 2 (strongly convex): ∇F (w) is strongly

convex with a positive parameter μ, obeying

F (wt+1) ≥ F (wt) + (wt+1 −wt)
T∇F (wt)

+
μ

2
‖wt+1 −wt‖

2
, ∀wt,wt+1. (10)

Assumption 3 (bounded local gradients): The sample-
wised local gradients at local workers are bounded by their
global counterpart [14], [15]

‖∇f(wt)‖
2 ≤ ρ1 + ρ2‖∇F (wt)‖

2
, (11)

where ρ1, ρ2 ≥ 0.

According to [2], [16], the FL algorithm applied over ideal

wireless channels is able to solve P1 and converges to an

optimal w∗. In the presence of wireless transmission errors,

we derive the expected convergence rate of the FL over the

air with analog aggregation, as in Theorem 1.

Theorem 1. Adopt Assumptions 1-3, and the model updating
rule for wt of the FL-over-the-air scheme is given by (8), ∀t.
Given the learning rate α = 1

L
, the expected performance gap

E[F (wt)− F (w∗)] of wt at the t-th iteration is given by

E[F (wt)− F (w∗)] ≤

t−1∑

i=1

i∏

j=1

At+1−jBt−i +Bt

︸ ︷︷ ︸

Δt

+

t∏

j=1

AjE[F (w0)− F (w∗)], (12)

where At = 1 − μ
L
+ ρ2

∑D
d=1(

K∑
U
i=1 Kiβ

d
i,t

− 1) and Bt =

ρ1

2L

∑D
d=1(

K∑
U
i=1 Kiβ

d
i,t

− 1)+ ‖(
∑U

i=1 Kiβi,t � bt)
�−1‖2 Lσ2

2 .

Proof. All the proofs, which are omitted in this paper due to

the page limit, can be found in our journal version at [17]:

https://arxiv.org/pdf/2104.03490.pdf

B. Non-convex Case

When the loss function F (w) is nonconvex, such as in

the case of convolutional neural networks, we derive the

convergence rate of the FL over the air with analog aggregation

for the nonconvex case without Assumption 2, which is

summarized in Theorem 2.

Theorem 2. Under the Assumptions 1 and 3 for the non-
convex case, given the learning rate α = 1

L
, the convergence

at the T -th iteration is given by

1

T

T∑

t=1

‖∇F (wt−1)‖
2 ≤

2L

T (1− ρ2D( K
Kmin

− 1))
E[F (w0)]− F (w∗)]

+
2L

∑T

t=1 Bt

T (1− ρ2D( K
Kmin

− 1))
. (13)

Proof. Please refer to our journal version [17].

As we can see from Theorem 2, when T is large enough,
we have

min
0,1,...,T

E[‖∇F (wt−1)‖
2] ≤

1

T

T∑

t=1

‖∇F (wt−1)‖
2

T→∞

≤
2L

∑T

t=1 Bt

T (1− ρ2D( K
Kmin

− 1))
︸ ︷︷ ︸

�NC
T

, (14)

which guarantees convergence of the FL algorithm to a sta-

tionary point [13]. Similarly, the performance gap at the step t

for non-convex cases is given by 	NC
t =

2L
∑T

t=1 Bt

T (1−ρ2D( K
Kmin

−1))
.
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C. Stochastic gradient descent

Our work can be extended to stochastic versions of gradient

descent (SGD) as well. Here, we provide convergence analysis

for mini-batch gradient descent with a constant mini-batch size

Kb. Theorem 3 summarizes the convergence behavior of SGD

for the strongly convex case.

Theorem 3. Under the Assumptions 1, 2 and 3 for the convex
case, given the learning rate α = 1

L
and the mini-batch size

Kb, the convergence behavior of the SGD implementation of
FL over the air is given by

E[F (wt)− F (w∗)] ≤

t−1∑

i=1

i∏

j=1

A
SGD
t+1−jB

SGD
t−i +B

SGD
t

︸ ︷︷ ︸

ΔSGD
t

+
t∏

j=1

A
SGD
j E[F (w0)− F (w∗)], (15)

where ASGD
t = 1− μ

L
+ρ2(

∑D
d=1(

(
∑U

i=1 Kb)
2−2K(

∑U
i=1 Kb)

K2 +
(
∑U

i=1 Kb)∑
U
i=1 Kbβ

d
i,t

) +
(
∑U

i=1(Ki−Kb))
2

K2 ) and BSGD
t =

ρ1

2L (
∑D

d=1(
(
∑U

i=1 Kb)
2−2K(

∑U
i=1 Kb)

K2 +
(
∑U

i=1 Kb)∑
U
i=1 Kbβ

d
i,t

) +

(
∑U

i=1(Ki−Kb))
2

K2 ) +
∥
∥
∥

Ä∑U
i=1 Kiβi,t � bt

ä�−1
∥
∥
∥

2
Lσ2

2 .

Proof. Please refer to our journal version [17].

From Theorem 3, the cumulative performance gap of FL

after the t-th iteration for the SGD case is bounded by

	SGD
t =

∑t−1
i=1

∏i
j=1 A

SGD
t+1−jB

SGD
t−i +BSGD

t .

IV. PERFORMANCE OPTIMIZATION FOR FEDERATED

LEARNING OVER THE AIR

In this section, we first formulate a joint optimization

problem to reduce the gap for FL over the air, which turns

out to be applicable for both the convex and non-convex

cases, using either GD or SGD implementations. To make it

applicable in practice in the presence of some unobservable

parameters at the PS, we reformulate it to an approximate

problem by imposing a conservative power constraint. To

efficiently solve such an approximate problem, we first identify

a tight solution space and then develop an optimal solution via

discrete programming.

A. Problem Formulation for Joint Optimization

Since we are concerned with convergence accuracy, our
optimization problem boils down to minimizing the perfor-
mance gap for different cases (i.e., 	t, 	NC

t , and 	SGD
t )

at each iteration. We recognize that solving P1 amounts to
iteratively minimizing those gap 	t, 	

NC
t , and 	SGD

t under
the transmit power constraint in (7). At the t-th iteration, the
objective functions for those three cases are given by

�t =Bt +At�t−1, (16)

�NC
t =Bt, (17)

�SGD
t =B

SGD
t +A

SGD
t �SGD

t−1 . (18)

where 	0 = 0 and 	SGD
0 = 0. Note that when the

optimization is executed at the t-th iteration, 	t−1 and 	SGD
t−1

can be treated as constants.

Considering the entry-wise transmission for analog aggre-
gation, we remove irrelevant items and extract the component
of the d-th entry from those gap in (16), (17) and (18) as the
objective to minimize, which is given by

Rt[d] =
Lσ2

2
Ä∑U

i=1 β
d
i,tKibdt

ä2 +
Kρ1 + 2KLρ2�t−1

2L
∑U

i=1 Kiβd
i,t

, ∀d,

R
NC
t [d] =

Lσ2

2
Ä∑U

i=1 β
d
i,tKibdt

ä2 +
Kρ1

2L
∑U

i=1 Kiβd
i,t

, ∀d,

R
SGD
t [d] =

Lσ2

2
Ä∑U

i=1 β
d
i,tKibdt

ä2 +
U(ρ1 + 2Lρ2�t−1)

2L
∑U

i=1 Kiβd
i,t

, ∀d.

Since all entries indexed by d are separable with respect
to the design parameters, we perform entry-wise optimization
by considering wt and wi,t one entry at a time, where the
superscript d and the index of different cases are omitted
hereafter. To determine βi,t and bt at the t-th iteration, the PS
carries out a joint optimization problem formulated as follows:

P2: min
{bt,βi,t}

U
i=1

Rt (19a)

s.t.

∣
∣
∣
∣

βi,tKibt

hi,t

wi,t

∣
∣
∣
∣

2

≤ P
max
i , (19b)

βi,t ∈ {0, 1}, i ∈ {1, 2, ..., U},

where Ki should be Kb in (19b) for the SGD case.

However, in (19b), the knowledge of {wi,t}
U
i=1 is needed

but is unavailable to the PS due to analog aggregation.

To overcome this issue, we reformulate a practical optimiza-

tion problem via an approximation that wt−1 ≈ 1
U

∑U
i=1 wi,t.

According to FL, each local parameter wi,t is updated from the

broadcast wt−1 along the direction of the averaged gradient

over its local data α
Ki

∑Ki

k=1 ∇f(wt−1;xi,k,yi,k). Hence, it

is reasonable to make the following common assumption on

bounded local gradients, considering that the local gradients

can be controlled by adjusting the learning rate or through

simple clipping [13], [18].
Assumption 4 (bounded local gradients): The gap be-

tween the global parameter wt−1 and the local parameter
update wi,t, ∀i, t is bounded by

|wt−1 − wi,t| ≤ η, (20)

where η ≥ 0 is related to the learning rate α that satisfies the
following condition2

η ≥ max

⎧

⎨

⎩

{∣
∣
∣
∣
∣

α

Ki

Ki∑

k=1

∇f(w,xi,k,yi,k)

∣
∣
∣
∣
∣

}U

i=1

⎫

⎬

⎭
. (21)

Under Assumption 4, we reformulate the original opti-
mization problem (P2) into the following problem (P3), by
replacing wi,t in (19b) by its approximation:

P3: min
{bt,βi,t}

U
i=1

Rt (22a)

s.t.

∣
∣
∣
∣

βi,tKibt

hi,t

∣
∣
∣
∣

2

(|wt−1|+ η)2 ≤ P
max
i , (22b)

βi,t ∈ {0, 1}, i ∈ {1, 2, ..., U}, (22c)

2This implies the value range of η. In practice, η can take
|wt−1 − wt−2|. In addition, for the SGD case, we have η ≥
max{{|αEDi

[∇f(w,xi,k,yi,k)]|}
U
i=1}

2801Authorized licensed use limited to: George Mason University. Downloaded on December 24,2022 at 01:00:51 UTC from IEEE Xplore.  Restrictions apply. 



where the power constraint (22b) is constructed based

on the fact that |βi,tKibt
hi,t

wi,t|
2 = |βi,tKibt

hi,t
|2|wi,t|

2 ≤

|βi,tKibt
hi,t

|2(|wt−1|+ η)2.

Since wt−1 is always available at the PS, P3 becomes a

feasible formulation for adoption in practice. Next, we develop

the optimal solution to P3.

B. Optimal Solution to P3 via Discrete Programming

At first glance, a direct solution to P3 leads to a mixed

integer programming (MIP), which unfortunately incurs high

complexity. To solve P3 in an efficient manner, we develop a

simple solution by identifying a tight search space without loss

of optimality. The tight search space, given in the following

Theorem 4, is a result of the constraints in (22b) and (22c),

irrespective of the objective function (22a). Hence, it holds

universally for any Rt, R
NC
t , and RSGD

t .

Theorem 4. When all the required parameters in P3 i.e.,
{Pmax

i , wt−1, hi,t,Ki, η}
U
i=1, are available at the PS, the

solution space of (bt, βi,t) in P3 can be reduced to the
following tight search space without loss of optimality as

S =

{
ß

Ä

b
(k)
t , β

(k)
i,t

ä

™U

k=1

∣
∣
∣
∣
∣
b
(k)
t =

∣
∣
∣
∣
∣

√
Pmax
k hk,t

Kk(|wt−1|+ η)

∣
∣
∣
∣
∣
,

β
(k)
t (b

(k)
t ) =

î

β
(k)
1,t , . . . , β

(k)
U,t

ó

, k = 1, . . . , U

}

, (23)

where β
(k)
t is a function of b

(k)
t , in the form β

(k)
i,t = H(Pmax

i −

|Kib
(k)
t (|wt−1|+η)

hi,t
|) and H(x) is the Heaviside step function,

i.e., H(x) = 1 for x > 0, and H(x) = 0 otherwise.

Proof. Please see our journal version [17].

Thanks to Theorem 4, we equivalently transform P3 from a
MIP into a discrete programming (DP) problem P4 as follows

P4: min
(bt,βt)∈S

Rt = Rt (bt,βt) . (24)

According to P4, the objective Rt can only take on U

possible values corresponding to the U feasible values of

bt; meanwhile, given each bt, the value of βt is uniquely

determined. Hence the minimum Rt can be obtained via line

search over the U feasible points (bt,βt) in (23).

Putting together, we propose a joint optimization for FL

over the air (INFLOTA), which is a dynamic scheduling and

power scaling policy. By using different Rt, our INFLOTA

can be adjust to all the considered cases including the convex

and non-convex, using either GD or SGD implementations.

Remark 1. (Complexity) Our INFLOTA provides a holistic

solution for implementation of the overall FL at both the PS

and workers sides. Its computational complexity is mainly

determined by that of the optimization step in P4. The

complexity order of the optimization step is low at O(U),
since the search space is reduced to U points only via P4.

V. SIMULATION RESULTS AND ANALYSIS

In the simulations, we evaluate the performance of the

proposed INFLOTA for both linear regression and image

classification tasks, which are based on a synthetic dataset

and the MNIST dataset, respectively.

In the considered network, we set U = 20, Pmax
i = Pmax =

10 mW for any i ∈ [1, U ], and σ2 = 10−4 mW. The wireless

channel gain hi,t is generated from an exponential distribution

with unit mean for different i and t.

We use two baseline methods for comparison: a) an FL

algorithm that assumes idealized wireless transmissions with

error-free links to achieve perfect aggregation, and b) an FL

algorithm that randomly determines the power scalar and user

selection. They are named as Perfect aggregation and Random

policy, respectively.

A. Linear regression experiments

In linear regression experiments, the synthetic data used to

train FL is generated randomly from [0, 1]. The input x and

the output y follow the function y = −2x + 1 + n × 0.4
where n ∼ N (0, 1). Since linear regression only involves two

parameters, we train a simple two-layer neural network, with

one neuron in each layer, without activation functions, which

is the convex case. The loss function is the MSE of the model

prediction ŷ and the labeled true output y. The learning rate

is set to 0.01.

Fig. 2 shows an example of using FL for linear regression.

The optimal result of a linear regression is y = −2x + 1,

because the original data generation function is y = −2x +
1 + 0.4n. In Fig. 2, we can see that the most accurate

approximation is achieved by Perfect aggregation, which is

the ideal case without considering the influence of wireless

communications. Random policy considers the influence of

wireless communication but without any optimization. Thus,

its performance is the worst. Our proposed INFLOTA performs

closely to the ideal case, which jointly considers the learning

and the influence of wireless communication. This is because

that our proposed INFLOTA can optimize worker selection

and power control so as to reduce the effect of wireless

transmission errors on FL.

In Fig. 3, we show how wireless transmission affects the

convergence behavior of FL in terms the value of the loss

function and the global FL model remains unchanged which

shows that FL converges. As we can see, as the number of

iterations increases, the MSE values of all the considered

learning algorithms decrease at different rates, and eventually

flatten out to reach their steady state. All schemes converge,

but to different steady state values. This behavior shows that

the channel noise does not affect the convergence of the

FL algorithm but it affects the value that the FL algorithm

converges to.

B. Evaluation on the MNIST dataset

In order to evaluate the performance of our proposed

INFLOTA in realistic application scenarios with real data, we
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train a multilayer perceptron (MLP) on the MNIST dataset3

with a 784-neuron input layer, a 64-neuron hidden layer, and

a 10-neuron softmax output layer, which is a non-convex case.

We adopt cross entropy as the loss function, and rectified linear

unit (ReLU) as the activation function. The total number of

parameters in the MLP is 50890. The learning rate α is set

as 0.1. In MNIST dataset, there are 60000 training samples

and 10000 test samples. We randomly take out 500 − 1000
training samples and distribute them to 20 local workers as

their local data. Then the three trained FL are tested with

10000 test samples. We provide the results of test accuracy

versus the iteration index t in Fig. 4. As we can see, our

proposed INFLOTA outperforms Random policy, and achieves

comparable performance as Perfect aggregation.

VI. CONCLUSION

In this paper, we have studied the joint optimization of

communications and FL over the air with analog aggregation.

Under the convex and non-convex cases with either the GD

or SGD implementations, we respectively derive closed-form

expressions for the expected convergence rate of the FL algo-

rithm, which can quantify the impact of resource-constrained

wireless communications on FL under the analog aggregation

paradigm. Through analyzing the expected convergence rates,

we have proposed a joint optimization scheme of worker

selection and power control, which can mitigate the impact of

wireless communications on the convergence and performance

of FL. More significantly, our joint optimization scheme is

applicable for both the convex and non-convex cases, using

either GD or SGD implementations. Simulation results show

that the proposed optimization scheme is effective in mitigat-

ing the impact of wireless communications on FL.
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optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[3] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Transactions on Wireless Communications,
2020.

[4] B. Nazer and M. Gastpar, “Computation over multiple-access channels,”
IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3498–3516, 2007.
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