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Abstract. Effective and efficient communication is critical for human-
robot collaboration and human-agent teaming. This paper presents the
design of a Controlled Robot Language (CRL) and its formal gram-
mar for instruction interpretation and automated robot planning. The
CRL framework defines a formal language domain that deterministically
maps linguistic commands to logical semantic expressions. As compared
to Controlled Natural Language, which aims for general knowledge rep-
resentation, CRL expressions are particularly designed to parse human
instructions in automated robot planning. The grammar of CRL is devel-
oped in accordance with the IEEE CORA ontology, which defines the
majority of formal English domain, accepting large range of intuitive
instructions. For sentences outside the grammar coverage, CRL checker
is used to detect linguistic patterns, which can be further processed by
CRL translator to recover back an equivalent expression in CRL gram-
mar. The final output is formal semantic representation using first-order
logic in large discourse. The CRL framework was evaluated on various
corpora and it outperformed CRL in balancing coverage and specificity.

1 Introduction

Reliable communication between humans and intelligent robot is a critical need
especially for human-robot collaboration, human-agent teaming, and multiple
agent coordination. For most robotic applications, reliable human-robot com-
munication will significantly reduce the chances of unpredictable catastrophes
and fatal damages. In addition to physical interaction, natural language has the
potential to become the main communication channel for instructing robots,
representing contextual knowledge, and providing feedback. From a psycholog-
ical perspective, trust is the grand obstacle preventing human and robot from
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communicate effectively [1]. A robot with dynamic consciousness and optimized
precision does not necessarily gain trust from its users. We believe that the lack
of reliable natural language communication is one of the main factors that hinder
the advancement of human-agent teaming.

Fig. 1. Parsing of natural language instructions using CRL. The linguistic instructions
from user are converted into appropriate semantic representations using Discourse Rep-
resentation Structure with variables and explicit logical statements. Command-type
DRS expressions can be used to control robot through planning.

Significant research progress has been made to address the importance and
challenge of reliable natural language communication in robotic domain [2].
Robots are deemed to understand natural language if the robot can either (i)
extract correct information or (ii) have a logical semantic representation for the
context. From the former perspective, natural language understanding is consid-
ered as shallow parsing low-level knowledge for action control. The most common
approaches in this branch include probabilistic models [3] and neural-network
methods [4], which have demonstrated robust performance in detecting linguis-
tic patterns and triggering low-level actions. These approaches focus on partial
information only, which is not representative enough for describing complete
planning scenarios in realistic cases. The latter perspective parses the natural
language in a richer way, where the semantics of natural language expressions
are representable in logic form [5].

Despite the fruitful research progress of human-robot communication, natural
language based interfaces in robotics are still limited due to the trade-off between
expressiveness and reliability. Linguistic models that can handle a large range
of natural language expressions are less deterministic or reliable; on the other
hand, systems that can understand natural language inputs in-depth are limited
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in expressiveness. A common language domain could bridge the gap between
expressiveness and reliability in human-robot interaction.

In this paper, we propose a grammar model named Controlled Robot Lan-
guage (CRL) that interprets general human instructions into Discourse Repre-
sentation Structures (DRS) [6], which is a semantic format that can capture
various partial information into the same data structure. More importantly, the
CRL is designed for general-purpose that represents a deterministic and expres-
sive linguistic domain rather than an ad-hoc development, inspired by Controlled
Natural Language (CNL). The CRL framework defines CRL grammar that syn-
tactically captures a majority of English expressions. For dialect expressions that
do not follow the grammar, we developed a CRL checker, which contains flexible
set of common linguistic patterns, to detect correctable grammar errors. In the
CRL domain, expressions following the grammar are parsed into correspond-
ing formal representations, which contain all essential linguistic information for
robotic planning with reference to IEEE CORA standards [7]. As shown in Fig. 1,
given a sequence of natural language instructions, the CRL parser generates the
corresponding syntactic structure for expressions without errors in grammar,
or corrects fixable patterns for expressions with errors in grammar. The CRL
framework will translate the instructions into knowledge representations or robot
action planning.

We plan to address two fundamental challenges. The first challenge is to
design a linguistic model that is comprehensive and unambiguous. To the best
of our knowledge, there is no work so far addressing the importance of these
two properties equivalently and simultaneously. The second challenge is to auto-
matically transform or represent formal representation into robot knowledge and
actions. A primary objective of human-robot communication is to enable high-
level mutual understanding and automated planning. There is limited research
addressing on expanding the natural language domain in human-robot collabo-
ration. The main contributions of this paper are:

1. We designed and implemented a linguistic grammar tailed for robotic appli-
cations, which achieves both reliability and expressiveness; and

2. We developed a complete framework and proposed a methodology in trans-
lating natural language instructions into corresponding robot actions.

2 The Framework of Controlled Robot Language (CRL)

In view of the lacking of linguistic interfaces that satisfy reliability and expres-
siveness, we aim to implement a framework of Controlled Robot Language (CRL)
for robot understanding and planning. Motivated by Controlled Natural Lan-
guage, the proposed model maintains essential properties: certainty and gener-
ality. The proposed framework contains three fundamental components: CRL
grammar, a CRL parser, and a CRL translator. The CRL grammar defines a
formal language domain – a set of common English instructions. CRL parser is
used to assign equivalent syntactic structures to input commands. From syntactic
structures, partial linguistic information, such as subject, object, predicate, noun
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modifier, and predicate modifier, can be extracted and constructed back into for-
mal representations. The CRL grammar is designed toward a deterministic and
reliable interpretation with no ambiguity. We limited the set of CRL grammar
for a compact and efficient grammar core. The sentences outside the domain
are further processed by the CRL parser in accordance to predefined dialect
patterns – set of sentence patterns that exist in daily conversations but are not
generalized enough to be represented as grammar rules. These dialect patterns
can be recognized and transformed by the CRL translator, which returns a valid
expressions but in CRL grammar domain.

2.1 CRL Grammar and Dialect Patterns

Grammar is the core component of the proposed framework. We designed the
CRL grammar as a general-purpose and deterministic grammar in English. The
CRL grammar defines an unambiguous formal language domain, which can be
computational efficiently processed by a computer, but still expressive enough
to allow natural usage. We defined and developed the CRL grammar in terms of
Context Free Grammar (CFG) with selective rules to avoid unnecessary ambi-
guity.

Fig. 2. CFG productions for CRL grammar – implicit descriptions of CRL grammar.

Given a set of terminal nodes associated with a set of terminal symbols
T and nonterminal nodes associated with a set of nonterminal symbols N , we
defined grammar using CFG paradigm. CFG grammar is a collection of linguistic
productions in the form of

X → {Yi}ni {αj}mj (1)

where X ∈ N , Yi ∈ N ∪ T and αj ∈ T . To support common instruction struc-
tures and IEEE CORA ontology, we formulate the CRL grammar by a set of
about 330 productions1, including a set of standard Penn Treebank POS tags and
30 additional new nonterminals. A fragment of grammar is visualized in Fig. 2.
The grammar defines constraints on language domain, aiming to optimally avoid
unnecessary ambiguity. The grammar captures a majority of common linguistic
1 The complete grammar and parsers are available at: https://github.com/hhelium.

https://github.com/hhelium
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expressions in real-world scenarios, e.g., “A robot picks a red apple on the table.”
and “Which apple is red? ”.

CRL grammar was initially developed to express the core grammar produc-
tion in form of S → NP VP and its variants. During the grammar developing
process, attachment ambiguity and coordination ambiguity appeared. To avoid
solving ambiguities by designing a complex disambiguation model, dialect pat-
tern recognition is used to detect patterns that can potentially lead to ambigu-
ities, and transform them back to equivalent CRL linguistic expressions. These
dialect patterns are manually designed based on WikiHow instructions [8]. This
dynamic set can be flexibly expanded and modified in accordance to the chosen
language domain. As shown in Table 1, to make CRL applicable in WikiHow cor-
pus domain, input sentences must be normalized and transformed into equivalent
representation following each dialect pattern’s correcting rule.

Table 1. Grammar dialect patterns for CRL checker.

Dialect Pattern Examples Linguistic Correction

Your/our/my pattern your hand change to a possessive pronoun
You/I/we pattern you can move replace with a subject pronoun
Plural nouns cubes singularize
Metrics 3 kilograms, 1 ton map to standard metric units
Literal quantity one half; quarter; dozen map to standard metric units
Imperative rotate the leg “robot” as the default subject
Compound noun table leg last noun as the main noun
Consecutive adjectives a small red apple add conjunction “and”
Consecutive adverbs gradually slowly move add conjunction “and”
Verb+obj +to+verb click the screen to start restructure
Verb + to + verb have to wait add modal
Verb+gerund consider stopping gerund as the main verb
From-to pattern from 0.1 to 0.2 cm standardize the structure
Passive voice is picked by convert to active voice
Progress description by grasping its hand convert the gerund to a verb

2.2 CRL Parser

With the defined CRL grammar, we constructed a syntactic parser to analyze
syntactic structures of natural language descriptions. We utilized a common
Bottom-Up dynamic programming parsing algorithm Cocke-Kasami-Younger
(CKY) to find all syntactic structures for a given sentence with efficient run
time complexity – O(n3 · |G|) where n is the length of input, and |G| is the
size of CFG grammar. Although CRL grammar was carefully selected to avoid
unnecessary syntactic ambiguities, multiple parsing structures for NL input are
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inevitable. To maintain the determinism property of the robot system without
building a disambiguation model, appeared ambiguities are manually resolved by
user’s instructions. These instructions can be collected, trained by a probabilistic
model and automatically used in the future cases.

2.3 Translating CRL Descriptions to Knowledge Representations

Leveraging the parsed syntactic structures, the CRL framework constructs a con-
textual semantic representation of natural language expressions. These semantic
representations are essential for robot understanding and planning. Each seman-
tic representation can be either classified into one of three categories: contextual
descriptions, command instructions, and queries. The instructions correspond
to robot planning, and the contextual descriptions specify environment con-
text, temporal and spatial constraints. We developed a program that automat-
ically translated these semantic expressions into corresponding LTL specifica-
tions, which can be executed directly by robot planners.

Given the syntactic structure, the framework extracts fundamental linguis-
tic components such as object, predicate, property, adjunct, and phrase. The
extracted information is, however, discrete and exclusive. To unify them into a
single semantic representation, we need semantic rules to depict combining pro-
cedures. These rules are best described using symbolic language as Prolog [9].
The main challenge of this process is the ability to create general rules that can
unify low-level knowledge. Appropriate selection of semantic rules goes beyond
a combination task: solve anaphoric problem, identify quantification property,
and describe temporal constraints. In this paper, we focus on a set of seman-
tic rules for discourse representations, which also handle anaphora binding and
determiners quantifying. The theoretical details of these rules can be found at
Kamp’s lecture [10]. The developed CRL system expanded the semantic rules as
defined in [11] by unifying discrete components and adding a few abstraction lay-
ers. These abstraction layers provide convenient ways to identify objects, trigger
actions, or query. By using additional abstraction layers, we can easily classify all
possible formal representation into three main types: (i) Description-type: used
to describe an event, robotic environment, and knowledge base; (ii) Command-
type: used to trigger robot actions; (iii) Query-type: extract information back
from the knowledge base.

3 Experiment

We evaluated the CRL framework in parsing performance, formal robot plan-
ning, and user acceptance. The CRL framework is compared with two linguistic
frameworks, Attempto Controlled English [12] and Stanford Constituency pars-
ing [13], on instruction-based corpora WikiHow [8] and Collaborative Manipula-
tion [14]. The effectiveness of the CRL framework in automated planning is also
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demonstrated in an example of instruction-based furniture assembly. At last,
we quantified the user acceptance of CRL in terms of correctness, complexity,
ambiguity, readability, and efficiency.

3.1 Performance of Natural Language Parsing

The CRL framework was tested on instructions in Collaborative Manipulation [8]
and WikiHow corpus [14] for planning domain. The Collaborative Manipulation
is a standard dataset, which is a corpus of 1670 natural language sentences. The
WikiHow dataset is a collection of human describing procedural task using step-
by-steps instruction style. The dataset consists of 9520 instruction sentences.
The performance of CRL in grammar coverage and semantics representation is
compared with ACE framework [12] and Stanford Constituency parsing [13]. As
showed in Table 2, the CRL is outperforming ACE in expressiveness in term
of grammar coverage, but not as competitive as the induced-grammar-based
methods Stanford CoreNLP. Nonetheless, CRL can express all parsed instruc-
tions into complete semantic representations, whereas Stanford CoreNLP was
not designed with this capability. This is the conundrum in solving the contra-
diction between coverage and formal representation. To represent a linguistic
instruction into formal semantics, the domain grammar needs to be structured;
on the contrary, structured grammar cannot cover all free-form natural language.
Though defined in general language domain, the ACE framework cannot under-
stand any sentences in the WikiHow corpus, due to the extensively use of invalid
expressions in ACE grammar.

Table 2. Performance comparison on standard corpora.

Collaborative Manipulation (1670)
Grammar coverage Formal semantics

ACE [12] 140 (8.38%) 140 (8.38%)
CRL (this paper) 739 (44.25%) 739 (44.25%)
CoreNLP [13] 1670 (100%) N/A

WikiHow (9520)
Grammar coverage Formal semantics

ACE [12] 0 (0%) 0 (0%)
CRL (this paper) 3898 (40.95%) 3898 (40.95%)
CoreNLP [13] 9520 (100%) N/A
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The CRL framework has a flexible set of linguistic patterns, allowing flexible
adaption to various scenarios. The experiment showed the same trail in the
Collaborative Manipulation corpus. It is important to guarantee deterministics
and reliability in human-robot collaboration for predictable system behavior.

3.2 CRL-Based Robot Planning

We implemented an automated planning system based on CRL for the assembly
of an IKEA table by following natural language instructions. The robotic sys-
tem consists of a Sawyer manipulator with an AR10 robotic hand, which support
context-aware task-oriented manipulation [15,16]. We employed the RRTCon-
nect [17] planner for low-level control, and developed a Python modules for the
CRL interface. The control and communication are implemented as ROS ser-
vices. We also utilized the Spot [18] to handle LTL specification by building
reactive system from DRS instructions, and used RViz for simulation and visu-
alization.

Figure 3 shows the results of successful action execution by following natural
language instructions to assemble an IKEA table step by step. Four primitive
actions were developed and grounded: pick, place, release, and rotate. The com-
plete implementation of 13 instruction scripts took about 4minutes to finish, but
there is a lot of room for optimization both in CRL parsing and action planning.

3.3 User Acceptance of CRL

We evaluated the acceptance of CRL in terms of the discrepancy between
CRL parsing and human perception. We designed questionnaires containing five
binary (yes/no) evaluation criteria: correctness, complexity, ambiguity, readabil-
ity, and efficiency. 1) The correctness is defined as whether the parsed results
are correct in DRS forms, i.e., the parsed DRS representations are correct and
semantically consistent with the input sentences; 2) The complexity evaluates
whether the parsing results contain additional redundant words or phrases gen-
erated by dialect correction; 3) The ambiguity in semantics is used to examine
if the CRL can handle a potentially ambiguous natural language input; 4) The
readability is used to evaluate whether the CRL parses a potentially ambiguous
input in the same way as a human does; 5) The efficiency is used to evaluate
whether the parsing results are sufficient for further robotic applications such
as task planning. Ten participants were invited to evaluate 350 CRL parsing
results. As shown in Fig. 4, the CRL has high acceptance and consistence with
human understanding of natural language instructions.
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Fig. 3. Assembly of a furniture table by following natural language instructions based
on CRL.

Fig. 4. User acceptance of CRL (higher scores are better).
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4 Conclusion

We proposed a CRL framework that ensures reliability and expressiveness for
natural language communication. We also demonstrated the procedure to inte-
grate the CRL framework into robotic planning: from building a complete seman-
tic representation to mapping those representations into robotic actions. The
experiment showed the performance of the CRL frame in parsing natural lan-
guage instructions, and demonstrated the effectiveness and flexibility of the CRL
framework for automated robot planning.
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