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Abstract
Energy-efficient and link-reliable underwater 

acoustic communication (UAC) systems are of vital 
importance to both marine scientific research and 
oceanic resource exploration. However, owing 
to the unique characteristics of marine environ-
ments, underwater acoustic (UWA) propagation 
experiences arguably the harshest wireless chan-
nels in nature. As a result, traditional model-based 
approaches to communication system design and 
implementation may no longer be effective or reli-
able for UAC systems. In this article, we resort to 
machine learning (ML) techniques to empower 
UAC with intelligence capabilities, which capitalize 
on the potential of ML in progressively improving 
system performance through task-oriented learning 
from data. We first briefly overview the literature of 
both UAC and ML. Then, we illustrate promising 
ML-based solutions for UAC by highlighting one 
specific niche application of adaptive modulation 
and coding (AMC). Lastly, we discuss other key 
open issues and research opportunities layer-by-lay-
er, with focus on providing a concise taxonomy of 
ML algorithms relevant to UAC networks.

Introduction
Ocean, which covers two-thirds of our plan-
et, provides a huge amount of under-utilized 
resources. Nowadays, marine exploitation has 
attracted growing attention, thanks to the rapid 
development of underwater acoustic (UWA) 
technologies. Among them, underwater acous-
tic communication (UAC) systems and networks 
have found broad applications, such as environ-
mental monitoring, offshore exploration, disaster 
detection and early warning, as well as national 
security and defense. Therein, how to enhance 
the reliability and efficiency of UAC systems is key 
to the exploration of oceanic resources in harsh 
aquatic environments [1].

Traditional UAC research generally assumes 
some specific channel conditions or even ideal 
environments that match certain well-understood 
channel models for air-based transmission medium. 
As such, mature designs for terrestrial wireless sys-
tems can be adopted, which simplifies the design 
of UACs. Unfortunately, these designs derived from 
simple and ideal channel conditions may not work 
well in practice. The very first and foremost obstacle 
turns out to be the lack of a set of general channel 
models that accurately describe diverse practical 

scenarios, which limits the applicability of traditional 
model-based communication techniques.

Specifically, in contrast to terrestrial wireless 
communications, signals in underwater transmis-
sion propagate in the form of acoustic waves 
rather than the electromagnetic counterparts, 
since almost all electromagnetic frequencies are 
absorbed and dispersed by water. Table 1 sum-
marizes and compares the key characteristics 
between these two different media. Noticeably, 
UACs suffer from much more complex channel 
distortion and interference than the counterpart of 
terrestrial radio systems. All these adverse charac-
teristics pose serious performance-degrading fac-
tors to UAC systems in practice.

In UAC research, there are several mathematical 
modeling techniques for UWA wave propagation, 
including the parabolic approximation model, the 
normal model and the ray-theoretic model, and so 
on. Among them, the ray-theoretic model is most 
widely used due to its interpretability and simplici-
ty. It assumes that sound propagates along a huge 
amount of rays generated from the source point 
(i.e., transmitter), while the receiving signal is the 
total sound energy of all arriving rays. Therein, fol-
lowing Snell’s law, acoustic rays always bend toward 
the region with lower propagation velocity, which 
depends on the temperature, salinity and depth 
that vary with time and location [2]. As such, cer-
tain small changes of these environmental parame-
ters in UAC may result in drastic variation of sound 
velocity, which causes refraction-induced abnormal 
acoustic ray paths. Such fast dynamics of UWA envi-
ronments give rise to a highly irregular sound speed 
profile (SSP), which leads to highly complex UWA 
propagation. Such complexity makes it quite chal-
lenging to construct accurate and general UWA 
channel models in an affordable manner.

Meanwhile, inspired by the success of stochas-
tic channel modeling techniques in terrestrial and 
satellite communications, some UAC researchers 
have attempted to make statistical assumptions 
on the individual paths of a given UWA channel 
impulse response, aiming to generate the required 
channel parameters from their probability distri-
butions in a stochastic manner. Unfortunately, the 
fast dynamic changes in an aquatic environment 
lead to complex time-space-frequency variations 
in UWA channels. Thus, accurate statistical mod-
els for specific UWA channels are still unavailable, 
even though a vast number of measurements on 
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UWA channels have been collected so far [3]. Fur-
ther, conventional statistical assumptions applied 
in terrestrial and satellite scenarios, for example, 
Rayleigh distribution for amplitude and Gaussian 
distribution for ray arrival time, do not hold true in 
realistic UWA propagation.

To overcome the aforementioned major chal-
lenges, we turn to data-driven machine learning 
(ML) to empower UAC with intelligence capabili-
ties, so as to enable intelligent system optimization 
and sustainable performance improvement. ML 
technology enables machines to make predictions 
or decisions by learning from data observations, 
without following strictly static programs.

Recently, ML has received much attention as a 
key enabler for the evolution of terrestrial wireless 
communications. For instance, deep learning (DL) 
has been advocated for demodulation in OFDM 
systems [4]. For 5G wireless systems, an efficient 
online channel state information (CSI) prediction 
scheme has been designed, which learns from the 
historical data via deep neural networks (DNN) 
[5]. These successes illuminate the feasibility and 
potential benefits of exploring ML for wireless com-
munication systems.

Different from existing works, this article focus-
es on UAC systems and networks, which feature 
in unique characteristics and give rise to new chal-
lenges and opportunities for ML. On this topic, 
there have been some preliminary explorations 
and results. For example, NATO has developed 
a decision tree-based approach that chooses the 
fastest modulation scheme among several pre-
defined single-carrier signals based on CSI [6]. In 
[7], adaptive transmission based on reinforcement 
learning (RL) is presented for time-varying UWA 
channels, which formulates the adaptive problem 
as a partially observable Markov decision process. 
Yet, the evolution towards ML-based UACs is still 
at its infancy, lagging far behind that for the ter-
restrial counterpart in terms of both breadth and 
depth. To fill this gap, this article contributes to illu-
minating a pathway for ML research to embrace 
the unique challenges and opportunities in UACs, 

with focus on some advances that ML has shown 
promise for UACs.

The ensuing article is organized as follows. 
The next section reviews several categories of ML 
algorithms, emphasizing on those that we will sug-
gest for UAC applications. We then delve into our 
proposed application of ML for the physical layer 
(PHY), with focus on adaptive modulation and cod-
ing (AMC). Following that we expand the discussion 
to multiple layers of the UAC networks (UWANs) 
and highlights several major open issues and future 
directions in ML-based UAC systems, followed by 
concluding remarks in the final section.

Overview of ML Techniques
Typical ML algorithms can be generally classified 
into four categories depending on the nature of 
the dataset for learning as well as the feedback 
mechanism available to the learning system. They 
are supervised learning (SL), unsupervised learn-
ing (UL), semi-supervised learning (SSL), and RL, 
where supervised, unsupervised or semi-super-
vised learning indicates whether the available data 
samples are labeled, unlabeled or a mix of both, 
and a reinforcement scheme provides feedback in 
terms of rewards or regret to navigate the learn-
ing process.

SL: It refers to the ML task of inferring an input-out-
put mapping function from labeled training data, 
where the dataset contains observations of both the 
input objects and the resulting output values.

UL: It seeks to infer a function that describes 
the inherent structure or underlying distribution 
from unlabeled data, that is, the observations do 
not include the output values such as regression or 
categorization outcomes.

SSL: It involves both labeled and unlabeled data 
for training. Leveraging a blend of both the SL and 
UL techniques, it typically starts with inferring a 
rough model for the input-output mapping func-
tion from labeled data, and then makes use of the 
unlabeled data to improve the modeling accuracy.

RL: Inspired by behavioral psychology, RL deals 
with learning tasks when feedback of the instanta-

TABLE 1. Comparison of electromagnetic waves and UWA waves.

Characteristic Electromagnetic waves Underwater acoustic waves

Medium dependence
Propagate regardless of medium, even in 
vacuum

Must rely on medium vibration

Propagation uniformity
Generally along a straight line, at a stable 
speed

Along a curve, with speed greatly 
affected by temperature

Absorption loss under water 3dB/m@10kHz 1.1dB/km@10kHz

Speed in the air 3  108 m/s 340m/s

Speed under water 2.25  108m/s 1490m/s

Typical frequency and 
wavelength

GSM — frequency: 900MHz, wavelength: 
0.33m

Sonar — frequency: 5kHz, wavelength: 
0.3m

Communication latency Small Large

Multipath delay Small multipath delay
Large delay (> 10ms), across dozens 
of symbols

Doppler Small scaling factor (≤ 10–5) Large scaling factor (10–2)

Variation in time and space
Change of communication scenarios and 
variation in short-wave ionospheric reflection

Rapid changes of waves and periodic 
changes of sea water
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neous reward is available. It concerns how learning 
agents ought to take actions in a certain environ-
ment based on feedback, in order to maximize the 
cumulative rewards over time.

Based on the above categorization, Table 2 
summarizes and compares several commonly-used 
ML techniques in the literature. Among them, 
DNN, which is a typical DL algorithm, has recently 
stood out as a powerful ML tool that owes its fast 
development to the increase of both available data 
volume and hardware computational capability. 
Mimicking the way that the human brain processes 
light and sound into vision and hearing, DL tools 
make use of the representation power provided by 
multiple hidden layers in an artificial neural network 
for both supervised and unsupervised learning.

ML for UAC Systems
With the advances in wireless technologies, research 
interest in UACs has expanded from traditional sim-
ple point-to-point transmissions to multi-point com-
munication networks. To facilitate interoperability 
of diverse UAC nodes, an OSI-based standardized 
UWAN protocol stack has been built to character-
ize the communication functions of UAC systems 
using five abstraction layers, namely, PHY, data link 
layer, network layer, transport layer and application 
layer. Noticeably, due to the lack of accurate and 
usable models for the complex channel characteris-
tics and adverse node features in harsh UWA envi-
ronments, there are critical issues to be addressed 
at each of these layers, beyond the capability of 
existing model-based wireless solutions.

To solve these unique challenges in UACs, ML 
technology presents a great potential, thanks to its 
capability to effectively extract the underlying rela-
tionship among key parameters of UAC systems 
from data, even in the absence of any predefined 
models or prior knowledge. ML is expected to offer 
major performance enhancement to UAC systems, 
which will in turn facilitate better exploration and 
protection of the precious marine resources. For 

in-depth illustration, next we elaborate on ML tech-
niques at the mission-critical PHY layer.

ML in PHY
At the PHY, UAC seeks to explore the UWA 
channel characteristics and select suitable com-
munication schemes for effective data transmis-
sions. Extensive efforts have been spent on UWA 
channel modeling, and various terrestrial wire-
less PHY solutions have been tailored for UAC 
based on the assumed UWA models. However, 
such solutions derived under a simplified channel 
model or an idealized condition cannot achieve 
stable performance or even fail to work effec-
tively in practice, due to the high uncertainty and 
complexity of realistic UWA channels. In contrast, 
ML as a data-driven solution, is appealing for its 
capability to implicitly learn the underlying chan-
nel and intelligently adapt the communication 
schemes and parameters at the PHY. As such, 
ML-aided UAC systems have the potential to track 
and adapt to dynamic and complex communica-
tion scenarios, with inherent immunity to chan-
nel modeling uncertainty. Along this line, several 
channel-dependent tasks can benefit from ML, 
including AMC and precoding at the transmitter 
side, as well as channel prediction, demodula-
tion and decoding at the receiver. Among them, 
AMC critically impacts the bit error rate (BER) 
and throughput of UAC systems in the presence 
of highly uncertain and dynamic UWA channels. 
Next, we delve into the ML-based AMC design.

AMC is appealing to UAC by tracking channel 
dynamics and adaptively switching among a set 
of modulation and coding schemes (MCS) for the 
most efficient transmission. Existing AMC methods 
follow the extensive literature for terrestrial wireless 
communications, which can be categorized into two 
groups: one is based on instantaneous CSI obtained 
from channel estimation, and the other is based on 
statistical link information (SLI) inferred through long-
term observations or historical knowledge. Unfor-
tunately, the former category often fail to work 
effectively for UAC due to the lack of a general 
channel model that accurately represents diverse 
and complicated UWA propagation. Meanwhile, 
the SLI-based methods hinge on long-term channel 
statistics and thus suffer severely from slow response 
to fast dynamics and sudden changes in UAC links. 
These drawbacks of conventional methods motivate 
us to develop an ML-aided AMC approach.

From the perspective of ML, the AMC proce-
dure can be viewed as a classification problem that 
aims to partition the feature space into non-overlap-
ping feasible regions for each MCS. Along this line, 
Fig. 1 shows our proposed ML-aided AMC model 
for UAC systems, which has an added ML-based 
AMC classifier to optimize the transmission for-
mat. After performing model training prior to actu-
al deployment, we treat the AMC classifier as a 
black box, with the input being the real-time chan-
nel state and the output being the corresponding 
optimal MCS. Further, to continuously update this 
classifier as new data arrive during operation, an 
online learning mechanism is incorporated. Such a 
closed-loop ML-aided AMC solution offers salient 
capabilities of both sustainable self-enhancement 
and broad applicability to various operation scenar-
ios. Next, we give a guideline on developing and 
applying this ML-aided AMC framework.

TABLE 2. Comparison of different ML algorithms.

Algorithm Category Accuracy
Training 
speed

Functionality

Decision tree SL Medium Fast
Classification, 
regression

Random forests SL High Slow
Classification, 
regression

Support vector 
machine

SL Medium Fast
Classification, 
regression

k-nearest neighbors 
(k-NN)

SL Medium Fast Classification

K-means UL Medium Fast Clustering

Naive Bayes SL Low Fast Classification

(Deep) Neural 
networks

SL, UL High Slow
Classification, 
regression 
clustering

Q-learning, deep Q 
Network

RL
Improve 
continuously

Slow
Behavior 
optimization

Multi-armed bandit 
(MAB)

RL
Improve 
continuously

Slow
Behavior 
optimization 
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Guideline for Employing ML in UACs

In this subsection, we outline the relevant princi-
ples in employing ML techniques for UACs, by 
offering useful step-by-step guidelines in solution 
development and practical implementation.

Problem Modeling: First, it is essential to fully 
understand the target problem before applying ML 
(i.e., define the input and the corresponding out-
put), and then build a proper ML model for training.

Data Gathering: For ML-based UACs, it is 
vital to collect a sufficiently large training data-
set of good quality. Unfortunately, either real 
data collection from field experiments or syn-
thetic data generation via simulations is highly 
challenging in UWA scenarios. First, the high 
cost of ships and hardware maintenance make 
marine experiments expensive to conduct; fur-
ther, usable experimental data is not easy to 
collect due to the harsh and dynamic aqueous 
conditions. Second, there are limited simulation 
tools to generate reliable synthetic data, because 
of the lack of accurate UAC channel models. 
Thus, it is of foremost importance to construct a 
rich training set by gathering and sharing a large 
volume of data from field experiments and/or 
even generating realistic data from a generative 
adversarial network that is informed by both real 
and synthetic data.

Data Preprocessing: Both the quality and quan-
tity of the initially constructed training set need to 
be enhanced continuously. This step includes the 
following critical components:
•	 Denoising: to remove the data points that con-

tain incorrect information
•	 Feature scaling: to streamline the dimensions of 

all feature quantities so as to avoid the learning 
results being dominated by features with wider 
ranges

•	 Complexity reduction: to alleviate the burden 
on computing resources and training time, by 
transforming the original data into a new form 
with little information loss, through dimension-
ality reduction (e.g., principal component analy-
sis (PCA)) and data condensing (e.g., k-means).
Model Parameter Tuning: The model predic-

tion ability shall be refined through iterative adjust-
ments of model parameters, until reaching desired 
performance. By now, the trained ML model is 
ready for deployment in practice.

Learning on the Fly: During the online deploy-
ment stage, semi-supervised learning can be used to 
keep learning from the operating scenarios to update 
the ML model, so as to continually enhance the per-
formance in terms of model accuracy and scalability.

Training ML models takes practice. For those 
who are new to ML or want to get results quickly, 
it is advised to extract some key features based 
on domain knowledge and experience to repre-
sent the original data, and train the model using 
simple ML algorithms. These two strategies help 
to obtain usable outcomes while greatly reducing 
the demand for computing resources and train-
ing time. When further improvement of model 
intelligence is desired, one can turn to a DL-aided 
AMC framework that utilizes the data itself for 
intelligent feature extraction and sustainable per-
formance improvement.

Illustrating Examples
To illustrate the potential of ML for AMC, we con-
sider a convolutional coded multicarrier multiple 
frequency shift keying (CC-MC-MFSK) UAC system 
and adopt the weighted k-NN (w-kNN) algorithm 
for its simplicity and robustness. It illustrates a quick 
solution that yields useful ML outcomes for AMC, 
and serves as a benchmark for more powerful ML 
algorithms. Three MSC schemes with various data 
rates are considered: MCS1) CC-MC-2FSK with 
code rate 1/2 and data rate 227 bps, MCS2) uncod-
ed-MC-4FSK with data rate 911 bps, and MCS3) 
uncoded-MC-8FSK with data rate 1,366 bps. For 
data gathering, we collect a set of real-world chan-
nel measurements from three field experiments con-
ducted by our research group (i.e., Ganhe reservoir 
(October 2011), Fuxian lake (July 2013) and Danji-
angkou reservoir (June 2016)). These data are then 
organized and labeled. Specifically, each input is the 
measured channel condition represented by a six-di-
mensional CSI feature set, including the CSI-induced 
receiver signal-to-noise ratio (SNR), time delay 
spread, time delay of the strongest path, total power 
of the first three paths, total power of all paths, and 
the normalized amplitude of the first path. For each 
channel input, the corresponding MCS output is 
labeled by testing the three predefined MCSs and 
selecting the best one that meets the BER require-
ment at the highest data rate. Eventually, a dataset 
of 3,610 observations is made available, with labels 
covering all three MCS schemes.

FIGURE 1. ML model for AMC in UACs.
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Given the dataset, we learn the mapping func-
tion from the input channel condition to the out-
put MCS by training a w-kNN classifi cation model 
(a.k.a. classifier). The learned results are evaluat-
ed on test data in terms of the optimality of the 
predicted MCS (Fig. 2) and the achieved perfor-
mances in terms of average throughput (aTP) and 
BER (Fig. 3), with comparison to a traditional mod-
el-based method that only uses SNR as the MCS 
switching metric. Noticeably, since the channels 
are characterized by multi-dimensional features 
rather than SNR alone, each SNR may correspond 
to multiple optimal MCS choices with diff erent data 
rates, and hence aTP and BER do not vary mono-
tonically in SNR. Instead, the BER curves stay rather 
fl at around the required BER threshold, while the 
aTP improves as SNR increases. As confirmed by 
Figs. 2 and 3, this simple yet eff ective ML classifi er 
obtains near-ideal solutions with salient robustness 
in tracking channel dynamics under diff erent oper-
ation scenarios, thanks to its immunity to channel 
modeling uncertainty.

oPen Issues And oPPortunItIes
Having delved into the PHY layer to illustrate the 
benefi ts of ML to UACs, we now off er an outlook 
on ample research opportunities and open issues 
across multiple layers. For UWANs, their unique 
node characteristics give rise to adverse impacts 
on the link quality. First, the water current causes 
unavoidable node mobility, resulting in nontrivial 
Doppler effects and high dynamics in the topol-
ogy of UAC systems. Second, the noise sources 
consist of not only the ambient noise but also the 
echoed self-noise, both of which are quite com-

plex. The ambient noise coming from other sound 
sources such as breaking waves, raindrops, and 
nearby ships, is usually enlarged in the water to 
become much larger than that in the air. Mean-
while, since communication nodes in UWANs are 
often mounted on mobile platforms, the self-noise 
generated by mobile carriers cannot be ignored. 
Third, marine nodes are usually powered by bat-
teries that are expensive to recharge or replace 
in underwater conditions, and hence the network 
lifetime is a limiting factor in design and imple-
mentation. All these adverse node characteristics 
make well-known designs for terrestrial wireless 
networks fail to work well underwater, for exam-
ple, MAC protocol, routing protocol, and so on. 
In contrast, many terrestrial wireless systems oper-
ating in benign environments do not necessari-
ly need to adopt ML, since mature model-based 
techniques are proven effi  cient and near-optimal. 
In Table 3, we summarize major potential applica-
tions and functionalities at each layer of UWANs 
that can benefi t from ML, and suggest some use 
cases where ML should be carefully designed in 
response to their unique challenges of UWANs.

ML in Data Link Layer: The data link layer pro-
vides a node-to-node data transfer link between two 
directly connected nodes through two main func-
tions: logical link control and medium access control 
(MAC). By introducing ML and utilizing its capability 
in learning multi-variable functions and capturing the 
underlying relationship in dynamic environments, 
the data link layer can adapt its behavior to link 
changes. Specifi cally, ML off ers at least three prom-
ising opportunities for performance enhancement 
at this layer: i) link-adaptive selection of the optimal 
packet size to maximize the effi  ciency of automatic 
repeat-request (ARQ) systems, ii) intelligent MAC 
protocol design to overcome channel uncertainty, 
and iii) adaptive power control to reduce the ener-
gy consumption of data link transmission.

ML in Network Layer: The network layer aims 
to fi nd the optimal source-to-destination paths for 
routing and delivering data packets. A feasible 
approach to alleviating issues of non-uniform chan-
nel conditions and adverse node characteristics is 
to adopt reinforcement learning, which can make 
globally optimal decisions by progressively learn-
ing useful historical information of both the UWA 
environment and node behavior, such as CSIs, net-
work topology, contact nodes, link performance, 
energy usage, and so on. In doing so, the routing 
overhead is reduced, leading to a sustainable net-
work with extended lifetime. Along this line, rein-
forcement learning can be adopted in topology 
control, path routing and relay node selection to 
build intelligent routing protocols. It is also promis-
ing to address the unique challenges caused by the 
sparse deployment of underwater nodes and high-
ly mobile marine platforms in modern UWANs, 
such as node localization, optimal node deploy-
ment and location selection, and so on.

Smarter UACs: Inspired by the concept of 
smart cities, there is increasing interest in building 
smarter UAC platforms through the integration 
of ML with the Internet of Underwater Things 
(IoUT). As a worldwide network of smart inter-
connected underwater objects with a digital enti-
ty, the IoUT is capable of acquiring all sorts of 
useful information and exchanging data among 
connected nodes. Hence, future UWANs may 

FIGURE 2. MCS prediction outcomes vs SNR.
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embrace unprecedented capability in environ-
mental sensing and data collection, and thus can 
detect and acquire much enriched data sources, 
including not only various types of marine com-
munication information, but also useful environ-
mental messages such as ships, routes, locations, 
and so on. Such enriched data sources and vol-
umes offer tremendous opportunities to bene-
fit the design of ML-aided smarter UAC systems, 
through high-quality feature extraction, learning 
from historical observations, and making intelli-
gent decisions over a joint space of all relevant 
system parameters. Such a shared platform for 
smarter UACs is critical for UWANs in particular.

Conclusion
The increasing demand for exploring and manag-
ing the vast marine resources has underscored the 
importance of UAC research. This article contrib-
utes to analyzing major challenges in UAC and lay-
ing out potential solutions from an ML perspective. 
Relevant ML techniques are categorized, and prom-
ising applications of ML in UWANs are outlined and 
discussed in a layer-by-layer manner. In particular, 
ML solutions to the performance-critical functional 
block of adaptive modulation and coding for UAC 
systems are delineated, including ML model consid-
erations, design guidelines and preliminary results. 
By highlighting open issues and opportunities, this 
article seeks to attract researchers to engage in this 
research and collaboratively build intelligent UAC 
systems with superior performance.
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TABLE 3. Opportunities of ML in UWANs.

Application Layer Advantages
Suitable 
ML class

Channel prediction 
and estimation [8]

PHY
1) Improve efficiency by eliminating large-scale matrix operations in traditional methods;  
2) Improve prediction ability through learning from historical information.

SL

Demodulation and 
Decoding [9]

PHY
1) Improve robustness by addressing model deficiency, i.e., no well-established UWA channel model;  
2) Improve efficiency by tackling algorithm deficiencies, e.g., high complexity of optimal receivers.

SL

AMC [10] PHY
1) Offer immunity to channel modeling uncertainty;  
2) Improve the ability of dynamic channel tracking by managing all relevant PHY parameters.

SL, RL

MAC design [11] Data link
1) Improve efficiency by learning from the traffic load to reduce idle listening and overhearing;  
2) Reduce latency by analyzing channel behavior and switching transmission strategy accordingly.

SL, RL

Power control [12] Data link
1) Intelligently update the power control decisions in lieu of the traditional static control strategy;  
2) Improve the trade-off between energy consumption and data transmission.

SL, RL

Routing protocol [13] Network
Learn from both environmental data and node contact history to:  
1) reduce packet delay via adapting to the variable topology; 
 2) improve energy efficiency via making optimal routing decisions.

RL

Relay node selection 
[14]

Network
1) Improve robustness by removing the impact of imperfect CSI estimation;  
2) simplify the process of relay selection;  
3) improve the efficiency of residual energy allocation.

RL

Resource 
management [15]

Cross 
multiple

Make optimal global resource management actions through:  
1) enhancing communication-related protocols intelligently;  
2) eliminating nonfunctional and energy-wasteful activities.

RL
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