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Abstract 

This paper proposes an architecture that augments arbitrary surfaces into an interactive touching 
interface. The proposed architecture can detect the number of touching fingertips of human 
operators by detecting and recognizing the fingertips with a convolutional neural network (CNN). 
The inputs of the CNN model are images that are ac1quired by an RGB-D sensor. The aligned depth 
information acquired by the RGB-D sensor generates the plane model, which determines whether 
fingertips are touching the surface or not. Instead of the traditional plane modeling method that can 
only be used for flat surfaces, the proposed system can also work on curved surfaces. Corresponding 
gestures are defined based on the detected touching fingers on the surface. The feedback of the 
robots is projected on the working surface accordingly with an interactive projector. Compared to 
conventional programming interfaces, directly touching is much more natural for human beings. 
Based on the experiments, the proposed system could reduce the massive training time of operators. 

Keywords: Touching tracking, human-robot teaming, sensor fusion 

1. Introduction 

When robots operate in proximity to human workers, the relevance of human-machine, or more 
particularly, the human-robot interface grows. Compared to conventional industrial robots, which are 
used to working in a solo-working manner or static environments, advanced industrial robots are 
expected to collaborate with human co-workers. The study (Lasota & Shah, 2015) has indicated that the 
manufacturing process becomes quicker, more efficient, and less costly with human-robot 
collaboration. For most industrial robotic applications, a teaching pendant is provided to human co-
workers for interacting with robots. Gestures are a common method of communication among human 
workers. They can also be used to interact with robots (Sheikholeslami, Moon, & Croft, 2017; Yan, Wang, 
& He, 2021).  

For gestured-based human-robot collaboration interfaces, gesture ambiguity increases as the tasks 
get complicated. In contrast, touch interaction is unambiguous, tactile, familiar to users, and 
comfortable for extended periods (Li, Tan, & He, 2020; Li, Zhang, Li, & He, 2021; Xiao, Schwarz, Throm, 
Wilson, & Benko, 2018). New interaction models have emerged due to the advancements in display and 
vision technology, allowing for informative and real-time communication in shared workspaces. With 
the development of commercial RGB-D sensors, the prospect of converting these ordinary surfaces into 
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large, touchable, and interactive devices is increasing (Ntelidakis, Zabulis, Grammenos, & Koutlemanis, 
2015; Yan, Tran, & He, 2020; Yan, Wang, & He, 2020). Therefore, a human-robot teaming method based 
on touching can benefit human-robot collaboration. For this purpose, this paper proposes an 
augmented Omni surface that can directly interact with robots. 

To enable surfaces with interactive touching feedback, previous work has focused on refurbishing 
existing surfaces by adding other sensors such as acoustic sensors (Harrison & Hudson, 2008). 
Environments limit these reconstructed or refurbished surfaces. Two difficulties prevent human-robot 
teaming with a touching method without refurbishing the current environments, such as adding sensors 
to a current construction. The first problem is touch detection, and the second one is surfacing fitting. 
Touch detection includes two parts, fingertips detection, and contact detection. A conventional image 
processing method was proposed by (Bhuyan, Neog, & Kar, 2012) to detect and recognize fingertips. 
However, this method is limited by the complexity of the background (Xiao, Hudson, & Harrison, 2016).  
A deep learning approach is proposed by (Koller, Ney, & Bowden, 2016), where the number of visible 
fingertips in an image is random in particular cases. To detect each fingertip, different neural networks 
are trained (Alam, Islam, & Rahman, 2022). A touch detection method equipped with depth cameras is 
proposed by (Xiao et al., 2016), but this method is only suitable for flat surfaces. In particular, the 
working place for human-robot teaming has not only flat surfaces but also curved surfaces such as the 
carbine of a plane, the frame of a car, or the blades of a turbine.  

In this paper, we propose a method that enhances human-robot teaming by directly interacting with 
robots on the surface of the working space. To adapt to different working environments, the touch 
detection method can enable humans to interact with robots by touch in different human-robot teaming 
environments, such as flat, curvy, convex, and concave surfaces with a single commercial RGB-D camera. 
Fingertips are detected with a convolutional neural network (CNN), and touch is detected based on the 
RGB-D sensor. 

 
2. Augmented Omni-Surface 

 The developed Omni-surface architecture for human-robot teaming is shown in Figure 1. To enable 
augmented Omni-surface for human-robot teaming, touch detection is essential. The proposed 
augmented Omni surface superimposes mutual understanding between humans and robots on the 
surface of the working space.   

 

 

 

 

 

 

The workflow of touch detection is illustrated in Figure 2. The proposed method contains two parts: 
surface fitting and touch detection. The RGB-D sensor captures an image having the user's hand, which 
will be the input for the fingertip's detection and surface modeling modules. 

 

RGB-D Sensor 

Touch Interaction 

Figure 1. Augmented Omni-Surface. 
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2.1.  Arbitrary Surface Fitting 

To fit the surface based on the collected depth scans, we assume the targeted surface is visible to the 
RGB-D camera. Once the camera has a clear sight of the plane, we collect random pixels 𝐼𝐼(𝑢𝑢,𝑤𝑤,𝑑𝑑) from 
the targeted surface. To fit the surface in a 3D space, we need to transform the 2D pixel coordinates into 
3D world coordinates by  

𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑇𝑇 = 𝐾𝐾[𝑅𝑅|𝑡𝑡]−1𝐼𝐼(𝑢𝑢,𝑤𝑤, 𝑑𝑑)𝑇𝑇                                                               ( 1) 

where K is the intrinsic matrix of the RGB-D sensor and [𝑅𝑅|𝑡𝑡]−1 is the inverse transformation matrix. With 
these random pixel coordinates, we can perform deprojection to calculate the depth of our random pixel 
coordinates. Specifically, our proposed method used Global Approximation (Piegl, 1996). In global surface 
approximation, surface error E and data are used as inputs to fit the approximation function. In general, 
the number of control points is not known to achieve the desired accuracy for the surface approximation. 
Thus, the approximation method is performed iteratively. In our proposed method, we used global surface 
approximation over the interpolation method due to the limited number of control points being 
automatically determined. Since surfaces are defined on a 2D plane, they can be described by  

𝑆𝑆′(𝛼𝛼,𝛽𝛽) = ��𝑁𝑁𝑖𝑖,𝑝𝑝(𝛼𝛼)𝑀𝑀𝑗𝑗,𝑞𝑞(𝛽𝛽)𝐶𝐶𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

                                                                  (2) 

where α and β are parameters for the basis function 𝑁𝑁𝑖𝑖,𝑝𝑝 and 𝑁𝑁𝑗𝑗,𝑞𝑞  respectively. To determine a point 
using the α and β parameters, the basis functions for each of the parameters, 𝑁𝑁𝑖𝑖,𝑝𝑝(𝛼𝛼),𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑗𝑗,𝑞𝑞(𝛽𝛽), will 
be evaluated and multiplied with all the control points, 𝐶𝐶𝑖𝑖,𝑗𝑗 . In this sense, 𝑁𝑁𝑖𝑖,𝑝𝑝 and 𝑀𝑀𝑗𝑗,𝑞𝑞  are the knot 
vectors containing the size and degrees for our parameters. 

The least-squares algorithm uses interpolation on the corner control points of the targeted surface 
to approximate the remaining control points of the approximated surface. All the parameters are used 
to create an approximation of the targeted surface. With the approximated surface, we begin to extract 
any curves that may exist in the approximated surface. This will return any curves that lie on the control 
points’ surface. 

 
2.2.  Surface Touch Detection 

Without installing additional hardware such as touch screens (Kim, Son, Lee, Kim, & Lee, 2013), it is 
challenging for the system to get feedback from human users’ input. From an economic perspective and 
user-friendly, the proposed system is designed to detect touch by an RGB-D sensor. Typically, human 
beings operate touchable devices with fingertips, and fingertips have also played an essential role in 
human-robot interaction (Mitra & Acharya, 2007).  

To detect fingertips from input images, two problems need to be solved. First, the hands need to be 
recognized, and second, we need to be able to retrieve the coordinates of each fingertip of the hand. 

Figure 2. The framework of touch detection. 
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Earlier methods (Lai et al., 2016) isolate the hand regions from the acquired images using manually 
selected features such as color, depth, and contours. Some methods are not general, and the 
performance of these methods is easily affected by other natural factors such as the angles of taking 
images and ambiance lights (Nguyen, Kim, Kim, & Na, 2017). To obtain the coordinate of fingertips, the 
previous method (Liao, Zhou, Zhou, & Liang, 2012) employed a convex model that can model the 
endpoints of the extracted hand region. However, this method does not always find optimal results and 
is computationally costly (Jang, Noh, Chang, Kim, & Woo, 2015).  

In this work, we formulate the problem of recognizing the hand and detecting the fingertips as a 
unified problem that combines classification and regression. We used a deep learning model to achieve 
this. To detect fingertips, we first detect the hand with 16 layers of visual geometry group (VGG) 
structures (Simonyan & Zisserman, 2014). Then, we recognize fingertips with a deep learning model that 
includes convolution layers, flatten layers, and coordinate layers. The structure of the fingertip detection 
model is shown in Figure 3. The model contains hand detection and fingertip recognition. Hands are 
detected by VGG-16 layers, and the output of VGG-16 is 𝑌𝑌�ℎ. To extract features from  𝑌𝑌�ℎ, a convolutional 
layer with the dimension of (4 × 4 × 512) is employed.  After the three convolutional layers, the output 
is 𝑌𝑌�𝑡𝑡, which is a 2D array. Furthermore, it represents the positional information of the fingertips in the 
input image.  To recognize fingertips, 𝑌𝑌�𝑡𝑡  is flattened and fed into two fully connected (FC) layers. 

 
Figure 3. The structure of the model. 

The input of the fingertip detection model is an image containing a single hand, and the model's 
output is the recognized fingers and their respective coordinates. The observed fingertips in the image 
are labeled as “1”, and the unobserved fingertips are labeled as “0”. The input of the model is 
X(𝑢𝑢𝑖𝑖,  𝑤𝑤𝑖𝑖,𝑓𝑓), where 𝑓𝑓  is the label of each fingertip, and 𝑓𝑓 ∈ {𝑓𝑓𝑡𝑡,𝑓𝑓𝑖𝑖,𝑓𝑓𝑚𝑚,𝑓𝑓𝑟𝑟,𝑓𝑓𝑝𝑝}. The output of the model 
is 𝑌𝑌(𝑢𝑢𝑖𝑖,𝑤𝑤𝑖𝑖,𝑃𝑃) , where P is the probability of each detected fingertip’s category, and 𝑃𝑃 ∈
{𝑃𝑃𝑡𝑡,𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑚𝑚,𝑃𝑃𝑟𝑟,𝑃𝑃𝑝𝑝}. To minimize loss, the cross-entropy (CE) function and mean squared error (MSE) are 
employed with the loss 

𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑪𝑪𝑪𝑪�𝑷𝑷� ,𝑷𝑷� + 𝑴𝑴𝑴𝑴𝑴𝑴�𝒀𝒀�(𝑢𝑢𝑖𝑖,𝑤𝑤𝑖𝑖) 𝒘𝒘𝒘𝒘,𝒀𝒀(𝑢𝑢𝑖𝑖,𝑤𝑤𝑖𝑖)��                                           (3) 

where 𝑃𝑃� and 𝑌𝑌�(∙)  are the predicted results from the model, and P and Y(∙)  is the coordinate of 
fingertips of labeled data used as ground truth.  

To detect whether the user touched the surface, we computed the Euclidean distance between the 
detected fingertip 𝑌𝑌�(𝑢𝑢𝑖𝑖,  𝑤𝑤𝑖𝑖) and the approximated surface 𝑆𝑆𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 𝑖𝑖 ∈ {0,1,2,3 …𝑛𝑛}. We convert 
the detected fingertips in the image coordinates to the world frame coordinate 𝑌𝑌�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖), and then 
we calculate the distances between the detected fingertips and the approximated surface points, 
𝑑𝑑𝑚𝑚,   where 𝑚𝑚 = 1,2,3, … ,𝑚𝑚. We found the minimum distance 𝑑𝑑∗and compared it with 𝑧𝑧𝑖𝑖. If 𝑑𝑑∗ ≤ 𝜏𝜏 +
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𝑧𝑧𝑖𝑖, then the detected fingertips are touching the surface, and 𝜏𝜏 is the thickness of a human’s fingers. 

 
3. Experiment 

To evaluate the performance of the method to augment Omni surfaces, we executed the proposed 
system in different scenarios to investigate the generality of the method. To investigate the 
performance, we have computed the accuracy of our touch detection method. We have also evaluated 
the user’s satisfaction level based on the designed questionnaire.  

 
3.1.  Performance of Finger Touching 

We tested the augmented Omni-surfaces method on different scenarios, and some of the results are 
shown in Figure 4. In this experiment, the augmented Omni-surfaces method has been applied to 
different scenarios, including flat wooden surfaces, laminated flat surfaces, cloth concave surfaces, 
convex Styrofoam surfaces, cardboard flat surfaces, curved plastic surfaces, and bumpy brick surfaces.  
These scenarios cover different shapes and materials of the surface. Our results conclude that the convex 
Styrofoam surface and the small cardboard had a false detection, while the rest of the other surfaces 
showed correct detection results. Therefore, the augmented Omni-surfaces method is reliable in 
practical usage. There are two fault-detected results that are grouped by the dashed rectangles in Figure 
4. The reason for these fault results is that the working surface is small, and the depth collections include 
more noise than desired points. Therefore, the modeled surfaces are not correct. One solution would be 
to decrease the area of the collected points and increase the number of points collected.  

To evaluate the performance of the proposed method, we have run simulations on different types of 
surfaces. For each type of surface, we simulated 10,000 points, including touching or not touching. We 
computed precision, recall, and F-1 scores. The results are shown in performance Table1. Compared with 
other types of surfaces, the curved surface has the lowest result in precision, recall, and F-1 scores. The 
reason for this is that the curved surface used in this experiment takes an extreme case to test the 
performance of the proposed model. 

 
Table 1. Touch detection performance 

 
 

3.2.  User Acceptance 

 To evaluate the acceptance of augmented Omni-surface interaction, we designed a questionnaire 
consisting of four questions with four evaluation criteria. These criteria are correctness, ambiguity, 
effectiveness, and complexity. We also assigned the weight for each criterion to compute the final score 
for each perspective. 1) The correctness is defined as whether the user can instruct the robot with the 
proposed interaction method; 2) The ambiguity is defined as whether the user can precisely give the 
robot's instructions; 3) Compared with other interaction methods such as programming, or physical 
interaction with buttons, the designed interaction is effective; 4) Compared with other interaction  
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Figure 4. Touch detection results on different surfaces. The left image shows the detected results, and the right 

image shows the modeled surfaces. The bottom row demonstrated unsuccessful detections. 

 

 
Figure 5. User satisfaction evaluation. There are five satisfaction levels for four evaluation criteria.  
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methods such as programming, or physical interaction with buttons, the designed interaction is 
complicated. Twenty participants took this questionnaire, and the results are shown in Figure 5. Based 
on the feedback from the questionnaires, users are satisfied with the proposed interaction method. 
 
4. Conclusion 

A method of touch detection for human-robot teaming has been proposed based on RGB-D sensing 
to detect a touch on arbitrary surfaces to enhance human-robot teaming. From the results of 
simulations, the proposed method achieved F-1 scores at 82.87%, which indicated the proposed method 
is promising. The proposed interface demonstrated improved user acceptance of traditional interaction 
methods according to the results of user satisfaction questionnaires. 
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