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Abstract. An interface that can share effective and comprehensive
mutual understanding is critical for human-robot interaction. This paper
designs a novel human-robot interaction interface that enables humans
and robots to interact by their shared mutual understanding of the
context. The interface superimposes robot-centered reality and human-
centered reality on the working space to construct a mutual under-
standing environment. The common-reality interface enables humans to
communicate with robots through speech and immersive touching. The
mutual understanding is constructed by the user’s commands, localiza-
tion of objects, recognition of objects, object semantics, and augmented
trajectories. The user’s vocal commands are interpreted to formal logic,
and finger touching is detected and represented by coordinates. Real-
world experiments have been done to show the effectiveness of the pro-
posed interface.
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1 Introduction

The demands for robotic applications in unstructured environments are increas-
ing. Robots are designed to work in different fields, such as assisting in medica-
tion [7], treating Autism [23], and supporting people’s daily lives [17]. Efficient
human-robot interaction (HRI) plays a vital role in helping robots and humans
collaborate [2]. Compared with conventional robots that are pre-programmed in
structured environments, social robots are expected to face a wider variety of
tasks [21].

In the past decades, researchers were endeavoring to design human-robot
interaction interfaces [10]. Previous work [5,9,16,19,22] has developed context-
depended frameworks that enable robots to interact with humans by facial
expressions with visual devices. These context-dependent interfaces are not suit-
able for a dynamic environment [12]. Several augmented reality (AR) based
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interfaces have been proposed [3,8]. Those AR-based methods used markers to
recognize objects in the environment. As the number of objects increases the
required computation power increased as well [6]. Traditional AR applications
deployed in robotics are focused on enhancing the reality of humans by superim-
posing user’s goals on additional devices. Other information such as what robots
have learned from user’s commands and object semantics is missing.
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Fig. 1. Common reality for human-robot collaboration. The designed interface can take
both speech and immersive touching from users. The shared knowledge, communication
process, and the mutual understanding of the context are projected on the working
space.

Thus, an HRI interface that enables robots and humans to share a mutual
understanding of unstructured environments is urgently needed. In order to share
a mutual understanding between robots and humans, the HRI interface needs to
have the ability to dynamically recognize objects and understand the semantics
of objects in the unstructured environment. It should provide a way that enables
robots and humans to intuitively, effectively, and efficiently interact with each
other.

In this paper, we propose a novel human-robot interface that can super-
impose common reality for robots and humans. The designed common reality
interface focuses on sharing a mutual understanding of the context to create
an immersively interactive environment. The architecture of the common-reality
interface is shown in Fig. 1. The common-reality interface supports immersive
touching and speech while interacting with robots, which will avoid massive prior
training for users. A mutual understanding of the working context is required
for humans and robots to finish tasks collaboratively. The designed interface can
detect and recognize objects in the working space by a deep learning model. By
parsing the dictionary definitions of recognized objects, important attributes are
extracted to construct a knowledge base by the language model. We choose to
visualize the mutual understanding of the context instead of using a traditional
question-answer manner because the ambiguity born with a natural language can
hinder communicating in human-robot collaboration [4]. Also, information that
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is visually presented is more intuitive than auditory [15]. The major contribu-
tion of this paper is designing an intuitive, effective, and efficient interface. The
common-reality interface can visualize the common reality of a scene, thereby
bridging the gap between human knowledge and the perception of robots.

2 Human-Robot Common Reality

As the number of robots deployed to a human-centered environment increases,
the design of the HRI interface should not only understand the user’s goals,
but also demonstrate what the robot has understood from the user’s goal [20].
In this paper, a novel HRI interface has been designed that combines multi-
modal human-robot communication and augmented robot-human communica-
tion to ensure an intuitive, effective, and efficient interaction between robots and
humans. The superimposed common reality contains user’s commands and inter-
preted formal logic from user’s commands. It also contains object localization
and identification, augmented action, and object semantics. An illustration of the
components of the common reality interface has been shown in Fig. 2. Humans
can communicate with robots by integrating speech and immersive touching.
It converts human’s understanding of the context into a digital representation,
which robots can understand. Robots perceive the objects and learn the seman-
tics of the objects in the context. Then, robots communicate with humans by
visualizing their understanding of context.

-Category: Fruit
 -Function: 
 -Composition: Fresh, Skin
 -Property: Round

Apple Apple

Localization
 Identification

Apple

Augmented Action

Object Semantics

Shared Knowledge:
- User’s Commands in ACE:
“Robot moves the apple to the
right.”
- Robot Comprehension in DRS:
A B C
object(A, robot, countable, na, eq, 1)
property(C, right, pos)
object(C, apple, countable, na, eq, 1)
predicate(B, moves, A, C) 

Commands Translation

Fig. 2. Major components of the common reality interface.

2.1 Human-Robot Communication

To enable humans to communicate with robots naturally, the common-reality
interface integrates multi-modal methods that include speech and immersive
touching. Humans give commands through natural languages or touching the
surface of the working environment.
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DRS Translation. Robots need to have unambiguous, deterministic, and
expressive instructions for executing actions. For robot understanding, we inter-
preted natural language into Discourse Representation Structures (DRS). We
extended the lexicon to make it suitable for robotic applications. The parsed DRS
results consist of referents and conditions. The referents are used to define seman-
tic units that are embedded in the commands. These semantic units include
subjective objects, objective objects, executable actions, and the condition of
actions. The conditions are used to describe the relations of each parsed refer-
ent. According to part-of-text, dependency, and syntactical rules [11], there are
four general declarations for covering three major HRI scenarios. The four gen-
eral declarations are object declaration, predicate declaration, query declaration,
and property declaration. The object declaration is used to describe the NOUN
in user’s commands. It refers to subject or object in the translated commands.
The predicate declaration describes the executable actions, and the property
declaration describes the condition of these actions. We design several robotic
actions such as pick, move, and lift to ground the predicate to actual robotic
actions. These actions can be added as the complexity of the tasks increase. An
example of pared results for each scenario is shown in Fig. 3.

Fig. 3. Example of DRS Translation. Three fundamental HRI scenarios with parsed
DRS results are shown.
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Identification and Localization. In some scenarios, robots can not under-
stand the user’s purposes by only using vocal commands. Some objects may
have the same texture, names, or characteristics in the same scene. For example,
there are two apples in the scene. The command from the user is "Pick up an
apple", the robot can not differentiate which apple it should pick up. In this
case, additional instructions from users are needed to assist robots in localizing
the target object. Robots need to percept the context by themselves to work
with objects. To enable robots to percept the context, we used the Faster-R-
CNN [18] model to detect and recognize objects. The inputs of the model are
images of the context, and outputs are object labels. By referring to the labels,
objects can be identified. To assist localization, the user can press an interactive
button that associates with detected objects. The button is projected on the
context. Users touch the buttons with their fingertips to interact with robots.
To detect the fingertips of a hand, we used the model proposed in [1]. It is a
convolutional neural network (CNN) that can take an image of a hand, and the
outputs are coordinates of each recognized fingertips. A depth sensor is used to
detect whether the user has touched the button or not.

2.2 Mutual Understanding

Humans have doubts about interacting with intelligent robots because they do
not understand what robots will execute. The survey [13] has shown that 19% of
22% of participants fear intelligent robots because they do not understand. An
interface that can share mutual understanding is needed. The common-reality
interface can share human-robot communication, including the DRS translation,
object identification, and object localization. It can also share action visualiza-
tion and object semantics.

Visualizing the trajectory before the actions have been executed can help
human users understand the robot’s intention. The common-reality interface
projects the trajectories of actions to improve mutual understanding. We used
the MoveIt toolkit to plan the trajectory by giving the coordinate of the initial
position and the final position. To project the trajectory in 3D space onto a 2D
surface, we transform the robot’s end effector in the world frame to the projector
frame. To project the points in the projector frame to the X − Y surface, we
make the value on the Z − axis equal to zero.

In order for robots to understand the semantics of the context, we used a
language model [24] that can parse important attributes of objects from their dic-
tionary definitions. These attributes include category, function, composition, and
property. We used those attributes and the objects parsed from the input com-
mands to form a dynamic knowledge base. To construct the knowledge base, we
first translate the objects that are parsed from commands and learned attributes
of objects into ACE sentences by a pre-defined template. We parsed these ACE
sentences into DRS.

We used a Lampix projector to project these three components on a surface
to construct an immersive interface contains a projector, a depth camera, and
Raspberry Pi. Three major components can be visualized: the command that



324 F. Yan et al.

robots have learned, the characteristics that are held by each object in the con-
text, and the hypothetical trajectories that robots will execute. A depth camera
embedded in the projector can detect the depth difference of objects and sur-
faces. Objects can be detected by using the depth difference between objects
and the working surface. The movement-based segmenter can be achieved with
this difference as well. By visualizing the context, redundant speech can be elim-
inated. Objects in the working space are detected by the depth sensor that is
embedded in the projector. The input commands, parsed logic representations,
and characteristics of objects are projected based on a pre-defined template.
The animation of trajectory was shown based on the planned path of the robot
motion at the pixel level.

3 Experiment

We evaluated the effectiveness of the designed common-reality interface by using
four different cases in the real-world scenario. We evaluated the satisfaction level
of the common-reality interface based on the questionnaire for different people.

3.1 Real-World Scenario

There were four trials of the sample results that were used to illustrate the
working process of the interface. The results were illustrated in Fig. 4. The left
column is the image taken from the workspace, and the right column is the
sequence of images that were able to illustrate the movement. Commands were
given to the robots as inputs. Both the characteristics of objects and the shared
language in logic representation were projected.

3.2 User Satisfaction Evaluation

The robustness of the common-reality interface was evaluated based on the user’s
satisfaction regarding the demonstration of the system. The evaluation of the
user’s sanctification was measured based on questionnaires that were generated
based on Lewis’ After-Scenario Questionnaire (ASQ) [14]. The degree of sat-
isfaction was evaluated with five different levels: very unsatisfied, unsatisfied,
neutral, satisfied, and very satisfied. The satisfaction was evaluated based on
three standards, which were readability, correctness, and intuitiveness.

There were six people taking part in this experiment. The experiment partic-
ipants were from different levels of education. The age range of the experiment
participants was from 20 to 50. There were ten interactive scenarios generated.
The generated scenarios included the input commands from users and the shared
language projected on the working space. Each experiment participant was asked
to write the command of the projected knowledge, which was understood by the
robot. Different participants evaluated the written commands, and those exper-
iment participants were asked to fill the questionnaire based on the written
commands.
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Fig. 4. Real-world action planning by using the common-reality interface. There were
a total of four different trials shown. The left column is the common reality with
projected knowledge, and the right column is the animation of the action.
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Based on the questionnaire, no participant response “very unsatisfied” or
“unsatisfied” to the proposed interface. We evaluated the average user’s response
to the proposed interface based on the questionnaire. We calculated the mean
and standard deviation of each participant in each evaluation category. The
results were shown in Fig. 5. The common-reality interface was satisfied based
on the feedback of the questionnaire. Overall, most users who have taken the
questionnaires are very satisfied with the proposed interface.

Fig. 5. Average response to the interface.

4 Conclusion

This paper presented a novel human-robot interaction interface, which enhances
the HRI by superimposing the common reality including shared language, aug-
mented semantics, and mutual understanding of the context. The mutual under-
standing of the context included the commands, the characteristics of objects,
and the planned trajectory that were understood by robots. The results of the
questionnaires have demonstrated the general acceptance of the common reality
interface by users.
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