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Abstract—With the development of communication systems
towards the high-frequency band, the demand for spectrum
resources is ever-increasing, where the research interest has
changed from narrowband spectrum sensing to wideband spec-
trum sensing. The Nyquist-rate-based wideband spectrum sens-
ing with high-rate sampling is being questioned whether it is
suitable for real-time applications. On the contrary, the well-
known compressive spectrum sensing (CSS) is more appealing
due to the compressive sensing (CS) technology, resulting in
lower signal acquisition costs. However, the CS algorithms for
recovering sparse spectrum generally require multiple iterations,
which presents a challenge to the low complexity implemen-
tation of spectrum sensing. To address this issue, this paper
proposes a novel method for solving the block CSS (BCSS)
problem, where the spectrum of primary users is modeled
as a block structure signal. Specifically, the block threshold
feature (BTF) is utilized to reconstruct the spectrum while
bypassing any iterative operations. Furthermore, to improve
the performance of the BTF-based BCSS, we develop a novel
supervised dictionary learning (SDL) model, based on the the-
oretical analysis of mutual incoherence and restricted isometry
properties. Simulation results not only verify the compatibility
of BTF and the SDL model, but also demonstrate the effec-
tiveness and robustness of SDL-BTF-based BCSS for practical
implementation.

Index Terms—Block sparsity, compressive sensing, dictionary
learning, threshold feature, wideband spectrum sensing.

I. INTRODUCTION

N COGNITIVE radio network (CRN), spectrum sens-
ing [1]-[4] can improve the utilization of scarce spectrum
resources via providing dynamic spectrum access. The sec-
ondary users (SUs) attempt to sense the status of primary
users (PUs) with the given measurements and dictionary as
soon as possible to effectively avoid spectrum conflict. The
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current literature has shown that a wider spectrum band pro-
vides more access opportunities for SUs [5]-[7], which attracts
many researchers and scholars to study wideband spectrum
sensing. Though the wider spectrum brings greater capacity
to the CRN, the practical wideband spectrum sensing poses
new challenges.

One challenge of wideband spectrum sensing in practi-
cal applications is the high sampling rate. The conventional
Nyquist-rate sampling approach, which causes high hardware
complexity and excessive delay in the sensing procedure, is
thus unacceptable for practical and agile CRN applications.
Compressive sensing (CS) is an effective technology to solve
this challenge, leading to the research field of compressive
spectrum sensing (CSS) [8]-[13]. CSS methods take advan-
tage of the fact that the spectrum of received signals inherently
exhibits sparsity in certain bases, which then allows compres-
sion during signal acquisition via sub-Nyquist-rate sampling
and then lossless signal reconstruction by using CSS algo-
rithms. Moreover, in practice, PUs’ spectrum occupancy is
usually endowed a block structure due to their multiple-
band spectrum usage, which motivates the investigation of
block CSS (BCSS) [14]. Greedy algorithms such as orthogo-
nal matching pursuit (OMP) and block orthogonal matching
pursuit (BOMP) are widely adopted for CSS and BCSS respec-
tively due to their low computational complexity [6], [8], [14].
Although these greedy algorithms achieve certain tradeoffs
between algorithm complexity and performance for practical
implementation, the demand for real-time implementation of
CSS in communication services is still continuously growing.

In response to this requirement, a remarkably effective
choice for estimating spectrum x € R™*! from the com-
pressive measurements y € R™*! is the threshold feature
(TF) [15]-[18]:

% = max(D"y), (1)

where y = Dx, ¥ € R"*! is the sparse approximation of
the original spectrum x, D € R™*"™ is the dictionary, y is
the measurement vector with sub-Nyquist-rate sampling and
maxg (-) is a quantitative operation that keeps the K ele-
ments with the largest absolute value unchanged and sets
the others to zero. For BCSS, the corresponding version is
called the block TF (BTF) by keeping the k spectrum blocks
with the largest 9 norms unchanged, where k = % and d
is the block length of each spectrum block. Different from
other optimization or iterative algorithms, the operations in
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TF only involve matrix multiplication and threshold trunca-
tion, which enjoy low computational complexity. However, the
considerable low complexity of the TF is at the expense of
accuracy [15], [16], which is the main technical challenge of
applying the TF to wideband CSS. Therefore, these observa-
tions motivate us to improve BTF to obtain satisfactory BCSS
performance while inheriting its outstanding low complexity
merits.

A. Related Work

Conventional TF, i.e., the method using the model of (1),
and greedy algorithms, such as OMP, BOMP and BOLS, have
been widely studied in many applications [6], [8]. In particu-
lar, TF is capable of highlighting the correct support elements
of the signal by setting small elements to zero [16], where
these small entries are usually caused by noise. In this sense,
TF succeeds in feature enhancement such as effectively reduc-
ing the noise on feature transmission [19], providing powerful
nonzero supports thereby achieving state-of-the-art accuracy
for sparse weight learning [17], and so on. In [16], the authors
apply TF to unsupervised sparse representation. They first
provide the theoretical guarantees of TF for correct support
recovery, and then develop an unsupervised dictionary learn-
ing method (DL-TF) correspondingly. Although the DL-TF
method performs well in unsupervised sparse representation,
the sparse signal recovery performance of DL-TF is worse
than that using the original dictionary D. This is because the
unsupervised learning in DL-TF does not utilize the benefi-
cial label information, causing the performance degradation.
Moreover, DL-TF ignores the favorable gain brought by the
inherent block structure of both the dictionary and the sparse
signal. Due to these issues, DL-TF cannot be directly applied
to wideband BCSS.

As an extended version of TF, BTF is a superior choice that
considers the block structure of the signal. However, to the
best of our knowledge, there is no research applying the pure
BTF to sparse recovery. This is because although BTF inherits
all the advantages of TF, it is limited by its common disad-
vantage, i.e., the inferior sparse recovery performance caused
by its simple product and threshold operations. Fortunately,
the supervised dictionary learning (SDL) has emerged as an
effective performance improvement method in sparse recovery
thanks to the availability of the label information, which shows
superiority over the unsupervised dictionary learning [16]. The
findings in [20] indicate that sparse recovery based on SDL
obtains outstanding accuracy and strong stability. In [21], the
authors assert that SDL generates superior dictionaries by
introducing discriminative information. In SDL-based CSS,
the occupied spectrum for training acts as the supervised
information, i.e., the label information. Furthermore, the inher-
ent block structure of the spectrum inspires the joint model
of structure-based sparsity [22]-[24] and label-based spar-
sity [25]-[27]. Therefore, by inspecting the limitation of [16]
and further investigating the spectrum sensing with supervised
learning in [28]-[31], it is promising that SDL can bring
extra benefits to BTF in sparse recovery, so as to promote
the improvement of BCSS.
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To the best of our knowledge, few researches have applied
the low-complexity BTF to BCSS. Meanwhile, SDL has an
enabling potential to improve the BCSS performance of BTE,
which has not been studied in the current literature.

B. Our Contributions

To address all the above challenges, we propose a novel
method, i.e., supervised dictionary learning for block threshold
feature (SDL-BTF), to perform efficient and accurate wide-
band BCSS. The significance of this method is reflected from
the following two perspectives. On one hand, it is still very
challenging to obtain real-time sensing since conventional
BCSS algorithms require multiple iterations for accurate spec-
trum recovery. For this issue, BTF works as a non-iterative
algorithm with low complexity. It only requires a small number
of multiplication and threshold operations, which significantly
reduces the hardware and computation burdens. On the other
hand, SDL is able to generate a discriminative dictionary
matched with BTF, which effectively reduces the performance
loss caused by the rough approximation of BTF. Therefore,
a holistic integration of SDL and BTF in this paper not only
addresses the challenge of the real-time requirement in wide-
band BCSS, but also solves the problem of the unsatisfactory
performance of the BTF-based wideband BCSS. The main
contributions of this work are summarized as follows.

1) Theoretical analysis for BTF-based BCSS: To better
understand the fundamental limits of BTF in BCSS,
its recovery conditions under both noiseless and noisy
scenarios are derived. Specifically, we first derive the
noiseless sufficient conditions of BTF based on mutual
incoherence property (MIP) and restricted isometry
property (RIP) to guarantee the exact support recon-
struction. Thanks to the consideration of block structure,
our theoretical results reveal superior upper bounds
of reconstructible sparsity for BTF compared with the
existing one for conventional TF [16]. Secondly, to
make these analyses interpretable for practical wide-
band BCSS, we extend our analysis to the noisy scenario
by modeling a new coherence metric between the dic-
tionary atoms and the noise. Our results indicate that
if this coherence is sufficiently small, then the prod-
uct results of the atom vectors and the noise will
also be small. In this way, BTF can perform effective
threshold operation by setting the small product results
that related to noise as zeros, so as to retain correct
supports.

2) SDL model integrated with BTF': To effectively improve
the sensing performance of BTF, a novel SDL model is
proposed, which is elaborated based on the aforemen-
tioned theoretical analysis. To the best of our knowl-
edge, this is the first work to develop SDL model
for BTF-based BCSS. In this new model, a discrimi-
native dictionary is generated by simultaneously using
the block structure and the label information, which in
turn facilitates the identification of the correct supports
of the recovered spectrum. Meanwhile, a nuclear norm
constraint is incorporated to enforce the low rankness
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of the learned dictionary, while an orthogonal matrix
constraint further contributes to its approximate orthog-
onality. In order to reduce the coherence between the
dictionary atoms and the noise, we propose a reason-
able /5 , norm minimization constraint to weaken their
coherence block by block. Simulation results verify that
the proposed SDL-BTF BCSS performs faster than the
state-of-the-art CSS algorithms with satisfactory sensing
performance.

3) Optimization algorithm for the SDL model: We present
an iterative algorithm for optimizing the proposed SDL
method via alternating direction method of multipliers
(ADMM). To facilitate the utilization of ADMM, we
prove that our proposed /3., norm minimization is
a proximal mapping problem, and thus can be solved
with O(nlog n) complexity. Furthermore, we provide a
closed-form solution to the sub-problem of sparse recov-
ery by exploiting the positive semi-definite property of
the dictionary product.

4) Complexity and convergence analysis: To explicitly
present the low computational complexity of BTF, we
give the complexity analysis for BTF, which reveals that
the total complexity of BTF is approximately equal to
that of the iterative algorithm with only one iteration.
Furthermore, in order to illustrate the feasibility of our
proposed optimization algorithm for the SDL method,
we analyze its convergence behavior by explaining the
convergence of the solution to each sub-problem one by
one. The convergence of the entire algorithm is verified
by simulations as well, which reveal that it can converge
after several iterations.

C. Organization and Notations

The rest of this paper is organized as follows. In Section II,
we give the signal and system model of wideband BCSS
and study the recovery conditions for BTF. In Section III,
we present our SDL model matched with BTF, and its
optimization algorithm. In Section IV, simulation results of
SDL-BTF-based BCSS are presented, followed by conclusions
in Section V.

Throughout the paper, we denote vectors by boldface lower-
case letters, e.g., X and matrices by boldface uppercase letters,
e.g., D. D; is the i-th column of D. For vector x, the set of
its nonzero indices is defined as €} and xq is the vector con-
sisting of the corresponding entries. z; is the i-th element of
the vector x. x[i] and D[i] represent the i-th block of vector x
and matrix D. The ¢y-norm, ¢1-norm, f2-norm and ¢,,-norm
of x are represented by ||x||o, ||x]|1, ||x[|2 and ||x||cc respec-
tively. ||D||r represents the Frobenius-norm of D. ||x[[2 o is
the mixed norm of x, which obtains the maximum #9-norm of
the blocks in x. Lowercase k represents the block sparsity, d
is the block length and uppercase K = kd stands for overall
sparsity. The operation | - | represents the absolute value of its
target and the operation supp(-) denotes the set that contain-
ing the indices of the nonzero elements of its objective. In this
paper, the columns of the dictionary are normalized to have
unit £9-norm.
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Fig. 1. Signal model of wideband BCSS.

II. MODELS AND RECOVERY GUARANTEES

In this section, we first formulate the signal and system
models of the wideband BCSS. Then, we give the theoret-
ical analysis that guarantees reliable recovery for BTF as a
preparation for BTF-based BCSS.

A. Signal and System Models

Consider a practical wideband CRN, the spectrum signal of
PUs that SUs collect is s € R™. Such spectrum signal can
be sparsely represented through a certain basis ¥ € R™*"™,
e.g., the inverse discrete Fourier transform (IDFT) matrix.
That is, s = ¥x, where x is the spectrum signal represented
in the frequency domain, which usually holds block sparsity
structure due to the multiple-band spectrum occupancy by PU
systems [14] as illustrated in Fig. 1. Suppose that x spans the
frequency range 0 ~ BHz, containing np nonoverlapping sub-
channels with equal bandwidth B; = % =d (1<i<npg).
The number of active PUs is called block sparsity. If the num-
ber of active PUs is k, then only k blocks of x have nonzero
lo-norms.

Then, let ® € R™*™ denote the compressed sampling
matrix, where m and n are the numbers of sub-Nquist-rate and
Nquist-rate samples, respectively, and the compression ratio
is m/n. By denoting the additive noise as n € R™*1, the
compressed measurement signal y € R™*! is represented as

y=®s+n=®¥x +n=Dx+n, 2)

where D = ®¥ € R™*" is the sensing matrix called dictio-
nary in this paper. The matrix D in the form of a concatenation
of ng column blocks is given by

D= |Di---DygDgy1---Dog---Dy_gy1---Dn|, (3
———

D[1]

D[2] D[np]

where D[i] € R™*¢ is the i-th block of D.

As shown in Fig. 2, the system model of our SDL-BTF
contains two stages, i.e., the offline training stage and the
online learning stage. In the first stage, the discriminative dic-
tionary is learned from the input training data samples. Then,
the learned dictionary is utilized to reconstruct the original
spectrum signal in the second stage. For fast implementation,
the BTF only involves the matrix multiplication and threshold
operations [32]-[34], which is expressed as

% = max(D"y), @
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Fig. 2. System model of wideband BCSS based on SDL-BTF.

where maxy(+) retains the k largest f2-norm of the blocks in
its object while setting the others to zeros.

Note that the system model considered in this paper exhibits
more practical applicability than those based on conventional
model-based wideband spectrum sensing solutions [4], [10],
from the following two perspectives. On one hand, we uti-
lize our proposed novel SDL method to learn an elaborate
dictionary in the offline stage, which is more efficient than
the conventional system model that directly uses random
matrix as their dictionary. The learned dictionary effectively
improves the discriminative ability and enhances the sensing
performance. On the other hand, we not only take advan-
tage of the block structure of the sparse spectrum but also
employ BTF for fast sensing in the online stage. These new
features allow agile sensing capabilities that are promising for
the requirement of real-time BCSS.

B. The Recovery Guarantees for BTF

We begin with the basic definitions of MIP and block RIP.
Definition 1 (MIP): The coherence of a dictionary D,
which represents the similarity of its atoms, is defined as
po= max; s |DTDJ| [35]. The block-coherence and sub-

coherence are defined as up = max; ;j-; M and v =
max; max; j£; |DiTDj| [36], respectively, where MJi,j] =
DT[i)D[j] and D;,D; € D[I].

Definition 2 (Block RIP): For any k-block sparse signal
x € R™ with block length d, the dictionary D satisfies the
block RIP with order k [37], if it shows

(1= dgja)lIxI3 < IDxII3 < (1 + 85 1) lIxII3. 5)

The RIP constant (RIC) 6y, is defined as the smallest positive
number that satisfies (5). In the following, we use ¢ instead
of 0y to represent the block RIP for convenience.

1) Noiseless Case: The following theorem gives the suffi-
cient condition for correct support recovery.

Theorem 1: For the noiseless case y = Dx and x =
maxy, (D Ty), if the sufficient condition
T 2 2 74 2
o > okd?pp + ki (©)
Thax

holds, then supp(X) = supp(x), where 2y, and Tyax are the
elements with the smallest and largest amplitudes in x, and X
is the estimation of x.
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Proof: See Appendix A. |
Corollary 1: When d = 1, the condition in Theorem 1
corresponds to the conventional TF, which becomes:

2
€Tre.
SN > 9K+ K22 (7

zmax

When K > 1, the condition (7) is more relaxed than that given
in [16].

Proof: Since d = 1, the block structure disappears and ppg
converges to u, and we get (7). The condition in (7) is more
relaxed than the sufficient condition given in [16], i.e., Kp <
2“%‘7' if \/2Ku+ K242 < 2Ky This inequality can be
simplified to K > 3 > 1 since p € [0, 1]. [

Remark 1: Theorem 1 indicates that the smaller the block-
coherence of the dictionary is, the easier the BTF is to exactly
recover the nonzero supports of the given spectrum. This is
consistent with the observations for many reconstruction algo-
rithms [35], [36], [38]. That is, a lower coherence means
the atoms of the dictionary are more diverse, so that more
information can be used to identify the supports of the spec-
trum. Furthermore, Corollary 1 indicates that our sufficient
condition for conventional TF is always more relaxed than
that given in [16] since the sparsity of a sparse spectrum is
invariably larger than 1.

In the following, we discuss the recovery conditions by
further considering the block RIP.

Theorem 2: Define the RIC of DJI[iD as 0pg,; and
Omax,0 = mMax;opg, (i € ). Then, the condition for
exactly recovery of BTF in the noiseless case, i.e., supp(X) =
supp(x), is given as follows:

a 1—(d—1)w
kd < d+ , 8
where o = ;gl%:"g
Proof: See Appendix B. |

Remark 2: Considering that o < 1 and thus 1_%[ < %, the
condition required for the BTF is stricter than that of BOMP
in [36]. The same phenomenon exists when comparing OMP
and conventional TF [16]. Such performance gain of OMP-
type algorithms is obtained with the compensation of much
higher complexity. That is, the OMP-type algorithms iterates
K or k times but BTF only iterates once. In Section V, we
will give detailed experimental results to show the lightweight
implementation of BTF.

Corollary 2: When ug > v(l — %) - % and dpax 0 <

2v/14+C?—2

1- Prptd—d(d-T’ the condition in Theorem 2 is more

relaxed than that in Theorem 1, where C' = ]
Proof: The condition (6) in Theorem 1 can be snnphﬁed to

-1+ V14 C?

\mmml

kd < ———. ®

dpp
By solving the inequality $5(d + 17(37;1)0) g
—1+V/14+C2 , we complete the proof. "

uB
Remark 3 The precondition in Corollary 2, i.e.,
v(1-4) =4

kg >
is easy to satisfy. For example, if the dlctionary
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is block orthogonal, i.e., v = 0, then the precondition always
holds. Meanwhile, if the nonzero entries in x are equal to 1,
ie., C = 1, then we obtain a0 < 1 — 2\/?% Therefore,
the aforementioned analysis indicates that Theorem 2 is more
relaxed than Theorem 1. Furthermore, since 1 — 2‘/?%
approaches 1 when d is large, Corollary 2 is easy to hold
in this case.

2) Noisy Case: We first give a definition of the coherence
between the dictionary D and the noise n. Then, we extend
Theorems 1 and 2 to the noisy case, i.e., Theorems 3 and 4,
respectively.

Definition 3: The coherence between the dictionary D and
the noise n is defined as y, = max; [D] n|.

Theorem 3: If the sufficient condition:

2

2 2
Zimin ZdeQ/J/ +k2d4,u2 + Hn (2+2kd /J‘B)'u’”
2 B B 2
Thmax |xmax| |$rnax‘

(10)

holds, then supp(x) = supp(x), where y = Dx + n.

Proof: See Appendix C. |

Theorem 3 reveals that it is necessary to minimize
the mutual coherence pu, to obtain high support recovery
performance of BTF.

Theorem 4: The condition required for reliable recovery of
BTF in noisy case is

Ié] ( 1—(d— 1)1/)
kd < d+ , (11)
1+3 KB
where
1 - 1+ 6max,ﬂ
B DG 1ll2,00
\V 1- 5max,ﬂ - IﬁxT
1
T (12)
11— 5max,ﬂ ||Ds{nH2¢oo -1
Proof: See Appendix D. |

Theorem 4 has two crucial points different from the
Theorem 2: 1) lower coherence between the support dictio-
nary block and noise (||D57; n||2 o), and 2) higher amplitude
of the sparse spectrum (||x||2). Theorems 2 and 4 reveal the
upper bounds of reconstructible sparsity for reliable recovery.
It is also noted that Theorem 4 is stricter than Theorem 2
because of the existing noise.

C. Complexity Analysis

It is self-evident that BTF-based BCSS has an absolute
advantage in time complexity over the other CSS iterative
algorithms. The time complexity of BTF-based BCSS is
O(mn + n + klog %), which is roughly equivalent to the
complexity of running an iterative block sparse reconstruction
algorithm, such as BOMP, for only one iteration [16], [36].
Meanwhile, the time complexity of the conventional threshold
feature (1) is O(mn + n + kdlogn). As we can see, since
( %)k < n*?, the complexity of BTF-based BCSS is lower than
that of the conventional TF. However, because mn > kd, the
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complexities of BTF-BCSS and the conventional TF are both
approximated by O(mn). That is to say, the complexity of
BTF-based BCSS is not greater than that of the conventional
TF. In a word, compared with other algorithms, BTF-based
BCSS is more suitable for real-time spectrum sensing.

III. SUPERVISED DICTIONARY LEARNING FOR
BLOCK THRESHOLD FEATURE

In this section, we first present our proposed SDL model
for BTF based on the aforementioned theoretical analysis.
Then, we propose an iterative algorithm based on ADMM
for optimizing this SDL model, followed by its convergence
analysis.

A. Model Formulation for SDL-BTF

Our proposed SDL model not only considers the block
structure which is ignored in DL-TF [16], but also introduces
the supervised learning mechanism. The objective function of
SDL-BTF is formulated as

| >

N
min X;(HDT(YZ- — DX;)3 0 — plIXil3) + D7D - 13
P
2 0 2
2| = DX|[} + 2Dl + ST - X[ 3
2 2 2
st || Xill20 <k, i=1,2,...,N;

Djll2=1,7=12,...,n, (13)

where 0 < A, p, 6, v, § <1 are scalars, D is the dictionary, Y
represents the compressed signal matrix, X is the sparse signal
matrix, J denotes the label matrix corresponding to X, and I
is the identity matrix.

1) The dictionary D should have small block-coherence
up, which can be obtained from Theorems 1-4. That is,
the smaller the block-coherence pp, the easier these theo-
rems are satisfied. Based on the existence of spectrum norm
in the definition of upg, it is necessary to reduce the eigen-
values of the target dictionary blocks. In order to achieve this
goal, we exploit an optimizable objective function that encour-
ages small nuclear norm of each dictionary block, i.e., the term
|ID[]]]«, for any i. According to [39, Th. 7.3.9], it is equiv-
alent to obtaining the minimum nuclear norm of the entire
dictionary, i.e., ||D||«, and this is the reason why it appears
in (13). In fact, this condition indicates a low-rank structure
of the learned dictionary since it has been proven [40] that
the small nuclear norm property and low-rank property of a
matrix are equivalent in optimization problem while the latter
is highly non-convex.

2) D should have small sub-coherence v. This con-
dition is concluded from Theorem 2 and Theorem 4.
Small sub-coherence v improves the required sparsity level,
which indicates a more relaxed condition for more sparse
signals with more sparsity levels. This condition can be
achieved by minimizing |D[i]7D[i]—I||% for any i. However,
in order to simplify the variable complexity, we exploit
the term |DTD — I|% in (13) to replace the minimum
optimization problem ||D[i]TD[i] — I||% for any i. It is rea-
sonable because a smaller [D7D — I||% generally implies a
smaller |D[i]TD[i] — I)%.
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3) From Theorem 4, it is necessary to minimize 1D ||X|‘|‘22 =

to restrain the adverse impact of noise. This condition
aims to improve the upper bound of reconstructible spar-
sity for reliable recovery with respect to the RIC in (11). It
exploits mixed norm to describe the mutual incoherence prop-
erty between the support blocks of dictionary and the additive
noise. Moreover, this condition further takes the {9-norm
energy of sparse signal into account. Larger effective signal
energy is more capable of reducing the negative effect of noise.
Since it is hard to solve the optimization problems involving
this term, we turn to optimizing the alternative cost func-
tion |D&n||2. o0 — pl[x[|2, which can be well approximated by
HDTnllz oo —plxll2. The term 3277 (DT (Y; —DX)|[3 o -
p|IX;||3) in (13) is used to achieve this optimization
purpose.

Now, it comes to discuss the label-based sparsity in (13). J
is the corresponding label matrix, which is a predefined sparse
label consistency indicator. A simple way is setting J to be a
binary matrix where nonzero entries appear at the position of
i-th row and j-th column if the j-th data sample is expected to
be represented by the entries which are of the same category to
the i-th entry [26]. The last term in (13) is the label consistency
regularization function, which directly limits sparse coding by
encouraging it to approximate the label consistency matrix
sparsely.

Note that our proposed SDL-BTF-based BCSS is applicable
to some of-the-shelf CS-based compressive sampling frame-
works, such as modulated wideband converter (MWC) [41]
and random demodulator (RD) [42], [43]. It is observed that
MWC and RD are widely used sub-Nyquist sampling frame-
works, and when generating training data set for effective
dictionary learning, they are capable of providing compressed
measurements, which reliably represent the original sparse
spectrum. Therefore, our proposed SDL is able to gen-
erate discriminative dictionary for BTF in these systems.
Moreover, the application of MWC and RD in wideband
CSS aims to reduce sampling rate and thus achieve fast
implementation, which coincides with the motivation of our
proposed SDL-BTF method for real-time sensing. That is to
say, our proposed SDL-BTF and these real CSS frameworks
not only supplement to each other, but also facilitate each
other.

B. ADMM-Based Algorithm for SDL-BTF

First, two auxiliary variables Q and P are introduced to
separate problem (13):

N

LA

min 537 (1Qil3 0 — pIX:13) + D7D — 13
’ =1

0 5 1)
+5IY = DXI3 + 2Pl + 519 - XI3

st. Q=DT(Y-DX); P=D;
||Xi||2’0§k, i=1,2,...,N;

IDjll2=1,7=1,2,....n (14)
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Then, the augmented Lagrangian function of (14) is
given by
((X,Q,P,D)

N
A
= 23 (19ilB.0c — pIXs13) + IDTD — 1)
i=1

0 ~ é
+ 5IY = DXIE + 21l + 519 - XI3

+ <LLQ-DT(Y-DX)>+ <L P-D>

5
+ §(IIQ -DT(Y -DX)|% + P - D||%)
st [Xill20 <k, i=1,2,...,N;

HDj||2:].,j:1,2,...,n (15)

where L! and L2 represent the Lagrange multipliers, and /3 is a
regularization parameter. Then, we apply the ADMM to solve
the optimization problem. The detailed sub-problems for X, Q,
P and D at the t-th iteration (¢t = 0,1,...,) are introduced as
follows.

1) X Sub-Problem: X can be updated by solving each X;
and we give the objective function as follows:

X" = min — HX I3+ 57 HY ~ DX 3+ o ||J X|[
T L} o
+§||Qz' -D" (Y; - DX;) + é [
st. [ Xilleo <k, i=1,2,...,N. (16)

There exists many techniques to solve this problem and an
efficient method is the direct utilization of iterative algorithm,
e.g., block THT algorithm [33]. In order to reduce the com-
plexity of iterative procedures, we give another solution here.
The second order derivative of (16) is

PPXIL 5\ 0

- Py 2
X g g
The matrix on the right side of the equation in (17) is positive
semi-definite if \p is properly small and it easily holds in the

actual optimization procedure. Then, the solution by using the
block thresholding operator can be used as shown in [44]:

DD +DTDDTD.

7)

-1

Xt = m]?x<<5 TBAPI+ %DTD + DTDDTD)

0T 4 T
x (=DTY,+-J-DTDQ;
(ﬂ B A
+DTpDDTY, — ;DTDL§>>. (18)

2) Q Sub-Problem: Q can be solved for each Q; and the
separate objective function for Q; is:

A N

1 .

Q! =min 7> Qi3 o
i=1

5 2
LY 19)

Qi — (DTm ~DX;) -

5
)

F
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The proximal mapping of (19) for Q; is

proz? ™ (h) = arg HéinT”Qi”%,oo +11Q; —hlf3, (20)

where 7 = % and h € R This problem can be solved by
the proximal mapping algorithm in [16], where the vector h is
multi-peak. The detailed discussion is shown in Appendix E.

3) P Sub-Problem: Fix the other variables and update P by
the following problem:

2

L2
P = min [P + fHP - (D - ) 1)

B

This can be addressed via the singular-value thresholding
operator [45], which is detailed as follows:

F

I? ;
pitl = S (D - ) =US» (VT (22)
where USV T is the SVD of D— L. 82 (%) = diag({| Bl -

25 1+) and {t}4 = max(0, ?).
4) D Sub-Problem: The dictionary D is updated by solving
the following spherical constraint problem:

.1 p 2 0 2

Dt+1=rrgn EIID D_I”F"'_%”Y_DXHF

2
1 T L!

~(l@-DT(Y - DX) + —
+2<HQ (Y- DX) +

+HP—D+

2
i.)

st. |Djlle=1,7=1,2,...,n.

F
2

(23)

We exploit the curvilinear search algorithm [46] to
solve (23).

5) L Sub-Problem: The Lagrange multipliers are updated
as follows:

{ LI+ — 1) 4 ﬁEQtH _pT@+D) (Y _ Dt+1xt+1))7

L2(t+1) — 2 +8(pt+t — Dtﬂ)A

(24)

For complete presentation, we summarize the optimization
procedures of our SDL-BTF in Algorithm 1. In Theorems 2
and 4, to obtain larger upper bounds of the reconstructible
sparsity, the parameters « and § should be large enough. Since
a and [ are negatively correlated with the RIC, small RIC
dmax, is expected. In other words, the smaller the RIC of
the dictionary, the better recovery performance of the BTF.
Meanwhile, it is known that MIP condition is stronger than
RIP [47], which reveals that small coherence of the dictio-
nary leads to small RIC. Therefore, the orthogonal and nuclear
norm constraints in (13), i.e., ||DTDfI||%J and ||D||«, not only
guarantee the small coherence of the dictionary but also ensure
its small RIC. In Algorithm 1, the sub-problems of these two
constraints are addressed by curvilinear search algorithm and
singular-value thresholding operator, respectively. This means
Algorithm 1 is able to generate a satisfactory dictionary with
superior RIP.

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 4, DECEMBER 2022

Algorithm 1 Dictionary Learning for Block Threshold Feature
Input: Training set Y and its corresponding label matrix J,
Q, P, Ll, L2, number of data samples N, block sparsity
k, €, tmax, regularization parameters A, p, 6, v, 6 and 5.
Output: D.
1: Initialization: Random Gaussian matrix DY. 0 matrices
Q% PO, (L1, (L2)° and X'. X = J. Regularization
parameters are initialized in detail in Section I'V. Let r = 0.

2: while | X! — X!||p > ¢ and t < tpax do

Update the sparse codes Xf, i = 1,2,...,N by
calculating (18);

Update Q¢, i = 1,2,..., N by solving (20);

Update P* by calculating (22);

Update D? by solving (23);

Update (L')? and (L?)? by calculating (24);
t=1t+1;

: end while

10: return D.

(95}

R A AN

C. Convergence Analysis

For the ADMM optimization process of the SDL-BTF given
in Algorithm 1, the optimal solution for the X, Q, P and D
can be addressed by optimizing corresponding functions. First,
the closed-form solution of X can be efficiently processed with
the block thresholding operator that guarantees convergence.
Then, the convergence of Q can be guaranteed by using the
algorithm in [16] with O(nlogn) complexity. Moreover, the
convergence of D can be guaranteed by introducing the corre-
sponding auxiliary variable P, which are solved by curvilinear
search algorithm [46] and singular-value thresholding [45]
respectively. Therefore, the convergence of the SDL-BTF can
be guaranteed.

IV. SIMULATION RESULTS
A. Determination for Hyper-Parameters

In this subsection, we first determine the appropriate hyper-
parameters by evaluating the support recovery performance of
the SDL-BTF in recovering binary signals. Then, We compare
the SDL-BTF with four methods to verify the effectiveness
of the obtained hyper-parameters. Note that the reconstruc-
tion of binary signals can be considered as a generalization of
the problem of spectrum estimation, that is, it only focuses
on obtaining the occupied positions of the spectrum. We
regard that the parameters obtained in this framework are
more general and not limited to a certain distribution of spec-
tral amplitude. The data is generated as follows. The sparse
signal X € R™*¥ to be constructed has k nonzero blocks,
containing d entries with value 1 in the randomly selected
nonzero blocks. It is worth noting that the size of the spar-
sity set in this experiment does not exceed 10% of the signal
length. Then, the samples in training set are generated as
Y = DX + N, where D € R™*" is a random Gaussian
matrix and N € R™*" is the additive Gaussian noise, whose
elements are generated from Gaussian distribution A'(0, 1) and
N(0,0.01) respectively. The label matrix J = X. By default,
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(b) is with k = 8 and d = 2.

the hyper-parameters are first set as A = 0.05, p = 0.0002,
6 = 0.05, 5 =0.001, v = 0.05 and ¢ = 0.01.

The aforementioned four methods for comparison include
the methods using original matrix, random matrix, K-SVD and
DL-TF. The detailed settings are given as follows:

e Original method: The dictionary D is set the same
as the matrix originally used to generate the measurement
signals. The recovery methods are X = maxk(DTy) and
x = maxg (DTy), where k = % is the block sparsity. It
is noted that, in unsupervised dictionary learning, the base-
line using X = maxy (D”y) is regarded as having the best
performance in [16].

e Random method: The dictionary is generated randomly
and has nothing to do with the training set. Therefore, the
performance of this method should be the worst, which can
be considered as the lower bound of the performance of the
BTFE.

e K-SVD method: We exploit the standard K-SVD algo-
rithm to generate the dictionary and apply the learned
dictionary to the non-block threshold feature, i.e., X
maxg (D”y), where K = kd is the total sparsity level.

e DL-TF method: The dictionary is learned from the DL-TF
method and we apply the conventional threshold feature to
obtain the solution.

e SDL-BTF method: This is our proposed method. We gen-
erate the dictionary by solving (13), where D is initialized
randomly. Then, we exploit the block threshold feature.

We use the support difference [16] to evaluate the accuracy
of the reconstructed support as:

(25)

N ~
. 1 } :||XQ®XQ||1
D — — e —
Z};GTCTLCE N ~ 9 y

1639

)
Q
g
S

S

Q

0.0005
0008

Difference

Results of SDL-BTF on the synthetic data by varying hyper-parameters with m = 64 and n = 128. (a), (c), (d), (e), (f) are with k = 4 and d = 2;

where €P represents the element-wise xor operation. The lower
the difference is, the better the performance of the method
achieves.

The support difference results with varying hyper-
parameters are given in Fig. 3. It is observed that the
performance of SDL-BTF varies more obviously for differ-
ent A and 0, compared with that of other hyper-parameters,
which indicates that SDL-BTF is more sensitive to A and 6.
In Fig. 3-(b), the block sparsity is twice as that in Fig. 3-
(a). It can be seen that the performance trend in these two
figures are similar, but the performance in Fig. 3-(a) is gener-
ally better than that in Fig. 3-(b). This result reveals that the
stronger structure of the block sparsity, the better the recovery
performance. Then, from the results in Figs. 3-(c), (d), (e), (f),
the performance of SDL-BTF keeps stable when v and §
vary, which means its insensitivity of v and §. Therefore,
~ and § can be selected in a relatively wide range. Overall,
based on these discussions, we choose A = 0.05, 8 = 0.05,
~ = 0.05 and § = 0.005 as our default settings in the following
experiments.

The second experiment compares the recovered sparse sup-
ports using the SDL-BTF-trained dictionary with the actual
sparse supports, and shows the convergence of the SDL-BTF
method. The ground truth of sparse supports is a random
bock-diagonal matrix with eight blocks, and k = 2, d = 2.
The synthetic measurement data is shown in Fig. 4(i) (a),
and Fig. 4(i) (b) and (c) represent the ground truth of sparse
supports and the solution of SDL-BTF. It can be seen that
SDL-BTF obtains similar sparse supports corresponding to the
ground truth sparse code. The last four sub figures in Fig. 4(i)
are the convergence curves with respect to || X! —X?|| » and
the objective function in (13). It is observed that under differ-
ent parameter settings, SDL-BTF converges within about six
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Fig. 4. Results of SDL-BTF on the synthetic data. (a) Input synthetic data; (b) the ground truth of sparse codes; (c) sparse coding results of SDL-BTF from
the synthetic data; (d) increment of Frobenius norm of X+ and Xt withk =2 and d = 2; (e) the value of objective function of SDL-BTF with k = 2 and
d = 2; (f) increment of Frobenius norm of X¢*1 and Xt with k = 4 and d = 4; (g) the value of objective function of SDL-BTF with k = 4 and d = 4.

TABLE 1

THE SUPPORT RECOVERY PERFORMANCE COMPARISON WITHm = 64, n = 128,d =2 ANDd =4

d=2 d=14
k=1 k=2 |k=3|k=4|k=5|k=1]| k=2 | k=3
Original block 0 0.001 | 0.166 | 0.647 | 1.517 0 0.0184 | 0.5280
Original non-block 0 0.235 | 1.144 | 2.125 | 3.303 | 0.166 | 2.074 | 4.383
Random 1.964 | 3.874 | 5.721 | 7.488 | 9.218 | 3.888 | 7.495 | 10.651
K-SVD [49] 0.480 | 0.925 | 1.792 | 2.659 | 3.526 | 0.520 | 2.314 | 10.785
DL-TF [16] 0.296 | 0.457 | 1.370 | 2.306 | 6.640 | 0.381 | 2.178 | 10.651
SDL-BTF 0 0.001 | 0.066 | 0.347 | 0.977 0 0 0.288

TABLE I

THE SUPPORT RECOVERY PERFORMANCE COMPARISON WITH m = 96, n = 256, d =2 ANDd =4

d=2 d=14

k=1 k=2 |k=3|k= k=5 |k=1|k=2| k=3 | k= k=
Original block 0 0 0.014 | 0.228 | 0.812 0 0 0.116 | 0.632 | 1.924
Original non-block 0 0.042 | 0.600 | 1.547 | 2.626 | 0.091 | 1.470 | 3.640 | 6.302 | 8.839
Random 1.972 | 3942 | 5.876 | 7.742 | 9.584 | 3.964 | 7.744 | 11.368 | 15.068 | 18.396
K-SVD [49] 0.233 | 0.481 | 0.910 | 1.608 | 2.849 | 0.550 | 1.818 | 11.237 | 14.936 | 18.414
DL-TF [16] 0.234 | 0.256 | 0.555 | 1.294 | 3.646 | 0.333 | 1.2879 | 4.918 | 14.396 | 18.461
SDL-BTF 0 0 0.008 | 0.136 | 0.582 0 0 0.080 | 0.576 | 1.612

iterations, which illustrates the effectiveness and correctness
of the proposed dictionary learning method..

In the third experiment, we compare the support recovery
performance between different methods. The original block
and non-block methods are utilized to determine whether SDL-
BTF outperforms the previous best performance [16]. The
other dictionary learning methods are exploited to see if the
dictionary obtained by SDL-BTF possesses more discrimina-
tive property than the other trained dictionaries. The results
are given in Table I and Table II, where we vary the block

sparsity k and the block length d € [2,4], and the dimen-
sions of the dictionaries are m = 64, n = 128 and m = 96,
n = 256 respectively. As shown in the tables, the support
recovery performance of original block and SDL-BTF meth-
ods outperform the other methods and SDL-BTF obtains the
best performance in general. As shown in Table I, not surpris-
ingly, since the random matrix is not optimized, the method
using random matrix has the worst performance. Among the
methods of dictionary learning, K-SVD performs the worst
when the block sparsity is low. In Table II, we change the
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and n = 256.

dimensions of the dictionary from 64 x 128 to 96 x 256 and
the compression ratio changes from 1/2 to 3/8 accordingly.
The overall performance is similar to that in Table I. Due to
the increase of the number of measurements, the performance
of all the methods is improved when compared with that in
Table 1. Meanwhile, we know that the larger the block length
d, the better the support recovery performance of SDL-BTF
when the total sparsity K = kd is fixed. Overall, SDL-BTF
exhibits competitive performance among all the methods in
support recovery.

B. BCSS on Synthetic Data

The goal of the simulations in this subsection is to verify
the low computational complexity and competitive accuracy of
our SDL-BTF-based wideband BCSS, compared with other
benchmark CSS algorithms. Consider a wideband scenario
with n = 256. The positions of the nonzero blocks are ran-
domly selected, and the corresponding amplitudes are denoted
as ¢; A, where ¢; is generated from the uniform distribution
U(1,2) (1 <i<k),and A is distributed as N (1,0.01) [9].
Then, the compressively collected measurement signals can
be expressed in a matrix form as Y = DX + N where N is
the additive Gaussian noise. If not specified, the entries of N
are distributed as N'(0,0.01). The number of training set for
SDL-BTF is set as N = 10,000, and we generate a testing
set of 10,000 samples separately. The parameters ¢ and fyax
are set as 1072 and 20, respectively. The probability of detec-
tion [49] used to measure the spectrum sensing performance
is given as follows:

dT(d;«é&>

pi=E[1-—" 7|
d 17d

(26)

where E(-) represents expectation, d € {0,1}" is the ground-
truth state vector and 1 denotes an all-one vector. The running
time of each method is counted to evaluate their computational
efficiency. Our simulation environment is MATLAB R2016a
on a desktop computer with 2.90GHz Intel Core 17-10700 CPU
and 32.0 GB random access memory (RAM).

For comparative purposes, our simulation includes the
following CSS algorithms: Original block; OMP [35];
BOMP [36]; MOLS [50]; BOLS [38]; PBOMP [32]; SDL-
BTF. Among them, MOLS and BOLS are two variants of

0 2 4 6 8 10 12 14 16 18 20
Block sparsity
(@ (b)

O L L L L L
10 40 70 100 130 160 190 220
Number of measurements

()

Spectrum sensing performance versus (a) k with m = 96, n = 256 and d = 2; (b) k with m = 96, n = 256 and d = 4; (c) m with k = 4,d = 4

OLS, which respectively choose multiple entries and a block
in each iteration. PBOMP is a perturbed BOMP, which iter-
atively updates the perturbed dictionary and reconstructs the
sparse signals. Note that in our test, all the iterative algorithms
run k or K iterations at most before stopping. Meanwhile, if
the residual obtained at the intermediate iteration is smaller
that a given constant, the iterative algorithms stop immedi-
ately. For MOLS, we set the maximum iteration number as K
and the number of entries that the algorithm selects in each
iteration as 3.

In Fig. 5-(a), we fix the length of each spectrum block d as
2 and the number of compressed measurements as m = 96.
With the increase of the block sparsity value k of the spec-
trum, the probabilities of correct detection for all the methods
degrade, while our proposed SDL-BTF obtains the least
performance degradation. This result indicates that SDL-BTF
always presents better recovery performance than the other
benchmarks even when the spectrum becomes less sparse.
Meanwhile, when the sparsity is strong, the performance of
SDL-BTF is competitive with that of the iterative algorithms.
Furthermore, the SDL-BTF is always better than the original
block method, which reveals that our proposed SDL method
does provide a discriminative dictionary for improving the
sensing performance.

In Fig. 5-(b), we set d = 4. It is shown that the performance
of the block algorithms is better than that in Fig. 5-(a), which
reveals that a larger d provides stronger structure information
on improving the sensing accuracy. When compared with
Fig. 5-(a), the similar trend can be obtained in Fig. 5-(b).

Furthermore, we depict the probabilities of correct detection
as a function of the number of measurements in Fig. 5-(c),
where k = 4 and d = 4. In general, the performance of
all the methods improves with the increasing number of
measurements. Meanwhile, the performance of the iterative
algorithms exploiting block structure is better compared with
the algorithms ignoring the block structure. Since our proposed
SDL-BTF effectively improves the performance of the BTF,
it performs better than the iterative algorithms that do not use
block structure for a wide range of the number of measure-
ments. Such range corresponding to the range of performance
gain is wider than the one obtained for the original block
method. Moreover, when the number of measurements is
small, the probabilities of correct detection of SDL-BTF are
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methods in Fig. 5-(c).

higher than those of the iterative algorithms. Combining the
results in Figs. 5-(a) and 5-(b), it concludes that our proposed
SDL-BTF is more capable in providing high accuracy in more
challenging scenarios, where the spectrum becomes crowd or
when the measurements are parsimoniously collected.

The running time of the aforementioned methods is given in
Fig. 6. Since the running time of MOLS and BOLS is much
longer than that of the other methods, we do not plot their
running time curves. It is noted that the original block and
SDL-BTF methods have a significant advantage in running
speed over the other methods. For all the cases of the block
sparsity of the spectrum, the length of each spectrum block and
the number of measurements, the running time of the original
block and the SDL-BTF methods are always shorter than that
of the others. Furthermore, compared with the iterative algo-
rithms, the increasing speed of the running time of the original
block and the SDL-BTF methods is particularly slow. Since
the performance of the SDL-BTF is always better than that of
the original block method, the SDL-BTF is indeed a desirable
choice for real-time BCSS with limited computing resources.

C. BCSS on TV White Space Signal

In this subsection, we consider the TV white space (TVWS)
signal [6], [51], whose frequency ranges from 470 ~ 790MHz.
The active PUs’ signal in time domain is described by:

k
z(t) = Z v/ E;B;sine(B;(t — At))
=1

x  cos(2mf;(t — At)) + n(t),
where sinc(b) = w and n(?) is the additive noise. The
other parameters and their value settings are presented in
Table III. The spectrum in frequency domain is obtained by
using Ng = 512 points DFT. We only consider half of the
spectrum, i.e., 256 points, in our simulations due to spectrum
symmetry.

In Fig. 7-(a), we plot the probabilities of correct detection
as a function of SNR (dB). In general, the performance of the
original block method and our proposed SDL-BTF is better
than that of the iterative algorithms without using the block
structure, but worse than the iterative algorithms using block
structure with a moderate loss. The SDL-BTF exhibits better
sensing performance than that of the original block method,

27)

TABLE III
PARAMETER SETTINGS

Running time for different methods. (a) Running time for methods in Fig. 5-(a); (b) Running time for methods in Fig. 5-(b); (c) Running time for

Symbols Descriptions Settings
k Number of active PUs 4
L; Energy coefficient 6 ~ 20
B; Bandwidth of each sub-channel 2MHz
At Time offset 0~ 2us
fi Carrier frequency 469 ~ T89MHz
Ng Nyquist-rate samples 512

revealing the effectiveness of the SDL method on improving
the performance of BTF.

In Fig. 7-(b), the number of active PUs is set to be 8. The
probabilities of correct detection of all the methods decrease.
Since our proposed SDL-BTF is more stable than the origi-
nal block method, its performance degrades less than that of
the latter. The SDL-BTF method provides a promising sens-
ing performance with remarkably low computing complexity
as exhibited by the running time results in Section IV-B.
When compared with Fig. 7-(a), the similar conclusions can
be obtained in Fig. 7-(b).

V. CONCLUSION

This paper studies the SDL-BTF-based BCSS, which
is demonstrated to enjoy low computational complexity.
Meanwhile, to illustrate the improvement of the SDL-BTF-
based BCSS, we not only give the theoretical guarantees
based on MIP for BTF in noiseless and noisy scenarios, but
also present extended theoretical analysis based on block RIP
theory. Motivated by the theoretical results, we propose an
innovative dictionary learning method to learn a more dis-
criminative dictionary for BTF to further improve its spectrum
sensing performance.

Numerical experiments on SDL-BTF-based support recov-
ery and wideband BCSS have verified the effectiveness and
robustness of the proposed method. It consistently and visibly
outperforms K-SVD and DL-TF methods in support recovery,
which demonstrates the discriminative ability of the learned
dictionary. Furthermore, the SDL-BTF-based wideband BCSS
has competitive performance, equivalent to and sometimes
even better than the recovery alternatives, e.g., BOMP and
BOLS, which prove its remarkable effectiveness. In summary,
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our proposed SDL-BTF coincides with our motivation. That
is, it not only addresses the urgent demand for real-time BCSS
by using BTF with fairly low complexity but also significantly
improves the sensing performance of BTF via a novel SDL
model.

Note that when compared with BOMP and BOLS, our
proposed SDL-BTF method experiences slight degradation for
some block sparsity levels. Therefore, one future work on
SDL-BTF-based BCSS is to seek alternative formulations for
generating more discriminative dictionaries, so as to provide
further improvement of the sensing performance.

APPENDIX A
PROOF OF THEOREM 1
Proof: Without loss of generality, we assume the first k

blocks are the support for x. Denote t = D7y = D7 Dx. For
t[!] with 1 <[ < k, we obtain

ld kd 2
o3 = st S <D.D, > g
i=(1-1)d+1 J=1g#i
d kd 2
> xz\—| Z <Di,Dj>.Z'j
i=(l-1)d+1 J=1lg#1
ld
2 (|$min‘2 - 2kd,u|$max|2>
i=(l—-1)d+1
= d(|$min|2 - 2kd,u|xmax|2)
Z(a) d<|xmin|2 - 2kd2ﬂB‘$max|2)7 (28)

where (a) is obtained from the relationship between p and p g,
ie., p < dup. Then, for I > k:

ld kd 2
rln>alz<|t[l}|§ = max Z Z <D;,D; >z
i=(1—1)d+1 \j=1
2
< d(kdplz;))? < d(kd*pplamaxl) . @9
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Spectrum sensing performance versus SNR (dB) with m = 128, n = 256, d = 4 and (a) k = 4; (b) k = 8.

Let the smallest /2-norm of the block in the support set greater
than the largest /o-norm of the block in non-support set, and
we get

2
<|xmin|2 - 2kd2/‘B‘Imax|2) > (kdz,uBumax‘) . (30)

Finally, we complete the proof. |

APPENDIX B
PROOF OF THEOREM 2

Proof: Let Q represent the complementary set of . Since
y = Dx, thus y = Dgxq. Therefore, y lies in the space
spanned by Dg. Then, the following condition should be satis-
fied to guarantee the correction of the support of x for Vi € €Q:
IDg yll2,00 <1
[IDg [dyll2 ’ .

It holds that DgDgy = y. Because DQD}I is Hermitian,
we obtain (D})"D{y = y. As a result, ||D£Y||2,oo -
IDL(DL) TDYyll2,00- As shown in [36], [|Ax[laco <
pr(A)||x[|2,00, the equation becomes

AT
DF¥lace < o (DF (Dh) " ) IDAYoe
= pc(DBDQ) IDGYl2,00- 3D

where p,(-) and p.(-) are defined in [36] corresponding to
spectrum norm of their objects. Therefore,

IDgYll200 _ pe(DhDG)IDFY 2,00
IDEGyle ~ D[yl
_ re@gDg)DgDxlz00 o
IDF[iDx]

for Vi € €, where the last equality follows from y = Dx.
As stated in [37], the block RIP is a less stringent require-
ment when compared with the standard RIP. It has been shown
that some random matrices, such as Gaussian matrices and
sub-Gaussian matrices, satisfy the block RIP with overwhelm-
ing probability. For i € €, since the RIC of Dg; [¢]D is defined
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as 0py, ;» and dpax 0 = Max; (SDQ,i' There exists ¢ € €, the

following equality holds:

IDEDx2,00 = [IDG [{Dx|2 < /1 + Smaxallxl2.  (33)

Meanwhile,
DG [i]Dx]2 > /1

- 5maX,Q”X”Q‘ (34)

As a result, cooperated with (33) and (34), (32) becomes

||Dgy||27w < pc(D;]DQ)\/ 1+ (Smax,ﬂ <1 (35)
HDIT;[Z]YHQ N 1- (Smax,ﬂ

< kdpp

According to [36], pC(D}zDQ) S TS@EDr-(—Ddup

thus (35) will be

kd 1+
i max® _q (36)
1_(d_1)y_(k_1)d:u3 1_5max,ﬂ
Finally, by setting o = ;g‘%:’“g, we obtain (8). [
APPENDIX C

PROOF OF THEOREM 3

Proof- Denote t = DTy = D7 (Dx + n). For t[/] with
1 <1<k, (28) in the proof of Theorem 1 is rewritten as:

ld kd
t[7]]13 = Z |lzi + Z <D;,D; >z
i=(1—1)d+1 j=1,5%i
+ < Djan > ‘2 > d(|xmin|2 - 2|5l7max|
X (kdpilmas] + pin) ) (37)

Then, for [ > k:
Id kd

> > <D;D; >
i=(1-1)d+1 \Jj=1
2

+<Dj,1’l>

2
< d<kd2/1'B|xmax| + /~Ln> .

Finally, we complete the proof in a similar way to the proof
of Theorem 1. |

(38)

APPENDIX D
PROOF OF THEOREM 4
Proof: The objective of this proof is similar to that of
Theorem 2, i.e., for Vi € DG yll2,00

* DG Tyl|2
the properties of matrix norm, we obtam

< 1. According to

ID&yl2,00 = DLy — DEn+Ddnl|s o
= |IDdy — D&y — Dx) + Ddnl2,00
= |D&Dx + Dnll2 o

< HD DXH2oo + ”DQ nHQOO (39)
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Recall that |[DIylla0c < pc(D)Dg)[DEYl2,00- By
using (39), we have

T T T T
IDG 5200 < pe(D}Dg) (DG Dxllz,00 + D4 1ll2,0c )
< pc (D;)DQ) ( 1+ 6max,QHXH2 + ||Dgn||2,00)7
(40)

where the last inequality can be obtained from (33).
Furthermore, due to y = Dx + n, we get

IDg []yl2 > Dg [i](Dx +n)|2
> ||Dg [i]Dx|2 — | DG [i]n]2

> \/ 1- max,QHxHZ — HDQ i]nHQ- (41)

Therefore, by using (40) and (41), we obtain

IDZyll2,00
[DAGHE
< r.(D}Dp) ( VA S 5max,n||xnzT |
VI = Omaxalxll2 — [IDZ [i]n]2
ID&n]|2,00 )
/T Gmaxalxll> — IDE il

1+ 5max,ﬂ

[Dg 2,00
[1x[[2

< pe(DjDg) —
~ Omax,Q —

\/7 > ! 42
max, ||DT11||2 -

T .
where the last inequality follows from N&%’ﬂ% < 1. By
defining % as (12), we complete the proof. |

APPENDIX E
DISCUSSION FOR SOLVING PROBLEM (20) USING
ALGORITHM 1 IN [16]

It is noted that for the problem (20) with h > 0, the order
of coordinates in the optimal solution Q; is the same as the
order of the corresponding coordinates in h. The reasons are
given in many researches [16], [52], [53]. Based on this truth,
we can only focus on the magnitudes of h since we can take
absolute operation for any h.

For the subsequent analysis, we first define a multi-peak
signal form. Given an absolute block signal ¢ with block d,
we sort the elements in each block separately from small to
large. Then we further sort the signal blocks corresponding
to the /2-norm of each block and we obtain the signal ¢
We call this processed signal the multi-peak signal and the
constraints of multi-peak signal are expressed as:

¢ s.t. le[l]ll2 < lle[2]]l2 < -+ < [[c[nB]]|2,
C]_SCQS"'SCd,Cd+1§"'§€2d77...,
Cnpd < < Cn. 43)
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For simplicity, we use ¢ ~ ¢ to describe (43) in the
following. Then, the problem (20) is converted to

kd
argmin 7 Y o +[q—h|3,
i=(k—1)d+1
st. q~q™, (44)
where q represents Q;. Further, (44) is equivalent to
kd 1 2 (k-1)d

arg min Z (1+7) (Qi - mhz) + Z (q; — hi)Q»

(k—1)d+1 i=1
st. q~q. 45)

This problem can be solved by the algorithm in [16] if the
input vector h is the multi-peak signal.
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