
Sensor selection for detecting deviations from a planned itinerary

Hazhar Rahmani Dylan A. Shell Jason M. O’Kane

Abstract— Suppose an agent asserts that it will move through
an environment in some way. When the agent executes its
motion, how does one verify the claim? The problem arises
in a range of contexts including validating safety claims about
robot behavior, applications in security and surveillance, and
for both the conception and the (physical) design and logistics
of scientific experiments. Given a set of feasible sensors to
select from, we ask how to choose sensors optimally in order
to ensure that the agent’s execution does indeed fit its pre-
disclosed itinerary. Our treatment is distinguished from prior
work in sensor selection by two aspects: the form the itinerary
takes (a regular language of transitions) and that families of
sensor choices can be grouped as a single choice. Both are
intimately tied together, permitting construction of a product
automaton because the same physical sensors (i.e., the same
choice) can appear multiple times. This paper establishes the
hardness of sensor selection for itinerary validation within this
treatment, and proposes an exact algorithm based on an integer
linear programming (ILP) formulation that is capable of solving
problem instances of moderate size. We demonstrate its efficacy
on small-scale case studies, including one motivated by wildlife
tracking.

I. INTRODUCTION

Determining how agents within an environment are behav-

ing and understanding that behavior, for instance by recog-

nizing whether it fits some pattern, is crucial to the problem

of situational awareness, which broadly encompasses agent

detection and tracking, activity modeling, general sense-

making, and semantically-informed surveillance. It forms an

important capability for intelligent systems and is a topic of

interest for the robotics community for at least three reasons.

First, as information consumers: such information could en-

hance the ability of a robot to act within context, improving

the responsiveness and appropriateness of robot actions to

other events. Secondly, as information producers: we may

wish to task a robot with providing raw sensor information

to enable coverage and facilitate such situational awareness.

The third reason is one shared of technical interest: the

methods and algorithms that enable such situational aware-

ness have substantial overlap with those used for estimation

on-board robots and, historically, cross-pollination between

the two has been fruitful. The present paper fits within the

vein of work concerned with guarding an environment [5],

though is closer to the minimalist spirit of [11] both in

terms of sensors —we adopt a simple model well suited

to information-impoverished sensors such as occupancy and

H. Rahmani and J. M. O’Kane are with the Dept. of Computer Science
and Engineering, University of South Carolina, Columbia, SC, USA. D. A.
Shell is with the Dept. of Computer Science and Engineering, Texas A&M
University, College Station, TX, USA. hrahmani@email.sc.edu,
dshell@tamu.edu, jokane@cse.sc.edu This material is
based upon work supported by the NSF under Grants 1849249 & 1849291.

a) b) c)
Fig. 1. Three quite distinct settings but which can be treated via the formu-
lation described in this paper. a) Wishing to ensure that claims made about a
particular robot’s behavior will hold, an engineer chooses to instrument her
laboratory’s testing environment (in this case, with a set of motion tracking
cameras) so she can subject it to adequate scrutiny. b) An ornithologist
would like to test a new hypothesis concerning the migration patterns of
a species of bird, so assesses the cost of acquiring tracking capabilities
with adequate power of discernment. c) Rather than purchasing sensors to
maximize coverage, if benign activities can be precisely characterized, then
negating that description permits surveillance which is sufficient to identify
anomalous activities but with far fewer sensors.

beam sensors— but also in the use of combinatorial filters —

for fusing sequential observations and estimating state.

Our work was inspired by Yu and LaValle [14], who

consider the question of validating a story: given a polygonal

environment, a claimant provides a sequence of locations

which they assert to have visited and the system is tasked

with determining whether a given sequence of sensor read-

ings is consistent with that claim. That is, does the sensor

history contain any evidence that the given sequence of

locations was in fact not visited? First in [14], and then, with

several refinements and under weaker assumptions, in the

follow-up [15], Yu and LaValle provide an efficient method

for this problem. Their approach is sound and complete

in that it identifies inconsistencies between the story and

the sensed history if and only if such inconsistencies exist.

However, the strength of the validation (or, more correctly,

the method’s inability to invalidate) must be understood

modulo sensor data. The faculty to detect contradictions

depends critically on sensor history, on the evidence that

the sensors provide. The more limited the sensing, the fewer

fibs you can catch.

A natural concern, then, is how to choose sensors. Suppose

that the given story describes a pre-declared itinerary, a future

path or structured collection of possible paths through an

environment. Now, given a set of possible sensors one could

deploy, when some path has been executed, which ones

suffice to detect deviations from the itinerary? The present

paper considers an optimization variant where we ask for

a minimal set of sensors that can accomplish this. Fig. 1

illustrates the breadth of use cases for this scenario, in which

the goal is to ensure detection of all deviations. It is important

to note that with a given environment, given itinerary, and set

of sensors, this may be impossible—the whole set of sensors

a
rX

iv
:2

1
0
3
.0

7
0
2
9
v
2

[c

s.
R

O
]

 2
0
 D

e
c
 2

0
2
1

a) b)
Fig. 2. a) An example of an environment, which shows the floor map of
a department. This environment is guarded by beam sensors b1, b2, and b3,
and by occupancy sensors o1, o2, o3, and o4. b) A multigraph representing
the environment. Each edge e is labeled by a world-observation, a set of
events received when an agent moves from the region represented by the
source vertex of e to the region represented by the target vertex of e.

may be inadequate. A concrete sort of application, based on

selection of a suite of beam and occupancy sensors in an

indoor environment, appears in Fig. 2.

This paper starts by formalizing the problem of opti-

mal sensor selection to detect deviations from a disclosed

itinerary (Section III). As itineraries are claims about the

future, it seems useful to permit rather more flexibility than

the stories of Yu and LaValle allow, and so our treatment

does. Further, motivated by the physical placement of sensors

which effectively guard multiple areas at once, it models cir-

cumstances where multiple sensors may be obtained together

as a single logical unit. We then establish the computational

hardness of the problem (in Section V), and show how it may

be treated via integer linear programming (in Section VI).

Experimental results in Section VII show that realistic size

instances can be practically solved in this way.

II. RELATED WORK

The problem of reducing the sensor readings needed to

establish some property has been the subject of extensive

study in the discrete event systems literature (see the survey

by Sears and Rudie [8]). That literature distinguishes sensor

selection (e.g., [2]) from sensor activation (e.g., [1], [12]).

The former considers, as studied in the present paper, a one-

shot decision at initialization of whether to adopt a sensor or

not; the latter is an online variant that switches sensors on/off

across time. This paper aims to fill the niche between such

sensor-oriented work and the problem of story validation (as

exemplified by Yu and LaValle [14], [15]).

The NP-completeness of minimal sensor selection for

the properties of observability and diagnosability [7] was

established by Yoo and Lafortune [10]. Recently, Yin and

Lafortune [13] proposed a general approach to optimizing

sensor selection that applies to a very wide set of problems

and subsumes several previous methods. Their approach

is capable of enforcing what they term ‘information state-

based properties,’ essentially arbitrary predicates defined on

states, which allow one treat a variety of fault detection and

diagnosis tasks (including observability and diagnosability).

Our itinerary validation problem, however, doesn’t fall within

this class as it is not enough to ask whether a state is visited

or not; specific transitions between states matter too.

The characteristic that differentiates itinerary validation

is that the basic mathematical objects under consideration

are trajectories. This emphasizes an important distinction be-

tween language- and automata-based properties (cf. our [6]),

with fairly subtle implications for our model and approach.

Itineraries will be taken to describe sequences of edges and

in order to relate the world’s structure to those sequences,

we will form a product. That product may partially unroll or

unfold the world, so that the choice of a sensor can affect

elements less ‘locally’ than one might naturally expect. One

implication for the model is that we directly treat situations

where multiple sensors may be selected as a single logical

unit as this occurs in the product anyway. Thence, the further

implication is that our computational complexity (hardness)

result utilizes a cover selection problem directly.

III. DEFINITIONS AND PROBLEM STATEMENT

This section formalizes our sensor selection problem.
A. Modeling the environment

In our approach, the environment is modeled using a

discrete structure, called a world graph, defined as follows.

Definition 1: [World graph] A world graph is an edge-

labeled directed multigraph G = (V,E, src, tgt, v0, S,Y, λ)
in which

• V is a nonempty vertex set,

• E is a set of edges,

• src : E → V and tgt : E → V are source and target

functions, respectively, which identify the source vertex

and target vertex of each edge,

• v0 ∈ V is an initial vertex,

• S = {s1, s2, . . . , sk} is a nonempty finite set of sensors,

• Y = {Ys1 , Ys2 , . . . , Ysk} is a collection of mutually

disjoint event sets associated to each sensor, and

• λ : E → ℘(Ys1 ∪ Ys2 ∪ · · · ∪ Ysk) is a labeling func-

tion, which assigns to each edge, a world-observation—

a set of events.

(Here ℘(X) denotes the set of all subsets of X .)

The intuition is that a world graph describes an envi-

ronment through which agent might move, along with the

available sensors in the environment and also the sensor

events that agent may trigger along its motion, provided those

sensors are active. Vertices in the graph represent regions

within the environment of interest. Edges represent feasible

transitions between regions, each labeled with a set of sensor

events that happen simultaneously when the system makes

the transition corresponding to that edge.

In this model, for each sensor si ∈ S, Ysi is the set of

all events produced by si. Notice that Definition 1 stipulates

that distinct sensors produce disjoint events, that is, for each

si, sj ∈ S, if si 6= sj , then Ysi ∩ Ysj = ∅. The labeling

function λ is used to indicate for each edge, the set of events

produced by the sensors when the agent makes a transition

corresponding to that edge in the environment.

B. Example: Beam and occupancy sensors

Though the technical results to follow apply for any world

graph that satisfies Definition 1, to keep the description

reasonably concrete, we present examples focused upon

occupancy sensors (which detect the presence of the agent

in a region) and beam sensors (which detect the passage of

an agent between adjacent regions).

To illustrate, consider the simple environment in Fig. 2a,

which is guarded by four occupancy sensors o1, o2, o3,

and o4 and three beam sensors b1, b2, and b3. Fig. 2b

shows the world graph corresponding to this environment,

as constructed via the algorithm of Yu and LaValle [14].

Each state of this graph represents a room or a region within

the environment guarded by the same set of sensors. Each

edge shows a transition between two neighboring regions.

Notice that, in the example, some pairs of rooms are

connected by multiple doors, each of which are guarded

by different sensors. This explains why Definition 1 uses a

multigraph structure for world graphs. Also note that in this

environment, an agent cannot directly move between rooms

C and D because those two rooms are separated by a window

rather than a door.

In this example, an occupancy sensor o, which detects

the presence of an agent in a region X , is activated when

the agent enters X and is deactivated once the agent exits

X . Accordingly, each occupancy sensor o in this example

produces two events, o+, which occurs when o is activated,

and o−, which happens when o is deactivated. A beam

sensor is activated when a mobile agent physically crosses (or

breaks) the beam and then instantly deactivated. Because the

agent is mobile and a beam sensor is deactivated immediately

after it was activated, we model each beam sensor b with

a single event b in Yb. When beam b is broken, the system

knows that the physical line segment was crossed, but not the

direction of crossing. For the environment in Fig. 2: for each

of the occupancy sensors oi, i ∈ {1, 2, 3, 4}, Yoi = {o
+
i , o

−
i };

for each of the beam sensors bj , j ∈ {1, 2, 3}, Ybj = {bj}.
When an agent makes a transition between two regions,

it is possible that several events happen simultaneously, and

in fact, the system observes all those events at the same

time. For example, when an agent makes a transition from

room A to room B from the left door, two events o−1 and b1
happen simultaneously, and thus, edge e3 in the world graph

is labeled with the world-observation {b1, o
−
1 }.

Finally, notice that a world graph can readily represent

scenarios in which a single sensor guards multiple transi-

tions. In the example, B has four doors, three of which are

guarded. The beams that guard those doors are assumed to

be a single beam sensor b1 ∈ S. When an agent crosses any

of those beams, the system knows that one of them is crossed

but it does not know which one it was. Likewise, rooms C

and D are guarded by a single occupancy sensor o2, which

is located on the window between those two rooms. Thus, if

an agent enters any of those two rooms, o2 is activated, but

by observing o+2 , the system cannot tell if the agent entered

room C or room D.

C. Itinerary DFA

In our story validation problem, an agent takes a tour

in the environment along a continuous path. This path is

represented over the world graph G by a walk, which is

defined as a finite sequence of edges e1e2 · · · en ∈ E∗ in

which src(e1) = v0 and for each i ∈ {1, 2, . . . , n − 1},
tgt(ei) = src(ei+1). The set of all walks over G —that is,

the set of all not-necessarily-simple paths one can take in

the environment— is denoted Walks(G).
The agent claims that its tour will be one of those words

specified by a deterministic finite automaton (DFA):

Definition 2: [Itinerary DFA] An itinerary DFA over a

world graph G = (V,E, src, tgt, v0, S,Y, λ) is a DFA I =
(Q,E, δ, q0, F) in which Q is a finite set of states; E is the

alphabet; δ : Q×E → Q is the transition function; q0 is the

initial state; and F is the set of all accepting (final) states.

For each finite word r = e1e2 · · · en ∈ E∗, there is a

unique sequence of states q0q1 · · · qn for which q0 is the

initial state and for each i ∈ {0, 1, . . . , n − 1}, δ(qi, ei) =
qi+1. Word r is accepted by the DFA if qn ∈ F . The

language of I, denoted L(I), is the set of all finite words

accepted by I, i.e., L(I) = {r ∈ E∗ | r is accepted by I}.
The robot claims its tour will be one of the words r ∈ L(I).
Note that each word accepted by this DFA is a walk over the

world graph, and accordingly, the robot’s itinerary not only

specifies the sequence of locations the agent visits but it also

identifies the specific transitions (i.e. the doors between the

rooms) through which the agent moves.

D. Itinerary validation

We seek to enable a minimal subset M ⊆ S of sensors

such that, when the agent finishes its tour within the environ-

ment, the system can determine with full certainty whether

the agent followed its itinerary or not. At the completion

of the agent’s tour, the system does not know the exact

tour the agent took in the environment, instead receiving

only a sequence of world-observations. Each item in the

sequence is generated by the system when a set of sensors

were activated or deactivated simultaneously as a result of

the agent’s moving in the environment.

Let us mildly abuse notation and use YM to denote the

set of all events produced by sensors in some M ⊆ S, i.e.,

YM =
⋃

s∈M Ys. If, from all sensors S, only the sensors in

M are turned on, then when the agent transitions across e

in G, the system receives world-observation λ(e)∩YM . That

is, when transitioning across an edge, the system observes

precisely those events that are both associated with that edge

and enabled by one of set M ’s selected sensors. Where λ(e)∩
YM = ∅, this must be handled slightly differently: in this

case, the system produces no symbol at all (not a symbol

reporting that some un-sensed event occurred—which would

itself be a tacit sort of information). We make this precise

next.

The agent’s walk over the world graph generates a se-

quence of non-empty world-observations. For a world graph

G = (V,E, src, tgt, v0, S,Y, λ), we define function βG :
Walks(G) × ℘(S) → (℘(YS) \ ∅)∗ in which for each

r ∈Walks(G) and subset of sensors M ⊆ S, βG(r,M) gives

the sequence of world-observations the system receives when

the agent takes walk r and precisely the sensors in M are

turned on. Formally, for each r = e1e2 · · · en ∈ Walks(G),
βG(r,M) = z1z2 · · · zn in which for each i ∈ {1, . . . , n},
zi = λ(ei)∩YM if (λ(ei)∩YM) 6= ∅, and zi = ǫ otherwise,

where ǫ is the (standard) empty symbol.

Based on this function, we make a definition that formu-

lates conditions under which a set of sensors are able to tell

whether the agent adhered to its claimed itinerary or not.

Definition 3: [Certifying Sensor Selection] Let M ⊆ S

be a subset of sensors. We say M certifies itinerary I on

world graph G if there exist no r ∈ L(I) ∩Walks(G) and

t ∈Walks(G) \ L(I) such that βG(r,M) = βG(t,M).

Intuitively, if M is a certifying sensor selection for I,

then based on the sequence of world-observations βG(r,M)
the system perceives from the environment, the system can

tell whether r was within the claimed itinerary or not, that

is, whether r ∈ L(I) or not. In fact, if for each r ∈
L(I) ∩Walks(G), there is no t ∈ (Walks(G) \ L(I)) such

that βG(t,M) = βG(r,M), then the system can tell with full

certainty if r was within the claimed itinerary or not. Thus,

the system must choose a sensor set M to turn on that is

certifying for I on G.

We formalize our minimization problem as follows.

Problem: Minimal sensor selection to validate an

itinerary (MSSVI)

Input: A world graph G = (V,E, src, tgt, v0, S,Y, λ)
and an itinerary DFA I = (Q, V, δ, q, F).

Output: A minimum size certifying sensor selection

M ⊆ S for I on G, or ‘INFEASIBLE’ if no such

certifying sensor selection exists.

Before showing this problem to be NP-hard, we describe

a construction that turns out to be useful in what follows.

IV. WORLD GRAPH-ITINERARY PRODUCT AUTOMATA

In this section, we describe how to use the inputs of

the MSSVI problem to construct a product automaton that

captures the interactions between a world graph and an

itinerary DFA. We use this construction for both a hardness

result about MSSVI (in Section V) and a practical solution

of MSSVI via integer linear programming (in Section VI).

This product automaton is defined as follows.

Definition 4: [Product automaton] Let G =
(V,E, src, tgt, v0, S,Y, λ) be a world graph and I =
(Q,E, δ, q0, F) be an itinerary DFA. The product automaton

PG,I is a partial DFA PG,I = (QP , E, δP , q
P
0 , FP) with

• QP = Q× V ,

• δP : QP × E 9 QP is a partial function such that

for each (q, v) ∈ QP and e ∈ E, δP((q, v), e) is

undefined if src(e) 6= v, otherwise, δP((q, v), e) =
(δ(q, e), tgt(e)),

• qP0 = (q0, v0), and

• FP = F × V .

Note that the transition function of this DFA is partial. We

will write δP(p, e) = ⊥ to mean that δP is undefined for

(p, e). The extended transition function δ∗P : QP × E∗
9

QP—which for each q ∈ QP and r ∈ E∗, δ∗P(q, r) denotes

the state to which the DFA reaches by tracing r from state

q—is also partial. For a word r = e1e2 · · · en ∈ E∗, we use

δ∗P(q
P
0 , r) = ⊥ to mean that this DFA crashes when it traces

r from the initial state, that is, there is a unique state sequence

q0q1 · · · qk for some k < n such that δP(qi−1, ei) = qi for

all i ∈ {1, 2, . . . , k−1} but δP(qk, ek) = ⊥. A word r ∈ E∗

is trackable by this DFA if δ∗P(q
P
0 , r) 6= ⊥.

Our purpose in constructing this product automaton is

revealed by the following result.

Lemma 1: Let G, I, and PG,I be the structures in Defi-

nition 4. A subset M ⊆ S of sensors is a certifying sensor

selection for I if and only if for each r, r′ ∈ E∗ such that

δ∗P(q
P
0 , r) ∈ FP and δ∗P(q

P
0 , r

′) ∈ QP \ FP , it holds that

βG(r,M) 6= βG(r
′,M).

Proof: The construction yields two direct observations:

(1) Every word trackable by P is a walk over G and vice

versa, i.e., {r ∈ E∗ | δ∗P(q
P
0 , r) 6= ⊥} = Walks(G).

(2) The accepting states of P correspond to the accepting

states of the itinerary DFA, so L(PG,I) = L(I).

Taken together, (1) and (2) imply that Walks(G) \ L(I) =
{r ∈ E∗ | δ∗P(q

P
0 , r) ∈ QP \ FP}. This means that each

walk over the world graph that is not within the language

of the itinerary DFA, reaches a non-accepting state in this

DFA. But, because every word in the the language of the

itinerary DFA reaches to an accepting state in this DFA,

if there are two words r and r′ such that r reaches to an

accepting state, r′ reaches to a non-accepting state, and r

and r′ both yield the same sequence of world-observations

by βG under M , i.e., βG(r,M) = βG(r
′,M), then M is

not a certifying sensor selection for I. Contrariwise, if there

are no such words r and r′, then M is a certifying sensor

selection. This completes the proof.

As a result, given a sensor selection M as a feasible

solution to MSSVI with inputs G and I, one can use the

product automaton PG,I to check if M is a certifying sensor

selection for I or not by testing whether such r and r′

described in the proof of this lemma can be found or not.

The next section makes this idea clear.

V. HARDNESS OF MSSVI

Next, we present a hardness result for minimal sensor

selection, starting by casting MSSVI as a decision problem.

Decision Problem: Minimal sensor selection to validate

an itinerary (MSSVI-DEC)

Input: A world graph G = (V,E, src, tgt, v0, S,Y, λ), an

itinerary DFA I = (Q, V, δ, q0, F), and integer k.

Output: Yes if there is a certifying sensor selection M ⊆ S

such that |M | ≤ k; No otherwise.

We prove that MSSVI-DEC is NP-complete, by showing

that it is both in NP and NP-hard. First, we show that

MSSVI-DEC can be verified in polynomial time.

Lemma 2: MSSVI-DEC ∈ NP.

Proof: We need to show that, using a given sensor

selection M ⊆ S as a certificate, we can verify in polynomial

time both (1) whether |M | ≤ k and (2) whether M is a

certifying sensor selection in the sense of Definition 3 or

not. As (1) is trivially verifiable, we turn to (2).

Recall that by Lemma 1, if for any words r, r′ ∈ E∗

for which δ∗P(v0, r) ∈ FP and δ∗P(v0, r
′) ∈ QP \ FP , it

holds that βG(r,M) 6= βG(r
′,M), then M is a certifying

sensor selection for the given itinerary DFA I, otherwise M

is not a certifying sensor selection for I. Thus, to check if

M is certifying, we compute, using a fixed point algorithm

described presently, a relation R that relates all pairs of states

q and p that are reachable from the initial state by two words

(walks) that yield the same sequence of world-observations

by βG under M . Then we check whether R relates any pairs

of states q and p such that one of them is accepting while

the other is non-accepting. If R relates such a pair, then

M is not a certifying sensor selection for I. Otherwise, M

is certifying for I. To construct R, begin with R initially

assigned to {(qP0 , q
P
0)}. Then iteratively update R according

to the following equation until the iteration reaches a fixed

point, with no additional tuples added to R.

R← R ∪
⋃

(q,p)∈R











⋃

e,d∈E:
(λ(e)∩YM)=
(λ(d)∩YM)

and δP(q,e) 6=⊥
and δP(p,d) 6=⊥

(δP(q, e), δP(p, d))










∪
⋃

(q,p)∈R





⋃

e∈E:
(λ(e)∩YM)=ǫ
and δP(q,e) 6=⊥

(δP(q, e), p)


.

To expand R, this equation uses two rules, one in the first

line and the other in the second line. Fig. 3 illustrates

those two rules. The first rule states that if (q, p) ∈ R,

then for any edges e, d ∈ E such that q has an outgoing

transition for e and p has an outgoing transition for d, if

e and d yield the same world-observation under M , then

we must add (δP(q), δP(p)) to R as well, which means

that states δP(q, e) and δP(p, d) are reachable from the

initial state of PG,I by two words (walks) that yield the

same world observation by βG under M . The second rule

enforces that if (q, p) ∈ R, then for any edge e ∈ E

such that q has an outgoing transition for e, if e yields

the empty world-observation under M (that is, if e yields

ǫ by βG under M), then (δP(q, e), p) must be added to R

too. This is because here both states δP(q, e) and p are

reachable from the initial state, respectively, by a pair of

words (walks) r and r′ that, respectively, reached q and

p, while yielding a single sequence of world-observations.

Using an appropriate implementation, this algorithm takes

time which is polynomial in the size of P because there are

O(|QP |
2) pairs in R and thus O(|QP |

2) stages of updates,

each checking at most |E| edges. This shows that MSSVI-

DEC ∈ NP.

The practical import of this lemma is that, in polynomial

time, we can decide whether a sensor set is certifying for a

given itinerary or not.

Next, we prove that MSSVI-DEC is computationally hard.

To do so, we shall reduce from a well-known problem.

Fig. 3. Two cases in the construction of the relation R in the proof of
Lemma 2. In each case, R is expanded, given that states q and p are already
related by R. a) In this case, pair δP (q, e) and δP (p, d) are added to R.
b) In this case, pair δP (q, e) and p are added to R.

Decision Problem: Set cover (SETCOVER-DEC)

Input: A finite set U , called the universe, a collection

of subsets O = {O1, O2, . . . , Om} in which,

for each i ∈ {1, 2, . . . ,m}, Oi ⊆ U and
⋃

i∈{1,2,...,m} Oi = U , and an integer k.

Output: Yes if there is a sub-collection N ⊆ O such that
⋃

O∈N
O = U and |N| ≤ k, and No otherwise.

This problem is known to be NP-complete [3]. We reduce

from SETCOVER-DEC to prove the following result.

Theorem 1: MSSVI-DEC is NP-hard.

Proof: We prove this result by a polynomial re-

duction from SETCOVER-DEC to MSSVI-DEC. Given a

SETCOVER-DEC instance

x = 〈U = {u1, u2, . . . , un},O = {O1, O2, . . . , Om}, k〉,

construct an MSSVI-DEC instance

f(x) = 〈G = (V,E, src, tgt, v0, S,Y, λ), I, k
′〉,

as illustrated in Fig. 4 and detailed below.

– For the vertices of the world graph, create 2n + 2 states,

denoted V = {C0, C1, . . . , Cn+1}∪{u1, u2, . . . , un}. Note

that the ui elements correspond directly to the elements of

the universe in the SETCOVER-DEC instance. The idea is

that the ui’s represent rooms arranged in sequence, each

accessible from a shared corridor composed of the Ci’s.

– For the edges of the world graph, create 4n + 2
edges, denoted E = {e0, e1, . . . , en} ∪ {e

′
0, e

′
1, . . . , e

′
n} ∪

{d1, d2, . . . , dn} ∪ {d
′
1, d

′
2, . . . , d

′
n}. The src and tgt func-

tions are defined so that each ei connects Ci to Ci+1, each

e′i connects Ci+1 to Ci, each di connects Ci to ui, and

each d′i connects ui to Ci.

– Create a set of n+m+1 sensors, S = {b1, b2, . . . , bn+1}∪
{O1, O2, . . . , Om}, in which the bi’s are beam sensors and

the Oi’s are occupancy sensors. The event set corresponds

to these sensors in the usual way, with one event for each

beam sensor and two events for each occupancy sensor,

so for each j ∈ {1, 2, . . . , n + 1}, Ybj = {bj}, and for

each i ∈ {1, 2, . . . ,m}, YOi
= {O+

i , O
−
i }, and then, Y =

{Yb0 , Yb1 , . . . , Ydn+1
, YO1

, YO2
, . . . , YOm

}.

– For the events labeling each edge, define λ(ei) = λ(e′i) =
bi+1 for the ei and e′i edges, λ(di) = {O+

j | ui ∈ Oj}

for the di edges, λ(d′i) = {O−
j | ui ∈ Oj} for the d′i

edges. This models one or more occupancy sensors in

Fig. 4. a) An instance of the set cover problem. b) The instance of
the MSSVI problem for this set cover instance. c) A physical environment
representing the MSSVI instance.

each of the ui rooms, according to the subsets within the

SETCOVER-DEC instance, and beam sensors along the

corridor between each room.

– For the itinerary DFA I, construct a DFA accepting the

singleton language L(I) = {e0d1d
′
1e1d2d

′
2e2 . . . dnd

′
nen}

as a linear chain of states.

– For the bound on the number of sensors allowed, choose

k′ = k + n+ 1.

In the MSSVI-DEC instance constructed in this way, notice

that, for each subset O ∈ O, the construction makes a

corresponding occupancy sensor O and puts that sensor in all

rooms u for which u ∈ O. Moreover, the itinerary specifies

a single walk e0d1d
′
1e1d2d

′
2e2 · · · dnd

′
nen, which indicates

that the sequence of regions the agent intends to visit is

C0C1u1C1C2u2C2 · · ·Cn+1. That is, the itinerary calls for

the agent to travel down the corridor, visiting each room

exactly once in the specific order u1, u2, . . . , un, without

backtracking within the corridor. For the system to be able to

tell that the agent has visited a room, at least one occupancy

sensor in each room must be turned on. Also, each of the

beam sensors must be turned on so that the system can assure

that the agent did not vacillate back-and-forth between cells

in the corridor.

The construction clearly takes polynomial time, so it

remains only to show that the reduction is correct, i.e. that

the original SETCOVER-DEC instance has a set cover of

size at most k if and only if the constructed MSSVI-DEC

has a valid sensor set of size k′.

(⇒) Suppose there exists a set cover N ⊆ O such that

|N| ≤ k and
∑

O∈N
O = U . In this case, based on our

discussion, the sensor selection M = N∪{b1, b2, . . . , bn+1}
is for itinerary I, a certifying sensor selection of size |M | =
|N|+ n+ 1 ≤ k + n+ 1 = k′.

(⇐) Conversely, suppose there exists for I, a certifying

sensor selection M ⊆ S for which |M | ≤ k′. As argued

above, because M is certifying, it must contain each of the

n+1 beam sensors. Thus, there are at most k′− (n+1) = k

occupancy sensors in M . Recall, however, that for this

construction, every certifying sensor selection includes at

least one occupancy sensor within each room. Thus, the

occupancy sensors in M form a set cover of size at most

k for the original SETCOVER-DEC instance.

Finally, the following results follow immediately from

Theorem 1 and Lemma 2.

Theorem 2: MSSVI-DEC is NP-complete.

Corollary 1: MSSVI is NP-hard.

As a result, assuming P 6= NP, one cannot find a certifying

sensor selection with minimum size in polynomial time.

VI. MSSVI VIA INTEGER LINEAR PROGRAMMING

In this section, we present an exact solution to MSSVI

using an Integer Linear Programming formulation of the

problem. First, we cast the MSSVI problem into mathemat-

ical programming form, and then linearize its constraints.

A. Mathematical programming formulation of MSSVI

For each sensor s ∈ S, we introduce a binary variable

us, which receives value 1 if sensor s is chosen to be

turned on, and receives 0 otherwise. For each tuple of states

(q, p) ∈ QP×QP , we introduce a binary variable aq,p, which

receives value 1 if and only if there exist two finite words

r, r′ ∈ E∗, such that δ∗P(q
P
0 , r) = q, δ∗P(q

P
0 , r

′) = p, and

and βG(r,M) = βG(r
′,M). For each edge e ∈ E and event

e ∈ Y , we introduce a binary variable be,y which is assigned

a value 1 if and only if the label of e contains y and the sensor

that produces y is chosen to be turned on. More precisely, if

y ∈ λ(e) and uη(y) = 1, then be,y receives value 1, otherwise

it receives value 0, where η(y) is the sensor that produces

event y, i.e., η(y) = s such that y ∈ Ys. In terms of these

variables, an MSSVI instance can be expressed as follows.

Minimize: ∑

s∈S

us (1)

Subject to:

aqP0 ,qP0
= 1 (2)

For each q ∈ FP , p ∈ QP \ FP ,

aq,p = 0 (3)

For each q ∈ QP \ FP , p ∈ FP ,

aq,p = 0 (4)

For each e ∈ E and y ∈ Y s.t. y /∈ λ(e),

be,y = 0 (5)

For each e ∈ E and y ∈ Y s.t. y ∈ λ(e),

be,y = uη(y) (6)

For each q, p ∈ QP and e, d ∈ E such that δP(q, e) 6= ⊥ and
δP(p, d) 6= ⊥,

aq,p = 1∧(∀y ∈ Y, be,y = bd,y) ⇒ aδP (q,e),δP (p,d) = 1 (7)

For each q, p ∈ QP and e ∈ E such that δP(q, e) 6= ⊥,

aq,p = 1 and (∀y ∈ Y, be,y = 0) ⇒ aδP (q,e),p = 1 (8)

For each q, p ∈ QP and e ∈ E such that δP(p, e) 6= ⊥,

aq,p = 1 and (∀y ∈ Y, be,y = 0) ⇒ aq,δP (p,e) = 1 (9)

The objective (1) is to minimize the number of sensors

turned on. Constraint (2) asserts that there exists a world-

TABLE I

RESULTS OF OUR EXPERIMENT FOR THE ENVIRONMENT IN FIG. 2, WHICH SHOWS THE FLOOR MAP OF AN ENVIRONMENT.

Itinerary Description of itinerary Computed solution Comp. time (sec)

1 Walks(G) All location sequences ∅ 2.7

2 E∗ \Walks(G) No location sequence ∅ 2.3

3 Walks(G) \ {r ∈ E∗ | e21 /∈ r} Do not enter G {o3} 2.8

4 e1e5e9e15 R1ABR2D INFEASIBLE 2.5

5 e1e5e9e15 + e1e5e7e13 R1ABR2D or R1ABR1C {o1, b1, b2, o2, b3} 2.9

6 e12(e11e12 + e20e19)∗e20e21 R1R2(R1R2 +R3R2)∗R3G {o1, o2, o3, b1} 4.1

observation sequence, (the empty string, ǫ) by which both

states of the tuple (qP0 , q
P
0) are reachable from the initial

state. Constraint Sets (3) and (4) ensure that the sensor

selection is certifying. Constraint Sets (5) and (6) encode

which sensors affect the label of each edge. Constraint Set (7)

asserts that if two states q and p are both reachable by

a world-observation sequence, then for any edges e and

d, if those two edges receive the same world-observation

under the chosen sensors, then it means states δP(q, e) and

δP(p, d) are also reachable by at least one sequence of

world-observations under the chosen sensors. In fact, these

constraints implement the case shown in Fig. 3a. Similarly,

Constraint Sets (8) and (9) implement the case in Fig. 3b.

This formulation would be a 0–1 integer linear program-

ming model if Constraint Sets (7), (8), and (9) were linear.

Thus, the next section shows how to linearize them.

B. Integer linear programming formulation of MSSVI

To linearize Constraint Set (7), first we introduce a binary

variable je,d,y for each e, d ∈ E and y ∈ Y , which receives

its value from the following constraints.

For all e, d ∈ E and all y ∈ Y ,

be,y − bd,y ≤ je,d,y, (10)

bd,y − be,y ≤ je,d,y, (11)

je,d,y ≤ be,y + bd,y, and (12)

je,d,y ≤ 2− be,y − bd,y. (13)

These linear constraints assign value 0 to je,d,y if be,y = bd,y;

otherwise, they assign value 1 to je,d,y . Hence, Constraint

Set (7) is replaced by the following linear constraints.

For each q, p ∈ QP and e, d ∈ E s.t. δP(q, e) 6= ⊥ and
δP(p, d) 6= ⊥,

(1− aq,p) +
∑

y∈Y

(je,d,y) + aδP (q,e),δP (p,d) ≥ 1. (14)

We also replace Constraint Set (8) by linearized forms:

For each q, p ∈ QP and e ∈ E s.t. δP(q, e) 6= ⊥,

(1− aq,p) +
∑

y∈Y

be,y + aδP(q,e),p ≥ 1. (15)

Similarly, we linearize Constraint Set (9) as follows.

For each q, p ∈ QP and e ∈ E s.t. δP(p, e) 6= ⊥,

(1− aq,p) +
∑

y∈Y

be,y + aq,δP (p,e) ≥ 1. (16)

Now, we have an ILP formulation of MSSVI, which can

be solved directly by any of the many existing highly-

optimized ILP solvers. This ILP formulation not only can be

used for obtaining solutions to MSSVI but also to compute

feasible (rather than optimal) solutions for large instances of

world graphs for which exact solutions to MSSVI cannot be

computed in a reasonable amount of time.

VII. CASE STUDIES

In this section, we present case studies, using the ILP

formulation from the previous section to solve some rep-

resentative instances of MSSVI. All trials were performed

on an Ubuntu 16.04 computer with a 3.6 GHz processor.

A. Case study 1: Computer Science Department

Recall Fig. 2, with a map of a small computer science

department. For this world graph, we executed several in-

stances of the MSSVI with different itineraries to verify

the algorithm’s correctness. Table I shows results on those

instances. The first two instances consider extreme itineraries

as boundary test cases. For the first, the itinerary consists of

all walks on the world graph, including the empty string; in

the second instance, the itinerary does not have any walks

over the world graph. In both of these instances, the optimal

solution (which has size 0, i.e. no sensor is needed) was

correctly found. The third scenario considers an itinerary

moving any way, other than entering room G. To certify this

itinerary, it suffices to turn on only one of the sensors o3
and o4, both located in room G. Again, our implementation

found this solution correctly. The fourth itinerary specifies

a single sequence in which the agent enters room A from

R1, then it enters room B from the right door between A

and B, then passes through R2 to enter D. There is no

certifying sensor selection for this itinerary because there

is another walk, e1e5e7e13, that is not within the claimed

itinerary but which produces the same sequence of world-

observations, for any selection of sensors. In contrast, the

fifth scenario, whose itinerary includes both the walk from

the fourth scenario and additionally e1e5e7e13, can be solved

with no need to turn on sensors o3 and o4. The last itinerary

specifies all walks in which the agent does not enter any

room but only room G at the end after traveling along the

corridor between any of regions R1, R2 and R3. For this

itinerary, it is required to turn on sensors o1, o2 and b to

verify that the robot did not enter any of rooms A, B, C, D,

F . It also requires either o3 or o4 be turned on to ensure the

robot enters room G at the end. Our program took less than

5 seconds to compute a minimal certifying sensor selection

for each of these itineraries.

