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THE MOST LIKELY EVOLUTION OF DIFFUSING AND
VANISHING PARTICLES: SCHR\"ODINGER BRIDGES WITH

UNBALANCED MARGINALS\ast 

YONGXIN CHEN\dagger , TRYPHON T. GEORGIOU\ddagger , AND MICHELE PAVON\S 

Abstract. Stochastic flows of an advective-diffusive nature are ubiquitous in biology and the
physical sciences. Of particular interest is the problem of reconciling observed marginal distributions
with a given prior posed by Schr\"odinger in 1932 and known as the Schr\"odinger Bridge Problem
(SBP). It turns out that Schr\"odinger's problem can be viewed as both a modeling problem and a
control problem. Due to their fundamental significance, the SBP and its deterministic (zero-noise
limit) counterpart of Optimal Mass Transport (OMT) have recently received interest within a broad
spectrum of disciplines, including physics, stochastic control, computer science, probability theory,
and geometry. Yet, while the mathematics and applications of the SBP/OMT have been develop-
ing at a considerable pace, accounting for marginals of unequal mass has received scant attention;
the problem of interpolating between ``unbalanced"" marginals has been approached by introducing
source/sink terms into the transport equations, in an ad hoc manner, chiefly driven by applications
in image registration. Nevertheless, losses are inherent in many physical processes, and thereby
models that account for lossy transport may also need to be reconciled with observed marginals
following Schr\"odinger's dictum; that is, it is necessary to adjust the probability of trajectories of
particles, including those that do not make it to the terminal observation point, so that the updated
law represents the most likely way that particles may have been transported, or have vanished, at
some intermediate point. Thus, the purpose of this work is to develop such a natural generaliza-
tion of the SBP for stochastic evolution with losses, whereupon particles are ``killed"" (jump into a
coffin/extinction state) according to a probabilistic law, and thereby mass is gradually lost along
their stochastically driven flow. Through a suitable embedding we turn the problem into an SBP
for stochastic processes that combine diffusive and jump characteristics. Then, following a large-
deviations formalism in the style of Schr\"odinger, given a prior law that allows for losses, we ask
for the most probable evolution of particles along with the most likely killing rate as the particles
transition between the specified marginals. Our approach differs sharply from previous work involv-
ing a Feynman--Kac multiplicative reweighing of the reference measure: The latter, as we argue, is
far from Schr\"odinger's quest. An iterative scheme, generalizing the celebrated Fortet-IPF-Sinkhorn
algorithm, permits us to compute the new drift and the new killing rate of the path-space solution
measure. We finally formulate and solve a related fluid-dynamic control problem for the flow of
one-time marginals where both the drift and the new killing rate play the role of control variables.
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killing
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1. Introduction. Consider the problem of estimating the velocity field of ocean
currents by releasing into the water a cloud of tracer particles and by sampling their
distribution at a later time. The diffusion coefficient is assumed known, and the
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original cloud that is released at time t = 0 consists of N particles. These are expected
to remain in suspension for a specific duration while they diffuse and drift with the
current. At time t = 1, their distribution is sampled again. Some of the particles
in the meantime have sunk, so that the number of found particles is less than N .
Suppose this experiment is performed several times, with the model originating from
previous experiments treated as a ``prior."" Is it conceivable to ``improve"" a prior model
in a rational way? More explicitly, by relying on a prior model and the new sampling
result, is it possible to determine an updated model that represents the most probable
way that the tracer cloud may have been transported?

At first sight, this appears to be of a different nature than problems treated in the
theory of large deviations [56, 57, 29], in that the sought path-space measure is not
a probability measure per se. Nevertheless, in spite of the paucity of available data,
it is possible to solve this inverse problem by a natural embedding technique. A by-
product is a physically motivated framework for interpolating distributions of unequal
mass (integrals). The blueprint for the rationale in our work has been provided by
the celebrated duo of papers by Schr\"odinger published in 1931/32 [54, 55] where he
considered the problem of reconciling marginal distributions with a prior stochastic
evolution.

The original Schr\"odinger Bridge Problem (SBP) asks for the most likely evolution
of stochastic particles as they travel between marginal probability densities \rho 0 and
\rho 1, specified at two points in time (taken as t0 = 0 and t1 = 1 without loss of general-
ity), when these marginals fail to be consistent with a known prior law. Interestingly,
Schr\"odinger considered this abstract problem before a theory of continuous param-
eter stochastic processes was in place, and he was only preceded by Boltzmann [7].
Schr\"odinger attacks the problem very much in his countryman's style through coarse
graining and applying the De Moivre--Stirling formula and Lagrange multipliers. In
spite of the lack of proper tools (Sanov's theorem [53] would not be published in Rus-
sian until 1957), he arrives at the correct answer [54, 55], which is that the most likely
evolution is obtained by solving a certain two-point boundary value problem (known
as the Schr\"odinger system of equations). Important contributions to this theory were
then provided by Fortet, Beurling, and Jamison [32, 3, 37, 38]. More than half a cen-
tury passed before F\"ollmer [31], recovering Schr\"odinger's original motivation, properly
cast the problem within the framework of large-deviations theory. The field has since
seen several other significant contributions, particularly in systems and control as well
as machine learning; a partial selection includes [62, 47, 59, 26, 25, 50, 6, 27, 48, 60, 1,
45, 46, 14, 41, 42, 17, 44, 2, 19, 24, 23, 10, 11, 58, 12, 61, 28, 63, 64]. (Here [60, 42, 19]
are survey papers.) Observe that in view of Sanov's theorem [29], the SBP amounts
to seeking a new probability law on the path space of the stochastic particles that is
consistent with the given marginals and, at the same time, is the closest to the prior
probability law in the relative entropy sense.

SBP and its zero-noise limit of Optimal Mass Transport (OMT) continue to im-
pact a growing range of disciplines and applications. In this expanding mathematical
landscape, the problem of accounting for variable mass along the transport path
received attention early on. It was chiefly motivated by the need to interpolate distri-
butions of unequal mass for time series spectral analysis and image registration [39].
The viewpoint that is being pursued herein is closer in spirit to the original rationale
of Schr\"odinger as we build on a large-deviations formalism. To this end, we consider
below a diffusion process with killing and seek the closest update of the corresponding
law that is in agreement with the marginal data. Thus, we ask for the most likely evo-
lution of stochastic particles which are known to obey a given prior law with potential
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for losses (``killing rate"") while they transition between two marginal distributions \rho 0
and \rho 1 as before. The two distributions are not necessarily consistent with the prior
law and nor is the loss of mass necessarily consistent with the prior killing rate.

In our formulation of the unbalanced Schr\"odinger Bridge Problem (uSBP), the
marginals cannot be assumed to be probability distributions, as their integrals differ
due to losses. To this end, we embed the distributions into a frame that includes
a coffin/extinction state, which leads to a probability law on a continuum together
with a discrete state. Thereupon, we find the updated law and killing rate that
minimize the relative entropy to the prior with losses and are consistent with the two
marginals. In the special case when the marginals are already consistent with the
prior, naturally the solution coincides with the lossy prior, which differs from what
happens in other formulations of SBP with killing which are based on Feynman--Kac
functionals [48, 59, 6, 27, 1, 40, 16, 15] and unbalanced transport [21, 22, 20, 39] as
discussed in section 5.

The structure of the paper is as follows. In section 2 we revisit the classical SBP.
The main framework of Schr\"odinger bridges with unbalanced marginals is presented
in section 3. We also present a fluid dynamic formulation of the main framework in
section 4. A comprehensive comparison between Schr\"odinger bridges with unbalanced
marginals and existing results on Schr\"odinger bridges with killing is provided in section
5. This is followed by a numerical example in section 6 and a concluding remark in
section 7.

2. Preliminaries on the Schr\"odinger bridge problem. We briefly review
elements of the theory of the SBP. To this end, consider a diffusion process

(2.1) dXt = b(t,Xt)dt+ \sigma (t,Xt)dWt

over the Euclidean space Rn. In Schr\"odinger's original thought experiment, a large
number N of trajectories over the time interval [0, 1] are independently sampled from
(2.1), with probability distribution of Xt at the initial time t = 0 being \rho 0. The
law of large numbers dictates that the terminal distribution at time t = 1 must be
(approximately)

(2.2)

\int 
Rn

q(0, x, 1, \cdot )\rho 0(x)dx,

where q(t, x, s, y), t < s, denotes the kernel of transition rates from state x at time t
to state y at time s. Now suppose the observed marginal distribution at time t = 1,
denoted by \rho 1, is inconsistent with (2.2) and the prior kernel q(0, x, 1, y), that is,

\rho 1(\cdot ) \not =
\int 
Rn

q(0, x, 1, \cdot )\rho 0(x)dx.

Schr\"odinger's problem then seeks the most likely evolution that the particles may have
taken between the specified marginals. That is, the SBP seeks a suitable update of the
law of the diffusion process that reconciles the two marginals \rho 0, \rho 1. In what follows
and for notational simplicity, we use the same symbol \rho to denote both the probability
density and the corresponding measure d\rho = \rho dx, depending on the context.

As first noted by F\"ollmer [31], the SBP can be more clearly expressed in the
language of the theory of large deviations [29]. Specifically, let \Omega = C([0, 1],Rn)
denote the space of continuous functions on [0, 1] with values in Rn, and let \scrP (\Omega )
denote the space of probability laws over \Omega . Given any two probability measures
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P,Q, we write P \ll Q if P is absolutely continuous with respect to Q, namely for
every Borel set B \subset \Omega , Q(B) = 0 \Rightarrow P (B) = 0. The relative entropy (divergence) of
P with respect to Q is

(2.3) D(P\| Q) =

\Biggl\{ \int 
dP log dP

dQ if P \ll Q,

+\infty otherwise.

Now consider N independent trajectories X1
t , X

2
t , . . . , X

N
t \in \Omega of a diffusion having

law R \in \scrP (\Omega ), and let LN denote their empirical distribution. Then, asymptotically
as N \rightarrow \infty , Sanov's theorem1 gives the exponential rate of decay for the probability
of the occurrence of an empirical distribution that differs from the law R [29] as

(2.4) Prob(LN \in A) \approx exp( - N inf
P\in A

D(P\| R)) \forall A \subset \scrP (\Omega ).

Thus, Sanov's result expresses the likelihood of observing an empirical distribution
approximated by P in terms of the relative entropy D(P\| R). Thence, the SBP can
be formulated as follows.

Problem 2.1. Let R \in \scrP (\Omega ) be the probability measure on \Omega induced by the prior
process (2.1) with initial distribution \rho 0. Determine

(2.5) P  \star := arg min
P\in \scrP (\Omega )

\{ D(P\| R) | P0 = \rho 0, P1 = \rho 1\} ,

where Pt denotes the marginal distribution of P at time t (i.e., the push forward
Xt\#P = Pt).

The entropy functional is strictly convex, which ensures uniqueness of the min-
imizer (when it exists). Further, if R0 = \rho 0 as well as R1 = \rho 1, the solution to the
SBP coincides (trivially) with the prior law R, i.e., P  \star = R, achieving the minimal
value D(P  \star \| R) = 0. When R1 \not = \rho 1, the SBP thus seeks an updated law P  \star that is
closest to the prior in the sense of relative entropy and restores consistency with the
marginals (which fails for the prior R). Next, we briefly discuss the solution to the
SBP. For an in-depth exposition see [42] and the review articles [18, 19].

By disintegration of measure,

R(\cdot ) =
\int 
Rn\times Rn

Rxy(\cdot )R01(dxdy) and

P (\cdot ) =
\int 
Rn\times Rn

P xy(\cdot )P01(dxdy),

where R01 (P01) denotes the joint marginal distribution of R (P ) of Xt for t \in \{ 0, 1\} 
(i.e., R01 = X01\#R, and similarly for P ) and Rxy (P xy) denotes the measure induced
by P conditioned on (X0 = x,X1 = y). It follows that

(2.6) D(P\| R) = D(P01\| R01) +

\int 
D(P xy\| Rxy)P01(dxdy).

Clearly, when P xy = Rxy for any x, y \in Rn, the second term on the right assumes the
minimal value 0. An immediate consequence is the following static formulation of the
SBP.

1Sanov's theorem holds when the process takes values in any Polish space.
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Problem 2.2. Determine

(2.7) \pi  \star := arg min
\pi \in \scrP (Rn\times Rn)

\{ D(\pi \| R01) | \pi 0 = \rho 0, \pi 1 = \rho 1\} .

To distinguish between the two formulations (2.5) and (2.7), we refer to (2.5) as
the dynamic SBP. The two formulations are equivalent in the sense that solving one
provides a solution to the other, as noted next.

Theorem 2.3 ([42]). Suppose P  \star is a solution to the dynamic SBP (2.5); then
P  \star 01 solves the static SBP (2.7). On the other hand, if \pi  \star is a solution to (2.7), then
setting P  \star =

\int 
Rn\times Rn R

xy(\cdot )\pi  \star (dxdy) solves (2.5), while P  \star 01 = \pi  \star .

Proof. It follows readily from (2.6).

A direct consequence of Theorem 2.3 is that the Radon--Nikodym ratios between
solutions and priors for the two problems, the static (3.3) and the dynamic (3.2),
coincide, namely,

(2.8)
dP  \star 

dR
=

d\pi  \star 

dR01
(X0, X1).

In fact, this ratio can be factored into two parts: one that depends only on X0 and
one that depends on X1, as follows.

Theorem 2.4 ([42]). Assume that R01 \ll R0 \otimes R1 and that there exists \pi \in 
\scrP (Rn \times Rn) such that \pi 0 = \rho 0, \pi 1 = \rho 1 (i.e., feasible), for which D(\pi \| R01) <
+\infty . Then the static problem (2.7) admits a unique solution \pi  \star , and there exist two
measurable functions f, g : \scrX \rightarrow R+ such that

(2.9) \pi  \star = f(X0)g(X1)R01.

The two factors f, g are solutions to the Schr\"odinger system

d\rho 0
dR0

(x) = f(x)R(g(X1) | X0 = x),(2.10a)

d\rho 1
dR1

(y) = g(y)R(f(X0) | X1 = y).(2.10b)

Moreover, the unique solution to the dynamic problem (2.5) is

(2.11) P  \star = f(X0)g(X1)R.

The above theorem provides an abstract construction of the sought probability
law(s) via the solution of the Schr\"odinger system (2.10). The local characteristics
and the modified stochastic differential equation for the process with law P  \star follow.
Computationally, these can be expressed most succinctly in terms of a pair of two
forward and backward in time (and identical to those of the prior Fokker--Planck and
its adjoint) equations that are nonlinearly coupled through boundary conditions. We
explain this next.

First, recall that the marginals Rt(x) of the prior law R for the diffusion (2.1)
satisfy (weakly) the Fokker--Planck equation

(2.12) \partial tRt +\nabla \cdot (bRt) =
1

2

n\sum 
i,j=1

\partial 2(aijRt)

\partial xi\partial xj
.
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In what follows, a(t, x) = \sigma (t, x)\sigma (t, x)\prime is assumed to be everywhere positive definite.
Let the two end-point marginals be absolutely continuous with densities \rho 0 and \rho 1,
respectively. The Schr\"odinger system (2.10) can be reparametrized in terms of

\^\varphi (0, x) := f(x)R0(x),(2.13a)

\varphi (1, y) := g(y)(2.13b)

and takes the form

\partial t \^\varphi =  - \nabla \cdot (b \^\varphi ) + 1

2

n\sum 
i,j=1

\partial 2(aij \^\varphi )

\partial xi\partial xj
,(2.14a)

\partial t\varphi =  - b \cdot \nabla \varphi  - 1

2

n\sum 
i,j=1

aij
\partial 2\varphi 

\partial xi\partial xj
,(2.14b)

\rho 0 = \varphi (0, \cdot ) \^\varphi (0, \cdot ),(2.14c)

\rho 1 = \varphi (1, \cdot ) \^\varphi (1, \cdot ).(2.14d)

Theorem 2.5. Let R be the law of (2.1) with a(t, x) = \sigma (t, x)\sigma (t, x)\prime being posi-
tive definite for all (t, x) \in R\times Rn, and assume that \rho 0, \rho 1 are absolutely continuous
with respect to the Lebesgue measure. There exists a unique (up to a constant positive
scaling) pair ( \^\varphi (t, x), \varphi (t, x)) of nonnegative functions that satisfies the Schr\"odinger
system (2.14). Moreover, the law P  \star for the dynamic problem (2.5) is the law of the
diffusion

(2.15) dXt = (b(t,Xt) + a(t,Xt)\nabla log\varphi (t,Xt))dt+ \sigma (t,Xt)dWt,

with distribution of X0 being \rho 0, and at any time t \in [0, 1], the marginal density for
P  \star satisfies the identity P  \star t (x) = \varphi (t, x) \^\varphi (t, x).

Existence and uniqueness of solutions for the Schr\"odinger system have been pro-
vided in various degrees of generality by Fortet, Beurling, and Jamison [32, 3, 37, 38].
For a detailed exposition of the theory of Schr\"odinger's problem, we refer the reader
to L\'eonard [42], in particular, [42, Theorems 2.8, 2.9, 3.4]. A more recent account
along with a proof that is based on the contractiveness of suitable maps in the Hilbert
metric was given in [13]. In the present paper, we follow similarly to the approach in
[13] when analyzing the more general Schr\"odinger system for diffusions with losses,
and therefore we sketch key steps for this more general case that we consider. An
added benefit in recasting the Schr\"odinger system as in (2.14) is that it leads, after
discretization, to an efficient algorithm for computing ( \^\varphi (t, x), \varphi (t, x)) and thereby
f, g as well as P  \star . The discretized version of the Schr\"odinger system (2.14) amounts
to the celebrated Sinkhorn algorithm for matrix scaling [19].

3. Unbalanced stochastic transport. We now analyze stochastic flows be-
tween unequal marginals following Schr\"odinger's original rationale that is rooted in
large-deviations theory. To this end, we consider a diffusion process with killing and
seek the closest update of the corresponding prior law that restores agreement with
marginal data.

Once again, consider the diffusion process (2.1), but this time with a nonnegative
killing rate V (t, x) (assume V (\cdot , \cdot ) is jointly continuous with respect to (t, x) and not
constantly zero). A thought experiment similar to Schr\"odinger's calls for a large num-
ber N of trajectories over a time interval [0, 1] that are independently sampled from
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(2.1) with initial probability distribution \rho 0, and a recorded empirical distribution for
the surviving particles at time t = 1 approximated by \rho 1, which is inconsistent with
the prior law, that is,

\rho 1(\cdot ) \not =
\int 
Rn

q(0, x, 1, \cdot )\rho 0(x)dx.

The kernel q(0, x, 1, y) is no longer a probability kernel in that
\int 
Rn q(0, x, 1, y)dy \not = 1,

in general, and thus due to killing, neither
\int 
Rn q(0, x, 1, \cdot )\rho 0(x)dx nor \rho 1 are necessarily

probability densities. In particular,
\int 
\rho 1(x)dx = Ns/N \leq 1 where Ns denotes the

number of survival particles at time 1. Just as in the standard SBP, we consider
continuous distributions, assuming that N is large, and seek to identify the most
likely behavior of the particles. By behavior we mean the most likely evolution of the
particles along with the most likely times that the particles may have gotten killed
(or absorbed by an underlying medium).

As in the standard Schr\"odinger bridge, the problem arising from the above thought
experiment can be formally stated using the theory of large deviations [29]. However,
in this case, the space of trajectories needs to be modified to accommodate for possible
killing of particles. To this end, we augment the state space of the diffusion Rn with
a ``coffin state"" c \not \in Rn (see [49, subsection 8.2]), which results in the state space

\scrX = Rn \cup \{ c\} .

Let \Omega = D([0, 1],\scrX ) be the Skorokhod space over \scrX , that is, each element in \Omega is
a c\`adl\`ag over \scrX [4, p. 121]. Denote by \scrP (\Omega ) and \scrP (\scrX ) the spaces of probability
distributions over \Omega and \scrX , respectively. Each diffusion process Xt (t \in [0, 1]) on Rn
with killing corresponds to a process Xt taking values in \scrX and thereby to a law in
\scrP (\Omega ).

Evidently, \scrX is a Polish space. The space \Omega of c\`adl\`ag over \scrX is thus, with
the appropriate topology, also a Polish space [29, p. 348], [51, Chapter VI], [30,
Chapter III]. Sanov's theorem applies to measures on Polish spaces [29, section 6.2],
and therefore the likelihood function is once again expressed in terms of the relative
entropy between probability laws. In our uSBP setting, the set of probability laws
over path space \scrP (\Omega ) that are in alignment with the observations is

\{ P \in \scrP (\Omega ) | P0 = p0, P1 = p1\} ,

where p0, p1 are the natural augmentation of \rho 0, \rho 1 so that they belong in \scrP (\scrX ),
respectively. Specifically, assuming that

\int 
Rn \rho 1(x)dx = 1, we set

(3.1a) p0 = (\rho 0(\cdot ), 0)

and

(3.1b) p1 =

\biggl( 
\rho 1(\cdot ), 1 - 

\int 
Rn

\rho 1(x)dx

\biggr) 
.

Thus, we arrive at the following recasting of the uSBP as an ordinary SBP.

Problem 3.1 (unbalanced Schr\"odinger bridge problem). Determine

(3.2) P \star := arg min
\bfP \in \scrP (\bfOmega )

\{ D(P\| R) | P0 = p0,P1 = p1\} .

As before, verbatim, the path measures R(\cdot ) =
\int 
\scrX 2 R

xy(\cdot )R01(dxdy) and P(\cdot ) =\int 
\scrX 2 P

xy(\cdot )P01(dxdy), where now R01 (P01) denotes the joint marginal distribution
of R (P) over the marginal X0,1, and Rxy (Pxy) denotes the law conditioned on
X0 = x \in \scrX and X1 = y \in \scrX . As before, the relation to the static SBP emerges.
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Problem 3.2. Determine

(3.3) \bfitpi  \star := arg min
\bfitpi \in \scrP (\scrX 2)

\{ D(\bfitpi \| R01) | \bfitpi 0 = p0,\bfitpi 1 = p1\} .

The two formulation are once again seen to be equivalent by arguing as in Theorem
2.3. Indeed, this readily follows from the identity

D(P\| R) = D(P01\| R01) +

\int 
\scrX 2

D(Pxy\| Rxy)P01(dxdy).

Theorem 3.3. Suppose P \star solves the dynamic uSBP (3.2); then P \star 
01 also solves

the static uSBP (3.3). On the other hand, if \bfitpi  \star solves (3.3), then setting P \star =\int 
\scrX 2 R

xy(\cdot )\bfitpi  \star (dxdy) solves (3.2), while P \star 
01 = \bfitpi  \star .

The Radon--Nikodym ratios between solutions and priors for the two problems,
analogous to (2.8), applies here too, and the analogous expressions for the Schr\"odinger
system in Theorem 2.4 follow as well. More explicitly, the solutions to (3.2) and (3.3)
are of the form

P \star = f(X0)g(X1)R and(3.4)

\bfitpi  \star = f(X0)g(X1)R01,(3.5)

respectively. The divergence between the standard SBP and the present uSBP be-
comes noticeable when we seek explicit solutions via analogues of system (2.14) and
of the corresponding Fokker--Plank equation in Theorem 2.5, since now we need to
specify the update on the prior killing rate. We detail this next.

3.1. Generalized Schr\"odinger system. The Fokker--Planck equation for a
diffusion (2.1) with killing rate V (t, x) is

(3.6) \partial tRt +\nabla \cdot (bRt) + V Rt =
1

2

n\sum 
i,j=1

\partial 2(aijRt)

\partial xi\partial xj
.

As before, a(t,X) = \sigma (t,X)\sigma (t,X)\prime is assumed to be a positive definite matrix
throughout. The corresponding Schr\"odinger system and its relation to the law of
P \star can be expressed after reparametrizing the pair (f, g) of functions on \scrX as follows:

f(x)R0(x) =

\Biggl\{ 
\^\varphi (0, x) if x \in Rn,
\^\psi (0) if x = c,

(3.7a)

g(y) =

\Biggl\{ 
\varphi (1, y) if y \in Rn,
\psi (1) if y = c.

(3.7b)
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Comparing with (2.14), we see that the Schr\"odinger system and the nonlinear coupling
constraints now become

\partial t \^\varphi =  - \nabla \cdot (b \^\varphi ) - V \^\varphi +
1

2

n\sum 
i,j=1

\partial 2(aij \^\varphi )

\partial xi\partial xj
,(3.8a)

d \^\psi 

dt
=

\int 
V \^\varphi (t, x)dx,(3.8b)

\partial t\varphi =  - b \cdot \nabla \varphi + V \varphi  - 1

2

n\sum 
i,j=1

aij
\partial 2\varphi 

\partial xi\partial xj
 - V \psi ,(3.8c)

d\psi 

dt
= 0,(3.8d)

\rho 0 = \varphi (0, \cdot ) \^\varphi (0, \cdot ),(3.8e)

\rho 1 = \varphi (1, \cdot ) \^\varphi (1, \cdot ),(3.8f)

\^\psi (0) = 0,(3.8g)

\psi (1) \^\psi (1) = 1 - 
\int 
\rho 1.(3.8h)

Theorem 3.4. Let R be the law of a diffusion (2.1) with nontrivial killing rate
V (t, x), with a(t, x) = \sigma (t, x)\sigma (t, x)\prime being positive definite for all (t, x) \in R\times Rn, and
assume that \rho 0, \rho 1 are absolutely continuous with respect to the Lebesgue measure.
There exists a unique (up to a constant scaling) 4-tuple ( \^\varphi (t, x), \^\psi (t), \varphi (t, x), \psi (t)) of
nonnegative functions that satisfies the Schr\"odinger system (3.8).

The proof of the theorem, given in Appendix B, is based on the contractiveness of
the iterative scheme that consists of alternating between evaluation of ( \^\varphi (1, \cdot ), \^\psi (1))
from (\varphi (0, \cdot ), \psi (0)) using (3.8e), (3.8a), (3.8g), (3.8b), and evaluation of (\varphi (0, \cdot ), \psi (0))
in a follow-up cycle from ( \^\varphi (1, \cdot ), \^\psi (1)) using the backward in time integration via the
remaining equations. Specifically, we prove that the iteration

(3.9)

\biggl( 
\^\varphi (1, \cdot )
\^\psi (1)

\biggr) 
\mapsto \rightarrow 

\biggl( 
\varphi (0, \cdot )
\psi (0)

\biggr) 
\mapsto \rightarrow 

\biggl( 
\^\varphi (1, \cdot )
\^\psi (1)

\biggr) 
next

is strictly contractive in the Hilbert metric.
As in the ordinary SBP, the discretized Schr\"odinger system (3.8) leads to an

efficient algorithm for computing ( \^\varphi (t, x), \^\psi (t), \varphi (t, x), \psi (t)), and thereby P \star as well,
as the corresponding Fokker--Planck equation for the corresponding marginals; this is
explained next.

3.2. Dynamic formulation. In general, a multiplicative transformation such
as R \rightarrow P \star = f(X0)g(X1)R, preserves the Markovian character. Moreover, the
generators of the respective semigroups that relate in this way, herein \scrL \bfR 

t ,\scrL \bfP  \star 

t , can
be evaluated from one another directly by utilizing the multiplicative factors and the
so-called carr\'e du champ operator

\Gamma t(u, v) := \scrL t(uv) - u\scrL t(v) - v\scrL t(u).

Specifically (see [42, equation (3.6)] and also [40, 52]),

(3.10) \scrL \bfP  \star 

t u(x) = \scrL \bfR 
t u(x) + \Gamma \bfR 

t (gt, u)(x)/gt(x),
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where

(3.11) gt(y) =

\Biggl\{ 
\varphi (t, y) if y \in Rn,
\psi (t) if y = c.

In light of Theorem 3.4 we now establish an explicit characterization of the dy-
namic uSBP (3.2). We denote by Pt the marginal of Xt restricted to the first com-
ponent in \scrX and by qt the probability of the coffin state. Thus, we use the vectorial
notation

Pt =: (Pt, qt).

Accordingly, for the marginals Rt = (Rt, st) of the prior, Rt satisfies the Fokker--
Planck equation (3.6), while st = 1  - 

\int 
Rn Rt(x)dx. The solution P \star to (3.2) is then

characterized by the following theorem.

Theorem 3.5. The solution P \star to (3.2) corresponds to a diffusion process

(3.12) dXt = (b(t,Xt) + a(t,Xt)\nabla log\varphi (t,Xt))dt+ \sigma (t,Xt)dWt

with killing rate \psi V/\varphi , where \varphi is obtained from the solution of the generalized
Schr\"odinger system (3.8). Accordingly,

(3.13) \partial tPt +\nabla \cdot ((b+ a\nabla log\varphi )Pt) =
1

2

n\sum 
i,j=1

\partial 2(aijPt)

\partial xi\partial xj
 - \psi 

\varphi 
V Pt.

Proof. The generator of R is of the form

(3.14) \scrL \bfR 
t :

\biggl[ 
\varphi 
\psi 

\biggr] 
\mapsto \rightarrow 

\Biggl[ 
b \cdot \nabla \varphi  - V \varphi + 1

2

\sum n
i,j=1 aij

\partial 2\varphi 
\partial xi\partial xj

+ V \psi 

0

\Biggr] 
.

The carr\'e du champ operator becomes

(3.15) \Gamma \bfR 
t

\biggl( \biggl[ 
\varphi 1

\psi 1

\biggr] 
,

\biggl[ 
\varphi 2

\psi 2

\biggr] \biggr) 
=

\biggl[ 
V \varphi 1\varphi 2 + a\nabla \varphi 1 \cdot \nabla \varphi 2 + V \psi 1\psi 2  - V \psi 1\varphi 2  - V \varphi 1\psi 2

0

\biggr] 
.

We readily obtain that

\scrL \bfP  \star 

t

\biggl[ 
v
\eta 

\biggr] 
= \scrL \bfR 

t

\biggl[ 
v
\eta 

\biggr] 
+ \Gamma \bfR 

t

\biggl( \biggl[ 
\varphi 
\psi 

\biggr] 
,

\biggl[ 
v
\eta 

\biggr] \biggr) 
/

\biggl[ 
\varphi 
\psi 

\biggr] 
=

\Biggl[ 
b \cdot \nabla v - V v+ 1

2

\sum n
i,j=1

aij\partial 
2v

\partial xi\partial xj
+V (\eta + v)+a\nabla log\varphi \cdot \nabla v+V (\psi \varphi \eta  - 

\psi 
\varphi v  - \eta )

0

\Biggr] 

=

\Biggl[ 
(b+ a\nabla log\varphi ) \cdot \nabla v  - \psi 

\varphi V v +
1
2

\sum n
i,j=1 aij

\partial 2v
\partial xi\partial xj

+ \psi 
\varphi V \eta 

0

\Biggr] 
,

where the division in the above is carried out componentwise. The generator is that
of the diffusion process (3.12) with killing rate \psi V/\varphi over the extended state space
\scrX . The Fokker--Planck equation (3.13) can be obtained by taking the dual of \scrL \bfP  \star 

t .

Theorem 3.6. The marginal distribution P \star 
t on the first component of \scrX is Pt =

\varphi (t, \cdot ) \^\varphi (t, \cdot ) and on the second component of \scrX is qt = \psi (t) \^\psi (t).
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Proof. We verify that Pt as above satisfies the Fokker--Planck equation associated
with the diffusion (3.12) with killing rate \psi V/\varphi . To this end, let Pt(\cdot ) := \varphi (t, \cdot ) \^\varphi (t, \cdot ).
Then by (3.8a) and (3.8c) we obtain

0 = \partial tPt +\nabla \cdot ((b+ a\nabla log\varphi )Pt) - 
1

2

n\sum 
i,j=1

\partial 2(aijPt)

\partial xi\partial xj
+ \^\varphi \psi V,

= \partial tPt +\nabla \cdot ((b+ a\nabla log\varphi )Pt) - 
1

2

n\sum 
i,j=1

\partial 2(aijPt)

\partial xi\partial xj
+
\psi 

\varphi 
V Pt,

which is exactly the desired Fokker--Planck equation (3.13). Similarly, by (3.8b) and
(3.8d),

dqt
dt

= \psi (t)

\int 
V \^\varphi (t, x)dx =

\int 
\psi 

\varphi 
V Ptdx,

which is consistent with Pt and the new killing rate \psi V/\varphi .

4. Fluid dynamic formulation. The original SBP, when there is no killing,
is known to be equivalent to the stochastic control problem of minimizing control
energy subject to the marginal two end-point constraints [17] or, equivalently, to a
fluid dynamic formulation whereby the velocity field u(t, \cdot ) effecting the flow minimizes
this action integral, namely,

min
Pt(\cdot ),u(t,\cdot )

\int 1

0

\int 
Rn

1

2
\| u(t, x)\| 2Ptdxdt,(4.1a)

\partial tPt +\nabla \cdot ((b+ \sigma u)Pt) - 
1

2

n\sum 
i,j=1

\partial 2(aijPt)

\partial xi\partial xj
= 0,(4.1b)

P0 = \rho 0, P1 = \rho 1.(4.1c)

The optimization takes place over the feedback control policy-flow field u(t, x) together
with the corresponding density flow Pt(x). Below we derive an analogous formulation
for the SBPs with unbalanced marginals.

Along the flow, the killing rate may deviate from the prior V and is to be de-
termined. To quantify the deviation of the posterior killing rate from the prior, we
introduce an entropic cost inside the action integral to penalize changes in the ratio
\alpha (t, x) between the posterior and the prior killing rates. That is, \alpha is an added op-
timization variable which is \alpha (t, x) \geq 0, with the posterior killing rate being \alpha V . To
penalize differences between the posterior and the prior killing rates we introduce the
factor

(4.2) \alpha log\alpha  - \alpha + 1

inside the action integral, which is convex and achieves the minimal value 0 at \alpha = 1.
This entropy cost has been used in [42, 43] to study the SBP over graphs. It is
associated with the large-deviations principle for a continuous-time Markov chain
with discrete state. Combining this entropic cost term for the ratio of killing rates
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with (4.1), we arrive at

min
P,u,\alpha 

\int 1

0

\int 
Rn

\biggl[ 
1

2
\| u(t, x)\| 2Pt + (\alpha log\alpha  - \alpha + 1)V Pt

\biggr] 
dxdt,(4.3a)

\partial tPt +\nabla \cdot ((b+ \sigma u)Pt) + \alpha V Pt  - 
1

2

n\sum 
i,j=1

\partial 2(aijPt)

\partial xi\partial xj
= 0,(4.3b)

P0 = \rho 0, P1 = \rho 1.(4.3c)

Note that the control strategy now has two components: a drift term u(t, x) and a
correcting term \alpha (t, x) for the killing rate.

Theorem 4.1. Let ( \^\varphi (t, x), \^\psi (t), \varphi (t, x), \psi (t)) be the solution to the Schr\"odinger
system (3.8); then the solution to (4.3) is given by the choice

u \star (t, x) = \sigma (t, x)\prime \nabla log\varphi (t, x),(4.4a)

\alpha  \star (t, x) =
\psi (t)

\varphi (t, x)
,(4.4b)

Pt(x) = \varphi (t, x) \^\varphi (t, x).(4.4c)

Proof. We verify that conditions (4.4) ensure stationarity of the Lagrangian for
(4.3). Introducing the Lagrange multiplier \lambda (t, x), we see that the Lagrangian for
(4.3) is

\scrL =

\int 1

0

\int \Biggl[ 
1

2
\| u\| 2Pt + (\alpha log\alpha  - \alpha + 1)V Pt

+\lambda 

\Biggl( 
\partial tPt +\nabla \cdot ((b+ \sigma u)Pt) + \alpha V Pt  - 

1

2

n\sum 
i,j=1

\partial 2(aijPt)

\partial xi\partial xj

\Biggr) \Biggr] 
dxdt.

Applying integration by parts, we obtain

\scrL =

\int 1

0

\int \Biggl[ 
1

2
\| u\| 2Pt + (\alpha log\alpha  - \alpha + 1)V Pt  - Pt\partial t\lambda  - \nabla \lambda \cdot (b+ \sigma u)Pt + \alpha V \lambda Pt

 - 1

2

n\sum 
i,j=1

aij
\partial 2\lambda 

\partial xi\partial xj
Pt

\Biggr] 
dxdt+

\int 
\lambda (1, x)P1(x)dx - 

\int 
\lambda (0, x)P0(x)dx.(4.5)

Minimizing the above over u yields

(4.6a) u \star (t, x) = \sigma \prime \nabla \lambda .

Similarly, minimization over \alpha yields

(4.6b) \alpha  \star (t, x) = exp( - \lambda ).

Substituting (4.6) into (4.5), we obtain

\scrL =

\int 1

0

\int 
Pt

\left(   - 1

2
a\nabla \lambda \cdot \nabla \lambda  - b \cdot \nabla \lambda  - \partial t\lambda  - 1

2

n\sum 
i,j=1

aij
\partial 2\lambda 

\partial xi\partial xj
+ V (1 - exp( - \lambda ))

\right)  dxdt

+

\int 
\lambda (1, x)P1(x)dx - 

\int 
\lambda (0, x)P0(x)dx.
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The optimality condition

(4.7) \partial t\lambda + b \cdot \nabla \lambda +
1

2

n\sum 
i,j=1

aij
\partial 2\lambda 

\partial xi\partial xj
+

1

2
a\nabla \lambda \cdot \nabla \lambda  - V (1 - exp( - \lambda )) = 0

follows. Now, let

(4.8) \lambda (t, x) = log
\varphi (t, x)

\psi (t)
;

then (4.7) becomes

(4.9) \partial t\varphi  - d\psi 

dt

\varphi 

\psi 
+ b \cdot \nabla \varphi  - V \varphi +

1

2

n\sum 
i,j=1

aij
\partial 2\varphi 

\partial xi\partial xj
+ V \psi = 0,

and by setting d\psi /dt = 0, the above reduces to (3.8c). Finally, plugging (4.8) into
(4.6) yields (4.4).

Substituting the optimal control (4.4) into (4.3b) yields the closed loop dynamics
under the optimal control strategy. Clearly, it is the same as (3.13) associated with
the solution P \star to the uSBP (3.2).

5. The SBP over reweighted processes. Some early attempts to formulate
the SBP for diffusions with losses date back to Nagasawa and Wakolbinger [48, 59].
They focused on processes that are suitably reweighted via a Feynman--Kac multi-
plicative functional to model losses. Earlier relevant work on Schr\"odinger bridges
over reweighted processes includes [48, 59, 6, 27, 1, 40, 16]. In particular, [59, sec-
tion 8] and, more recently, [40] discuss Feynman--Kac reweighing of the prior measure

R into f(X0) exp( - 
\int 1

0
V (t,Xt)dt)g(X1)R. Such a process, with this special Radon--

Nikodym derivative, is referred to as the h-transform of R. To distinguish this prior
work from our uSBP formulation, we refer to the earlier formulation as the SBP over
reweighted processes.

Let \^\rho 1 be a normalized version of \rho 1 so that \^\rho 1 is a probability distribution; then
the classical Schr\"odinger bridge problem over reweighted processes can be formulated
as

(5.1) min
P\in \scrP (\Omega )

\Bigl\{ 
D(P\| \^R) | P0 = \rho 0, P1 = \^\rho 1

\Bigr\} 
,

where

(5.2) \^R = exp

\biggl( 
 - 

\int 1

0

V (t,Xt)dt

\biggr) 
R

is the (unnormalized) distribution induced by the survival trajectories of the diffusion
process (2.1) with killing rate V . The solution to this problem reads

(5.3) P  \star = f(X0)g(X1) \^R = f(X0) exp

\biggl( 
 - 

\int 1

0

V (t,Xt)dt

\biggr) 
g(X1)R,

where the two multipliers f, g are chosen such that P  \star satisfies the constraints P0 =
\rho 0, P1 = \^\rho 1. These two multipliers can again be obtained by solving a Schr\"odinger
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system. More specifically, let \varphi , \^\varphi be the solution to

\partial t \^\varphi =  - \nabla \cdot (b \^\varphi ) - V \^\varphi +
1

2

n\sum 
i,j=1

\partial 2(aij \^\varphi )

\partial xi\partial xj
,(5.4a)

\partial t\varphi =  - b \cdot \nabla \varphi + V \varphi  - 1

2

n\sum 
i,j=1

aij
\partial 2\varphi 

\partial xi\partial xj
,(5.4b)

\rho 0 = \varphi (0, \cdot ) \^\varphi (0, \cdot ),(5.4c)

\^\rho 1 = \varphi (1, \cdot ) \^\varphi (1, \cdot );(5.4d)

then \varphi , \^\varphi relate to f, g as

\^\varphi (0, x) = f(x) \^R0(x),(5.5a)

\varphi (1, y) = g(y).(5.5b)

Unlike the solution P \star to the uSBP (3.2), the solution P  \star to (5.1) is a probability
measure over \Omega = C([0, 1],Rn). Indeed, it is associated with the diffusion process

dXt = (b(t,Xt) + a(t,Xt)\nabla log\varphi (t,Xt))dt+ \sigma (t,Xt)dWt

without losses. The marginal distribution of it equals Pt = \varphi (t, \cdot ) \^\varphi (t, \cdot ) and is a
probability measure over Rn for all t \in [0, 1]. We argue that the SBP over weighted
processes don't address Schr\"odinger's original problem as described in the thought
experiment in section 3. The prior \^R describes the distribution of the surviving tra-
jectories, and the problem (5.1) can be interpreted as finding the most likely evolution
of surviving trajectories that are compatible with the two marginals \rho 0, \^\rho 1. However,
the mechanism of how the particles that did not survive got killed is completely ig-
nored in this formulation.

The importance of explicitly considering a possible update of the killing rate
becomes salient when the end-point marginals are consistent with the prior law. Such
a case highlights a dichotomy between our formulation of the uSBP and the rationale
behind the SBP over reweighted processes. To see this, consider a scenario where the
two marginals are already consistent with the prior law, that is,

\rho 1(\cdot ) =
\int 
Rn

q(0, x, 1, \cdot )\rho 0(x)dx.

One would expect the solution to be the prior \^R, since the prior is consistent with
the end-point marginals. This is, however, not the case! Indeed, \^R0 represents the
distribution at t = 0 of those particles that are destined to survive, and this differs
from \rho 0, the distribution of all particles. Thus, \^R0 is not the solution to (5.1).

One could attempt to modify Schr\"odinger's thought experiment by postulating
that \rho 0 is precisely the distribution at t = 0 of those particles that eventually survive.
With this modification, it is easy to see that the prior \^R solves (5.1). This modification,
however, is not physical: It is not possible to measure at time t = 0 the marginal of
the surviving trajectories!

Finally, we note that the SBP over reweighted processes has the following fluid
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dynamic (stochastic control) formulation:

min
Pt(\cdot ),u(t,\cdot )

\int 1

0

\int 
Rn

\biggl[ 
1

2
\| u(t, x)\| 2 + V (t, x)

\biggr] 
Ptdxdt,(5.6a)

\partial tPt +\nabla \cdot ((b+ \sigma u)Pt) - 
1

2

n\sum 
i,j=1

\partial 2(aijPt)

\partial xi\partial xj
= 0,(5.6b)

P0 = \rho 0, P1 = \^\rho 1.(5.6c)

This stochastic control problem is over the diffusion process without losses,

dXt = b(t,Xt)dt+ \sigma (t,Xt)u(t,Xt)dt+ \sigma (t,Xt)dWt,

and the control u(t, x) only enters the system through the drift. The prior killing rate
V serves as a cost term. This is substantially different from the control formulation
(4.3) of the uSBP where the control has a drift term u(t, x) and a correcting term
\alpha (t, x) and the killing rate V appears in the dynamics instead of the cost function.

6. Numerical example. We conclude by highlighting the uSBP formalism with
an academic/numerical example. To this end, we consider the diffusion process

dXt = \sigma dWt,

with Xt,Wt \in R (i.e., in a 1-dimensional state space), \sigma = 0.05, and killing rate

V (t, x) \equiv 1.

We work out the solution of the uSBP with initial marginal density

\rho 0(x) =

\Biggl\{ 
0.3 - 0.3 cos(3\pi x) if 0 \leq x < 2/3,

2.4 - 2.4 cos(6\pi x - 4\pi ) if 2/3 \leq x \leq 1,

and target marginal density
\rho 1(x) = s\rho 0(1 - x),

where s \leq 1 denotes the percentage of survival particles.
Figures 1 and 2 display the marginal flow of the uSBP for different values of s.

When s < 1, only a portion of the particles survive until the end, and many particles
vanish along the way. Thus, the total mass of the particles is a decreasing function of
time, as can be seen from Figure 3. Note that the terminal percentage of surviving
particles is consistent with the chosen value for s in each case.

For comparison, we also display the solution to the SBP over reweighted pro-
cesses in Figure 4. Note that its solution is independent of s. The solution describes
the posterior distribution of the survived particles only, and thus the marginal flow
remains a probability measure at all times. In fact, it coincides with uSBP for s = 1.

7. Concluding remarks. We introduced Schr\"odinger bridges between unbal-
anced marginals in the spirit of Schr\"odinger's original rationale (that led to the stan-
dard SBP) and aimed to reconcile a given prior law, that now includes a killing rate,
with marginal observations. We formulated the problem as a maximum entropy prob-
lem over an augmented state space that includes a coffin state representing the state
of vanishing particles. The solution is characterized by a Schr\"odinger-type system,
different from the classical one, that yields a diffusion process whose drift and killing
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Fig. 1. Marginal flow of the uSBP for s = 1.

(a) s = 0.8. (b) s = 0.6. (c) s = 0.4.

Fig. 2. Marginal flow of the uSBP for s = 0.8, 0.6, 0.4.

(a) s = 0.8. (b) s = 0.6. (c) s = 0.4.

Fig. 3. Survival mass of the uSBP for s = 0.8, 0.6, 0.4.

Fig. 4. Marginal flow of the SBP over reweighted processes.
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rate are suitably adjusted as compared to the prior. Just like in the standard SBP,
this new unbalanced Schr\"odinger Bridge Problem (uSBP) can be formulated as a
stochastic control problem. Naturally, departing from the standard SBP, the control
variable in this control formulation includes both the drift and killing rate. We under-
score an apparent dichotomy between our formulation of the uSBP and earlier work
on the SBP over reweighted processes with Feynman--Kac functionals. Though both
pertain to SBPs for diffusions with losses, we argued that our uSBP is a natural for-
mulation in the spirit of Schr\"odinger's original quest to reconcile probabilistic models
with observations. The nature of the zero-noise limit of the uSBP and its relation
to a corresponding optimal transport flow between unbalanced marginals is left as a
topic of future research.

Appendix A. Hilbert's projective metric. Herein we discuss Hilbert's pro-
jective metric and highlight some important contraction theorems due to Birkhoff and
Bushell [5, 8, 9] that we use in this work. A first application of the Birkhoff--Bushell
contractive maps to scaling of nonnegative matrices, a topic closely connected to
Schr\"odinger bridges, was presented in [33]. In [36], it was shown that the Schr\"odinger
bridge for Markov chains and quantum channels can be efficiently obtained from the
fixed point of a map which contracts the Hilbert metric. We refer the reader to [13, 19]
for more detailed information and further applications of this metric. Below, following
[9], we recall some basic concepts and results of this theory.

Let \scrB be a real Banach space, and let \scrK be a closed solid cone in \scrB , i.e., \scrK is
closed with nonempty interior \scrK 0 and is such that \scrK +\scrK \subseteq \scrK , \scrK \cap  - \scrK = \{ 0\} as well
as \lambda \scrK \subseteq \scrK for all \lambda \geq 0. Define the partial order

x \preceq y \leftrightarrow y  - x \in \scrK , x \prec y \leftrightarrow y  - x \in \scrK 0,

and for x,y \in \scrK + := \scrK \setminus \{ 0\} , define

M(x,y) := inf \{ \lambda | x \preceq \lambda y\} ,
m(x,y) := sup\{ \lambda | \lambda y \preceq x\} .

Then, the Hilbert metric is defined on \scrK + by

dH(x,y) := log

\biggl( 
M(x,y)

m(x,y)

\biggr) 
.

It is easily seen that dH(\cdot , \cdot ) is symmetric, i.e., dH(x,y) = dH(y,x), and invariant
under scaling by positive constants, since dH(x,y) = dH(\lambda x,y) for any \lambda > 0 and
x,y \in \scrK 0. Therefore dH(\lambda x,x) = 0. It can also be shown that the triangular
inequality holds, and therefore dH(\cdot , \cdot ) is a projective metric that represents distance
between rays.

In our analysis we encounter two types of maps. We encounter inversion

(A.1) \scrE inv : x \mapsto \rightarrow x - 1

of elements x \in \scrK 0, and linear maps that are positive, namely,

\scrE : \scrK + \rightarrow \scrK +.

For both types of maps we are interested in determining their contraction ratio,

\kappa (\scrE ) := inf\{ \lambda | dH(\scrE (x), \scrE (y)) \leq \lambda dH(x,y)\forall x,y \in \scrK 0\} .
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It turns out that the former are isometries in the Hilbert metric, whereas the latter
are contractions. Thus, the composition of a combination of both types turns out to
be a contraction.

That (A.1) is an isometry, i.e., \kappa (\scrE inv) = 1, follows immediately from

M(x,y) =
1

m(x - 1,y - 1)
.

Then, by Birkhoff's theorem [5, 9], any positive linear map \scrE is contractive, and the
contraction ratio can be expressed in terms of the projective diameter

\Delta (\scrE ) := sup\{ dH(\scrE (x), \scrE (y)) | x,y \in \scrK 0\} 

of the range of \scrE . Specifically, under these conditions, Birkhoff's theorem states that

(A.2) \kappa (\scrE ) = tanh

\biggl( 
1

4
\Delta (\scrE )

\biggr) 
.

Thus, a positive linear map is strictly contractive if its projective diameter \Delta (\scrE ) is
finite. A further useful observation following from the triangular inequality is that for
any x0 \in \scrK 0,

(A.3) \Delta (\scrE ) \leq 2 sup\{ dH(\scrE (x),x0) | x \in \scrK 0\} .

This allows bounding \Delta (\scrE ) to ensure strict contraction for \scrE .
Important examples are provided by the positive orthant of Rn, the cone of Her-

mitian, positive semidefinite matrices, spaces of bounded positive functions, and so
on. Notice that, in all cases, the boundary of the cone lies at an infinite distance from
any interior point.

Appendix B. Proof of Theorem 3.4 on the generalized Schr\"odinger
system. We herein establish existence and uniqueness of the solution (up to constant
positive scaling) for the system (3.8). The steps mimic the analogous case for the SBP
where the marginals are supported on a Euclidean space [13]. The difference at present
lies in the fact that the support of functions includes an added point that represents
the coffin state.

We assume that the marginal measures \rho 0, \rho 1 are absolutely continuous with
respect to the Lebesgue measure, in that \rho 0(dx) = \rho 0(x)dx and \rho 1(dx) = \rho 1(x)dx
for density functions \rho 0, \rho 1 with support S0, S1 \subseteq Rn, respectively, and that \rho 0 is a
probability measure, while \rho 1 is a nonnegative measure with

\int 
S1
\rho 1(x)dx \leq 1. The

case
\int 
S1
\rho 1(x)dx = 1 reduce to the standard SBP and is easy to handle. Thus, without

loss of generality, we assume \int 
S1

\rho 1(x)dx > 1.

As before, we let q(0, x0, t, x) for 0 < t \leq 1 denote the fundamental solution
of (3.8a) and assume that it is jointly continuous and strictly positive on compact
subsets; sufficient conditions for existence are given, e.g., in [35, Chapter 6, section 4]
and [34, Chapter 1, section 6]. Typical assumptions require that b(t, x), \sigma (t, x), V (t, x)
be bounded and twice continuous differentiable and that a(t, x) be strictly positive
definite for all t, x. Under these assumptions, we rewrite the Schr\"odinger system (3.8)
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as follows:

\^\varphi (t, x) =

\int 
Rn

q(0, x0, t, x) \^\varphi (0, x0)dx0,(B.1a)

\^\psi (1) =

\int 1

0

\int 
Rn

V (t, x) \^\varphi (t, x)dxdt,(B.1b)

\varphi (0, x0) =

\int 
Rn

q(0, x0, 1, x1)\varphi (1, x1)dx1+

\int 1

0

\int 
Rn

q(0, x0, t, x)V (t, x)\psi (t)dxdt,(B.1c)

\psi (t) = constant, 0 \leq t \leq 1,(B.1d)

\rho 0(x0) = \varphi (0, x0) \^\varphi (0, x0),(B.1e)

\rho 1(x1) = \varphi (1, x1) \^\varphi (1, x1),(B.1f)

\psi (0) \^\psi (0) = 1 - 
\int 
S0

\rho 0 = 0,(B.1g)

\psi (1) \^\psi (1) = 1 - 
\int 
S1

\rho 1 =: c1 > 0.(B.1h)

We consolidate the system of equations (B.1) into

\^\varphi (t, x) =

\int 
S0

q(0, x0, t, x)\rho 0(x0)
1

\varphi (0, x0)
dx0,(B.2a)

\^\psi (1) =

\int 1

0

\int 
Rn

V (t, x) \^\varphi (t, x)dxdt(B.2b)

=

\int 
S0

1

\varphi (0, x0)
\rho 0(x0)

\int 1

0

\int 
Rn

q(0, x0, t, x)V (t, x)dxdt\underbrace{}  \underbrace{}  
r(x0)

dx0,

\varphi (0, x0)=

\int 
S1

q(0, x0, 1, x1)\rho 1(x1)
1

\^\varphi (1, x1)
dx1(B.2c)

+
1

\^\psi (1)
c1

\int 1

0

\int 
Rn

q(0, x0, t, x)V (t, x)dxdt\underbrace{}  \underbrace{}  
r(x0)

,

\psi (0) = \psi (1) =
1

\^\psi (1)
c1.(B.2d)

These four equations that encapsulate the Schr\"odinger system suggest considering
the composition of maps

(B.3)

\biggl( 
\^\varphi (1, \cdot )
\^\psi (1)

\biggr) 
\scrE 1\mapsto \rightarrow 

\biggl( 1
\^\varphi (1,\cdot )
1

\^\psi (1)

\biggr) 
\scrE 2\mapsto \rightarrow 

\biggl( 
\varphi (0, \cdot )
\psi (0)

\biggr) 
\scrE 3\mapsto \rightarrow 

\biggl( 1
\varphi (0,\cdot )

1
\psi (0)

\biggr) 
\scrE 4\mapsto \rightarrow 

\biggl( 
\^\varphi (1, \cdot )
\^\psi (1)

\biggr) 
next

in order to analyze existence of solutions. Indeed, we utilize the theory of the Hilbert
metric (outlined in Appendix A) to show that the composition is a strict contraction
along rays, which results in a unique fixed point.

To this end, we consider the Banach space \scrB = \scrL \infty (\scrX ) of real-valued functions
h(\cdot ) on \scrX = S \cup \{ c\} , where S \subseteq Rn satisfies that S0 \cup S1 \subset S. For notational

convenience we use the vectorial notation
\bigl( 
h(x)
h(c)

\bigr) 
to specify the values of h on the two

constituents of its support, for x \in Rn and c \in \{ c\} . Thus, the norm of h is

\| h\| := max\{ \| h| S\| \infty , | h(c)| \} .
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We consider the cone of positive functions

\scrK = \{ h \in \scrB | h(c) \geq 0 and h(x) \geq 0 almost everywhere on S\} 

and the corresponding partial order h1 \preceq h2 \leftrightarrow h2 - h1 \in \scrK as usual. We observe that
\scrK is closed and solid and has a nonempty interior (of strictly positive a.e. functions)
that we denote \scrK 0; we also denote \scrK + := \scrK \setminus \{ 0\} .

Note that in the ongoing development, the components of functions h \in \scrB that
are (possibly time-dependent) functions on Rn and \{ c\} , respectively, are differentiated
as \varphi ,\psi or \^\varphi , \^\psi , respectively, e.g.,

\bigl( 
h(x)
h(c)

\bigr) 
=

\bigl( 
\varphi (t,x)
\psi (t)

\bigr) 
. We proceed to consider the com-

position of maps in (B.3) and establish first the following weaker version of Theorem
3.4.

Theorem B.1. Assuming that the support sets S0, S1 of the two marginals \rho 0, \rho 1
of the uSBP are compact, the claim in Theorem 3.4 holds true.

Recall the notation M(\cdot , \cdot ),m(\cdot , \cdot ), \kappa (\cdot ), and \Delta (\cdot ) from Appendix A. As noted
there, sinceM(h1, h2) = m(h - 1

1 , h - 1
2 ) - 1 for h1, h2 \in \scrK 0, both \scrE 1 and \scrE 3 are isometries.

They are readily extended to isometries on \scrK + as well.
The map \scrE 2 is linear (homogeneous of degree 1) and therefore, by Birkhoff's the-

orem given in Appendix A, contractive on \scrK +. For the same reason, \scrE 4 is contractive.
Unfortunately, neither map is strictly contractive. To see this, note that since, e.g.,
\scrE 2(

\bigl( 
 \star 
0

\bigr) 
) =

\bigl( 
 \star 
0

\bigr) 
, with  \star denoting nonzero entries, certain elements on the boundary of

\scrK + map onto the boundary and not the interior.
In order to establish the theorem we proceed as follows. Let z \in S0 be an

arbitrary fixed point in S0. We modify equation (B.2d) of the Schr\"odinger system
(B.2), replacing it with

(B.2d') \~\psi (0) = \varphi (0, z) =

\int 
S1

q(0, z, 1, x1)\rho 1(x1)
1

\^\varphi (1, x1)
dx1 +

1

\^\psi (1)
c1r(z),

and, accordingly, we replace \scrE 2 with a corresponding map that we refer to as \scrE \prime 
2. We

then show the existence and uniqueness of solution for the modified system. Interest-
ingly, except for the last of the elements in the 4-tuple ( \^\varphi (1, x), \^\psi (1), \varphi (0, x), \psi (0)),
namely, \psi (0), the remaining dictate the sought solution of the original Schr\"odinger
system (3.8). This last entry plays no role in the original Schr\"odinger system. In
particular,

(B.4) \scrE 4 \circ \scrE 3 \circ \scrE 2 \circ \scrE 1 = \scrE 4 \circ \scrE 3 \circ \scrE \prime 
2 \circ \scrE 1 =: \scrC .

We now consider \scrE \prime 
2 : h \mapsto \rightarrow g and show that it is strictly contractive in the Hilbert

metric. From (A.3), taking as x0 the function which is identically equal to 1 on S as
well as on \{ c\} , we deduce that

(B.5) \Delta (\scrE \prime 
2) \leq 2 sup

\biggl\{ 
log

\biggl( 
max\{ supx g(x), g(c)\} 
min\{ infx g(x), g(c)\} 

\biggr) 
| g = \scrE \prime 

2(h) and h \in \scrK 0

\biggr\} 
.

Since \rho 0, \rho 1 are supported on compact sets S0, S1 of Rn, respectively, we can choose
S to be compact as well. Since the kernel q is positive and continuous, the kernel is
bounded from below and above on S \times S; i.e., there exists 0 < \alpha 1 \leq \beta 1 < \infty such
that

(B.6) \alpha 1 \leq q(0, x, 1, y) \leq \beta 1
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for all (x, y) \in S \times S. Similarly, there exists 0 < \alpha 2 \leq \beta 2 <\infty such that

(B.7) \alpha 2 \leq r(x) \leq \beta 2

for all x \in S.
Let h(x) = 1

\^\varphi (1,x) and h(c) = 1
\^\psi (1)

; then

\alpha 1

\int 
S1

\rho 1(x1)h(x1)dx1 \leq 
\int 
S1

q(0, x0, 1, x1)\rho 1(x1)h(x1)dx1 \leq \beta 1

\int 
S1

\rho 1(x1)h(x1)dx1

for any x0 \in S. It follows that, in view of (B.2c),

supx g(x)

infx g(x)
\leq 

maxi\in \{ 1,2\} \beta i

mini\in \{ 1,2\} \alpha i
<\infty .

Thanks to the modification (B.2d'), g(c) = g(z), and therefore

max\{ supx g(x), g(c)\} 
min\{ infx g(x), g(c)\} 

\leq 
maxi\in \{ 1,2\} \beta i

mini\in \{ 1,2\} \alpha i
<\infty .

Thus, from (B.5) and using Birkhoff's theorem (A.2),

\kappa (\scrE \prime 
2) < 1.

As a consequence, the composition \scrE 4 \circ \scrE 3 \circ \scrE \prime 
2 \circ \scrE 1 is strictly contractive, i.e.,

\kappa (\scrE 4 \circ \scrE 3 \circ \scrE \prime 
2 \circ \scrE 1) < 1.

It follows from (B.4) that

\kappa (\scrC ) = \kappa (\scrE 4 \circ \scrE 3 \circ \scrE 2 \circ \scrE 1) < 1.

The above condition ensures that \scrC has a unique fixed point in terms of the
Hilbert metric [13]. Since the Hilbert metric is a projective metric, the uniqueness is
up to a constant scaling. Denote the fixed point on the unit sphere U by h; then

\scrC (h) = \lambda h

for some positive number \lambda . We next show \lambda = 1. To this end, we introduce a
different factorization of \scrC as

\scrC = \scrE \dagger \circ \scrE p0 \circ \scrE \circ \scrE p1 ,

where

\scrE (u) =
\biggl[ \int 
S1
q(0, x, 1, x1)u(x1)dx1 + r(x)u(c)

u(c)

\biggr] 
,

\scrE p0(u) =

\Biggl[ 
\rho 0(x)
u(x)

0

\Biggr] 
,

\scrE p1(u) =

\Biggl[ 
\rho 1(x)
u(x)
c1
u(c)

\Biggr] 
,
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and \scrE \dagger is the adjoint operator of \scrE . Clearly,

\langle u, \scrE p0(u)\rangle = \langle \scrE p1(u), u\rangle = 1 \forall u \in \scrK 0.

It follows that

1 = \langle \scrE \circ \scrE p1(h), \scrE p0 \circ \scrE \circ \scrE p1(h)\rangle 
= \langle \scrE p1(h), \scrE \dagger \circ \scrE p0 \circ \scrE \circ \scrE p1(h)\rangle 
= \langle \scrE p1(h), \scrC (h)\rangle 
= \langle \scrE p1(h), \lambda h\rangle = \lambda .

Once the fixed point h is computed, the 4-tuple ( \^\varphi (1, x), \^\psi (1), \varphi (0, x), \psi (0)) can be
recovered by

\^\varphi (1, x) = h(x), \^\psi (1) = h(c),

and \biggl[ 
\varphi (0, \cdot )
\psi (0)

\biggr] 
= \scrE 2 \circ \scrE 1(h).

The uniqueness of the 4-tuple ( \^\varphi (1, x), \^\psi (1), \varphi (0, x), \psi (0)) follows from the uniqueness
of the fixed point h. This completes the proof of Theorem B.1. A standard argument
[13, Theorem 3.5] can be used to extend the proof to the setting where S0, S1 are not
necessarily compact for Theorem 3.4.
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