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Abstract—With the development of communication systems
towards the high-frequency band, the demand for spectrum
resources is ever-increasing, where the research interest has
changed from narrowband spectrum sensing to wideband spec-
trum sensing. The Nyquist-rate-based wideband spectrum sens-
ing with high-rate sampling is being questioned whether it is
suitable for real-time applications. On the contrary, the well-
known compressive spectrum sensing (CSS) is more appealing
due to the compressive sensing (CS) technology, resulting in
lower signal acquisition costs. However, the CS algorithms for
recovering sparse spectrum generally require multiple iterations,
which presents a challenge to the low complexity implemen-
tation of spectrum sensing. To address this issue, this paper
proposes a novel method for solving the block CSS (BCSS)
problem, where the spectrum of primary users is modeled
as a block structure signal. Specifically, the block threshold
feature (BTF) is utilized to reconstruct the spectrum while
bypassing any iterative operations. Furthermore, to improve
the performance of the BTF-based BCSS, we develop a novel
supervised dictionary learning (SDL) model, based on the the-
oretical analysis of mutual incoherence and restricted isometry
properties. Simulation results not only verify the compatibility
of BTF and the SDL model, but also demonstrate the effec-
tiveness and robustness of SDL-BTF-based BCSS for practical
implementation.

Index Terms—Block sparsity, compressive sensing, dictionary
learning, threshold feature, wideband spectrum sensing.

I. INTRODUCTION

I
N COGNITIVE radio network (CRN), spectrum sens-

ing [1]–[4] can improve the utilization of scarce spectrum

resources via providing dynamic spectrum access. The sec-

ondary users (SUs) attempt to sense the status of primary

users (PUs) with the given measurements and dictionary as

soon as possible to effectively avoid spectrum conflict. The
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current literature has shown that a wider spectrum band pro-

vides more access opportunities for SUs [5]–[7], which attracts

many researchers and scholars to study wideband spectrum

sensing. Though the wider spectrum brings greater capacity

to the CRN, the practical wideband spectrum sensing poses

new challenges.

One challenge of wideband spectrum sensing in practi-

cal applications is the high sampling rate. The conventional

Nyquist-rate sampling approach, which causes high hardware

complexity and excessive delay in the sensing procedure, is

thus unacceptable for practical and agile CRN applications.

Compressive sensing (CS) is an effective technology to solve

this challenge, leading to the research field of compressive

spectrum sensing (CSS) [8]–[13]. CSS methods take advan-

tage of the fact that the spectrum of received signals inherently

exhibits sparsity in certain bases, which then allows compres-

sion during signal acquisition via sub-Nyquist-rate sampling

and then lossless signal reconstruction by using CSS algo-

rithms. Moreover, in practice, PUs’ spectrum occupancy is

usually endowed a block structure due to their multiple-

band spectrum usage, which motivates the investigation of

block CSS (BCSS) [14]. Greedy algorithms such as orthogo-

nal matching pursuit (OMP) and block orthogonal matching

pursuit (BOMP) are widely adopted for CSS and BCSS respec-

tively due to their low computational complexity [6], [8], [14].

Although these greedy algorithms achieve certain tradeoffs

between algorithm complexity and performance for practical

implementation, the demand for real-time implementation of

CSS in communication services is still continuously growing.

In response to this requirement, a remarkably effective

choice for estimating spectrum x ∈ Rn×1 from the com-

pressive measurements y ∈ Rm×1 is the threshold feature

(TF) [15]–[18]:

x̃ = max
K

(DTy), (1)

where y = Dx, x̃ ∈ Rn×1 is the sparse approximation of

the original spectrum x, D ∈ Rm×n is the dictionary, y is

the measurement vector with sub-Nyquist-rate sampling and

maxK (·) is a quantitative operation that keeps the K ele-

ments with the largest absolute value unchanged and sets

the others to zero. For BCSS, the corresponding version is

called the block TF (BTF) by keeping the k spectrum blocks

with the largest �2 norms unchanged, where k = K
d

and d

is the block length of each spectrum block. Different from

other optimization or iterative algorithms, the operations in
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TF only involve matrix multiplication and threshold trunca-

tion, which enjoy low computational complexity. However, the

considerable low complexity of the TF is at the expense of

accuracy [15], [16], which is the main technical challenge of

applying the TF to wideband CSS. Therefore, these observa-

tions motivate us to improve BTF to obtain satisfactory BCSS

performance while inheriting its outstanding low complexity

merits.

A. Related Work

Conventional TF, i.e., the method using the model of (1),

and greedy algorithms, such as OMP, BOMP and BOLS, have

been widely studied in many applications [6], [8]. In particu-

lar, TF is capable of highlighting the correct support elements

of the signal by setting small elements to zero [16], where

these small entries are usually caused by noise. In this sense,

TF succeeds in feature enhancement such as effectively reduc-

ing the noise on feature transmission [19], providing powerful

nonzero supports thereby achieving state-of-the-art accuracy

for sparse weight learning [17], and so on. In [16], the authors

apply TF to unsupervised sparse representation. They first

provide the theoretical guarantees of TF for correct support

recovery, and then develop an unsupervised dictionary learn-

ing method (DL-TF) correspondingly. Although the DL-TF

method performs well in unsupervised sparse representation,

the sparse signal recovery performance of DL-TF is worse

than that using the original dictionary D. This is because the

unsupervised learning in DL-TF does not utilize the benefi-

cial label information, causing the performance degradation.

Moreover, DL-TF ignores the favorable gain brought by the

inherent block structure of both the dictionary and the sparse

signal. Due to these issues, DL-TF cannot be directly applied

to wideband BCSS.

As an extended version of TF, BTF is a superior choice that

considers the block structure of the signal. However, to the

best of our knowledge, there is no research applying the pure

BTF to sparse recovery. This is because although BTF inherits

all the advantages of TF, it is limited by its common disad-

vantage, i.e., the inferior sparse recovery performance caused

by its simple product and threshold operations. Fortunately,

the supervised dictionary learning (SDL) has emerged as an

effective performance improvement method in sparse recovery

thanks to the availability of the label information, which shows

superiority over the unsupervised dictionary learning [16]. The

findings in [20] indicate that sparse recovery based on SDL

obtains outstanding accuracy and strong stability. In [21], the

authors assert that SDL generates superior dictionaries by

introducing discriminative information. In SDL-based CSS,

the occupied spectrum for training acts as the supervised

information, i.e., the label information. Furthermore, the inher-

ent block structure of the spectrum inspires the joint model

of structure-based sparsity [22]–[24] and label-based spar-

sity [25]–[27]. Therefore, by inspecting the limitation of [16]

and further investigating the spectrum sensing with supervised

learning in [28]–[31], it is promising that SDL can bring

extra benefits to BTF in sparse recovery, so as to promote

the improvement of BCSS.

To the best of our knowledge, few researches have applied

the low-complexity BTF to BCSS. Meanwhile, SDL has an

enabling potential to improve the BCSS performance of BTF,

which has not been studied in the current literature.

B. Our Contributions

To address all the above challenges, we propose a novel

method, i.e., supervised dictionary learning for block threshold

feature (SDL-BTF), to perform efficient and accurate wide-

band BCSS. The significance of this method is reflected from

the following two perspectives. On one hand, it is still very

challenging to obtain real-time sensing since conventional

BCSS algorithms require multiple iterations for accurate spec-

trum recovery. For this issue, BTF works as a non-iterative

algorithm with low complexity. It only requires a small number

of multiplication and threshold operations, which significantly

reduces the hardware and computation burdens. On the other

hand, SDL is able to generate a discriminative dictionary

matched with BTF, which effectively reduces the performance

loss caused by the rough approximation of BTF. Therefore,

a holistic integration of SDL and BTF in this paper not only

addresses the challenge of the real-time requirement in wide-

band BCSS, but also solves the problem of the unsatisfactory

performance of the BTF-based wideband BCSS. The main

contributions of this work are summarized as follows.

1) Theoretical analysis for BTF-based BCSS: To better

understand the fundamental limits of BTF in BCSS,

its recovery conditions under both noiseless and noisy

scenarios are derived. Specifically, we first derive the

noiseless sufficient conditions of BTF based on mutual

incoherence property (MIP) and restricted isometry

property (RIP) to guarantee the exact support recon-

struction. Thanks to the consideration of block structure,

our theoretical results reveal superior upper bounds

of reconstructible sparsity for BTF compared with the

existing one for conventional TF [16]. Secondly, to

make these analyses interpretable for practical wide-

band BCSS, we extend our analysis to the noisy scenario

by modeling a new coherence metric between the dic-

tionary atoms and the noise. Our results indicate that

if this coherence is sufficiently small, then the prod-

uct results of the atom vectors and the noise will

also be small. In this way, BTF can perform effective

threshold operation by setting the small product results

that related to noise as zeros, so as to retain correct

supports.

2) SDL model integrated with BTF: To effectively improve

the sensing performance of BTF, a novel SDL model is

proposed, which is elaborated based on the aforemen-

tioned theoretical analysis. To the best of our knowl-

edge, this is the first work to develop SDL model

for BTF-based BCSS. In this new model, a discrimi-

native dictionary is generated by simultaneously using

the block structure and the label information, which in

turn facilitates the identification of the correct supports

of the recovered spectrum. Meanwhile, a nuclear norm

constraint is incorporated to enforce the low rankness
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of the learned dictionary, while an orthogonal matrix

constraint further contributes to its approximate orthog-

onality. In order to reduce the coherence between the

dictionary atoms and the noise, we propose a reason-

able �2,∞ norm minimization constraint to weaken their

coherence block by block. Simulation results verify that

the proposed SDL-BTF BCSS performs faster than the

state-of-the-art CSS algorithms with satisfactory sensing

performance.

3) Optimization algorithm for the SDL model: We present

an iterative algorithm for optimizing the proposed SDL

method via alternating direction method of multipliers

(ADMM). To facilitate the utilization of ADMM, we

prove that our proposed �2,∞ norm minimization is

a proximal mapping problem, and thus can be solved

with O(n log n) complexity. Furthermore, we provide a

closed-form solution to the sub-problem of sparse recov-

ery by exploiting the positive semi-definite property of

the dictionary product.

4) Complexity and convergence analysis: To explicitly

present the low computational complexity of BTF, we

give the complexity analysis for BTF, which reveals that

the total complexity of BTF is approximately equal to

that of the iterative algorithm with only one iteration.

Furthermore, in order to illustrate the feasibility of our

proposed optimization algorithm for the SDL method,

we analyze its convergence behavior by explaining the

convergence of the solution to each sub-problem one by

one. The convergence of the entire algorithm is verified

by simulations as well, which reveal that it can converge

after several iterations.

C. Organization and Notations

The rest of this paper is organized as follows. In Section II,

we give the signal and system model of wideband BCSS

and study the recovery conditions for BTF. In Section III,

we present our SDL model matched with BTF, and its

optimization algorithm. In Section IV, simulation results of

SDL-BTF-based BCSS are presented, followed by conclusions

in Section V.

Throughout the paper, we denote vectors by boldface lower-

case letters, e.g., x and matrices by boldface uppercase letters,

e.g., D. Di is the i-th column of D. For vector x, the set of

its nonzero indices is defined as Ω and xΩ is the vector con-

sisting of the corresponding entries. xi is the i-th element of

the vector x. x[i ] and D[i ] represent the i-th block of vector x

and matrix D. The �0-norm, �1-norm, �2-norm and �∞-norm

of x are represented by ‖x‖0, ‖x‖1, ‖x‖2 and ‖x‖∞ respec-

tively. ‖D‖F represents the Frobenius-norm of D. ‖x‖2,∞ is

the mixed norm of x, which obtains the maximum �2-norm of

the blocks in x. Lowercase k represents the block sparsity, d

is the block length and uppercase K = kd stands for overall

sparsity. The operation | · | represents the absolute value of its

target and the operation supp(·) denotes the set that contain-

ing the indices of the nonzero elements of its objective. In this

paper, the columns of the dictionary are normalized to have

unit �2-norm.

Fig. 1. Signal model of wideband BCSS.

II. MODELS AND RECOVERY GUARANTEES

In this section, we first formulate the signal and system

models of the wideband BCSS. Then, we give the theoret-

ical analysis that guarantees reliable recovery for BTF as a

preparation for BTF-based BCSS.

A. Signal and System Models

Consider a practical wideband CRN, the spectrum signal of

PUs that SUs collect is s ∈ Rn . Such spectrum signal can

be sparsely represented through a certain basis Ψ ∈ Rn×n ,

e.g., the inverse discrete Fourier transform (IDFT) matrix.

That is, s = Ψx, where x is the spectrum signal represented

in the frequency domain, which usually holds block sparsity

structure due to the multiple-band spectrum occupancy by PU

systems [14] as illustrated in Fig. 1. Suppose that x spans the

frequency range 0 ∼ BHz, containing nB nonoverlapping sub-

channels with equal bandwidth Bi =
B
nB

= d (1 ≤ i ≤ nB ).
The number of active PUs is called block sparsity. If the num-

ber of active PUs is k, then only k blocks of x have nonzero

�2-norms.

Then, let Φ ∈ Rm×n denote the compressed sampling

matrix, where m and n are the numbers of sub-Nquist-rate and

Nquist-rate samples, respectively, and the compression ratio

is m/n. By denoting the additive noise as n ∈ Rm×1, the

compressed measurement signal y ∈ Rm×1 is represented as

y = Φs+ n = ΦΨx+ n = Dx+ n, (2)

where D = ΦΨ ∈ Rm×n is the sensing matrix called dictio-

nary in this paper. The matrix D in the form of a concatenation

of nB column blocks is given by

D =

⎡
⎢⎢⎣D1 · · ·Dd︸ ︷︷ ︸

D[1]

Dd+1 · · ·D2d︸ ︷︷ ︸
D[2]

· · ·Dn−d+1 · · ·Dn︸ ︷︷ ︸
D[nB ]

⎤
⎥⎥⎦, (3)

where D[i ] ∈ Rm×d is the i-th block of D.

As shown in Fig. 2, the system model of our SDL-BTF

contains two stages, i.e., the offline training stage and the

online learning stage. In the first stage, the discriminative dic-

tionary is learned from the input training data samples. Then,

the learned dictionary is utilized to reconstruct the original

spectrum signal in the second stage. For fast implementation,

the BTF only involves the matrix multiplication and threshold

operations [32]–[34], which is expressed as

x̃ = max
k

(DTy), (4)
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Fig. 2. System model of wideband BCSS based on SDL-BTF.

where maxk (·) retains the k largest �2-norm of the blocks in

its object while setting the others to zeros.

Note that the system model considered in this paper exhibits

more practical applicability than those based on conventional

model-based wideband spectrum sensing solutions [4], [10],

from the following two perspectives. On one hand, we uti-

lize our proposed novel SDL method to learn an elaborate

dictionary in the offline stage, which is more efficient than

the conventional system model that directly uses random

matrix as their dictionary. The learned dictionary effectively

improves the discriminative ability and enhances the sensing

performance. On the other hand, we not only take advan-

tage of the block structure of the sparse spectrum but also

employ BTF for fast sensing in the online stage. These new

features allow agile sensing capabilities that are promising for

the requirement of real-time BCSS.

B. The Recovery Guarantees for BTF

We begin with the basic definitions of MIP and block RIP.

Definition 1 (MIP): The coherence of a dictionary D,

which represents the similarity of its atoms, is defined as

µ = maxi ,j �=i |DT
i Dj | [35]. The block-coherence and sub-

coherence are defined as µB = maxi ,j �=i
ρ(M[i ,j ])

d
and ν =

maxl maxi ,j �=i |DT
i Dj | [36], respectively, where M[i , j ] =

DT [i ]D[j ] and Di ,Dj ∈ D[l ].
Definition 2 (Block RIP): For any k-block sparse signal

x ∈ Rn with block length d, the dictionary D satisfies the

block RIP with order k [37], if it shows

(1− δk |d )‖x‖22 ≤ ‖Dx‖22 ≤ (1 + δk |d )‖x‖22. (5)

The RIP constant (RIC) δk |d is defined as the smallest positive

number that satisfies (5). In the following, we use δ instead

of δk |d to represent the block RIP for convenience.

1) Noiseless Case: The following theorem gives the suffi-

cient condition for correct support recovery.

Theorem 1: For the noiseless case y = Dx and x =
maxk (D

Ty), if the sufficient condition

x2min

x2max
≥ 2kd2µB + k2d4µ2B (6)

holds, then supp(x̃) = supp(x), where xmin and xmax are the

elements with the smallest and largest amplitudes in x, and x̃

is the estimation of x.

Proof: See Appendix A.

Corollary 1: When d = 1, the condition in Theorem 1

corresponds to the conventional TF, which becomes:

x2min

x2max
≥ 2Kµ+K 2µ2. (7)

When K ≥ 1, the condition (7) is more relaxed than that given

in [16].

Proof: Since d = 1, the block structure disappears and µB
converges to µ, and we get (7). The condition in (7) is more

relaxed than the sufficient condition given in [16], i.e., Kµ ≤
|xmin|
2|zmax| , if

√
2Kµ+K 2µ2 < 2Kµ. This inequality can be

simplified to K > 2
3µ ≥ 1 since µ ∈ [0, 1].

Remark 1: Theorem 1 indicates that the smaller the block-

coherence of the dictionary is, the easier the BTF is to exactly

recover the nonzero supports of the given spectrum. This is

consistent with the observations for many reconstruction algo-

rithms [35], [36], [38]. That is, a lower coherence means

the atoms of the dictionary are more diverse, so that more

information can be used to identify the supports of the spec-

trum. Furthermore, Corollary 1 indicates that our sufficient

condition for conventional TF is always more relaxed than

that given in [16] since the sparsity of a sparse spectrum is

invariably larger than 1.

In the following, we discuss the recovery conditions by

further considering the block RIP.

Theorem 2: Define the RIC of DT
Ω [i ]D as δDΩ,i

and

δmax,Ω = maxi δDΩ,i
(i ∈ Ω). Then, the condition for

exactly recovery of BTF in the noiseless case, i.e., supp(x̃) =
supp(x), is given as follows:

kd <
α

1 + α
(d +

1− (d − 1)v

µB
), (8)

where α =

√
1−δmax,Ω

1+δmax,Ω
.

Proof: See Appendix B.

Remark 2: Considering that α < 1 and thus α
1+α < 1

2 , the

condition required for the BTF is stricter than that of BOMP

in [36]. The same phenomenon exists when comparing OMP

and conventional TF [16]. Such performance gain of OMP-

type algorithms is obtained with the compensation of much

higher complexity. That is, the OMP-type algorithms iterates

K or k times but BTF only iterates once. In Section V, we

will give detailed experimental results to show the lightweight

implementation of BTF.

Corollary 2: When µB > ν(1 − 1
d
) − 1

d
and δmax,Ω <

1 − 2
√
1+C 2−2

d2µB+d−d(d−1)ν
, the condition in Theorem 2 is more

relaxed than that in Theorem 1, where C =
|xmin|
|xmax| .

Proof: The condition (6) in Theorem 1 can be simplified to

kd ≤ −1 +
√
1 + C 2

dµB
. (9)

By solving the inequality α
1+α (d +

1−(d−1)v
µB

) >

−1+
√
1+C 2

dµB
, we complete the proof.

Remark 3: The precondition in Corollary 2, i.e., µB >

ν(1− 1
d
)− 1

d
, is easy to satisfy. For example, if the dictionary
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is block orthogonal, i.e., ν = 0, then the precondition always

holds. Meanwhile, if the nonzero entries in x are equal to 1,

i.e., C = 1, then we obtain δmax,Ω < 1− 2
√
2−2
d

. Therefore,

the aforementioned analysis indicates that Theorem 2 is more

relaxed than Theorem 1. Furthermore, since 1 − 2
√
2−2
d

approaches 1 when d is large, Corollary 2 is easy to hold

in this case.

2) Noisy Case: We first give a definition of the coherence

between the dictionary D and the noise n. Then, we extend

Theorems 1 and 2 to the noisy case, i.e., Theorems 3 and 4,

respectively.

Definition 3: The coherence between the dictionary D and

the noise n is defined as µn = maxi |DT
i n|.

Theorem 3: If the sufficient condition:

x2min

x2max
≥ 2kd2µB + k2d4µ2B +

µ2n
|x2max|

+

(
2 + 2kd2µB

)
µn

|xmax|
(10)

holds, then supp(x̃) = supp(x), where y = Dx + n.

Proof: See Appendix C.

Theorem 3 reveals that it is necessary to minimize

the mutual coherence µn to obtain high support recovery

performance of BTF.

Theorem 4: The condition required for reliable recovery of

BTF in noisy case is

kd <
β

1 + β

(
d +

1− (d − 1)ν

µB

)
, (11)

where

1

β
=

⎛
⎜⎝

√
1 + δmax,Ω

√
1− δmax,Ω − ‖DT

Ω
n‖2,∞

‖x‖2

+
1

√
1− δmax,Ω

‖x‖2
‖DT

Ω
n‖2,∞

− 1

⎞
⎟⎠. (12)

Proof: See Appendix D.

Theorem 4 has two crucial points different from the

Theorem 2: 1) lower coherence between the support dictio-

nary block and noise (‖DT
Ω n‖2,∞), and 2) higher amplitude

of the sparse spectrum (‖x‖2). Theorems 2 and 4 reveal the

upper bounds of reconstructible sparsity for reliable recovery.

It is also noted that Theorem 4 is stricter than Theorem 2

because of the existing noise.

C. Complexity Analysis

It is self-evident that BTF-based BCSS has an absolute

advantage in time complexity over the other CSS iterative

algorithms. The time complexity of BTF-based BCSS is

O(mn + n + k log n
d
), which is roughly equivalent to the

complexity of running an iterative block sparse reconstruction

algorithm, such as BOMP, for only one iteration [16], [36].

Meanwhile, the time complexity of the conventional threshold

feature (1) is O(mn + n + kd log n). As we can see, since

(n
d
)k < nkd , the complexity of BTF-based BCSS is lower than

that of the conventional TF. However, because mn � kd, the

complexities of BTF-BCSS and the conventional TF are both

approximated by O(mn). That is to say, the complexity of

BTF-based BCSS is not greater than that of the conventional

TF. In a word, compared with other algorithms, BTF-based

BCSS is more suitable for real-time spectrum sensing.

III. SUPERVISED DICTIONARY LEARNING FOR

BLOCK THRESHOLD FEATURE

In this section, we first present our proposed SDL model

for BTF based on the aforementioned theoretical analysis.

Then, we propose an iterative algorithm based on ADMM

for optimizing this SDL model, followed by its convergence

analysis.

A. Model Formulation for SDL-BTF

Our proposed SDL model not only considers the block

structure which is ignored in DL-TF [16], but also introduces

the supervised learning mechanism. The objective function of

SDL-BTF is formulated as

min
D,X

λ

2

N
∑

i=1

(

‖DT (Yi −DXi )‖
2
2,∞ − ρ‖Xi‖

2
2

)

+ ‖DT
D− I‖2F

+
θ

2
‖Y −DX‖2F +

γ

2
‖D‖∗ +

δ

2
‖J− X‖2F

s.t. ‖Xi‖2,0 ≤ k , i = 1, 2, . . . ,N ;

‖Dj ‖2 = 1, j = 1, 2, . . . ,n, (13)

where 0 ≤ λ, ρ, θ, γ, δ ≤ 1 are scalars, D is the dictionary, Y

represents the compressed signal matrix, X is the sparse signal

matrix, J denotes the label matrix corresponding to X, and I

is the identity matrix.

1) The dictionary D should have small block-coherence

µB , which can be obtained from Theorems 1-4. That is,

the smaller the block-coherence µB , the easier these theo-

rems are satisfied. Based on the existence of spectrum norm

in the definition of µB , it is necessary to reduce the eigen-

values of the target dictionary blocks. In order to achieve this

goal, we exploit an optimizable objective function that encour-

ages small nuclear norm of each dictionary block, i.e., the term

‖D[i ]‖∗, for any i. According to [39, Th. 7.3.9], it is equiv-

alent to obtaining the minimum nuclear norm of the entire

dictionary, i.e., ‖D‖∗, and this is the reason why it appears

in (13). In fact, this condition indicates a low-rank structure

of the learned dictionary since it has been proven [40] that

the small nuclear norm property and low-rank property of a

matrix are equivalent in optimization problem while the latter

is highly non-convex.

2) D should have small sub-coherence ν. This con-

dition is concluded from Theorem 2 and Theorem 4.

Small sub-coherence ν improves the required sparsity level,

which indicates a more relaxed condition for more sparse

signals with more sparsity levels. This condition can be

achieved by minimizing ‖D[i ]TD[i ]−I‖2F for any i. However,

in order to simplify the variable complexity, we exploit

the term ‖DTD− I‖2F in (13) to replace the minimum

optimization problem ‖D[i ]TD[i ] − I‖2F for any i. It is rea-

sonable because a smaller ‖DTD − I‖2F generally implies a

smaller ‖D[i ]TD[i ]− I‖2F .
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3) From Theorem 4, it is necessary to minimize
‖DT

Ω n‖2,∞
‖x‖2

to restrain the adverse impact of noise. This condition

aims to improve the upper bound of reconstructible spar-

sity for reliable recovery with respect to the RIC in (11). It

exploits mixed norm to describe the mutual incoherence prop-

erty between the support blocks of dictionary and the additive

noise. Moreover, this condition further takes the �2-norm

energy of sparse signal into account. Larger effective signal

energy is more capable of reducing the negative effect of noise.

Since it is hard to solve the optimization problems involving

this term, we turn to optimizing the alternative cost func-

tion ‖DT
Ω n‖2,∞−ρ‖x‖2, which can be well approximated by

‖DTn‖2,∞−ρ‖x‖2. The term
∑N

i=1(‖DT (Yi−DXi )‖22,∞−
ρ‖Xi‖22) in (13) is used to achieve this optimization

purpose.

Now, it comes to discuss the label-based sparsity in (13). J

is the corresponding label matrix, which is a predefined sparse

label consistency indicator. A simple way is setting J to be a

binary matrix where nonzero entries appear at the position of

i-th row and j-th column if the j-th data sample is expected to

be represented by the entries which are of the same category to

the i-th entry [26]. The last term in (13) is the label consistency

regularization function, which directly limits sparse coding by

encouraging it to approximate the label consistency matrix

sparsely.

Note that our proposed SDL-BTF-based BCSS is applicable

to some of-the-shelf CS-based compressive sampling frame-

works, such as modulated wideband converter (MWC) [41]

and random demodulator (RD) [42], [43]. It is observed that

MWC and RD are widely used sub-Nyquist sampling frame-

works, and when generating training data set for effective

dictionary learning, they are capable of providing compressed

measurements, which reliably represent the original sparse

spectrum. Therefore, our proposed SDL is able to gen-

erate discriminative dictionary for BTF in these systems.

Moreover, the application of MWC and RD in wideband

CSS aims to reduce sampling rate and thus achieve fast

implementation, which coincides with the motivation of our

proposed SDL-BTF method for real-time sensing. That is to

say, our proposed SDL-BTF and these real CSS frameworks

not only supplement to each other, but also facilitate each

other.

B. ADMM-Based Algorithm for SDL-BTF

First, two auxiliary variables Q and P are introduced to

separate problem (13):

min
X,D

λ

2

N∑

i=1

(
‖Qi‖22,∞ − ρ‖Xi‖22

)
+ ‖DTD− I‖2F

+
θ

2
‖Y −DX‖2F +

γ

2
‖P‖∗ +

δ

2
‖J−X‖2F

s.t. Q = DT (Y −DX); P = D;

‖Xi‖2,0 ≤ k , i = 1, 2, . . . ,N ;

‖Dj ‖2 = 1, j = 1, 2, . . . ,n. (14)

Then, the augmented Lagrangian function of (14) is

given by

ζ(X,Q,P,D)

=
λ

2

N∑

i=1

(
‖Qi‖22,∞ − ρ‖Xi‖22

)
+ ‖DTD− I‖2F

+
θ

2
‖Y −DX‖2F +

γ

2
‖P‖∗ +

δ

2
‖J−X‖2F

+ < L1,Q−DT (Y −DX) > + < L2,P−D >

+
β

2

(
‖Q−DT (Y −DX)‖2F + ‖P−D‖2F

)

s.t. ‖Xi‖2,0 ≤ k , i = 1, 2, . . . ,N ;

‖Dj ‖2 = 1, j = 1, 2, . . . ,n, (15)

where L1 and L2 represent the Lagrange multipliers, and β is a

regularization parameter. Then, we apply the ADMM to solve

the optimization problem. The detailed sub-problems for X, Q,

P and D at the t-th iteration (t = 0, 1, . . . ,) are introduced as

follows.

1) X Sub-Problem: X can be updated by solving each Xi

and we give the objective function as follows:

X
t+1 = min

Xi

−
λρ

2β
‖Xi‖

2
2 +

θ

2β
‖Yi −DXi‖

2
2 +

δ

2β
‖J− X‖2F

+
1

2
‖Qi −D

T (Yi −DXi ) +
L1i
β
‖22

s.t. ‖Xi‖2,0 ≤ k , i = 1, 2, . . . ,N . (16)

There exists many techniques to solve this problem and an

efficient method is the direct utilization of iterative algorithm,

e.g., block IHT algorithm [33]. In order to reduce the com-

plexity of iterative procedures, we give another solution here.

The second order derivative of (16) is

∂2Xt+1

∂Xi
=

δ − λρ

β
I+

θ

β
DTD+DTDDTD. (17)

The matrix on the right side of the equation in (17) is positive

semi-definite if λρ is properly small and it easily holds in the

actual optimization procedure. Then, the solution by using the

block thresholding operator can be used as shown in [44]:

Xt+1
i = max

k

((
δ − λρ

β
I+

θ

β
DTD+DTDDTD

)−1

×
(
θ

β
DTYi +

δ

β
J−DTDQi

+ DTDDTYi −
1

β
DTDL1i

))
. (18)

2) Q Sub-Problem: Q can be solved for each Qi and the

separate objective function for Qi is:

Qt+1 = min
Q

λ

2

N∑

i=1

‖Qi‖22,∞

+
β

λ

∥∥∥∥∥Qi −
(
DT (Yi −DXi )−

L1i
β

)∥∥∥∥∥

2

F

. (19)
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The proximal mapping of (19) for Qi is

prox2,∞τ (h) = argmin
Qi

τ‖Qi‖22,∞ + ‖Qi − h‖22, (20)

where τ = λ
β and h ∈ Rkd . This problem can be solved by

the proximal mapping algorithm in [16], where the vector h is

multi-peak. The detailed discussion is shown in Appendix E.

3) P Sub-Problem: Fix the other variables and update P by

the following problem:

Pt+1 = min
P

‖P‖∗ +
β

γ

∥∥∥∥P−
(
D− L2

β

)∥∥∥∥
2

F

. (21)

This can be addressed via the singular-value thresholding

operator [45], which is detailed as follows:

Pt+1 = S γ
2β

(
D− L2

β

)
= UŜ γ

2β
(Σ)VT , (22)

where UΣVT is the SVD of D− L2

β , Ŝ γ
2β
(Σ) = diag({|Σii |−

γ
2β }+) and {t}+ = max(0, t).

4) D Sub-Problem: The dictionary D is updated by solving

the following spherical constraint problem:

Dt+1 = min
D

1

β
‖DTD− I‖2F +

θ

2β
‖Y −DX‖2F

+
1

2

(∥∥∥∥Q−DT (Y −DX) +
L1

β

∥∥∥∥
2

F

+

∥∥∥∥P−D+
L2

β

∥∥∥∥
2

F

)

s.t. ‖Dj ‖2 = 1, j = 1, 2, . . . ,n. (23)

We exploit the curvilinear search algorithm [46] to

solve (23).

5) L Sub-Problem: The Lagrange multipliers are updated

as follows:
⎧

⎨

⎩

L1(t+1) = L1(t) + β
(

Qt+1 −DT(t+1)
(

Y −Dt+1Xt+1
))

,

L2(t+1) = L2(t) + β
(

Pt+1 −Dt+1
)

.

(24)

For complete presentation, we summarize the optimization

procedures of our SDL-BTF in Algorithm 1. In Theorems 2

and 4, to obtain larger upper bounds of the reconstructible

sparsity, the parameters α and β should be large enough. Since

α and β are negatively correlated with the RIC, small RIC

δmax,Ω is expected. In other words, the smaller the RIC of

the dictionary, the better recovery performance of the BTF.

Meanwhile, it is known that MIP condition is stronger than

RIP [47], which reveals that small coherence of the dictio-

nary leads to small RIC. Therefore, the orthogonal and nuclear

norm constraints in (13), i.e., ‖DTD−I‖2F and ‖D‖∗, not only

guarantee the small coherence of the dictionary but also ensure

its small RIC. In Algorithm 1, the sub-problems of these two

constraints are addressed by curvilinear search algorithm and

singular-value thresholding operator, respectively. This means

Algorithm 1 is able to generate a satisfactory dictionary with

superior RIP.

Algorithm 1 Dictionary Learning for Block Threshold Feature

Input: Training set Y and its corresponding label matrix J,

Q, P, L1, L2, number of data samples N, block sparsity

k, ε, tmax, regularization parameters λ, ρ, θ, γ, δ and β.

Output: D.

1: Initialization: Random Gaussian matrix D0. 0 matrices

Q0, P0, (L1)0, (L2)0 and X1. X0 = J. Regularization

parameters are initialized in detail in Section IV. Let t = 0.

2: while ‖Xt+1 −Xt‖F > ε and t ≤ tmax do

3: Update the sparse codes Xt
i , i = 1, 2, . . . ,N by

calculating (18);

4: Update Qt
i , i = 1, 2, . . . ,N by solving (20);

5: Update Pt by calculating (22);

6: Update Dt by solving (23);

7: Update (L1)t and (L2)t by calculating (24);

8: t = t + 1;

9: end while

10: return D.

C. Convergence Analysis

For the ADMM optimization process of the SDL-BTF given

in Algorithm 1, the optimal solution for the X, Q, P and D

can be addressed by optimizing corresponding functions. First,

the closed-form solution of X can be efficiently processed with

the block thresholding operator that guarantees convergence.

Then, the convergence of Q can be guaranteed by using the

algorithm in [16] with O(n log n) complexity. Moreover, the

convergence of D can be guaranteed by introducing the corre-

sponding auxiliary variable P, which are solved by curvilinear

search algorithm [46] and singular-value thresholding [45]

respectively. Therefore, the convergence of the SDL-BTF can

be guaranteed.

IV. SIMULATION RESULTS

A. Determination for Hyper-Parameters

In this subsection, we first determine the appropriate hyper-

parameters by evaluating the support recovery performance of

the SDL-BTF in recovering binary signals. Then, We compare

the SDL-BTF with four methods to verify the effectiveness

of the obtained hyper-parameters. Note that the reconstruc-

tion of binary signals can be considered as a generalization of

the problem of spectrum estimation, that is, it only focuses

on obtaining the occupied positions of the spectrum. We

regard that the parameters obtained in this framework are

more general and not limited to a certain distribution of spec-

tral amplitude. The data is generated as follows. The sparse

signal X ∈ Rn×N to be constructed has k nonzero blocks,

containing d entries with value 1 in the randomly selected

nonzero blocks. It is worth noting that the size of the spar-

sity set in this experiment does not exceed 10% of the signal

length. Then, the samples in training set are generated as

Y = DX + N, where D ∈ Rm×n is a random Gaussian

matrix and N ∈ Rm×N is the additive Gaussian noise, whose

elements are generated from Gaussian distribution N (0, 1) and

N (0, 0.01) respectively. The label matrix J = X. By default,
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Fig. 3. Results of SDL-BTF on the synthetic data by varying hyper-parameters with m = 64 and n = 128. (a), (c), (d), (e), (f) are with k = 4 and d = 2;
(b) is with k = 8 and d = 2.

the hyper-parameters are first set as λ = 0.05, ρ = 0.0002,

θ = 0.05, β = 0.001, γ = 0.05 and δ = 0.01.

The aforementioned four methods for comparison include

the methods using original matrix, random matrix, K-SVD and

DL-TF. The detailed settings are given as follows:

• Original method: The dictionary D is set the same

as the matrix originally used to generate the measurement

signals. The recovery methods are x̃ = maxk (D
Ty) and

x̃ = maxK (DTy), where k = K
d

is the block sparsity. It

is noted that, in unsupervised dictionary learning, the base-

line using x̃ = maxK (DTy) is regarded as having the best

performance in [16].

• Random method: The dictionary is generated randomly

and has nothing to do with the training set. Therefore, the

performance of this method should be the worst, which can

be considered as the lower bound of the performance of the

BTF.

• K-SVD method: We exploit the standard K-SVD algo-

rithm to generate the dictionary and apply the learned

dictionary to the non-block threshold feature, i.e., x̃ =
maxK (DTy), where K = kd is the total sparsity level.

• DL-TF method: The dictionary is learned from the DL-TF

method and we apply the conventional threshold feature to

obtain the solution.

• SDL-BTF method: This is our proposed method. We gen-

erate the dictionary by solving (13), where D is initialized

randomly. Then, we exploit the block threshold feature.

We use the support difference [16] to evaluate the accuracy

of the reconstructed support as:

Difference =
1

N

N∑

i=1

‖x̃Ω
⊕

xΩ‖1
2

, (25)

where
⊕

represents the element-wise xor operation. The lower

the difference is, the better the performance of the method

achieves.

The support difference results with varying hyper-

parameters are given in Fig. 3. It is observed that the

performance of SDL-BTF varies more obviously for differ-

ent λ and θ, compared with that of other hyper-parameters,

which indicates that SDL-BTF is more sensitive to λ and θ.

In Fig. 3-(b), the block sparsity is twice as that in Fig. 3-

(a). It can be seen that the performance trend in these two

figures are similar, but the performance in Fig. 3-(a) is gener-

ally better than that in Fig. 3-(b). This result reveals that the

stronger structure of the block sparsity, the better the recovery

performance. Then, from the results in Figs. 3-(c), (d), (e), (f),

the performance of SDL-BTF keeps stable when γ and δ

vary, which means its insensitivity of γ and δ. Therefore,

γ and δ can be selected in a relatively wide range. Overall,

based on these discussions, we choose λ = 0.05, θ = 0.05,

γ = 0.05 and δ = 0.005 as our default settings in the following

experiments.

The second experiment compares the recovered sparse sup-

ports using the SDL-BTF-trained dictionary with the actual

sparse supports, and shows the convergence of the SDL-BTF

method. The ground truth of sparse supports is a random

bock-diagonal matrix with eight blocks, and k = 2, d = 2.

The synthetic measurement data is shown in Fig. 4(i) (a),

and Fig. 4(i) (b) and (c) represent the ground truth of sparse

supports and the solution of SDL-BTF. It can be seen that

SDL-BTF obtains similar sparse supports corresponding to the

ground truth sparse code. The last four sub figures in Fig. 4(i)

are the convergence curves with respect to ‖Xt+1−Xt‖F and

the objective function in (13). It is observed that under differ-

ent parameter settings, SDL-BTF converges within about six
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Fig. 4. Results of SDL-BTF on the synthetic data. (a) Input synthetic data; (b) the ground truth of sparse codes; (c) sparse coding results of SDL-BTF from

the synthetic data; (d) increment of Frobenius norm of Xt+1 and Xt with k = 2 and d = 2; (e) the value of objective function of SDL-BTF with k = 2 and

d = 2; (f) increment of Frobenius norm of Xt+1 and Xt with k = 4 and d = 4; (g) the value of objective function of SDL-BTF with k = 4 and d = 4.

TABLE I
THE SUPPORT RECOVERY PERFORMANCE COMPARISON WITH m = 64, n = 128, d = 2 AND d = 4

TABLE II
THE SUPPORT RECOVERY PERFORMANCE COMPARISON WITH m = 96, n = 256, d = 2 AND d = 4

iterations, which illustrates the effectiveness and correctness

of the proposed dictionary learning method..

In the third experiment, we compare the support recovery

performance between different methods. The original block

and non-block methods are utilized to determine whether SDL-

BTF outperforms the previous best performance [16]. The

other dictionary learning methods are exploited to see if the

dictionary obtained by SDL-BTF possesses more discrimina-

tive property than the other trained dictionaries. The results

are given in Table I and Table II, where we vary the block

sparsity k and the block length d ∈ [2, 4], and the dimen-

sions of the dictionaries are m = 64, n = 128 and m = 96,

n = 256 respectively. As shown in the tables, the support

recovery performance of original block and SDL-BTF meth-

ods outperform the other methods and SDL-BTF obtains the

best performance in general. As shown in Table I, not surpris-

ingly, since the random matrix is not optimized, the method

using random matrix has the worst performance. Among the

methods of dictionary learning, K-SVD performs the worst

when the block sparsity is low. In Table II, we change the
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Fig. 5. Spectrum sensing performance versus (a) k with m = 96, n = 256 and d = 2; (b) k with m = 96, n = 256 and d = 4; (c) m with k = 4, d = 4
and n = 256.

dimensions of the dictionary from 64 × 128 to 96 × 256 and

the compression ratio changes from 1/2 to 3/8 accordingly.

The overall performance is similar to that in Table I. Due to

the increase of the number of measurements, the performance

of all the methods is improved when compared with that in

Table I. Meanwhile, we know that the larger the block length

d, the better the support recovery performance of SDL-BTF

when the total sparsity K = kd is fixed. Overall, SDL-BTF

exhibits competitive performance among all the methods in

support recovery.

B. BCSS on Synthetic Data

The goal of the simulations in this subsection is to verify

the low computational complexity and competitive accuracy of

our SDL-BTF-based wideband BCSS, compared with other

benchmark CSS algorithms. Consider a wideband scenario

with n = 256. The positions of the nonzero blocks are ran-

domly selected, and the corresponding amplitudes are denoted

as ciA, where ci is generated from the uniform distribution

U(1, 2) (1 ≤ i ≤ k), and A is distributed as N (1, 0.01) [9].

Then, the compressively collected measurement signals can

be expressed in a matrix form as Y = DX + N where N is

the additive Gaussian noise. If not specified, the entries of N

are distributed as N (0, 0.01). The number of training set for

SDL-BTF is set as N = 10,000, and we generate a testing

set of 10,000 samples separately. The parameters ε and tmax

are set as 10−3 and 20, respectively. The probability of detec-

tion [49] used to measure the spectrum sensing performance

is given as follows:

Pd = E

⎛
⎝1−

dT
(
d 	= d̂

)

1Td

⎞
⎠, (26)

where E(·) represents expectation, d ∈ {0, 1}n is the ground-

truth state vector and 1 denotes an all-one vector. The running

time of each method is counted to evaluate their computational

efficiency. Our simulation environment is MATLAB R2016a

on a desktop computer with 2.90GHz Intel Core i7-10700 CPU

and 32.0 GB random access memory (RAM).

For comparative purposes, our simulation includes the

following CSS algorithms: Original block; OMP [35];

BOMP [36]; MOLS [50]; BOLS [38]; PBOMP [32]; SDL-

BTF. Among them, MOLS and BOLS are two variants of

OLS, which respectively choose multiple entries and a block

in each iteration. PBOMP is a perturbed BOMP, which iter-

atively updates the perturbed dictionary and reconstructs the

sparse signals. Note that in our test, all the iterative algorithms

run k or K iterations at most before stopping. Meanwhile, if

the residual obtained at the intermediate iteration is smaller

that a given constant, the iterative algorithms stop immedi-

ately. For MOLS, we set the maximum iteration number as K

and the number of entries that the algorithm selects in each

iteration as 3.

In Fig. 5-(a), we fix the length of each spectrum block d as

2 and the number of compressed measurements as m = 96.

With the increase of the block sparsity value k of the spec-

trum, the probabilities of correct detection for all the methods

degrade, while our proposed SDL-BTF obtains the least

performance degradation. This result indicates that SDL-BTF

always presents better recovery performance than the other

benchmarks even when the spectrum becomes less sparse.

Meanwhile, when the sparsity is strong, the performance of

SDL-BTF is competitive with that of the iterative algorithms.

Furthermore, the SDL-BTF is always better than the original

block method, which reveals that our proposed SDL method

does provide a discriminative dictionary for improving the

sensing performance.

In Fig. 5-(b), we set d = 4. It is shown that the performance

of the block algorithms is better than that in Fig. 5-(a), which

reveals that a larger d provides stronger structure information

on improving the sensing accuracy. When compared with

Fig. 5-(a), the similar trend can be obtained in Fig. 5-(b).

Furthermore, we depict the probabilities of correct detection

as a function of the number of measurements in Fig. 5-(c),

where k = 4 and d = 4. In general, the performance of

all the methods improves with the increasing number of

measurements. Meanwhile, the performance of the iterative

algorithms exploiting block structure is better compared with

the algorithms ignoring the block structure. Since our proposed

SDL-BTF effectively improves the performance of the BTF,

it performs better than the iterative algorithms that do not use

block structure for a wide range of the number of measure-

ments. Such range corresponding to the range of performance

gain is wider than the one obtained for the original block

method. Moreover, when the number of measurements is

small, the probabilities of correct detection of SDL-BTF are
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Fig. 6. Running time for different methods. (a) Running time for methods in Fig. 5-(a); (b) Running time for methods in Fig. 5-(b); (c) Running time for
methods in Fig. 5-(c).

higher than those of the iterative algorithms. Combining the

results in Figs. 5-(a) and 5-(b), it concludes that our proposed

SDL-BTF is more capable in providing high accuracy in more

challenging scenarios, where the spectrum becomes crowd or

when the measurements are parsimoniously collected.

The running time of the aforementioned methods is given in

Fig. 6. Since the running time of MOLS and BOLS is much

longer than that of the other methods, we do not plot their

running time curves. It is noted that the original block and

SDL-BTF methods have a significant advantage in running

speed over the other methods. For all the cases of the block

sparsity of the spectrum, the length of each spectrum block and

the number of measurements, the running time of the original

block and the SDL-BTF methods are always shorter than that

of the others. Furthermore, compared with the iterative algo-

rithms, the increasing speed of the running time of the original

block and the SDL-BTF methods is particularly slow. Since

the performance of the SDL-BTF is always better than that of

the original block method, the SDL-BTF is indeed a desirable

choice for real-time BCSS with limited computing resources.

C. BCSS on TV White Space Signal

In this subsection, we consider the TV white space (TVWS)

signal [6], [51], whose frequency ranges from 470 ∼ 790MHz.

The active PUs’ signal in time domain is described by:

x (t) =

k∑

i=1

√
EiBi sinc(Bi (t −∆t))

× cos(2πfi (t −∆t)) + n(t), (27)

where sinc(b) =
sin(πb)

πb and n(t) is the additive noise. The

other parameters and their value settings are presented in

Table III. The spectrum in frequency domain is obtained by

using NS = 512 points DFT. We only consider half of the

spectrum, i.e., 256 points, in our simulations due to spectrum

symmetry.

In Fig. 7-(a), we plot the probabilities of correct detection

as a function of SNR (dB). In general, the performance of the

original block method and our proposed SDL-BTF is better

than that of the iterative algorithms without using the block

structure, but worse than the iterative algorithms using block

structure with a moderate loss. The SDL-BTF exhibits better

sensing performance than that of the original block method,

TABLE III
PARAMETER SETTINGS

revealing the effectiveness of the SDL method on improving

the performance of BTF.

In Fig. 7-(b), the number of active PUs is set to be 8. The

probabilities of correct detection of all the methods decrease.

Since our proposed SDL-BTF is more stable than the origi-

nal block method, its performance degrades less than that of

the latter. The SDL-BTF method provides a promising sens-

ing performance with remarkably low computing complexity

as exhibited by the running time results in Section IV-B.

When compared with Fig. 7-(a), the similar conclusions can

be obtained in Fig. 7-(b).

V. CONCLUSION

This paper studies the SDL-BTF-based BCSS, which

is demonstrated to enjoy low computational complexity.

Meanwhile, to illustrate the improvement of the SDL-BTF-

based BCSS, we not only give the theoretical guarantees

based on MIP for BTF in noiseless and noisy scenarios, but

also present extended theoretical analysis based on block RIP

theory. Motivated by the theoretical results, we propose an

innovative dictionary learning method to learn a more dis-

criminative dictionary for BTF to further improve its spectrum

sensing performance.

Numerical experiments on SDL-BTF-based support recov-

ery and wideband BCSS have verified the effectiveness and

robustness of the proposed method. It consistently and visibly

outperforms K-SVD and DL-TF methods in support recovery,

which demonstrates the discriminative ability of the learned

dictionary. Furthermore, the SDL-BTF-based wideband BCSS

has competitive performance, equivalent to and sometimes

even better than the recovery alternatives, e.g., BOMP and

BOLS, which prove its remarkable effectiveness. In summary,

Authorized licensed use limited to: George Mason University. Downloaded on December 24,2022 at 01:16:42 UTC from IEEE Xplore.  Restrictions apply. 



LU et al.: SUPERVISED DICTIONARY LEARNING FOR BLOCK THRESHOLD FEATURE 1643

Fig. 7. Spectrum sensing performance versus SNR (dB) with m = 128, n = 256, d = 4 and (a) k = 4; (b) k = 8.

our proposed SDL-BTF coincides with our motivation. That

is, it not only addresses the urgent demand for real-time BCSS

by using BTF with fairly low complexity but also significantly

improves the sensing performance of BTF via a novel SDL

model.

Note that when compared with BOMP and BOLS, our

proposed SDL-BTF method experiences slight degradation for

some block sparsity levels. Therefore, one future work on

SDL-BTF-based BCSS is to seek alternative formulations for

generating more discriminative dictionaries, so as to provide

further improvement of the sensing performance.

APPENDIX A

PROOF OF THEOREM 1

Proof: Without loss of generality, we assume the first k

blocks are the support for x. Denote t = DTy = DTDx. For

t[l ] with 1 ≤ l ≤ k, we obtain

‖t[l ]‖22 =

ld∑

i=(l−1)d+1

∣∣∣∣∣∣
xi +

kd∑

j=1,j �=i

< Di ,Dj > xj

∣∣∣∣∣∣

2

≥
ld∑

i=(l−1)d+1

∥∥∥∥∥∥
xi | − |

kd∑

j=1,j �=i

< Di ,Dj > xj

∥∥∥∥∥∥

2

≥
ld∑

i=(l−1)d+1

(
|xmin|2 − 2kdµ|xmax|2

)

= d
(
|xmin|2 − 2kdµ|xmax|2

)

≥(a) d
(
|xmin|2 − 2kd2µB |xmax|2

)
, (28)

where (a) is obtained from the relationship between µ and µB ,

i.e., µ ≤ dµB . Then, for l > k:

max
l>k

|t[l ]|22 = max
l>k

⎛
⎜⎝

ld∑

i=(l−1)d+1

⎛
⎝

kd∑

j=1

< Di ,Dj > xj

⎞
⎠

2
⎞
⎟⎠

≤ d
(
kdµ|xj |

)2 ≤ d
(
kd2µB |xmax|

)2
. (29)

Let the smallest �2-norm of the block in the support set greater

than the largest �2-norm of the block in non-support set, and

we get

(
|xmin|2 − 2kd2µB |xmax|2

)
≥
(
kd2µB |xmax|

)2
. (30)

Finally, we complete the proof.

APPENDIX B

PROOF OF THEOREM 2

Proof: Let Ω̄ represent the complementary set of Ω. Since

y = Dx, thus y = DΩxΩ. Therefore, y lies in the space

spanned by DΩ. Then, the following condition should be satis-

fied to guarantee the correction of the support of x̃ for ∀i ∈ Ω:
‖DT

Ω̄
y‖2,∞

‖DT
Ω
[i ]y‖2

< 1.

It holds that DΩD
†
Ω
y = y. Because DΩD

†
Ω

is Hermitian,

we obtain (D†
Ω
)TDT

Ω y = y. As a result, ‖DT
Ω̄
y‖2,∞ =

‖DT
Ω̄
(D†

Ω
)TDT

Ω y‖2,∞. As shown in [36], ‖Ax‖2,∞ ≤
ρr (A)‖x‖2,∞, the equation becomes

‖DT
Ω̄
y‖2,∞ ≤ ρr

(
DT
Ω̄

(
D

†
Ω

)T)
‖DT

Ω y‖2,∞

= ρc

(
D

†
Ω
DΩ̄

)
‖DT

Ω y‖2,∞. (31)

where ρr (·) and ρc(·) are defined in [36] corresponding to

spectrum norm of their objects. Therefore,

‖DT
Ω̄
y‖2,∞

‖DT
Ω
[i ]y‖2

≤ ρc(D
†
Ω
DΩ̄)‖DT

Ω y‖2,∞
‖DT

Ω
[i ]y‖2

=
ρc(D

†
Ω
DΩ̄)‖DT

ΩDx‖2,∞
‖DT

Ω
[i ]Dx‖2

, (32)

for ∀i ∈ Ω, where the last equality follows from y = Dx.

As stated in [37], the block RIP is a less stringent require-

ment when compared with the standard RIP. It has been shown

that some random matrices, such as Gaussian matrices and

sub-Gaussian matrices, satisfy the block RIP with overwhelm-

ing probability. For i ∈ Ω, since the RIC of DT
Ω [i ]D is defined
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as δDΩ,i
, and δmax,Ω = maxi δDΩ,i

. There exists i ∈ Ω, the

following equality holds:

‖DT
ΩDx‖2,∞ = ‖DT

Ω [i ]Dx‖2 ≤
√

1 + δmax,Ω‖x‖2. (33)

Meanwhile,

‖DT
Ω [i ]Dx‖2 ≥

√
1− δmax,Ω‖x‖2. (34)

As a result, cooperated with (33) and (34), (32) becomes

‖DT
Ω̄
y‖2,∞

‖DT
Ω
[i ]y‖2

≤
ρc(D

†
Ω
DΩ̄)
√
1 + δmax,Ω√

1− δmax,Ω
< 1. (35)

According to [36], ρc(D
†
Ω
DΩ̄) ≤ kdµB

1−(d−1)ν−(k−1)dµB
,

thus (35) will be

kdµB
1− (d − 1)ν − (k − 1)dµB

√
1 + δmax,Ω

1− δmax,Ω
< 1. (36)

Finally, by setting α =

√
1−δmax,Ω

1+δmax,Ω
, we obtain (8).

APPENDIX C

PROOF OF THEOREM 3

Proof: Denote t = DTy = DT (Dx + n). For t[l] with

1 ≤ l ≤ k, (28) in the proof of Theorem 1 is rewritten as:

‖t[l ]‖22 =
ld∑

i=(l−1)d+1

|xi +
kd∑

j=1,j �=i

< Di ,Dj > xj

+ < Dj , n > |2 ≥ d
(
|xmin|2 − 2|xmax|

× (kdµ|xmax|+ µn )
)
. (37)

Then, for l > k:

max
l>k

|t[l ]|22 = max
l>k

⎛
⎝

ld∑

i=(l−1)d+1

⎛
⎝

kd∑

j=1

< Di ,Dj > xj

+ < Dj , n >

⎞
⎠

2
⎞
⎟⎠

≤ d
(
kd2µB |xmax|+ µn

)2
. (38)

Finally, we complete the proof in a similar way to the proof

of Theorem 1.

APPENDIX D

PROOF OF THEOREM 4

Proof: The objective of this proof is similar to that of

Theorem 2, i.e., for ∀i ∈ Ω,
‖DT

Ω̄
y‖2,∞

‖DT
Ω
[i ]y‖2

< 1. According to

the properties of matrix norm, we obtain

‖DT
Ω y‖2,∞ = ‖DT

Ω y −DT
Ω n+DT

Ω n‖2,∞
= ‖DT

Ω y −DT
Ω (y −Dx) +DT

Ω n‖2,∞
= ‖DT

ΩDx+DT
Ω n‖2,∞

≤ ‖DT
ΩDx‖2,∞ + ‖DT

Ω n‖2,∞. (39)

Recall that ‖DT
Ω̄
y‖2,∞ ≤ ρc(D

†
Ω
DΩ̄)‖DT

Ω y‖2,∞. By

using (39), we have

‖DT
Ω̄ y‖2,∞ ≤ ρc

(

D
†
ΩDΩ̄

)(

‖DT
Ω Dx‖2,∞ + ‖DT

Ω n‖2,∞

)

≤ ρc

(

D
†
ΩDΩ̄

)(√

1 + δmax,Ω‖x‖2 + ‖DT
Ω n‖2,∞

)

,

(40)

where the last inequality can be obtained from (33).

Furthermore, due to y = Dx+ n, we get

‖DT
Ω [i ]y‖2 ≥ ‖DT

Ω [i ](Dx+ n)‖2
≥ ‖DT

Ω [i ]Dx‖2 − ‖DT
Ω [i ]n‖2

≥
√

1− δmax,Ω‖x‖2 − ‖DT
Ω [i ]n‖2. (41)

Therefore, by using (40) and (41), we obtain

‖DT
Ω̄
y‖2,∞

‖DT
Ω
[i ]y‖2

≤ ρc

(
D

†
Ω
DΩ̄

)( √
1 + δmax,Ω‖x‖2√

1− δmax,Ω‖x‖2 − ‖DT
Ω
[i ]n‖2

+
‖DT

Ω n‖2,∞√
1− δmax,Ω‖x‖2 − ‖DT

Ω
[i ]n‖2

)

≤ ρc

(
D

†
Ω
DΩ̄

)
⎛
⎜⎝

√
1 + δmax,Ω

√
1− δmax,Ω − ‖DT

Ω
n‖2,∞

‖x‖2

+
1

√
1− δmax,Ω

‖x‖2
‖DT

Ω
n‖2,∞

− 1

⎞
⎟⎠, (42)

where the last inequality follows from
‖DT

Ω [i ]n‖2
‖DT

Ω
n‖2,∞

≤ 1. By

defining 1
β as (12), we complete the proof.

APPENDIX E

DISCUSSION FOR SOLVING PROBLEM (20) USING

ALGORITHM 1 IN [16]

It is noted that for the problem (20) with h > 0, the order

of coordinates in the optimal solution Qi is the same as the

order of the corresponding coordinates in h. The reasons are

given in many researches [16], [52], [53]. Based on this truth,

we can only focus on the magnitudes of h since we can take

absolute operation for any h.

For the subsequent analysis, we first define a multi-peak

signal form. Given an absolute block signal c with block d,

we sort the elements in each block separately from small to

large. Then we further sort the signal blocks corresponding

to the �2-norm of each block and we obtain the signal cm .

We call this processed signal the multi-peak signal and the

constraints of multi-peak signal are expressed as:

c s.t. ‖c[1]‖2 ≤ ‖c[2]‖2 ≤ · · · ≤ ‖c[nB ]‖2,
c1 ≤ c2 ≤ · · · ≤ cd , cd+1 ≤ · · · ≤ c2d , , . . . ,

cnB−d ≤ · · · ≤ cnB
. (43)
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For simplicity, we use c ∼ cm to describe (43) in the

following. Then, the problem (20) is converted to

argmin
q

τ

kd∑

i=(k−1)d+1

q2i + ‖q− h‖22,

s.t. q ∼ qm , (44)

where q represents Qi . Further, (44) is equivalent to

argmin
q

kd
∑

(k−1)d+1

(1 + τ)

(

qi −
1

1 + τ
hi

)2

+

(k−1)d
∑

i=1

(qi − hi )
2
,

s.t. q ∼ q
m
. (45)

This problem can be solved by the algorithm in [16] if the

input vector h is the multi-peak signal.
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[42] T. Vlašić and D. Seršić, “Sampling and reconstruction of sparse signals

in shift-invariant spaces: Generalized Shannon’s theorem meets com-
pressive sensing,” IEEE Trans. Signal Process., vol. 70, pp. 438–451,
Jan. 2022.

[43] W. Xu, Y. Cui, Y. Wang, S. Wang, and J. Lin, “A hardware implemen-
tation of random demodulation analog-to-information converter,” IEICE

Electron. Exp., vol. 13, no. 16, 2016, Art. no. 20160465.
[44] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-

based compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1982–2001, Apr. 2010.

[45] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value threshold-
ing algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, 2010.

[46] Z. Wen and W. Yin, “A feasible method for optimization with orthog-
onality constraints,” Math. Program., vol. 142, nos. 1–2, pp. 397–434,
Dec. 2013.

[47] T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse sig-
nal recovery with noise,” IEEE Trans. Inf. Theory, vol. 57, no. 7,
pp. 4680–4688, Jul. 2011.

[48] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE

Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.
[49] J. J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collaborative

spectrum sensing from sparse observations in cognitive radio networks,”
IEEE J. Sel. Areas Commun., vol. 29, no. 2, pp. 327–337, Feb. 2011.

[50] J. Wang and P. Li, “Recovery of sparse signals using multiple orthog-
onal least squares,” IEEE Trans. Signal Process., vol. 65, no. 8,
pp. 2049–2062, Apr. 2017.

[51] F. Chiti, R. Fantacci, D. Marabissi, and A. Tani, “Correlation-based
spectrum sensing with oversampling and optimal weights selection for
OFDM-based networks coexistence in TVWS,” IEEE Trans. Cogn.

Commun. Netw., vol. 7, no. 2, pp. 511–523, Jun. 2021.
[52] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,

vol. 1, no. 3, pp. 123–231, 2014.
[53] K. Tang, Z. Su, Y. Liu, W. Jiang, J. Zhang, and X. Sun, “Subspace

segmentation with a large number of subspaces using infinity norm
minimization,” Pattern Recognit., vol. 89, pp. 45–54, May 2019.

Liyang Lu (Graduate Student Member, IEEE)
received the B.S. degree in communication engi-
neering from the Beijing University of Posts
and Telecommunications, China, in 2017, where
he is currently pursuing the Ph.D. degree in
information and communication engineering. His
area of research includes compressive sensing, cog-
nitive radios, integrated sensing and communication,
sparse representation-based classification, and signal
optimization.

Wenbo Xu (Member, IEEE) received the B.S.
degree from the School of Information Engineering,
Beijing University of Posts and Telecommunications
(BUPT), China, in 2005, and the Ph.D. degree
from School of Information and Communication
Engineering, BUPT, in 2010. Since 2010, she has
been with BUPT, where she is currently a Professor
with the School of Artificial Intelligence. Her current
research interests include sparse signal processing,
machine learning, and signal processing in wireless
networks.

Yue Wang (Senior Member, IEEE) received the
Ph.D. degree in communication and information
system from the School of Information and
Communication Engineering, Beijing University of
Posts and Telecommunications, Beijing, China,
in 2011. He is currently a Research Assistant
Professor with Electrical and Computer Engineering
Department, George Mason University, Fairfax, VA,
USA, where he was a Postdoctoral Researcher. Prior
to that, he was a Senior Engineer with Huawei
Technologies Company Ltd., China. From 2009

to 2011, he was a visiting Ph.D. student with Electrical and Computer
Engineering Department, Michigan Technological University, Houghton, MI,
USA. His general interests include signal processing, wireless communica-
tions, machine learning, and their applications in cyber physical systems. His
specific research focuses on compressive sensing, massive MIMO, millimeter-
wave communications, cognitive radios, DoA estimation, high-dimensional
data analysis, and distributed optimization and learning.

Zhi Tian (Fellow, IEEE) is currently a Professor
with the Electrical and Computer Engineering
Department, George Mason University, Fairfax,
VA, USA, since 2015. Prior to that, she was on
the Faculty of Michigan Technological University,
Houghton, MI, USA, from 2000 to 2014. She served
as a Program Director with U.S. National Science
Foundation from 2012 to 2014. Her research interest
lies in the areas of statistical signal processing, wire-
less communications, and estimation and detection
theory. Her current research focuses on compressed

sensing for random processes, statistical inference of network data, distributed
network optimization and learning, and millimeter-wave communications. She
received the IEEE Communications Society TCCN Publication Award in
2018. She was the Chair of the IEEE Signal Processing Society Big Data
Special Interest Group and the General Co-Chair of the 2016 IEEE GlobalSIP
Conference, and is the Unclassified Technical Program Co-Chair of the 2022
IEEE MILCOM Conference. She was a Member-at-Large of the Board of
Governors of the IEEE Signal Processing Society from 2019 to 2021. She
was an IEEE Distinguished Lecturer for both the IEEE Communications
Society and the IEEE Vehicular Technology Society. She served an Associate
Editor for IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and
IEEE TRANSACTIONS ON SIGNAL PROCESSING.

Authorized licensed use limited to: George Mason University. Downloaded on December 24,2022 at 01:16:42 UTC from IEEE Xplore.  Restrictions apply. 


