ICC 2022 - IEEE International Conference on Communications | 978-1-5386-8347-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICC45855.2022.9838269

Joint Optimization for Federated Learning Over the Air

Xin Fan!, Yue Wang2, Yan Huo!, and Zhi Tian?
1School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China
2Department of Electrical & Computer Engineering, George Mason University, Fairfax, VA, USA
E-mails: {yhuo,fanxin}@bjtu.edu.cn, {ywang56,ztian1 } @ gmu.edu

Abstract—In this paper, we focus on federated learning (FL)
over the air based on analog aggregation transmission in realistic
wireless networks. We first derive a closed-form expression for the
expected convergence rate of FL over the air, which theoretically
quantifies the impact of analog aggregation on FL. Based on
that, we further develop a joint optimization model for accurate
FL implementation, which allows a parameter server to select
a subset of edge devices and determine an appropriate power
scaling factor. Such a joint optimization of device selection and
power control for FL over the air is then formulated as an mixed
integer programming problem. Finally, we efficiently solve this
problem via a simple finite-set search method. Simulation results
show that the proposed solutions developed for wireless channels
outperform a benchmark method, and could achieve comparable
performance of the ideal case where FL is implemented over
reliable and error-free wireless channels.

Index Terms—Federated learning, analog aggregation, con-
vergence analysis, joint optimization, worker scheduling, power
scaling.

1. INTRODUCTION

Recently, federated learning (FL) has been proposed as a
well acknowledged approach for collaborative edge learning
[1], [2]. In FL, edge devices (local workers) train local models
from their own local data, and then transmit their local updates
to a parameter server (PS). After aggregating these received
local updates, the PS feeds back the averaged update to
the local workers. These iterative updates between PS and
workers, can be either model parameters for model averaging
[1] or parameters’ gradients for gradient averaging [2]. In
this way, FL relieves communication overhead and protect
user privacy compared to raw data sharing of traditional
collaborative learning, specially when the local data is in large
volume and privacy-sensitive. Existing work on FL focuses on
FL algorithms given idealized link assumptions, but the impact
of wireless environments on FL performance should be taken
into account in the design of FL deployed in real wireless
systems. Otherwise, the inherent characteristics of wireless
links may introduce unwanted training errors that dramatically
degrade the learning performance in terms of accuracy and
convergence rate.

To solve this problem, research efforts have been spent
on optimizing network resources used for transmitting model
updates in FL [3]. These works of FL over wireless net-
works adopt digital communications, using a transmission-
then-aggregation policy. Unfortunately, the communication
overhead and transmission latency become large as the number
of active workers increases. On the other hand, it is worth
noting that FL aims for global aggregation and hence only

utilizes the averaged updates of distributed workers rather
than the individual local updates from workers. Alternatively,
the nature of waveform superposition in wireless multiple
access channel (MAC) [4] provides a direct and efficient
way for transmission of the averaged updates in FL, also
known as analog aggregation based FL [5]-[10]. As a joint
transmission-and-aggregation policy, analog aggregation trans-
mission enables all the participating workers to simultaneously
upload their local model updates to the PS over the same
time-frequency resources as long as the aggregated waveform
represents the averaged updates, thus substantially reducing
the overhead of wireless communication for FL [11], [12].

While there exist works of analog aggregation based FL [5]-
[10], some of them mainly focus on designing transmission
schemes without optimization [5]-[8], where they adopt pres-
elected participating workers and fixed their power allocation.
Although optimization issues are considered in [9], [10],
the optimization is conducted on communication side alone,
without an underlying connection to FL. Noticeably, while the
optimization in existing works boils down to maximizing the
number of selected workers, our theoretical results indicate
that more workers is not necessary better over imperfect
links and with limited communication resources. Thus, unlike
these existing works, we seek to analyze the convergence
behavior of analog aggregation based FL, which interprets
the specific relationship between communications and FL
in the paradigm of analog aggregation. Such a meaningful
connection leads to a joint optimization framework for analog
communications and FL. This paper aims at a comprehensive
study on problem formulation, solution development, and
algorithm implementation for the joint design and optimization
of wireless communication and FL. Our key contributions are
summarized as follows:

o We derive closed-form expressions for the expected con-
vergence rate of FL over the air in the cases of convex
and non-convex, respectively, which not only interprets
but also quantifies the impact of wireless communications
on the convergence and accuracy of FL over the air. Also,
full-size gradient descent (GD) and mini-batched statisti-
cal gradient descent (SGD) methods are both considered
in this work.

o Based on the closed-form theoretical results, we formu-
late a joint optimization problem of learning, worker
selection, and power control, with a goal of minimizing
the global FL loss function. The optimization formulation
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Fig. 1: FL via analog aggregation from wirelessly distributed data.

turns out to be universal for the convex and non-convex
cases with GD and SGD. Further, for practical implemen-
tation of the joint optimization problem in the presence of
some unobservable parameters, we develop an alternative
reformulation that approximates the original unattainable
problem as a feasible optimization problem under the
operational constraints of analog aggregation.

o To efficiently solve the approximate problem, we iden-
tity a tight solution space by exploring the relationship
between the number of workers and the power scaling.
Thanks to the reduced search space, we propose a sim-
ple discrete enumeration method to efficiently find the
globally optimal solution.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a one-hop wireless network
consisting of a single PS at a base station and U user devices as
distributed local workers. Through FL, the PS and all workers
collaborate to train a common model for supervised learning
and data inference, without sharing local data.

A. FL Model

Let D; = {x; k, yi,k}kK;'l denote the local dataset at the i-th
worker, ¢ = 1,...,U, where x; 1, is the input data vector, y;
is the labeled output vector, k = 1,2, ..., K;, and K; = |D;]
is the number of data samples available at the i-th worker.
With K = Zijzl K; samples in total, these U workers seek
to collectively train a learning model parameterized by a global
model parameter w = [w!,...,wP] € RY of dimension D,
by minimizing the following loss function

KZZf(w Xi g, Yik)s (1)

i=1 k=1

(Global loss function)F'(w; D) =

where the global loss function F'(w; D) is a summation of K
data-dependent components, each component f(W;X; i, Yi k)
is a sample-wise local function that quantifies the model
prediction error of the same data model parameterized by the

shared model parameter w, and D = |J, D;.

In distributed learning, each worker trains a local model w;
from its local data D;, which can be viewed as a local copy
of the global model w. That is, the local loss function is

K’.
. 1 -
(Local loss function) F;(w;; D;) = X Zl F(Wi; Xk, Yik), (2)

where w; = [w}, ..., w]’] € RP is the local model parameter

Through collaboration, it is desired to achieve W, =w=w"

Vi, so that all workers reach the globally optimal model w*.
Such a distributed learning can be formulated via consensus
optimization as [1], [13]

-

U
. 1
P1: min ZZf(Wﬁxi,k:yi,k)‘ 3)

i=1 k=1

To solve P1, this paper adopts a model-averaging algorithm
for FL [1], [13], where gradient descent is applied, and then
the local model at the i-th local worker is updated as

(Local model updating) w; = w — — Z VW Xik, Yik), (4)

where « is the learning rate, and V f(w;x; x,yi ) is the

gradient of f(w;X; ,y:r) With respect to w.

When local updating is completed, each worker transmits
its updated parameter w; to the PS via wireless uplinks to
update the global w as

Z?:l Kiwi

Kk %)
Then, the PS broadcasts w in (5) to all participating workers
as their initial value in the next round. The FL implements the
local model-updating in (4) and the global model-averaging in
(5) iteratively, until convergence.

(Global model updating) w =

B. Analog Aggregation Transmission Model

To avoid heavy communication overhead, we adopt analog
aggregation without coding, which allows multiple workers to
simultaneously upload their updates to the PS over the same
time-frequency resources. The local updates w;’s are aggre-
gated over the air to implement the global model updating step
in (5). Such an analog aggregation is conducted in an entry-
wise manner. That is, the d-th entries w;j from all workers,

i = 1,...,U, are aggregated to compute w? in (5), for any
d e [1,D].
Let p;; = [pz{t, . ,pﬁt, ..., pP,] denote the power control

vector of worker ¢ at the ¢-th iteration. Noticeably, the choice
of p; ¢ in FL over the air should be made not only to effectively
implement the aggregation rule in (5), but also to properly
accommodate the need for network resource allocation. Ac-
cordingly, we set the power control policy as

Béi,tKibf

; (6)
he,

P;‘i,t =
where h; ; is the channel gain between the i-th worker and the
PS at the t-th iteration', b¢ is the power scaling factor, and

dt is a transmission scheduhng indicator. That is, ﬂl =1
means that the d-th entry of the local model parameter w; ; of
the i-th worker is scheduled to contribute to the FL algorithm
at the ¢-th iteration, and ﬁdt = 0, otherwise. Through power
scaling, the transmit power used for uploading the d-th entry
from the ¢-th worker should not exceed a maximum power
limit Pid’max = P/ for any d, as follows:
2

d d
1 K
2 ﬁl,t bt d S Pimax. (7)

|p§l,tw§i,t| B W; ¢
it

'In this paper, we assume the channel state information (CSI) to be constant
within each iteration, but may vary over iterations. We also assume that the
CSI is perfectly known at the PS, and leave the imperfect CSI case in future
work.

Authorized licensed use limited to: George Mason University. Downloaded & cember 24,2022 at 01:00:51 UTC from IEEE Xplore. Restrictions apply.



At the PS side, the received signal at the ¢-th iteration can
be written as
U U
yi = Z Pit OWitOhiy+2z = Z Kby © Bit © Wit + 24,

i=1 i=1

where © represents Hadamard product, h;; =
[h;tahzz,tw“ahft]s ﬂi,t = [ i{taﬂita'-yﬂft]s bt =
[b},b2,...,bP], and z; ~ CN(0,0%I) is additive white
Gaussian noise (AWGN).

Given the received y;, the PS estimates w; via a post-
processing operation as

U ©-1 U o-1
= (Z KiBit ©® bt) Oyt = (Z KiBi+® bt) © z¢

i=1 i=1
U

+ (Z Kzﬂi,t)
i=1

where (25]:1 KiBi+ ® b)) 1 is a properly chosen scaling
vector to produce equal weighting for participating w;’s in (8)
as desired in (5), and (X)©~! represents the inverse Hadamard
operation of X that calculates its entry-wise reciprocal. No-
ticeably, in order to implement the averaging of (5) in FL
over the air, such a post-processing operation requires by to
be the same for all workers for given ¢ and d, which allows
to eliminate b, from the first term in (8).

o-1 g

ZKzﬂz',t © Wi, (8)

=1

III. THE CONVERGENCE ANALYSIS OF FL WITH ANALOG
AGGREGATION

In this section, we study the effect of analog aggregation
transmission on FL over the air, by analyzing its convergence
behavior for both the convex and the non-convex cases. To
average the effects of instantaneous SNRs, we derive the
expected convergence rate of FL over the air, which quantifies
the impact of wireless communications on FL using analog
aggregation transmissions.

A. Convex Case

We first make the following assumptions that are commonly

adopted in the optimization literature [3], [14], [15].

Assumption 1 (Lipschitz continuity, smoothness): The
gradient VF(w) of the loss function F(w) is uniformly
Lipschitz continuous with respect to w, that is,

IVE(Wig1) — VF(wWy)|| < L|lwigr — wel|,  Ywe, wepr,  (9)

where L is a positive constant.
Assumption 2 (strongly convex): VF(w) is strongly
convex with a positive parameter u, obeying

F(Wis1) > F(wi) + (W1 — wi) VF(wy)

+ %me —wil?, Ywe, Wit (10)

Assumption 3 (bounded local gradients): The sample-
wised local gradients at local workers are bounded by their
global counterpart [14], [15]

IVf(woll* < p1 + p2 | VE(we) |1, (1)

where p1, p2 > 0.

According to [2], [16], the FL algorithm applied over ideal
wireless channels is able to solve P1 and converges to an
optimal w*. In the presence of wireless transmission errors,
we derive the expected convergence rate of the FL over the
air with analog aggregation, as in Theorem 1.

Theorem 1. Adopt Assumptions 1-3, and the model updating
rule for wy of the FL-over-the-air scheme is given by (8), Vt.
Given the learning rate o = %, the expected performance gap
E[F(w:) — F(w*)] of w; at the t-th iteration is given by

t—1 4

E[F(w¢) — F(w")] < Z H Ai41-jBi—i + By

i=1j=1

Ay

+ [ [ ASEIF (wo) — F(w™)),

Jj=1

12)

where Ay = 1 — % + py Zle(m —1) and B; =
BN (s e — D) (D, Kiie 0 b)o 215
2L d=1 25_«’:1 K«;B{I‘t i=1 Mt t 9 -

Proof. All the proofs, which are omitted in this paper due to
the page limit, can be found in our journal version at [17]:
https://arxiv.org/pdf/2104.03490.pdf L

B. Non-convex Case

When the loss function F'(w) is nonconvex, such as in
the case of convolutional neural networks, we derive the
convergence rate of the FL over the air with analog aggregation
for the nonconvex case without Assumption 2, which is
summarized in Theorem 2.

Theorem 2. Under the Assumptions 1 and 3 for the non-
convex case, given the learning rate o = % the convergence
at the T'-th iteration is given by

T
1 Py 2L "
7 2 IVE(we1)|” < E[F(wo)] — F(w")]
2L Z;‘,F:I Bt . (13)
T(1— pD(5 — 1))
Proof. Please refer to our journal version [17]. L

As we can see from Theorem 2, when 7" is large enough,
we have

T
. 2 1 2
o i EIIVF ) < 7 30 IV (v
T — 00

2LY ), B

10— D

(14)

- 1)

NC
Ar

which guarantees convergence of the FL algorithm to a sta-

tionary point [13]. Similarly, the performance gap at the step ¢
2L 23;1 Bt
T(1=p2D(gr——1))"

min

for non-convex cases is given by AN¢ =
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C. Stochastic gradient descent

Our work can be extended to stochastic versions of gradient
descent (SGD) as well. Here, we provide convergence analysis
for mini-batch gradient descent with a constant mini-batch size
K. Theorem 3 summarizes the convergence behavior of SGD
for the strongly convex case.

Theorem 3. Under the Assumptions 1, 2 and 3 for the convex
case, given the learning rate o = % and the mini-batch size
Ky, the convergence behavior of the SGD implementation of
FL over the air is given by

t—1 1
E[F(we) — F(w")] <> [ APG2,B2SP + BYCP

i=1 j=1

ASGD

t
+ [[ A7 EF(wo) — F(w")],  (15)
j=1
where A7 =1L +P2(ZdD:1((ZEJ:1 Kb)2;<22K(ZEJ:1 L

U U o 2
el BRE  aa por

D (LK) 2K (S, Ky) (L, Ky)
QL (227 ge =2+ sesn)
U (Ki—Ky))? =192 2
7(21:1(1(2 o)) )+ H <ZlU:1 KiBit© bt> Lo,
Proof. Please refer to our journal version [17]. O

From Theorem 3, the cumulative performance gap of FL
after the t¢-th iteration for the SGD case is bounded by
SGD _ N~ t—1 i SGD pSGD SGD
Ay = Zi=1 Hj:l At+17jBt7i + B; :
IV. PERFORMANCE OPTIMIZATION FOR FEDERATED
LEARNING OVER THE AIR

In this section, we first formulate a joint optimization
problem to reduce the gap for FL over the air, which turns
out to be applicable for both the convex and non-convex
cases, using either GD or SGD implementations. To make it
applicable in practice in the presence of some unobservable
parameters at the PS, we reformulate it to an approximate
problem by imposing a conservative power constraint. To
efficiently solve such an approximate problem, we first identify
a tight solution space and then develop an optimal solution via
discrete programming.

A. Problem Formulation for Joint Optimization

Since we are concerned with convergence accuracy, our
optimization problem boils down to minimizing the perfor-
mance gap for different cases (i.e., Ay, ANC, and APEP)
at each iteration. We recognize that solving P1 amounts to
iteratively minimizing those gap A;, ANY, and APEP under
the transmit power constraint in (7). At the ¢-th iteration, the
objective functions for those three cases are given by

ANy =By + AN, (16)

AYC =B, (17)

ATOP =BV + AT ATEP (18)

where A¢g = 0 and AFYP = 0. Note that when the

optimization is executed at the ¢-th iteration, A;_; and APGP
can be treated as constants.

Considering the entry-wise transmission for analog aggre-
gation, we remove irrelevant items and extract the component
of the d-th entry from those gap in (16), (17) and (18) as the
objective to minimize, which is given by

2
Rild) = Lo ; Kpi + QUI(LpQAdt,17 vd,
2 (ZzUzl Bg,tKib?> 2L Zi:l K it
2
RY[d) = Lo Kps vd,

+ b
2 (ZzU:1 Bfl,tKibfsi>2 2L 25]:1 Kiﬁzd,z
2
RIP[d) = Lo S Un d2hpeliny) gy
2 (25:1 Bzd,tKibf:i) 2L Zi:l K; it

Since all entries indexed by d are separable with respect
to the design parameters, we perform entry-wise optimization
by considering w; and w;; one entry at a time, where the
superscript d and the index of different cases are omitted
hereafter. To determine /3; ;+ and b, at the ¢-th iteration, the PS
carries out a joint optimization problem formulated as follows:

P2: min R,
{be,Bi e}y

(19a)

2

Bi,tKibt S P;nax}

hit
Bii€{0,1},i € {1,2,...,U},

where K; should be K3 in (19b) for the SGD case.

However, in (19b), the knowledge of {w;;}% , is needed
but is unavailable to the PS due to analog aggregation.

To overcome this issue, we reformulate a practical ogtimiza-
tion problem via an approximation that w;_; ~ % i1 Wit
According to FL, each local parameter w; ; is updated from the
broadcast w,_; along the direction of the averaged gradient
over its local data K& Zszl V f(wi—1; Xk, yik). Hence, it
is reasonable to make the following common assumption on
bounded local gradients, considering that the local gradients
can be controlled by adjusting the learning rate or through
simple clipping [13], [18].

Assumption 4 (bounded local gradients): The gap be-

tween the global parameter w;_; and the local parameter
update w; ¢, Vi, t is bounded by

st (19b)

Wit

(20)

w1 — wi | <7,
where 1 > 0 is related to the learning rate « that satisfies the
following condition?
U

8

Under Assumption 4, we reformulate the original opti-
mization problem (P2) into the following problem (P3), by
replacing w; ; in (19b) by its approximation:

K
7 > max {'; > VI (w,xigyix) @n
C k=1

P3: min Ry (22a)
{be.Bi e}y

S.t. ‘&#K;bt 2(|w,5_1| _,.77)2 < P (22b)

Bis e {0,1},0€ {1,2,...,UY, (22¢)

2This implies the value range of 7. In practice, 1 can take

|wg—1 — w¢—2|. In addition, for the SGD case, we have n >
max{{|aEDi [vf(w7xi,k7yi,k)”}7€]:1}
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where the power constraint (22b) is constructed based

on the fact that 5,171(,%1142 = 627bef|2‘w”|2 <
5i,tKibt|2(|wt_1|+n)2'

hit
Since wy_; is always available at the PS, P3 becomes a
feasible formulation for adoption in practice. Next, we develop
the optimal solution to P3.

B. Optimal Solution to P3 via Discrete Programming

At first glance, a direct solution to P3 leads to a mixed
integer programming (MIP), which unfortunately incurs high
complexity. To solve P3 in an efficient manner, we develop a
simple solution by identifying a tight search space without loss
of optimality. The tight search space, given in the following
Theorem 4, is a result of the constraints in (22b) and (22c¢),
irrespective of the objective function (22a). Hence, it holds
universally for any R;, RNC, and RFCP.

Theorem 4. When all the required parameters in P3 i.e.,
{Pmax g, hiy, Kiyn}Y,, are available at the PS, the
solution space of (b;,B;+) in P3 can be reduced to the
following tight search space without loss of optimality as

X U Pn\axh
s= {0 - [

T Bl m)|
B M) = [69..... ,(J’fﬂ,k:l,...,U}, )

where ﬂt(k) is a function ofbgk), in the form 61(]? = H(PM**—

O]
|w\) and H(x) is the Heaviside step function,

hit

ie, H(z) =1 for x >0, and H(z) = 0 otherwise.

Proof. Please see our journal version [17]. ]

Thanks to Theorem 4, we equivalently transform P3 from a
MIP into a discrete programming (DP) problem P4 as follows

P4: min Ry = Ry (be, Bt) -

24
(bt,B¢)€S 4

According to P4, the objective R; can only take on U
possible values corresponding to the U feasible values of
bs; meanwhile, given each b;, the value of 3; is uniquely
determined. Hence the minimum R; can be obtained via line
search over the U feasible points (b, 3:) in (23).

Putting together, we propose a joint optimization for FL
over the air (INFLOTA), which is a dynamic scheduling and
power scaling policy. By using different R;, our INFLOTA
can be adjust to all the considered cases including the convex
and non-convex, using either GD or SGD implementations.

Remark 1. (Complexity) Our INFLOTA provides a holistic
solution for implementation of the overall FL at both the PS
and workers sides. Its computational complexity is mainly
determined by that of the optimization step in P4. The
complexity order of the optimization step is low at O(U),
since the search space is reduced to U points only via P4.

V. SIMULATION RESULTS AND ANALYSIS

In the simulations, we evaluate the performance of the
proposed INFLOTA for both linear regression and image
classification tasks, which are based on a synthetic dataset
and the MNIST dataset, respectively.

In the considered network, we set U = 20, P/"®* = P™a% =
10 mW for any i € [1,U], and 02 = 10~* mW. The wireless
channel gain h; ; is generated from an exponential distribution
with unit mean for different 7 and ¢.

We use two baseline methods for comparison: a) an FL
algorithm that assumes idealized wireless transmissions with
error-free links to achieve perfect aggregation, and b) an FL
algorithm that randomly determines the power scalar and user
selection. They are named as Perfect aggregation and Random
policy, respectively.

A. Linear regression experiments

In linear regression experiments, the synthetic data used to
train FL is generated randomly from [0, 1]. The input x and
the output y follow the function y = —2x + 14+ n x 04
where n ~ N(0,1). Since linear regression only involves two
parameters, we train a simple two-layer neural network, with
one neuron in each layer, without activation functions, which
is the convex case. The loss function is the MSE of the model
prediction ¢ and the labeled true output y. The learning rate
is set to 0.01.

Fig. 2 shows an example of using FL for linear regression.
The optimal result of a linear regression is y = —2z + 1,
because the original data generation function is y = —2x +
1 + 0.4n. In Fig. 2, we can see that the most accurate
approximation is achieved by Perfect aggregation, which is
the ideal case without considering the influence of wireless
communications. Random policy considers the influence of
wireless communication but without any optimization. Thus,
its performance is the worst. Our proposed INFLOTA performs
closely to the ideal case, which jointly considers the learning
and the influence of wireless communication. This is because
that our proposed INFLOTA can optimize worker selection
and power control so as to reduce the effect of wireless
transmission errors on FL.

In Fig. 3, we show how wireless transmission affects the
convergence behavior of FL in terms the value of the loss
function and the global FL. model remains unchanged which
shows that FL. converges. As we can see, as the number of
iterations increases, the MSE values of all the considered
learning algorithms decrease at different rates, and eventually
flatten out to reach their steady state. All schemes converge,
but to different steady state values. This behavior shows that
the channel noise does not affect the convergence of the
FL algorithm but it affects the value that the FL algorithm
converges to.

B. Evaluation on the MNIST dataset

In order to evaluate the performance of our proposed
INFLOTA in realistic application scenarios with real data, we
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Fig. 2: An example of implementing FL for

linear regression.
train a multilayer perceptron (MLP) on the MNIST dataset®
with a 784-neuron input layer, a 64-neuron hidden layer, and
a 10-neuron softmax output layer, which is a non-convex case.
We adopt cross entropy as the loss function, and rectified linear
unit (ReLU) as the activation function. The total number of
parameters in the MLP is 50890. The learning rate « is set
as 0.1. In MNIST dataset, there are 60000 training samples
and 10000 test samples. We randomly take out 500 — 1000
training samples and distribute them to 20 local workers as
their local data. Then the three trained FL are tested with
10000 test samples. We provide the results of test accuracy
versus the iteration index ¢ in Fig. 4. As we can see, our
proposed INFLOTA outperforms Random policy, and achieves
comparable performance as Perfect aggregation.

VI. CONCLUSION

In this paper, we have studied the joint optimization of
communications and FL over the air with analog aggregation.
Under the convex and non-convex cases with either the GD
or SGD implementations, we respectively derive closed-form
expressions for the expected convergence rate of the FL algo-
rithm, which can quantify the impact of resource-constrained
wireless communications on FL under the analog aggregation
paradigm. Through analyzing the expected convergence rates,
we have proposed a joint optimization scheme of worker
selection and power control, which can mitigate the impact of
wireless communications on the convergence and performance
of FL. More significantly, our joint optimization scheme is
applicable for both the convex and non-convex cases, using
either GD or SGD implementations. Simulation results show
that the proposed optimization scheme is effective in mitigat-
ing the impact of wireless communications on FL.
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