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ABSTRACT

Energy-efficient and link-reliable underwater
acoustic communication (UAC) systems are of vital
importance to both marine scientific research and
oceanic resource exploration. However, owing
to the unique characteristics of marine environ-
ments, underwater acoustic (UWA) propagation
experiences arguably the harshest wireless chan-
nels in nature. As a result, traditional model-based
approaches to communication system design and
implementation may no longer be effective or reli-
able for UAC systems. In this article, we resort to
machine learning (ML) techniques to empower
UAC with intelligence capabilities, which capitalize
on the potential of ML in progressively improving
system performance through task-oriented learning
from data. We first briefly overview the literature of
both UAC and ML. Then, we illustrate promising
ML-based solutions for UAC by highlighting one
specific niche application of adaptive modulation
and coding (AMC). Lastly, we discuss other key
open issues and research opportunities layer-by-lay-
er, with focus on providing a concise taxonomy of
ML algorithms relevant to UAC networks.

INTRODUCTION

Ocean, which covers two-thirds of our plan-
et, provides a huge amount of under-utilized
resources. Nowadays, marine exploitation has
attracted growing attention, thanks to the rapid
development of underwater acoustic (UWA)
technologies. Among them, underwater acous-
tic communication (UAC) systems and networks
have found broad applications, such as environ-
mental monitoring, offshore exploration, disaster
detection and early warning, as well as national
security and defense. Therein, how to enhance
the reliability and efficiency of UAC systems is key
to the exploration of oceanic resources in harsh
aquatic environments [1].

Traditional UAC research generally assumes
some specific channel conditions or even ideal
environments that match certain well-understood
channel models for air-based transmission medium.
As such, mature designs for terrestrial wireless sys-
tems can be adopted, which simplifies the design
of UACs. Unfortunately, these designs derived from
simple and ideal channel conditions may not work
well in practice. The very first and foremost obstacle
turns out to be the lack of a set of general channel
models that accurately describe diverse practical

scenarios, which limits the applicability of traditional
model-based communication techniques.

Specifically, in contrast to terrestrial wireless
communications, signals in underwater transmis-
sion propagate in the form of acoustic waves
rather than the electromagnetic counterparts,
since almost all electromagnetic frequencies are
absorbed and dispersed by water. Table 1 sum-
marizes and compares the key characteristics
between these two different media. Noticeably,
UACs suffer from much more complex channel
distortion and interference than the counterpart of
terrestrial radio systems. All these adverse charac-
teristics pose serious performance-degrading fac-
tors to UAC systems in practice.

In UAC research, there are several mathematical
modeling techniques for UWA wave propagation,
including the parabolic approximation model, the
normal model and the ray-theoretic model, and so
on. Among them, the ray-theoretic model is most
widely used due to its interpretability and simplici-
ty. It assumes that sound propagates along a huge
amount of rays generated from the source point
(i.e., transmitter), while the receiving signal is the
total sound energy of all arriving rays. Therein, fol-
lowing Snell’s law, acoustic rays always bend toward
the region with lower propagation velocity, which
depends on the temperature, salinity and depth
that vary with time and location [2]. As such, cer-
tain small changes of these environmental parame-
ters in UAC may result in drastic variation of sound
velocity, which causes refraction-induced abnormal
acoustic ray paths. Such fast dynamics of UWA envi-
ronments give rise to a highly irregular sound speed
profile (SSP), which leads to highly complex UWA
propagation. Such complexity makes it quite chal-
lenging to construct accurate and general UWA
channel models in an affordable manner.

Meanwhile, inspired by the success of stochas-
tic channel modeling techniques in terrestrial and
satellite communications, some UAC researchers
have attempted to make statistical assumptions
on the individual paths of a given UWA channel
impulse response, aiming to generate the required
channel parameters from their probability distri-
butions in a stochastic manner. Unfortunately, the
fast dynamic changes in an aquatic environment
lead to complex time-space-frequency variations
in UWA channels. Thus, accurate statistical mod-
els for specific UWA channels are still unavailable,
even though a vast number of measurements on
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Characteristic Electromagnetic waves

Underwater acoustic waves

Medium dependence
vacuum

Propagation uniformity speed

Absorption loss under water 3dB/m@10kHz

Propagate regardless of medium, even in

Generally along a straight line, at a stable

Must rely on medium vibration

Along a curve, with speed greatly
affected by temperature

1.1dB/km@I0kHz

Speed in the air 3 x 108 m/s 340m/s

Speed under water 225 x 108m/s 1490m/s

Typical frequency and GSM — frequency: 900MHz, wavelength: Sonar — frequency: SkHz, wavelength:
wavelength 0.33m 0.3m

Communication latency Small Large

Multipath delay Small multipath delay (l;?rsgyerfs(ljz iAo
Doppler Small scaling factor (< 1075) Large scaling factor (10°2)

Variation in time and space

Change of communication scenarios and
variation in short-wave ionospheric reflection changes of sea water

Rapid changes of waves and periodic

TABLE 1. Comparison of electromagnetic waves and UWA waves.

UWA channels have been collected so far [3]. Fur-
ther, conventional statistical assumptions applied
in terrestrial and satellite scenarios, for example,
Rayleigh distribution for amplitude and Gaussian
distribution for ray arrival time, do not hold true in
realistic UWA propagation.

To overcome the aforementioned major chal-
lenges, we turn to data-driven machine learning
(ML) to empower UAC with intelligence capabili-
ties, so as to enable intelligent system optimization
and sustainable performance improvement. ML
technology enables machines to make predictions
or decisions by learning from data observations,
without following strictly static programs.

Recently, ML has received much attention as a
key enabler for the evolution of terrestrial wireless
communications. For instance, deep learning (DL)
has been advocated for demodulation in OFDM
systems [4]. For 5G wireless systems, an efficient
online channel state information (CSI) prediction
scheme has been designed, which learns from the
historical data via deep neural networks (DNN)
[5]. These successes illuminate the feasibility and
potential benefits of exploring ML for wireless com-
munication systems.

Different from existing works, this article focus-
es on UAC systems and networks, which feature
in unique characteristics and give rise to new chal-
lenges and opportunities for ML. On this topic,
there have been some preliminary explorations
and results. For example, NATO has developed
a decision tree-based approach that chooses the
fastest modulation scheme among several pre-
defined single-carrier signals based on CSI [6]. In
[71, adaptive transmission based on reinforcement
learning (RL) is presented for time-varying UWA
channels, which formulates the adaptive problem
as a partially observable Markov decision process.
Yet, the evolution towards ML-based UACs is still
at its infancy, lagging far behind that for the ter-
restrial counterpart in terms of both breadth and
depth. To fill this gap, this article contributes to illu-
minating a pathway for ML research to embrace
the unique challenges and opportunities in UACs,

with focus on some advances that ML has shown
promise for UACs.

The ensuing article is organized as follows.
The next section reviews several categories of ML
algorithms, emphasizing on those that we will sug-
gest for UAC applications. We then delve into our
proposed application of ML for the physical layer
(PHY), with focus on adaptive modulation and cod-
ing (AMC). Following that we expand the discussion
to multiple layers of the UAC networks (UWANS)
and highlights several major open issues and future
directions in ML-based UAC systems, followed by
concluding remarks in the final section.

OVERVIEW OF ML TECHNIQUES

Typical ML algorithms can be generally classified
into four categories depending on the nature of
the dataset for learning as well as the feedback
mechanism available to the learning system. They
are supervised learning (SL), unsupervised learn-
ing (UL), semi-supervised learning (SSL), and RL,
where supervised, unsupervised or semi-super-
vised learning indicates whether the available data
samples are labeled, unlabeled or a mix of both,
and a reinforcement scheme provides feedback in
terms of rewards or regret to navigate the learn-
ing process.

SL: It refers to the ML task of inferring an input-out-
put mapping function from labeled training data,
where the dataset contains observations of both the
input objects and the resulting output values.

UL: It seeks to infer a function that describes
the inherent structure or underlying distribution
from unlabeled data, that is, the observations do
not include the output values such as regression or
categorization outcomes.

SSL: It involves both labeled and unlabeled data
for training. Leveraging a blend of both the SL and
UL techniques, it typically starts with inferring a
rough model for the input-output mapping func-
tion from labeled data, and then makes use of the
unlabeled data to improve the modeling accuracy.

RL: Inspired by behavioral psychology, RL deals
with learning tasks when feedback of the instanta-
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Algorithm Category  Accuracy el Functionality
speed
Decision tree Medium Fast Clamﬁganon.
regression
Random forests High Slow Clasmﬁganon,
regression
Suppqrt vector Medium Fast ClaSS{fjl.catlon,
machine regression
k-nearest neighbors ; B
(NN Medium Fast Classification
K-means Medium Fast Clustering
Naive Bayes Low Fast Classification
s NG . Classﬁ;anon,
) High Slow regression
networks :
clustering
Q-learning, deep Q Improve Behavior
: Slow o
Network continuously optimization
Multi-armed bandit Improve Behavior
_ Slow o
(MAB) continuously optimization

TABLE 2. Comparison of different ML algorithms.

neous reward is available. It concerns how learning
agents ought to take actions in a certain environ-
ment based on feedback, in order to maximize the
cumulative rewards over time.

Based on the above categorization, Table 2
summarizes and compares several commonly-used
ML techniques in the literature. Among them,
DNN, which is a typical DL algorithm, has recently
stood out as a powerful ML tool that owes its fast
development to the increase of both available data
volume and hardware computational capability.
Mimicking the way that the human brain processes
light and sound into vision and hearing, DL tools
make use of the representation power provided by
multiple hidden layers in an artificial neural network
for both supervised and unsupervised learning.

ML For UAC SSTEMS

With the advances in wireless technologies, research
interest in UACs has expanded from traditional sim-
ple point-to-point transmissions to multi-point com-
munication networks. To facilitate interoperability
of diverse UAC nodes, an OSl-based standardized
UWAN protocol stack has been built to character-
ize the communication functions of UAC systems
using five abstraction layers, namely, PHY, data link
layer, network layer, transport layer and application
layer. Noticeably, due to the lack of accurate and
usable models for the complex channel characteris-
tics and adverse node features in harsh UWA envi-
ronments, there are critical issues to be addressed
at each of these layers, beyond the capability of
existing model-based wireless solutions.

To solve these unique challenges in UACs, ML
technology presents a great potential, thanks to its
capability to effectively extract the underlying rela-
tionship among key parameters of UAC systems
from data, even in the absence of any predefined
models or prior knowledge. ML is expected to offer
major performance enhancement to UAC systems,
which will in turn facilitate better exploration and
protection of the precious marine resources. For

in-depth illustration, next we elaborate on ML tech-
niques at the mission-critical PHY layer.

ML v PRY

At the PHY, UAC seeks to explore the UWA
channel characteristics and select suitable com-
munication schemes for effective data transmis-
sions. Extensive efforts have been spent on UWA
channel modeling, and various terrestrial wire-
less PHY solutions have been tailored for UAC
based on the assumed UWA models. However,
such solutions derived under a simplified channel
model or an idealized condition cannot achieve
stable performance or even fail to work effec-
tively in practice, due to the high uncertainty and
complexity of realistic UWA channels. In contrast,
ML as a data-driven solution, is appealing for its
capability to implicitly learn the underlying chan-
nel and intelligently adapt the communication
schemes and parameters at the PHY. As such,
ML-aided UAC systems have the potential to track
and adapt to dynamic and complex communica-
tion scenarios, with inherent immunity to chan-
nel modeling uncertainty. Along this line, several
channel-dependent tasks can benefit from ML,
including AMC and precoding at the transmitter
side, as well as channel prediction, demodula-
tion and decoding at the receiver. Among them,
AMC critically impacts the bit error rate (BER)
and throughput of UAC systems in the presence
of highly uncertain and dynamic UWA channels.
Next, we delve into the ML-based AMC design.

AMC is appealing to UAC by tracking channel
dynamics and adaptively switching among a set
of modulation and coding schemes (MCS) for the
most efficient transmission. Existing AMC methods
follow the extensive literature for terrestrial wireless
communications, which can be categorized into two
groups: one is based on instantaneous CSI obtained
from channel estimation, and the other is based on
statistical link information (SLI) inferred through long-
term observations or historical knowledge. Unfor-
tunately, the former category often fail to work
effectively for UAC due to the lack of a general
channel model that accurately represents diverse
and complicated UWA propagation. Meanwhile,
the SLI-based methods hinge on long-term channel
statistics and thus suffer severely from slow response
to fast dynamics and sudden changes in UAC links.
These drawbacks of conventional methods motivate
us to develop an ML-aided AMC approach.

From the perspective of ML, the AMC proce-
dure can be viewed as a classification problem that
aims to partition the feature space into non-overlap-
ping feasible regions for each MCS. Along this line,
Fig. 1 shows our proposed ML-aided AMC model
for UAC systems, which has an added ML-based
AMC classifier to optimize the transmission for-
mat. After performing model training prior to actu-
al deployment, we treat the AMC classifier as a
black box, with the input being the realtime chan-
nel state and the output being the corresponding
optimal MCS. Further, to continuously update this
classifier as new data arrive during operation, an
online learning mechanism is incorporated. Such a
closed-loop ML-aided AMC solution offers salient
capabilities of both sustainable self-enhancement
and broad applicability to various operation scenar-
ios. Next, we give a guideline on developing and
applying this ML-aided AMC framework.
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FIGURE 1. ML model for AMC in UACs.

GUIDELINE FOR EmPLOYING ML IN UACS

In this subsection, we outline the relevant princi-
ples in employing ML techniques for UACs, by
offering useful step-by-step guidelines in solution
development and practical implementation.

Problem Modeling: First, it is essential to fully
understand the target problem before applying ML
(i.e., define the input and the corresponding out-
put), and then build a proper ML model for training.

Data Gathering: For ML-based UACs, it is
vital to collect a sufficiently large training data-
set of good quality. Unfortunately, either real
data collection from field experiments or syn-
thetic data generation via simulations is highly
challenging in UWA scenarios. First, the high
cost of ships and hardware maintenance make
marine experiments expensive to conduct; fur-
ther, usable experimental data is not easy to
collect due to the harsh and dynamic aqueous
conditions. Second, there are limited simulation
tools to generate reliable synthetic data, because
of the lack of accurate UAC channel models.
Thus, it is of foremost importance to construct a
rich training set by gathering and sharing a large
volume of data from field experiments and/or
even generating realistic data from a generative
adversarial network that is informed by both real
and synthetic data.

Data Preprocessing: Both the quality and quan-
tity of the initially constructed training set need to
be enhanced continuously. This step includes the
following critical components:

+ Denoising: to remove the data points that con-
tain incorrect information

+ Feature scaling: to streamline the dimensions of
all feature quantities so as to avoid the learning
results being dominated by features with wider
ranges

+ Complexity reduction: to alleviate the burden
on computing resources and training time, by
transforming the original data into a new form
with little information loss, through dimension-
ality reduction (e.g., principal component analy-
sis (PCA)) and data condensing (e.g., k-means).

Model Parameter Tuning: The model predic-
tion ability shall be refined through iterative adjust-
ments of model parameters, until reaching desired
performance. By now, the trained ML model is
ready for deployment in practice.

Learning on the Fly: During the online deploy-
ment stage, semi-supervised learning can be used to
keep learning from the operating scenarios to update
the ML model, so as to continually enhance the per-
formance in terms of model accuracy and scalability.

Training ML models takes practice. For those
who are new to ML or want to get results quickly,
it is advised to extract some key features based
on domain knowledge and experience to repre-
sent the original data, and train the model using
simple ML algorithms. These two strategies help
to obtain usable outcomes while greatly reducing
the demand for computing resources and train-
ing time. When further improvement of model
intelligence is desired, one can turn to a DL-aided
AMC framework that utilizes the data itself for
intelligent feature extraction and sustainable per-
formance improvement.

|LLUSTRATING EXAMPLES

To illustrate the potential of ML for AMC, we con-
sider a convolutional coded multicarrier multiple
frequency shift keying (CC-MC-MFSK) UAC system
and adopt the weighted k-NN (w-kNN) algorithm
for its simplicity and robustness. It illustrates a quick
solution that yields useful ML outcomes for AMC,
and serves as a benchmark for more powerful ML
algorithms. Three MSC schemes with various data
rates are considered: MCS1) CC-MC-2FSK with
code rate 1/2 and data rate 227 bps, MCS2) uncod-
ed-MC-4FSK with data rate 911 bps, and MCS3)
uncoded-MC-8FSK with data rate 1,366 bps. For
data gathering, we collect a set of realworld chan-
nel measurements from three field experiments con-
ducted by our research group (i.e., Ganhe reservoir
(October 2011), Fuxian lake (July 2013) and Danji-
angkou reservoir (June 2016)). These data are then
organized and labeled. Specifically, each input is the
measured channel condition represented by a six-di-
mensional CSI feature set, including the CSl-induced
receiver signal-to-noise ratio (SNR), time delay
spread, time delay of the strongest path, total power
of the first three paths, total power of all paths, and
the normalized amplitude of the first path. For each
channel input, the corresponding MCS output is
labeled by testing the three predefined MCSs and
selecting the best one that meets the BER require-
ment at the highest data rate. Eventually, a dataset
of 3,610 observations is made available, with labels
covering all three MCS schemes.

IEEE Wireless Communications * June 2022

105



N
N
N AN

. N N \
o \
s 390N\ N\ LN
® N A \\ v Y \\
o N\ TN Y. R
k<] ¥ )\
D 27 v Y.
‘5_ v
- A\ 4
s}
3 14
el
£

SNR (dB) 16

%I—based

kNN-based
Ideal (true labels)

20
24

FIGURE 2. MCS prediction outcomes vs SNR.

1500 e e
& 1000 - g
a
o
~ 500 F 4 —#*— |deal
© ‘/ —#—model-based
O L L L L L L L L W-kNN
0O 2 4 6 8 10 12 14 16 18 20 22 24
SNR (dB)
o 102k *“‘*—V’***--—*—«/\\ 1
] ot SUGHREPE b b b e TP T
o ¢ I —%— Ideal
10.4 L —#%— model-based
L L L L L L L L —*— w-kNN
0O 2 4 6 8 10 12 14 16 18 20 22 24
SNR (dB)

FIGURE 3. Average throughput (aTP) and BER vs SNR.

Given the dataset, we learn the mapping func-
tion from the input channel condition to the out-
put MCS by training a w-kNN classification model
(a.k.a. classifier). The learned results are evaluat-
ed on test data in terms of the optimality of the
predicted MCS (Fig. 2) and the achieved perfor-
mances in terms of average throughput (aTP) and
BER (Fig. 3), with comparison to a traditional mod-
el-based method that only uses SNR as the MCS
switching metric. Noticeably, since the channels
are characterized by multi-dimensional features
rather than SNR alone, each SNR may correspond
to multiple optimal MCS choices with different data
rates, and hence aTP and BER do not vary mono-
tonically in SNR. Instead, the BER curves stay rather
flat around the required BER threshold, while the
aTP improves as SNR increases. As confirmed by
Figs. 2 and 3, this simple yet effective ML classifier
obtains near-ideal solutions with salient robustness
in tracking channel dynamics under different oper-
ation scenarios, thanks to its immunity to channel
modeling uncertainty.

OPEN ISSUES AND OPPORTUNITIES

Having delved into the PHY layer to illustrate the
benefits of ML to UACs, we now offer an outlook
on ample research opportunities and open issues
across multiple layers. For UWANS, their unique
node characteristics give rise to adverse impacts
on the link quality. First, the water current causes
unavoidable node mobility, resulting in nontrivial
Doppler effects and high dynamics in the topol-
ogy of UAC systems. Second, the noise sources
consist of not only the ambient noise but also the
echoed self-noise, both of which are quite com-

plex. The ambient noise coming from other sound
sources such as breaking waves, raindrops, and
nearby ships, is usually enlarged in the water to
become much larger than that in the air. Mean-
while, since communication nodes in UWANSs are
often mounted on mobile platforms, the self-noise
generated by mobile carriers cannot be ignored.
Third, marine nodes are usually powered by bat-
teries that are expensive to recharge or replace
in underwater conditions, and hence the network
lifetime is a limiting factor in design and imple-
mentation. All these adverse node characteristics
make well-known designs for terrestrial wireless
networks fail to work well underwater, for exam-
ple, MAC protocol, routing protocol, and so on.
In contrast, many terrestrial wireless systems oper-
ating in benign environments do not necessari-
ly need to adopt ML, since mature model-based
techniques are proven efficient and near-optimal.
In Table 3, we summarize major potential applica-
tions and functionalities at each layer of UWANs
that can benefit from ML, and suggest some use
cases where ML should be carefully designed in
response to their unique challenges of UWAN:S.

ML in Data Link Layer: The data link layer pro-
vides a node-to-node data transfer link between two
directly connected nodes through two main func-
tions: logical link control and medium access control
(MAQ). By introducing ML and utilizing its capability
in learning multi-variable functions and capturing the
underlying relationship in dynamic environments,
the data link layer can adapt its behavior to link
changes. Specifically, ML offers at least three prom-
ising opportunities for performance enhancement
at this layer: i) link-adaptive selection of the optimal
packet size to maximize the efficiency of automatic
repeat-request (ARQ) systems, ii) intelligent MAC
protocol design to overcome channel uncertainty,
and iii) adaptive power control to reduce the ener-
gy consumption of data link transmission.

ML in Network Layer: The network layer aims
to find the optimal source-to-destination paths for
routing and delivering data packets. A feasible
approach to alleviating issues of non-uniform chan-
nel conditions and adverse node characteristics is
to adopt reinforcement learning, which can make
globally optimal decisions by progressively learn-
ing useful historical information of both the UWA
environment and node behavior, such as CSls, net-
work topology, contact nodes, link performance,
energy usage, and so on. In doing so, the routing
overhead is reduced, leading to a sustainable net-
work with extended lifetime. Along this line, rein-
forcement learning can be adopted in topology
control, path routing and relay node selection to
build intelligent routing protocols. It is also promis-
ing to address the unique challenges caused by the
sparse deployment of underwater nodes and high-
ly mobile marine platforms in modern UWANS,
such as node localization, optimal node deploy-
ment and location selection, and so on.

Smarter UACs: Inspired by the concept of
smart cities, there is increasing interest in building
smarter UAC platforms through the integration
of ML with the Internet of Underwater Things
(IoUT). As a worldwide network of smart inter-
connected underwater objects with a digital enti-
ty, the loUT is capable of acquiring all sorts of
useful information and exchanging data among
connected nodes. Hence, future UWANs may
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Suitable

Application Layer Advantages ML class
Channel prediction 1) Improve efficiency by eliminating large-scale matrix operations in traditional methods;
o PHY o =+ ) Ly ; SL
and estimation [8] 2) Improve prediction ability through learning from historical information.
Demodulation and 1) Improve robustness by addressing model deficiency, i.e., no well-established UWA channel model;
; PHY ; : } o : . ; ; SL
Decoding (9] 2) Improve efficiency by tackling algorithm deficiencies, e.g.. high complexity of optimal receivers.
1) Offer immunity to channel modeling uncertainty:;
A A 2) Improve the ability of dynamic channel tracking by managing all relevant PHY parameters. bIt
MAC design [l Data link 1) Improve efficiency by learr_nng from the trafﬁF load to r.edu.ce idle |1§t§n1§g and overhearlngi SL RL
2) Reduce latency by analyzing channel behavior and switching transmission strategy accordingly.
Power control [12] Data link 1) Intelligently update the power control decisions in lieu of the tradltlongl 4statlc control strategy: SL RL
2) Improve the trade-off between energy consumption and data transmission.
Learn from both environmental data and node contact history to:
Routing protocol [13] Network 1) reduce packet delay via adapting to the variable topology:; RL
2) improve energy efficiency via making optimal routing decisions.
; 1) Improve robustness by removing the impact of imperfect CSI estimation;
Relay node selection o :
4] Network  2) simplify the process of relay selection; RL
3) improve the efficiency of residual energy allocation.
. Make optimal global resource management actions through:
Resource Cross ) - ol
- 1) enhancing communication-related protocols intelligently; RL
management [15] multiple

2) eliminating nonfunctional and energy-wasteful activities.

TABLE 3. Opportunities of ML in UWAN:Ss.

embrace unprecedented capability in environ-
mental sensing and data collection, and thus can
detect and acquire much enriched data sources,
including not only various types of marine com-
munication information, but also useful environ-
mental messages such as ships, routes, locations,
and so on. Such enriched data sources and vol-
umes offer tremendous opportunities to bene-
fit the design of ML-aided smarter UAC systems,
through high-quality feature extraction, learning
from historical observations, and making intelli-
gent decisions over a joint space of all relevant
system parameters. Such a shared platform for
smarter UACs is critical for UWANSs in particular.

CONCLUSION

The increasing demand for exploring and manag-
ing the vast marine resources has underscored the
importance of UAC research. This article contrib-
utes to analyzing major challenges in UAC and lay-
ing out potential solutions from an ML perspective.
Relevant ML techniques are categorized, and prom-
ising applications of ML in UWAN:S are outlined and
discussed in a layer-by-layer manner. In particular,
ML solutions to the performance-critical functional
block of adaptive modulation and coding for UAC
systems are delineated, including ML model consid-
erations, design guidelines and preliminary results.
By highlighting open issues and opportunities, this
article seeks to attract researchers to engage in this
research and collaboratively build intelligent UAC
systems with superior performance.
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