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Sensor selection for detecting deviations from a planned itinerary

Hazhar Rahmani

Abstract— Suppose an agent asserts that it will move through
an environment in some way. When the agent executes its
motion, how does one verify the claim? The problem arises
in a range of contexts including validating safety claims about
robot behavior, applications in security and surveillance, and
for both the conception and the (physical) design and logistics
of scientific experiments. Given a set of feasible sensors to
select from, we ask how to choose sensors optimally in order
to ensure that the agent’s execution does indeed fit its pre-
disclosed itinerary. Our treatment is distinguished from prior
work in sensor selection by two aspects: the form the itinerary
takes (a regular language of transitions) and that families of
sensor choices can be grouped as a single choice. Both are
intimately tied together, permitting construction of a product
automaton because the same physical sensors (i.e., the same
choice) can appear multiple times. This paper establishes the
hardness of sensor selection for itinerary validation within this
treatment, and proposes an exact algorithm based on an integer
linear programming (ILP) formulation that is capable of solving
problem instances of moderate size. We demonstrate its efficacy
on small-scale case studies, including one motivated by wildlife
tracking.

I. INTRODUCTION

Determining how agents within an environment are behav-
ing and understanding that behavior, for instance by recog-
nizing whether it fits some pattern, is crucial to the problem
of situational awareness, which broadly encompasses agent
detection and tracking, activity modeling, general sense-
making, and semantically-informed surveillance. It forms an
important capability for intelligent systems and is a topic of
interest for the robotics community for at least three reasons.
First, as information consumers: such information could en-
hance the ability of a robot to act within context, improving
the responsiveness and appropriateness of robot actions to
other events. Secondly, as information producers: we may
wish to task a robot with providing raw sensor information
to enable coverage and facilitate such situational awareness.
The third reason is one shared of technical interest: the
methods and algorithms that enable such situational aware-
ness have substantial overlap with those used for estimation
on-board robots and, historically, cross-pollination between
the two has been fruitful. The present paper fits within the
vein of work concerned with guarding an environment [5],
though is closer to the minimalist spirit of [11] both in
terms of sensors—we adopt a simple model well suited
to information-impoverished sensors such as occupancy and
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Fig. 1. Three quite distinct settings but which can be treated via the formu-
lation described in this paper. a) Wishing to ensure that claims made about a
particular robot’s behavior will hold, an engineer chooses to instrument her
laboratory’s testing environment (in this case, with a set of motion tracking
cameras) so she can subject it to adequate scrutiny. b) An ornithologist
would like to test a new hypothesis concerning the migration patterns of
a species of bird, so assesses the cost of acquiring tracking capabilities
with adequate power of discernment. ¢) Rather than purchasing sensors to
maximize coverage, if benign activities can be precisely characterized, then
negating that description permits surveillance which is sufficient to identify
anomalous activities but with far fewer sensors.

beam sensors— but also in the use of combinatorial filters —
for fusing sequential observations and estimating state.

Our work was inspired by Yu and LaValle [14], who
consider the question of validating a story: given a polygonal
environment, a claimant provides a sequence of locations
which they assert to have visited and the system is tasked
with determining whether a given sequence of sensor read-
ings is consistent with that claim. That is, does the sensor
history contain any evidence that the given sequence of
locations was in fact not visited? First in [14], and then, with
several refinements and under weaker assumptions, in the
follow-up [15], Yu and LaValle provide an efficient method
for this problem. Their approach is sound and complete
in that it identifies inconsistencies between the story and
the sensed history if and only if such inconsistencies exist.
However, the strength of the validation (or, more correctly,
the method’s inability to invalidate) must be understood
modulo sensor data. The faculty to detect contradictions
depends critically on sensor history, on the evidence that
the sensors provide. The more limited the sensing, the fewer
fibs you can catch.

A natural concern, then, is how to choose sensors. Suppose
that the given story describes a pre-declared itinerary, a future
path or structured collection of possible paths through an
environment. Now, given a set of possible sensors one could
deploy, when some path has been executed, which ones
suffice to detect deviations from the itinerary? The present
paper considers an optimization variant where we ask for
a minimal set of sensors that can accomplish this. Fig. 1
illustrates the breadth of use cases for this scenario, in which
the goal is to ensure detection of all deviations. It is important
to note that with a given environment, given itinerary, and set
of sensors, this may be impossible—the whole set of sensors



Fig. 2. a) An example of an environment, which shows the floor map of
a department. This environment is guarded by beam sensors b1, b2, and b3,
and by occupancy sensors o1, 02, 03, and 0o4. b) A multigraph representing
the environment. Each edge e is labeled by a world-observation, a set of
events received when an agent moves from the region represented by the
source vertex of e to the region represented by the target vertex of e.

may be inadequate. A concrete sort of application, based on
selection of a suite of beam and occupancy sensors in an
indoor environment, appears in Fig. 2.

This paper starts by formalizing the problem of opti-
mal sensor selection to detect deviations from a disclosed
itinerary (Section III). As itineraries are claims about the
future, it seems useful to permit rather more flexibility than
the stories of Yu and LaValle allow, and so our treatment
does. Further, motivated by the physical placement of sensors
which effectively guard multiple areas at once, it models cir-
cumstances where multiple sensors may be obtained together
as a single logical unit. We then establish the computational
hardness of the problem (in Section V), and show how it may
be treated via integer linear programming (in Section VI).
Experimental results in Section VII show that realistic size
instances can be practically solved in this way.

II. RELATED WORK

The problem of reducing the sensor readings needed to
establish some property has been the subject of extensive
study in the discrete event systems literature (see the survey
by Sears and Rudie [8]). That literature distinguishes sensor
selection (e.g., [2]) from sensor activation (e.g., [1], [12]).
The former considers, as studied in the present paper, a one-
shot decision at initialization of whether to adopt a sensor or
not; the latter is an online variant that switches sensors on/off
across time. This paper aims to fill the niche between such
sensor-oriented work and the problem of story validation (as
exemplified by Yu and LaValle [14], [15]).

The NP-completeness of minimal sensor selection for
the properties of observability and diagnosability [7] was
established by Yoo and Lafortune [10]. Recently, Yin and
Lafortune [13] proposed a general approach to optimizing
sensor selection that applies to a very wide set of problems
and subsumes several previous methods. Their approach
is capable of enforcing what they term ‘information state-
based properties,” essentially arbitrary predicates defined on
states, which allow one treat a variety of fault detection and
diagnosis tasks (including observability and diagnosability).
Our itinerary validation problem, however, doesn’t fall within
this class as it is not enough to ask whether a state is visited
or not; specific transitions between states matter too.

The characteristic that differentiates itinerary validation
is that the basic mathematical objects under consideration

are trajectories. This emphasizes an important distinction be-
tween language- and automata-based properties (cf. our [6]),
with fairly subtle implications for our model and approach.
Itineraries will be taken to describe sequences of edges and
in order to relate the world’s structure to those sequences,
we will form a product. That product may partially unroll or
unfold the world, so that the choice of a sensor can affect
elements less ‘locally’ than one might naturally expect. One
implication for the model is that we directly treat situations
where multiple sensors may be selected as a single logical
unit as this occurs in the product anyway. Thence, the further
implication is that our computational complexity (hardness)
result utilizes a cover selection problem directly.

III. DEFINITIONS AND PROBLEM STATEMENT

This section formalizes our sensor selection problem.
A. Modeling the environment

In our approach, the environment is modeled using a
discrete structure, called a world graph, defined as follows.

Definition 1: [World graph] A world graph is an edge-
labeled directed multigraph G = (V, E, src, tgt, vg, S, Y, A)
in which

o V is a nonempty vertex set,

o F is a set of edges,

e src: E — V and tgt : E — V are source and target
functions, respectively, which identify the source vertex
and target vertex of each edge,

e vy € V is an initial vertex,

o S ={s1,892,...,5kK} is a nonempty finite set of sensors,

o Y = {Y,,,Y,,,..., Y.} is a collection of mutually
disjoint event sets associated to each sensor, and

e \: E — PV, UY,, U---UYy,) is a labeling func-
tion, which assigns to each edge, a world-observation—
a set of events.

(Here p(X ) denotes the set of all subsets of X.)

The intuition is that a world graph describes an envi-
ronment through which agent might move, along with the
available sensors in the environment and also the sensor
events that agent may trigger along its motion, provided those
sensors are active. Vertices in the graph represent regions
within the environment of interest. Edges represent feasible
transitions between regions, each labeled with a set of sensor
events that happen simultaneously when the system makes
the transition corresponding to that edge.

In this model, for each sensor s; € S, Y, is the set of
all events produced by s;. Notice that Definition 1 stipulates
that distinct sensors produce disjoint events, that is, for each
s;,85 € S, if s; # 55, then Y, N Ys, = &. The labeling
function A is used to indicate for each edge, the set of events
produced by the sensors when the agent makes a transition
corresponding to that edge in the environment.

B. Example: Beam and occupancy sensors

Though the technical results to follow apply for any world
graph that satisfies Definition 1, to keep the description
reasonably concrete, we present examples focused upon



occupancy sensors (which detect the presence of the agent
in a region) and beam sensors (which detect the passage of
an agent between adjacent regions).

To illustrate, consider the simple environment in Fig. 2a,
which is guarded by four occupancy sensors o1, 02, 03,
and o4 and three beam sensors by, b, and bs. Fig. 2b
shows the world graph corresponding to this environment,
as constructed via the algorithm of Yu and LaValle [14].
Each state of this graph represents a room or a region within
the environment guarded by the same set of sensors. Each
edge shows a transition between two neighboring regions.

Notice that, in the example, some pairs of rooms are
connected by multiple doors, each of which are guarded
by different sensors. This explains why Definition 1 uses a
multigraph structure for world graphs. Also note that in this
environment, an agent cannot directly move between rooms
C and D because those two rooms are separated by a window
rather than a door.

In this example, an occupancy sensor o, which detects
the presence of an agent in a region X, is activated when
the agent enters X and is deactivated once the agent exits
X. Accordingly, each occupancy sensor o in this example
produces two events, o™, which occurs when o is activated,
and o, which happens when o is deactivated. A beam
sensor is activated when a mobile agent physically crosses (or
breaks) the beam and then instantly deactivated. Because the
agent is mobile and a beam sensor is deactivated immediately
after it was activated, we model each beam sensor b with
a single event b in Y;. When beam b is broken, the system
knows that the physical line segment was crossed, but not the
direction of crossing. For the environment in Fig. 2: for each
of the occupancy sensors o;, i € {1,2,3,4}, Y, = {0}, 0; };
for each of the beam sensors b;, j € {1,2,3}, Y3, = {b;}.

When an agent makes a transition between two regions,
it is possible that several events happen simultaneously, and
in fact, the system observes all those events at the same
time. For example, when an agent makes a transition from
room A to room B from the left door, two events o; and b;
happen simultaneously, and thus, edge e3 in the world graph
is labeled with the world-observation {b;, 07 }.

Finally, notice that a world graph can readily represent
scenarios in which a single sensor guards multiple transi-
tions. In the example, B has four doors, three of which are
guarded. The beams that guard those doors are assumed to
be a single beam sensor b; € S. When an agent crosses any
of those beams, the system knows that one of them is crossed
but it does not know which one it was. Likewise, rooms C
and D are guarded by a single occupancy sensor o2, which
is located on the window between those two rooms. Thus, if
an agent enters any of those two rooms, o2 is activated, but
by observing of , the system cannot tell if the agent entered
room C' or room D.

C. Itinerary DFA

In our story validation problem, an agent takes a tour
in the environment along a continuous path. This path is
represented over the world graph G by a walk, which is

defined as a finite sequence of edges ejes---e, € E* in
which src(e;) = vo and for each i € {1,2,...,n — 1},
tgt(e;) = sre(e;41). The set of all walks over G —that is,
the set of all not-necessarily-simple paths one can take in
the environment— is denoted Walks(G).

The agent claims that its tour will be one of those words
specified by a deterministic finite automaton (DFA):

Definition 2: [Itinerary DFA] An itinerary DFA over a
world graph G = (V, E, src, tgt, vg, S, Y, ) is a DFA T =
(Q,E, 6, qo, F) in which Q is a finite set of states; E is the
alphabet; 0 : Q x E — Q is the transition function; qq is the
initial state; and F' is the set of all accepting (final) states.

For each finite word r = ejeqs---e, € E*, there is a
unique sequence of states qoqi - --q, for which ¢y is the
initial state and for each ¢ € {0,1,...,n — 1}, §(g;,€;) =
Gi+1. Word r is accepted by the DFA if g, € F. The
language of Z, denoted L(Z), is the set of all finite words
accepted by Z, i.e., L(Z) = {r € E* | r is accepted by Z}.
The robot claims its tour will be one of the words r € L(Z).
Note that each word accepted by this DFA is a walk over the
world graph, and accordingly, the robot’s itinerary not only
specifies the sequence of locations the agent visits but it also
identifies the specific transitions (i.e. the doors between the
rooms) through which the agent moves.

D. lItinerary validation

We seek to enable a minimal subset M C S of sensors
such that, when the agent finishes its tour within the environ-
ment, the system can determine with full certainty whether
the agent followed its itinerary or not. At the completion
of the agent’s tour, the system does not know the exact
tour the agent took in the environment, instead receiving
only a sequence of world-observations. Each item in the
sequence is generated by the system when a set of sensors
were activated or deactivated simultaneously as a result of
the agent’s moving in the environment.

Let us mildly abuse notation and use Yj; to denote the
set of all events produced by sensors in some M C 5, i.e.,
Y = Us€ o Ys. If, from all sensors .S, only the sensors in
M are turned on, then when the agent transitions across e
in G, the system receives world-observation A(e) NY},. That
is, when transitioning across an edge, the system observes
precisely those events that are both associated with that edge
and enabled by one of set M s selected sensors. Where A(e)N
Yy = o, this must be handled slightly differently: in this
case, the system produces no symbol at all (not a symbol
reporting that some un-sensed event occurred—which would
itself be a tacit sort of information). We make this precise
next.

The agent’s walk over the world graph generates a se-
quence of non-empty world-observations. For a world graph
G = (V, E,src,tgt,vg, 5, Y, \), we define function [g
Walks(G) x §2(S) — (§2(Ys) \ ©)* in which for each
r € Walks(G) and subset of sensors M C S, Bg(r, M) gives
the sequence of world-observations the system receives when
the agent takes walk r and precisely the sensors in M are



turned on. Formally, for each r = ejes - --e, € Walks(G),
Bg(r,M) = z129- -z, in which for each i € {1,...,n},
zi = Aei)NYas if (Me;)NYy) # &, and z; = € otherwise,
where ¢ is the (standard) empty symbol.

Based on this function, we make a definition that formu-
lates conditions under which a set of sensors are able to tell
whether the agent adhered to its claimed itinerary or not.

Definition 3: [Certifying Sensor Selection] Let M C S
be a subset of sensors. We say M certifies itinerary I on
world graph G if there exist no r € L(Z) N Walks(G) and
t € Walks(G) \ L(Z) such that 8g(r, M) = Bg(t, M).

Intuitively, if M is a certifying sensor selection for Z,
then based on the sequence of world-observations Sg(r, M)
the system perceives from the environment, the system can
tell whether » was within the claimed itinerary or not, that
is, whether r € L(Z) or not. In fact, if for each r €
L(Z) N Walks(G), there is no ¢t € (Walks(G) \ L(Z)) such
that Bg(t, M) = Bg(r, M), then the system can tell with full
certainty if r was within the claimed itinerary or not. Thus,
the system must choose a sensor set M to turn on that is
certifying for Z on G.

We formalize our minimization problem as follows.

Problem: Minimal sensor selection to validate an
itinerary (MSSVI)
Input: A world graph G = (V, E,src, tgt, vg, S, Y, \)
and an itinerary DFA 7 = (Q,V, 0, q, F).
Output: A minimum size certifying sensor selection
M C S for Z on G, or ‘INFEASIBLE’ if no such
certifying sensor selection exists.

Before showing this problem to be NP-hard, we describe
a construction that turns out to be useful in what follows.

IV. WORLD GRAPH-ITINERARY PRODUCT AUTOMATA

In this section, we describe how to use the inputs of
the MSSVI problem to construct a product automaton that
captures the interactions between a world graph and an
itinerary DFA. We use this construction for both a hardness
result about MSSVI (in Section V) and a practical solution
of MSSVI via integer linear programming (in Section VI).
This product automaton is defined as follows.

Definition 4: [Product automaton] Let G =
(V, E,src, tgt,v9,S,Y,\) be a world graph and T =
(@, E,d,qo, F) be an itinerary DFA. The product automaton
Pg 1 is a partial DFA Pg 1 = (Qp, E,dp, ¢}, Fp) with

e Qp=QXxYV,

e 0p : Qp X E - Qp is a partial function such that
for each (q,v) € Qp and e € E, 6p((q,v),¢€) is
undefined if src(e) # v, otherwise, 6p((q,v),e) =
(6(g; €), tgt(e)),

e 45 = (g0, v0), and

. Fp =FxV.

Note that the transition function of this DFA is partial. We
will write dp(p,e) = L to mean that dp is undefined for
(p,e). The extended transition function 65 : Qp x E* —»

Qp—which for each ¢ € Qp and r € E*, §5(q,r) denotes
the state to which the DFA reaches by tracing r from state
g—is also partial. For a word r = ejes--- e, € E*, we use
8%5(q,r) = L to mean that this DFA crashes when it traces
r from the initial state, that is, there is a unique state sequence
qoq1 - - - qx for some k < n such that dp(g;—1,€;) = g; for
alli € {1,2,...,k—1} but 6p(qx,ex) = L. Awordr € E*
is trackable by this DFA if 6% (g} ,7) # L.

Our purpose in constructing this product automaton is
revealed by the following result.

Lemma 1: Let G, I, and Pg 1 be the structures in Defi-
nition 4. A subset M C S of sensors is a certifying sensor
selection for T if and only if for each r,v' € E* such that
635((]8’,7") € Fp and (533((](7)),7"’) € Qp \ Fp, it holds that
Bg(r, M) # Bg(r', M).

Proof: The construction yields two direct observations:
(1) Every word trackable by P is a walk over G and vice

versa, i.e., {r € E* | 05(¢),r) # L} = Walks(G).
(2) The accepting states of P correspond to the accepting

states of the itinerary DFA, so L(Pg ) = L(Z).
Taken together, (1) and (2) imply that Walks(G) \ L(Z) =
{r € E* | (¢} .r) € Qp \ Fp}. This means that each
walk over the world graph that is not within the language
of the itinerary DFA, reaches a non-accepting state in this
DFA. But, because every word in the the language of the
itinerary DFA reaches to an accepting state in this DFA,
if there are two words r and r’ such that r reaches to an
accepting state, 7’ reaches to a non-accepting state, and 7
and r’ both yield the same sequence of world-observations
by Bg under M, ie., Bg(r,M) = Bg(r', M), then M is
not a certifying sensor selection for Z. Contrariwise, if there
are no such words r and 7/, then M is a certifying sensor
selection. This completes the proof. [ ]

As a result, given a sensor selection )M as a feasible
solution to MSSVI with inputs G and Z, one can use the
product automaton Pg 7 to check if M is a certifying sensor
selection for Z or not by testing whether such r and r’
described in the proof of this lemma can be found or not.
The next section makes this idea clear.

V. HARDNESS OF MSSVI

Next, we present a hardness result for minimal sensor
selection, starting by casting MSSVI as a decision problem.

Decision Problem: Minimal sensor selection to validate
an itinerary (MSSVI-DEC)
Input: A world graph G = (V, E, src, tgt, vo, S, Y, A), an
itinerary DFA Z = (Q, V, 0, qo, F'), and integer k.
Output: Yes if there is a certifying sensor selection M C S
such that |M| < k; No otherwise.

We prove that MSSVI-DEC is NP-complete, by showing
that it is both in NP and NP-hard. First, we show that
MSSVI-DEC can be verified in polynomial time.

Lemma 2: MSSVI-DEC € NP.

Proof: We need to show that, using a given sensor
selection M C S as a certificate, we can verify in polynomial



time both (1) whether |M| < k and (2) whether M is a
certifying sensor selection in the sense of Definition 3 or
not. As (1) is trivially verifiable, we turn to (2).

Recall that by Lemma 1, if for any words r,7’ € E*
for which 6% (vo,7) € Fp and 6(vo,7") € Qp \ Fp, it
holds that Sg(r, M) # Bg(r’, M), then M is a certifying
sensor selection for the given itinerary DFA Z, otherwise M
is not a certifying sensor selection for Z. Thus, to check if
M 1is certifying, we compute, using a fixed point algorithm
described presently, a relation R that relates all pairs of states
q and p that are reachable from the initial state by two words
(walks) that yield the same sequence of world-observations
by Bg under M. Then we check whether R relates any pairs
of states ¢ and p such that one of them is accepting while
the other is non-accepting. If R relates such a pair, then
M is not a certifying sensor selection for Z. Otherwise, M
is certifying for Z. To construct R, begin with R initially
assigned to {(¢}’,q})}. Then iteratively update R according
to the following equation until the iteration reaches a fixed
point, with no additional tuples added to R.

U (5P(Q7€)a5'P(pa d))

e, deE:
R+ RU U (AMe)NYar)=
()x(d)f‘lY]u)
(@:P)ER | and 6p(q.e)#L

and 6p (p,d)#L
U (573((]7 e)vp)
v U

eckE:
(¢,p)ER

(A(e)NYrr)=e
and dp(g,e)#L
To expand R, this equation uses two rules, one in the first
line and the other in the second line. Fig. 3 illustrates
those two rules. The first rule states that if (¢,p) € R,
then for any edges e,d € E such that ¢ has an outgoing
transition for e and p has an outgoing transition for d, if
e and d yield the same world-observation under M, then
we must add (dp(q),0p(p)) to R as well, which means
that states dp(gq,e) and dp(p,d) are reachable from the
initial state of Pg 7z by two words (walks) that yield the
same world observation by g under M. The second rule
enforces that if (¢,p) € R, then for any edge ¢ € E
such that ¢ has an outgoing transition for e, if e yields
the empty world-observation under M (that is, if e yields
€ by Bg under M), then (6p(q,e),p) must be added to R
too. This is because here both states dp(g,e) and p are
reachable from the initial state, respectively, by a pair of
words (walks) r and 7’ that, respectively, reached ¢ and
p, while yielding a single sequence of world-observations.
Using an appropriate implementation, this algorithm takes
time which is polynomial in the size of P because there are
O(|Qp|?) pairs in R and thus O(|Qp|?) stages of updates,
each checking at most |E| edges. This shows that MSSVI-
DEC € NP. ]

The practical import of this lemma is that, in polynomial
time, we can decide whether a sensor set is certifying for a
given itinerary or not.

Next, we prove that MSSVI-DEC is computationally hard.
To do so, we shall reduce from a well-known problem.

G (r, M) = Bg(t, M) g(r, M) = Bg(t, M)
/\()ﬁJ\I—)\(d)ﬂM ﬁ]\[:
a) b)
Fig. 3. Two cases in the construction of the relation R in the proof of

Lemma 2. In each case, R is expanded, given that states g and p are already
related by R. a) In this case, pair dp (g, e) and ép(p, d) are added to R.
b) In this case, pair dp (g, e) and p are added to R.

Decision Problem: Set cover (SETCOVER-DEC)
Input: A finite set U, called the universe, a collection
of subsets O = {0;,0,,...,0,,} in which,
for each ¢ € {1,2,...,m}, O; C U and
Uieg1,2,....my Oi = U, and an integer k.
Output: Yes if there is a sub-collection N C O such that
Uoen O = U and |N| < k, and No otherwise.

This problem is known to be NP-complete [3]. We reduce
from SETCOVER-DEC to prove the following result.

Theorem 1: MSSVI-DEC is NP-hard.

Proof: We prove this result by a polynomial re-
duction from SETCOVER-DEC to MSSVI-DEC. Given a
SETCOVER-DEC instance

IE:<U un},O:{Ol,OQ,...,
construct an MSSVI-DEC instance
f(ﬂf) = <g = (‘/7 E7 SI‘C, tgt7 'UO, Sa Ya A),I, k/>7

as illustrated in Fig. 4 and detailed below.

Om}a k>7

:{Ul,UQ,...,

—For the vertices of the world graph, create 2n + 2 states,

denoted V = {Cy, C1,...,Cpi1 tU{u1, ua,...,u,}. Note
that the u; elements correspond directly to the elements of
the universe in the SETCOVER-DEC instance. The idea is
that the w;’s represent rooms arranged in sequence, each

accessible from a shared corridor composed of the C;’s.

—For the edges of the world graph, create 4n + 2
edges, denoted F = {eg,e1,...,e,} U{ep,ef,...,e U
{di1,ds,...,d,}U{d},d5, ... ,d}. The src and tgt func-
tions are defined so that each e; connects C; to C;1, each
e} connects C;y1 to C;, each d; connects C; to u;, and
each d; connects u; to C;.

— Create a set of n+m+1 sensors, S = {b1,ba,...,bp41}U
{01,04,...,0n,}, in which the b;’s are beam sensors and
the O;’s are occupancy sensors. The event set corresponds
to these sensors in the usual way, with one event for each
beam sensor and two events for each occupancy sensor,

so for each j € {1,2,...,n + 1}, Y3, = {b;}, and for
each i € {1,2,...,m}, Yo, = {O;",0; }, and then, Y =
{Yboa }/bla' B de+1aYO17Y027 teey Yom}'

—For the events labeling each edge, define A(e;) = A(ef) =
bit1 for the e; and ¢} edges, A(d;) = {O] | u; € O;}
for the d; edges, )\(d;) {07 | u; € OJ} for the d
edges. This models one or more occupancy sensors in
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Fig. 4. a) An instance of the set cover problem. b) The instance of

the MSSVI problem for this set cover instance. ¢) A physical environment
representing the MSSVI instance.

each of the u; rooms, according to the subsets within the
SETCOVER-DEC instance, and beam sensors along the
corridor between each room.

—For the itinerary DFA Z, construct a DFA accepting the
singleton language L(Z) = {eod1d}eidadbes ... d,d, e}
as a linear chain of states.

—For the bound on the number of sensors allowed, choose
E=k+n+1.

In the MSSVI-DEC instance constructed in this way, notice
that, for each subset O € O, the construction makes a
corresponding occupancy sensor O and puts that sensor in all
rooms u for which u € O. Moreover, the itinerary specifies
a single walk eqd;djeidadbes - - - dyd) e,, which indicates
that the sequence of regions the agent intends to visit is
CoCru1C1CousCy - - - Cpyq. That is, the itinerary calls for
the agent to travel down the corridor, visiting each room
exactly once in the specific order wuy,us,...,u,, without
backtracking within the corridor. For the system to be able to
tell that the agent has visited a room, at least one occupancy
sensor in each room must be turned on. Also, each of the
beam sensors must be turned on so that the system can assure
that the agent did not vacillate back-and-forth between cells
in the corridor.

The construction clearly takes polynomial time, so it
remains only to show that the reduction is correct, i.e. that
the original SETCOVER-DEC instance has a set cover of
size at most k if and only if the constructed MSSVI-DEC
has a valid sensor set of size k'

(=) Suppose there exists a set cover N C O such that
IN| < k and > 5O = U. In this case, based on our
discussion, the sensor selection M = NU{b1,ba,...,bpt1}
is for itinerary Z, a certifying sensor selection of size |M| =
IN|[+n+1<k+n+1=FK.

(<) Conversely, suppose there exists for Z, a certifying
sensor selection M C S for which |M| < k’. As argued
above, because M is certifying, it must contain each of the
n+ 1 beam sensors. Thus, there are at most k' — (n+1) = k
occupancy sensors in M. Recall, however, that for this
construction, every certifying sensor selection includes at
least one occupancy sensor within each room. Thus, the
occupancy sensors in M form a set cover of size at most
k for the original SETCOVER-DEC instance. |

Finally, the following results follow immediately from
Theorem 1 and Lemma 2.

Theorem 2: MSSVI-DEC is NP-complete.
Corollary 1: MSSVI is NP-hard.

As aresult, assuming P # NP, one cannot find a certifying
sensor selection with minimum size in polynomial time.

VI. MSSVI VIA INTEGER LINEAR PROGRAMMING

In this section, we present an exact solution to MSSVI
using an Integer Linear Programming formulation of the
problem. First, we cast the MSSVI problem into mathemat-
ical programming form, and then linearize its constraints.

A. Mathematical programming formulation of MSSVI

For each sensor s € S, we introduce a binary variable
ugs, which receives value 1 if sensor s is chosen to be
turned on, and receives O otherwise. For each tuple of states
(¢,p) € Qp*xQp, we introduce a binary variable a, ,,, which
receives value 1 if and only if there exist two finite words
r,r’ € E*, such that 65(¢},r) = ¢. 65(q},r") = p. and
and Bg(r, M) = Bg(r’, M). For each edge e € E and event
e € Y, we introduce a binary variable b, , which is assigned
a value 1 if and only if the label of e contains y and the sensor
that produces ¥ is chosen to be turned on. More precisely, if
y € A(e) and uy,) = 1, then b, , receives value 1, otherwise
it receives value 0, where 7(y) is the sensor that produces
event y, i.e., n(y) = s such that y € Y;. In terms of these
variables, an MSSVI instance can be expressed as follows.

Minimize: Z . )
seS
Subject to:
aqz);ng: =1 (2)

For each ¢ € Fp,p € Qp \ Fp,
agp =0 3)
For each ¢ € Q» \ Fp,p € Fp,

agp =0 (C))

Foreache € Eand y € Y s.t. y ¢ A(e),
be,y =0 (6))

Foreache € Eand y € Y s.t. y € A(e),
be,y = Un(y) (0)

For each ¢,p € Qp and e,d € E such that 6p(g,e) # L and
673'(p7 d) # 4,

agp =1A(VY € Y,bey = bay) = asp(g,e),6ppd) =1 (7)
For each ¢,p € Qp and e € E such that p(q,¢e) # L,

agp=1and (Vy € Y,bey =0) = a5,(q,e)p = 1 ®)
For each ¢,p € Qp and e € E such that dp(p,e) # L,

agp=1and (Vy € Y,bey =0) = ags,(p,e) =1 )

The objective (1) is to minimize the number of sensors
turned on. Constraint (2) asserts that there exists a world-



TABLE I
RESULTS OF OUR EXPERIMENT FOR THE ENVIRONMENT IN FIG. 2, WHICH SHOWS THE FLOOR MAP OF AN ENVIRONMENT.

Itinerary Description of itinerary Computed solution Comp. time (sec)
1 Walks(G) All location sequences ] 2.7
2 E*\ Walks(G) No location sequence 2] 2.3
3  Walks(G) \{r € E* | e21 ¢ 7} Do not enter G {03} 2.8
4 ejesegels R1ABR2D INFEASIBLE 2.5
5 eljesegels + ejeserelrs R1ABR2D or RlABRlc O1,b1,b2,02,b3} 2.9
6 eia(errera + eapeig)*espenr RiR2(R1R2 + R3R2)*R3G 01,02,03,b1 } 4.1

observation sequence, (the empty string, €) by which both
states of the tuple (g}, ¢}) are reachable from the initial
state. Constraint Sets (3) and (4) ensure that the sensor
selection is certifying. Constraint Sets (5) and (6) encode
which sensors affect the label of each edge. Constraint Set (7)
asserts that if two states ¢ and p are both reachable by
a world-observation sequence, then for any edges e and
d, if those two edges receive the same world-observation
under the chosen sensors, then it means states (g, e) and
dp(p,d) are also reachable by at least one sequence of
world-observations under the chosen sensors. In fact, these
constraints implement the case shown in Fig. 3a. Similarly,
Constraint Sets (8) and (9) implement the case in Fig. 3b.

This formulation would be a 0-1 integer linear program-
ming model if Constraint Sets (7), (8), and (9) were linear.
Thus, the next section shows how to linearize them.

B. Integer linear programming formulation of MSSVI

To linearize Constraint Set (7), first we introduce a binary
variable j. 4., for each e,d € I and y € Y, which receives
its value from the following constraints.

Foralle,d € Eand ally €Y,
beﬁy - bd,y < Jeyd,ys (10)
bd,y - be,y < Je,d,ys (11)
je,d,y < b57y -+ bdﬂy, and (12)
je,dﬁy S 2— be,y - bd,y- (13)

These linear constraints assign value 0 t0 j¢ 4.y if bey = bg,y;
otherwise, they assign value 1 to j. 4 ,. Hence, Constraint
Set (7) is replaced by the following linear constraints.

For each ¢,p € Qp and e,d € E st dp(q,e) # L and
57’(pa d) 7& J—’

(1—agp)+ Z(je,dyy) + sp(q.0).8p (p.d) = 1
yey

(14)

We also replace Constraint Set (8) by linearized forms:

For each ¢,p € Qp and e € E s.t. 0p(q,e) # L,

(1= agp) + Y bey+asp .m0 > 1. (15)
yey
Similarly, we linearize Constraint Set (9) as follows.
For each ¢,p € Qp and e € E s.t. op(p,e) # L,
(1= agp) + Y bey + Ggop(pe) = 1. (16)

yey

Now, we have an ILP formulation of MSSVI, which can

be solved directly by any of the many existing highly-
optimized ILP solvers. This ILP formulation not only can be
used for obtaining solutions to MSSVI but also to compute
feasible (rather than optimal) solutions for large instances of
world graphs for which exact solutions to MSSVI cannot be
computed in a reasonable amount of time.

VII. CASE STUDIES

In this section, we present case studies, using the ILP
formulation from the previous section to solve some rep-
resentative instances of MSSVI. All trials were performed
on an Ubuntu 16.04 computer with a 3.6 GHz processor.

A. Case study 1: Computer Science Department

Recall Fig. 2, with a map of a small computer science
department. For this world graph, we executed several in-
stances of the MSSVI with different itineraries to verify
the algorithm’s correctness. Table I shows results on those
instances. The first two instances consider extreme itineraries
as boundary test cases. For the first, the itinerary consists of
all walks on the world graph, including the empty string; in
the second instance, the itinerary does not have any walks
over the world graph. In both of these instances, the optimal
solution (which has size 0, i.e. no sensor is needed) was
correctly found. The third scenario considers an itinerary
moving any way, other than entering room G. To certify this
itinerary, it suffices to turn on only one of the sensors oj
and oy4, both located in room G. Again, our implementation
found this solution correctly. The fourth itinerary specifies
a single sequence in which the agent enters room A from
Ry, then it enters room B from the right door between A
and B, then passes through Ry to enter D. There is no
certifying sensor selection for this itinerary because there
is another walk, ejesereqs, that is not within the claimed
itinerary but which produces the same sequence of world-
observations, for any selection of sensors. In contrast, the
fifth scenario, whose itinerary includes both the walk from
the fourth scenario and additionally e;esere;s, can be solved
with no need to turn on sensors o3 and o4. The last itinerary
specifies all walks in which the agent does not enter any
room but only room G at the end after traveling along the
corridor between any of regions Ry, Ro and Rgs. For this
itinerary, it is required to turn on sensors o1, o2 and b to
verify that the robot did not enter any of rooms A, B, C, D,
F. Tt also requires either o3 or o4 be turned on to ensure the
robot enters room G at the end. Our program took less than
5 seconds to compute a minimal certifying sensor selection
for each of these itineraries.



Though small, this case study suggests the correctness of
our algorithm. The next section tests its scalability.

B. Case study 2: Where eagles soar

Ornithologists employ cellular-network devices to track
migratory patterns of larger birds, allowing new insights
to be gleaned [4]. Fig. 5a shows aggregated tracking data
(from [9]) for journeys made by eagles over a year. The
surprisingly infrequent flights across open water might lead
one to hypothesize that eagles circle the Caspian Sea (the
region made visually salient in the figure). To validate this
hypothesis would require purchasing data roaming capabili-
ties from cellular-network operators across multiple countries
in this region. Fig. 5b shows an approach to model the
problem of minimizing these costs. The map is divided into
subregions, each representing a vertex of a world graph.
Edges of the world graph are between adjacent hexagons.
When whole subregions fall substantially within a single
country, they have been assigned a color representing the
potential of purchasing data service for that country. There
are 10 colors, representing the sensor set S. We model
the hypothesis of circling the Caspian Sea by an itinerary
containing walks that visit III.II-I.III, II-I.IT-II, or their
extra cyclic permutations. The DFA describing this itinerary
consists of 7 states.

The observations provided by the cellular network are
akin to the occupancy sensors in the previous example, with
events triggered when the eagle enters or leaves each hexago-
nal cell. Our decomposition, shown in Fig. 5b, has 36 colored
cells. Accordingly, there are 72 events. An additional 9 cells
are uncolored. It took 734.83 seconds for our implementation
to form the ILP model and then it took 270.17 seconds to
find an optimal solution. In this solution, only 6 out of the
10 sensors (the colors listed in the caption of Fig. 5) were
turned on. Before finding an optimal solution, the program
found feasible solutions of sizes 10, 9, and 8 respectively in
83.07, 90.91, and 176.13 seconds.

VIII. CONCLUSION

We have examined the question of selecting the fewest
sensors subject to the requirement that they have adequate
distinguishing power to differentiate motions conforming
to an itinerary from those that do not. This optimization
question fits the resource minimization concern that underlies
several useful applications. Our formulation of this problem
allows for the possibility that when a sensor is selected, it can
provide readings for events in potentially multiple places. To
solve the problem, rather than proposing a custom algorithm,
we give an ILP formulation for it, leveraging decades of
optimization on such solvers. This approach is seen to solve
instances of moderate size—including a small-scale case
study motivated by wildlife tracking.

For future work, the steps that have become standard when
dealing with NP-hard problems remain: seeking special-
cases that possess some additional structure making them
easier, understanding the problem using more nuanced pa-
rameterization (i.e., fixed parameter tractability approaches),

Fig. 5. a) An aggregate of tracking data, reproduced from [9], showing the
journeys across parts of North Africa and Central Asia made by eagles over
a period of one year. Fig. b) The decomposition of the map into subregions.
Subregions who fall substantially within a single country have been assigned
a color representing the potential of purchasing data roaming service from
that country (there are 10 colors, representing sensors set S). The optimal
sensor selection to certify the hypothesis of circling the Caspian Sea has
six sensors, consisting of the sets of hexagons of the following colors: O,

@, @, O, O, and O.

and custom heuristics and approximation algorithms. Also,
there might be room to improve the ILP to make it more
effective.
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