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Abstract—We consider a class of inference problems for large
populations where each individual is modeled by the same
hidden Markov model (HMM). We focus on aggregate inference
problems in HMMs with discrete state space and continuous
observation space. The continuous observations are aggregated
in a way such that the individuals are indistinguishable from
measurements. We propose an aggregate inference algorithm
called continuous observation collective forward-backward al-
gorithm. It extends the recently proposed collective forward-
backward algorithm for aggregate inference in HMMs with
discrete observations to the case of continuous observations.

Index Terms—Markov process, filtering, stochastic systems

I. INTRODUCTION

H IDDEN Markov models (HMMs) [1] are widely used in
the systems and control to model dynamical systems in

areas such as robotics, navigation, and autonomy. An HMM
has two major components, a Markov process that describes
the evolution of the state of the system and a measurement
process corrupted by noise. One critical task in HMMs is to
reliably estimate the state using the available noisy measure-
ments, known as inference (filtering or smoothing) [2]. Over
the years, many filtering algorithms have been proposed. The
most well-known one could be the Kalman Filter [3], which
is optimal for HMMs with Gaussian transition probability
and Gaussian measurement noise. Several other well-known
algorithms include the forward-backward algorithm [1] for
discrete time discrete state HMMs and the Wonham algorithm
[4] for continuous time discrete state HMMs with Gaussian
measurement noise.

Recently a new class of inference problems for large pop-
ulations with aggregate measurements have attracted much
attention [5], [6], [7]. In these inference problems, instead
of individual measurements, only population-level data in the
form of counts or contingency table is available [5]. Such
scenarios may occur due to privacy or economic reasons. For
instance, in the study of animal flocking, it is too expen-
sive, if not impossible, to track each individual. Aggregate
measurements from surveillance cameras or other sensors are
instead used. Another timely example is the modeling of
pandemic, where the goal is to use available testing data to
predict the evolution of the pandemic. Since the test results
are anonymized, they form aggregate measurements.
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Inference for large populations is a difficult task. The lack
of individual measurement makes it even more challenging,
Standard algorithms such as the forward-backward algorithm
for HMMs are no longer applicable. A recent framework
developed to address aggregate inference problems is the
collective graphical models (CGMs) [5]. Within this frame-
work, several algorithms have been proposed, including ap-
proximate MAP [8], non-linear belief propagation [9] and
Bethe-RDA [10]. Several other recent works on inference with
aggregate observations include [11], [12], [7], [13], [14].

It turns out that the aggregate inference problem for general
graphical models can be reformulated as an entropy regu-
larized multi-marginal optimal transport (MOT) problem [6].
Building on this connection between aggregate inference and
MOT, we proposed, in [6], [7], a novel algorithm for aggregate
inference termed Sinkhorn belief propagation [15], [16]. When
used in aggregate inference problems for HMMs, it is called
collective forward-backward (CFB) algorithm [7].

However, most of the existing methods for aggregate inference
require both the state space and the observation space to be
discrete. They are not directly applicable to the setting with
continuous observation space. To use these methods in such
setting, we need to first discretize the observation space to
make it discrete. This step introduces discretization error. More
importantly, the discretization becomes impractical when the
dimension of the observation space is large. The goal of this
work is to develop an efficient aggregate inference algorithm
for aggregate HMMs with continuous observation spaces and
discrete state spaces. Such HMMs with discrete hidden states
and continuous observations are used in applications such as
fault detection [4], [17], [18].

In this work, we extend the existing CFB algorithm, which is
limited to HMMs with discrete observations, to continuous
observation HMMs and call our algorithm as continuous
observation collective forward-backward (CO-CFB) algorithm.
The CFB algorithm can be formally extended to HMMs
with continuous observation by replacing the summation by
integration in some key steps. However, this extension does
not lead to any practical algorithm since numerical integration
by grid discretization is expensive. Rewriting this integration
step in terms of expectation circumvents this difficulty, and
we arrive at the CO-CFB that only uses samples from the
aggregate observations. Moreover, just like CFB, the CO-CFB
algorithm also exhibits convergence guarantee. To the best
of our knowledge, CO-CFB is the first efficient algorithm
for aggregate inference of HMMs with general continuous



observations. Note that the recent work [14] is limited to
the special case of HMMs of Gaussian Markov processes.
In contrast, our proposed algorithm CO-CFB is applicable to
general continuous observations. Another related method is the
probability hypothesis density (PHD) filter [19] which aims to
estimate the state distribution of a time-varying population.
This method is designed for filtering problems while our
algorithm is for smoothing.

II. BACKGROUND

An HMM is a Markov process accompanied by observation
noise consisting of a sequence of unobservable states Xt (also
known as hidden states) and corresponding observable states
Ot for t = 1, 2, . . .. Here Xt and Ot are random variables
taking values from X and O, respectively. In general, both
X and O can be either finite or infinite sets. We assume X
to be a set with d elements. An HMM is characterized1 by
the distribution π(x1) of the starting state X1, the transition
probability p(xt+1|xt), and the observation model p(ot|xt).
The joint probability distribution over T steps reads

p(T ) = π(x1)
T−1∏
t=1

p(xt+1|xt)
T∏

t=1

p(ot|xt), (1)

where xt ∈ X is a realization of Xt, ot ∈ O is a realization
of Ot, and T = {x1, o1, · · · , xt, ot, · · · , xT , oT } is a sample
trajectory.

One of the most important problems in HMMs is Bayesian
inference which aims to compute the posterior distributions of
the hidden states Xt given a sequence of observations. This is
also known as filtering or smoothing (inference) [1] in systems
and control. A well-known and efficient algorithm for this task
is the standard forward-backward algorithm [1].

A. Aggregate Hidden Markov Models

Aggregate HMMs [9], [7] deal with the problems of estimating
the behavior of a collection of indistinguishable HMMs based
on aggregate observations. Assume the observation space O
is a finite set. Given M trajectories {T (1), · · · , T (M)} with
T (m) = {x(m)

1 , o
(m)
1 , · · · , x(m)

T , o
(m)
T }, sampled from the same

HMM, the associated aggregate HMM is concerned with the
aggregate quantities n = {nt, ñt,ntt, ñtt} over the entire
population defined by, for every x, x′ ∈ X , o ∈ O,

ñtt(x, o) =
M∑

m=1

I[x(m)
t = x, o

(m)
t = o], t ∈ {1, · · · , T} (2a)

ntt(x, x
′)=

M∑
m=1

I[x(m)
t =x, x

(m)
t+1= x′], t∈{1, · · · , T−1} (2b)

nt(x) =
M∑

m=1

I[x(m)
t = x], t ∈ {1, · · · , T} (2c)

ñt(o) =
M∑

m=1

I[o(m)
t = o], t ∈ {1, · · · , T}, (2d)

1We assume that the HMM is time-homogeneous, that is, transition and
observation probabilities are time-invariant. This is for notational convenience.
All the results in this paper apply to time-varying HMMs.

where I denotes the indicator function. Note that we have
adopted the bold symbol to represent the vectors, e.g., nt is
a vector with entry nt(x) for each x ∈ X . These quantities
represent the counts of M realizations of HMM taking specific
values; they are histograms. Clearly, n ∈ LZ

M , the integer-
valued scaled local polytope [9], that is, the entries of n are
all integers and they satisfy the constraints∑

o∈O
ñt(o) = M,

∑
x∈X

nt(x) = M, ∀t ∈ {1, · · · , T} (3a)∑
x∈X

ntt(x, xt+1) = nt+1(xt+1),
∑
x∈X

ntt(xt, x) = nt(xt),

∀t ∈ {1, · · · , T − 1} (3b)∑
o∈O

ñtt(x, o) = nt(x), ∀t ∈ {1, · · · , T} (3c)∑
x∈X

ñtt(x, o) = ñt(o), ∀t ∈ {1, · · · , T}. (3d)

The HMMs are aggregate in the sense that they are indistin-
guishable to each other. In this setting, the observations2 are
yt with yt(o) denoting the number of trajectories such that
o
(m)
t = o, imposing the constraints ñt = yt for t = 1, . . . , T .

The goal of inference in aggregate HMMs is to estimate the
most likely n given the aggregate measurements {yt}. The
exact inference is proved to be computationally infeasible [5]
for problems with large T and M . It is proposed in [7] that
this aggregate inference can be approximately achieved by
solving a free energy minimization problem. Moreover, the
approximation error vanishes as the size M of the population
goes to infinity. For the sake of simplicity and without loss of
generality, we normalize the observation yt and the statistics
n by population size M , yielding a modification on (3a)∑

o∈O
ñt(o) = 1,

∑
x∈X

nt(x) = 1 ∀t ∈ {1, · · · , T}. (4)

Denote the local polytope (without integer constraints) de-
scribed by Equations (4)-(3b)-(3c)-(3d) by M [20], and define
the free energy

F(n) =−
T∑

t=1

∑
xt,ot

ñtt(xt, ot) log(p(ot|xt)/ñtt(xt, ot)) (5)

−
T−1∑
t=1

∑
xt,xt+1

ntt(xt, xt+1) log(p(xt+1|xt)/ntt(xt, xt+1))

−
∑
x1

n1(x1) log(π(x1)n1(x1))

− 2
T−1∑
t=2

∑
xt

nt(xt) log nt(xt)−
∑
xT

nT (xT ) log nT (xT ),

then the aggregate inference problem is equivalent [7] to the
following convex optimization problem.

Problem 1.

min
n∈M

F(n) (6a)

subject to ñt = yt, ∀t ∈ {1, · · · , T}. (6b)
2A slightly different observation has been considered in [9].



B. Collective Forward-Backward Algorithm

The collective forward-backward (CFB) algorithm (Algorithm
1) was proposed in [7] to address Problem 1. It leverages
an elegant connection between MOT [21], [22], [23] and this
inference problem with fixed marginal constraints. We refer the
reader to [7] for more details on the CFB algorithm and its
connections to multi-marginal optimal transport. The solution
to Problem 1 is characterized by the following.

Theorem 1 ([7, Corollary 1]). The solution to the inference
problem (Problem 1) for aggregate HMM is

nt(xt) ∝ αt(xt)βt(xt)γt(xt), ∀t = 1, 2 . . . , T (7)

where αt(xt), βt(xt), γt(xt), and ξt(ot) correspond to the
fixed point of the following updates

αt(xt) ∝
∑
xt−1

p(xt|xt−1)αt−1(xt−1)γt−1(xt−1), (8a)

βt(xt) ∝
∑
xt+1

p(xt+1|xt)βt+1(xt+1)γt+1(xt+1), (8b)

γt(xt) ∝
∑
ot

p(ot|xt)
yt(ot)

ξt(ot)
, (8c)

ξt(ot) ∝
∑
xt

p(ot|xt)αt(xt)βt(xt), (8d)

with boundary conditions α1(x1)=π(x1) and βT (xT )=1.

Algorithm 1 Collective Forward-Backward Algorithm

Initialize all the messages αt(xt), βt(xt), γt(xt), ξt(ot)
while not converged do

Forward pass:
for t = 2, 3, . . . , T do

i) Update γt−1(xt−1) using (8c)
ii) Update αt(xt), ξt(ot) according to (8a), (8d)

end for
Backward pass:
for t = T − 1, . . . , 1 do

i) Update γt+1(xt+1) using (8c)
ii) Update βt(xt), ξt(ot) according to (8b),(8d)

end for
end while

Figure 1 illustrates α, β, γ, ξ in Theorem 1. The Forward-
backward algorithm [1] for standard HMM inference is a
special case of the CFB algorithm when all the measurements
{y1,y2, . . . ,yt} are Dirac distributions [7].

III. MAIN RESULTS

We consider smoothing (inference) problems for aggregate
HMMs with continuous observations. Specifically, we consider
an inference problem similar to Problem 1 but assume the
observation space of the underlying HMM to be a subset of the
Euclidean space, i.e., O ⊂ Rℓ. An important instance of this
observation model corresponds to the Gaussian measurement
noise, that is, p(ot|xt) = N (µ(xt),Σ(xt)) with N (µ,Σ)
denoting the probability density with mean µ and covariance
Σ.

xt−1 xt xt+1

ot−1 ot ot+1

ξt(ot)γt(xt)

αt(xt) βt(xt)

Fig. 1: Illustration of the CFB algorithm.

A. Aggregate Inference with Continuous Observations

We start with an ideal setting when the aggregate observations
are given in closed-form. More precisely, we assume the
observations are the probability distributions over O, that is,
yt(·) maps o ∈ O to R+ and

∫
o∈O yt(o) do = 1. In this

scenario, the aggregate inference can again be formulated
by Problem 1 with two modifications due to the continuous
observations. First, the constraints (4) and (3c) become∫

o∈O
ñt(o)do = 1,

∑
x∈X

nt(x) = 1 ∀t ∈ {1, · · · , T} (9a)∫
o∈O

ñtt(x, o)do = nt(x) ∀t ∈ {1, · · · , T}. (9b)

Thus, the constraint set M is described by (9a)-(3b)-(9b)-(3d).
Second, the objective function is free energy in similar form
but the summation over O needs to be replaced by integration.
For convenience, we overload the bold symbol notation so that
ñt,yt are functions over O instead of vectors, and ñtt is a
function over (X ,O).

It turns out that the solution to this aggregate inference prob-
lem with continuous observation has a similar characterization
as in the discrete setting as in the following theorem.

Theorem 2. The solution to inference problem (Problem 1)
in an aggregate HMM with continuous observation is

nt(xt) ∝ αt(xt)βt(xt)γt(xt), ∀t = 1, . . . , T (10)

where αt(xt), βt(xt), γt(xt), ξt(ot) correspond to the fixed
point of the following updates

αt(xt) ∝
∑
xt−1

p(xt|xt−1)αt−1(xt−1)γt−1(xt−1) (11a)

βt(xt) ∝
∑
xt+1

p(xt+1|xt)βt+1(xt+1)γt+1(xt+1) (11b)

γt(xt) ∝
∫
O
p(ot|xt)

yt(ot)

ξt(ot)
dot (11c)

ξt(ot) ∝
∑
xt

p(ot|xt)αt(xt)βt(xt) (11d)

with boundary conditions α1(x1)=π(x1) and βT (xT )=1.

Proof. Introducing Lagrange multipliers at(xt), bt(ot), ct(xt),
dt(xt), et(ot), f1t, f2t for constraints (9b), (3d), (3b), (9a), we
arrive at the Lagrangian

L =F(n) +
T∑

t=1

∑
xt

at(xt)[

∫
O
ñtt(xt, ot)dot − nt(xt)]



+
∑
t=1

∫
O
bt(ot)[

∑
xt

ñtt(xt, ot)− ñt(ot)]dot

+
T−1∑
t=1

∑
xt

ct+1(xt+1)[
∑
xt

ntt(xt, xt+1)− nt+1(xt+1)]

+
T−1∑
t=1

∑
xt

dt(xt)[
∑
xt+1

ntt(xt, xt+1)− nt(xt)]

+
T∑

t=1

∫
O
et(ot)[ñt(ot)− yt(ot)]dot

+
T∑

t=1

{f1t[
∑
xt

nt(xt)− 1] + f2t[

∫
O
ñt(ot)dot − 1]}.

Setting the derivatives of the Lagrangian with respect to the
{nt, ñt,ntt, ñtt} to zero, we obtain the optimality conditions


−1− log nt(xt)− at(xt)− dt(xt) + f1t = 0, t=1

−1− log nt(xt)− at(xt)− ct(xt) + f1t = 0, t=T

−2−2 log nt(xt)−at(xt)−ct(xt)−dt(xt)+f1t=0

t = 2 · · ·T − 1

(12a)

− bt(ot) + et(ot) + f2t = 0 (12b)

ñtt(xt, ot) = p(ot|xt)e
−a(xt)−b(ot) (12c)

ntt(xt, xt+1) = p(xt+1|xt)e
−c(xt+1)−d(xt). (12d)

Define, for all t = 1, 2, · · · , T ,

αt(xt) =
∑
xt−1

p(xt|xt−1)e
−dt(xt−1) (13a)

βt(xt) =
∑
xt+1

p(xt+1|xt)e
−ct(xt+1) (13b)

ξt(ot) =
∑
xt

p(ot|xt)e
−at(xt) (13c)

γt(xt) =

∫
O
p(ot|xt)e

−bt(ot)dot. (13d)

Next we present the case with t = 2, · · · , T − 1 in (12a); the
other two cases with t = 1 or t = T can be analyzed similarly.
It follows directly from (12a) that

nt(xt) ∝ e−
at(xt)+ct(xt)+dt(xt)

2 . (14)

Since nt,ntt follow the constraints (3b), we obtain

nt(xt)nt(xt) = [
∑
xt−1

nt−1,t(xt−1, xt)][
∑
xt+1

ntt(xt, xt+1)].

Plugging (14) for nt and (12d) and (13) for nt−1,t−1,nt,t into
the above equation, we arrive at

e−at(xt) ∝ αt(xt)βt(xt). (15)

Since nt, ñtt also follow the constraints (3c), we reach

nt(xt)nt(xt) = [
∑
xt+1

ntt(xt, xt+1)][

∫
O
ñtt(xt, ot)dot].

Plugging (14) (for nt), (13b) (13c) and (12d) (for ntt, ñtt)
into above equation, we get

e−ct(xt) ∝ βt(xt)γt(xt). (16)

Similarly, we can obtain

e−dt(xt) ∝ αt(xt)γt(xt). (17)

Clearly, (10) is a consequence of (14)-(15)-(16)-(17) by

nt(xt) ∝ e
−at(xt)−ct(xt)−dt(xt)

2 ∝ αt(xt)βt(xt)γt(xt).

Moreover, (11a) follows by combining (17) and (13a), (11b)
follows by combining (16) and (13b), and (11d) follows by
combining (15) and (13c). Finally, by (12c) and in view of
(13c)

e−bt(ot) =

∑
xt

ñtt(xt, ot)∑
xt

p(ot|xt)e−at(xt)
∝ yt(ot)

ξt(ot)
, (18)

where in the last step we have utilized the constraint∑
xt

ñtt(xt, ot) = yt(ot). The update (11c) then follows by
plugging (18) into (13d).

B. Continuous Observation Collective Forward-Backward Al-
gorithm

In Section III-A, we assumed that the full distributions of
the observations are given, which is hardly the case in real
applications. Very often only samples from these marginal
distributions are accessible. Of course, one can always estimate
a probability density based on these samples and then run
the updates (11). The performance of this approach highly
depends on that of the density estimators. Another reason that
makes this approach undesirable is that the step (11c) requires
numerical integration which is expensive for high-dimensional
observation space O. A better approach is to rewrite the step
(11c) as

γt(xt) = Eot∼yt

[
p(ot|xt)

ξt(ot)

]
(19)

where Eot∼yt
stands for expectation with respect to the

distribution yt(·). Let ot = {o(1)t , · · · , o(M)
t } be the aggregate

observation at time t, then this update formula for γt(xt) can
be estimated by the empirical average

γt(xt) ≈
1

M

∑
o∈ot

p(o|xt)

ξt(o)
. (20)

Note that the empirical (sample) average (20) converges to
the expected value (19) as M → ∞ due to the law of large
numbers. With this update in hand, we propose continuous
observation collective forward-backward (CO-CFB) algorithm
(Algorithm 2) for solving aggregate inference in aggregate
HMMs with continuous observations.

Algorithm 2 can be viewed as a counterpart of the Collec-
tive forward-backward algorithm (Algorithm 1) for aggregate
HMMs with continuous observations. It resembles the latter
except for the difference in the update step for γt, replacing
(8c) by (20). For a given observation ot = {o(1)t , · · · , o(M)

t },
if we restrict the observation space to the set ot, then the
aggregate HMM with continuous observation reduces to an ag-
gregate HMM with discrete observation over the set ot. Since
all the samples in ot are equally important, the corresponding
probability vector measurement yt(ot) should be uniform over
ot. Thus, to some extent, CO-CFB and CFB are equivalent.



Remark 1. Since CO-CFB and CFB are effectively equivalent
in implementation, the CO-CFB (Algorithm 2) inherits the
convergence properties of CFB and has global convergence
guarantee with linear rate [7] under the assumption that the
underlying Markov chain is ergodic.

Algorithm 2 CO-CFB Algorithm

Initialize all the messages αt(xt), βt(xt), γt(xt), ξt(ot)
while not converged do

Forward pass:
for t = 2, 3, . . . , T do

i) Update γt−1(xt−1) using (20)
ii) Update αt(xt), ξt(ot) according to (11a), (11d)

end for
Backward pass:
for t = T − 1, . . . , 1 do

i) Update γt+1(xt+1) using (20)
ii) Update βt(xt), ξt(ot) according to (11b), (11d)

end for
end while

C. Connections to Bayesian Inference in HMMs

As discussed in Section II-B, for HMMs with discrete obser-
vations, the aggregate inference reduces to standard Bayesian
inference when the measurements are Dirac distributions, and
the CFB algorithm (Algorithm 1) reduces to the standard
forward-backward algorithm. It turns out that this equivalent
relation remains for HMMs with continuous observations. We
remark that the forward-backward algorithm for continous-
time HMMs with continuous observation is also known as
Wonham smoothing [4].

Theorem 3. When the measurements are Dirac distributions,
the CO-CFB algorithm (Algorithm 2) reduces to the standard
forward-backward algorithm.

Proof. When the observation ot = {o(1)t , · · · , o(M)
t } is a

Dirac, o(1)t = · · · = o
(M)
t . The update (20) for γ becomes

γt(xt) =
p(o

(1)
t |xt)

ξt(o
(1)
t )

∝ p(o
(1)
t |xt).

With this γt, the marginal distribution nt becomes

nt(xt)∝γt(xt)αt(xt)βt(xt)=p(o
(1)
t |xt)αt(xt)βt(xt), (21)

which is same as the forward-backward algorithm [1].

IV. NUMERICAL EXAMPLES

We conduct several experiments to evaluate the performance
of the CO-CFB algorithm. The first one is on synthetic data.
We consider HMMs with Gaussian observations. The initial
state probability π is sampled uniformly over the probability
simplex. The transition matrix is generated from a random
permutation of a perturbed Identity matrix I + 0.05 ×

√
d ×

exp(U [−1, 1]), where I denotes an identity matrix and U
stands for a uniform distribution. A normalization step is
used to ensure each row is a valid conditional distribution.

The Gaussian emission probability for each hidden state is
parametrized by a random mean and variance. The mean is
sampled from U [−d, d] and the variance is sampled from
U [0.1d, 0.5d].

We first demonstrate that our algorithm gives excellent esti-
mation of the distributions of the hidden states of aggregate
HMMs. We randomly generate M trajectories from the under-
lying HMM and produce the observations ot, t = 1, . . . , T
based on these trajectories. We then use CO-CFB to estimate
the hidden state distribution nt. This is compared to the ground
truth n∗

t with respect to 1-norm Error =
∑T

t=1 ∥nt − n∗
t ∥1.

Figure 2(a) depicts the estimation error for two different pop-
ulation sizes. We observe that the estimation errors are small
in both cases and get smaller as the iteration step increases.
Further Figure 2(b) shows the complexity of our algorithm
with respect to population size M . To further evaluate the
efficiency of our algorithm, we test it over different state
dimension d and HMM length T . The results are displayed
in Figure 2(c)-(d), from which we observe that the CO-CFB
algorithm has great scalability.

Next, we consider a realistic experiment of estimating aggre-
gate robot location estimation with noisy continuous observa-
tions. Specifically, we consider a total of M = 1000 robots
deployed in a geographical area represented by a 10×10 grid
such that the (hidden) state dimension is d = 100. We let
the robots move in the area with a certain dynamics. The
observations are recorded as noisy continuous locations in
the area and the individual robot’s association is anonymized
(unknown). The position transition probability follows the log-
linear distribution described in [7] and a Gaussian observation
with covariance 5×I . We simulate the dynamics for T = 10
time-steps and then utilize our CO-CFB algorithm to esti-
mate the aggregate robot locations from the noisy continuous
(noisy) observation trajectories. The leftmost plot in Figure 3
depicts the ground truth of the aggregate robot locations and
the continuous anonymized observations are depicted in the
middle. The estimated aggregate robot locations are shown in
the right of Figure 3 and it can be qualitatively observed that
it is close to the ground truth (aggregate) locations. Figure 4
depicts the comparison (in terms of L1-error) of our method
against the observation-only estimation, which assigns every
observation point to closest choice among the finite robot
locations.

V. CONCLUSION

In this paper, we proposed an efficient algorithm to solve
aggregate inference problems for HMMs with continuous
observations. This algorithm is based on the CFB algorithm [7]
which was designed for aggregate inference for HMMs with
discrete observations. The latter was extended to the setting
with continuous observations in this work through a reformu-
lation of a key step in the algorithm which enables updating
using samples from the observations. One limitation of CO-
CFB is that its computational complexity scales linearly with
M . This is in contrast to the CFB algorithm whose complexity
is independent of M . Moreover, our algorithm is not applicable
to continuous state space.



(a) (b) (c) (d)

Fig. 2: (a) Empirical convergence behavior in terms of L1-error with respect to the underlying state distribution for M = 50
and M = 200 with T, d = 20. (b) - (d) Illustration of number of iterations required for convergence for different M, T
and d, respectively. We use stopping criterion as relative change per node less than 1 × 10−3. The default setting follows
T = 20, d = 20,M = 200. Here each “iteration” comprises of updating all the messages involved in the underlying HMM.
Each experiment is run with 10 different random seeds and the plots show both means and variances.

EstimationObservationGround Truth

Fig. 3: Performance of our algorithm on aggregate robots
location estimation. Left figure shows the simulated underlying
robots location distribution, where we plot three trajectories.
Middle figure illustrates noisy continuous observations with
unknown individual associations. Right figure demonstrates
the estimation results from the continuous observations. In
these plots, the size of the blue circle at each grid point is
proportional to the number of robots at that grid, based on
ground truth or inference.

Fig. 4: CO-CFB results in a
lower location estimation er-
ror compared with observation-
only estimation. The latter es-
timates robots distribution by
observation-based nearest neigh-
bors.
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