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Abstract—We consider inference (filtering) problems over probabilistic
graphical models with aggregate data generated by a large population of
individuals. We propose a new efficient belief propagation type algorithm
over tree graphs with polynomial computational complexity as well
as a global convergence guarantee. This is in contrast to previous
methods that either exhibit prohibitive complexity as the population
grows or do not guarantee convergence. Our method is based on
optimal transport, or more specifically, multi-marginal optimal transport
theory. In particular, we consider an inference problem with aggregate
observations, that can be seen as a structured multi-marginal optimal
transport problem where the cost function decomposes according to the
underlying graph. Consequently, the celebrated Sinkhorn/iterative scaling
algorithm for multi-marginal optimal transport can be leveraged together
with the standard belief propagation algorithm to establish an efficient
inference scheme which we call Sinkhorn belief propagation (SBP). We
further specialize the SBP algorithm to cases associated with hidden
Markov models due to their significance in control and estimation. We
demonstrate the performance of our algorithm on applications such as
inferring population flow from aggregate observations. We also show
that in the special case where the observations are generated by a
single individual, our algorithm naturally reduces to the standard belief
propagation algorithm.

I. INTRODUCTION

Filtering problems can be more generally posed as inference problems
in probabilistic graphical models (PGMs) [1] in a large number
of applications including robot localization and mapping, object
tracking, and control [2], [3]. PGMs provide a powerful framework
for modeling the dependence and relations between probabilistic
quantities and probabilistic inference using PGMs have been widely
used in signal processing, computer vision, computational biology,
and many other real-world applications [1], [4], [5]. During the
last decades, many inference algorithms have been proposed, among
which the belief propagation (BP) algorithms [6], [7], [8] have been
extremely effective and successful. The standard PGM framework
and the associated inference algorithms are suitable for modeling of
distinguishable/labeled individuals as in most standard applications.
In fact, many standard filtering algorithms such as Kalman filter are
instances of the BP algorithm operating in a special graphical model
known as hidden Markov model (HMM) [9]. The inference problem
in HMMs is a filtering problem that estimates dynamically changing
unobservable (hidden) states from a sequence of noisy observed data.

Recently, there has been growing interest in applications involving a
large population of individuals, e.g., in animal migration and crowd
estimation, where data about individuals are not available. Instead,
aggregate population-level observation in the form of counts or
contingency tables are provided [10], [11], [12], [13]], [14]. A distinct
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feature of this setting is that the individuals are no longer distinguish-
able to each other. This restriction in the observations could be due
to privacy, security, or economic reasons. For example, in tourist flow
analysis, individual trajectories may not be readily accessible, but the
number of people in a given area can typically be counted using video
surveillance or electronic gates. Similarly, it is much easier to obtain
the population sizes of bird migration than tracking the trajectory of
each bird. Furthermore, in applications related to epidemiology or
other diseases, often only aggregate data is available due to privacy
issue; normally patient data needs to be anonymized. In this setting
with aggregate observations, the traditional inference algorithms such
as BP in PGMs which heavily depend on individual observations, are
thus not directly applicable. The development of reliable and efficient
aggregate inference algorithms is of great importance and necessity.

The collective graphical model (CGM) introduced in [13] is a recent
framework for ﬁlterin (inference) and learning with aggregate
data. A CGM is a graphical model that describes the histograms
of individuals directly. Using this model, it was proved that the
complexity of traditional inference algorithms for exact inference
scales at least polynomially as the population grows [15]. To cir-
cumvent this difficulty, they proposed an approximate maximum
a posteriori (MAP) formulation, which approximates the marginal
inference solution well, especially when the size of the population is
large [15]. Under some proper assumptions, the approximate MAP
formulation is a convex optimization problem and the problem dimen-
sion is independent of the population size. To further accelerate the
inference, they proposed the non-linear belief propagation (NLBP)
algorithm [16]. The NLBP algorithm is a message-passing type
algorithm relying on interactions between graph nodes. Despite of
its similarity to the BP algorithm [6], NLBP suffers from instability
and lack of convergence. Indeed, no convergence guarantee has been
established so far [16]. Bethe-RDA is another existing algorithm
for aggregate inference based on regularized dual averaging (RDA)
[[L7]. It is a type of proximal gradient descent algorithm that exhibits
convergence guarantee.

The goal of this paper is to establish an efficient and reliable
algorithm for filtering with aggregate observations described by the
precise distribution of the observation variables. This observation
model is different from the one used for NLBP and Bethe-RDA and
neither of these two algorithms works for our problems; see Figure [3b]
and the associated explanations in Section [II] for more discussions
on the observation models. We build on the CGM framework and
develop such an aggregate inference algorithm. Our algorithm is
based on multi-marginal optimal transport (MOT) theory [18], [19],
[20], [21], [22], which involves the transport among multiple marginal
distributions. MOT is a generalization of the classical optimal trans-
port (OT) problem [23] of Monge and Kantorovich to find a transport
plan from a source distribution to a target one that minimizes the total
transport cost. Within the MOT framework, the aggregate observa-
tions are viewed as fixed given marginal distributions. We show that
the aggregate inference problem in CGM reduces to the special case

'We use the terms “filtering” and “inference” interchangeably in the paper.



of entropic regularized formulation of MOT with marginals specified
by these aggregate observations. Thanks to this equivalence, the
aggregate inference problem can be solved by the popular Sinkhorn
ak.a., iterative scaling algorithm [24], [25], [26], [20]. The Sinkhorn
algorithm has the advantages of being extremely easy to implement
and parallelize, and has global convergence guarantee [25], [20]]. We
show that the Sinkhorn algorithm for aggregate inference can be
further accelerated by leveraging the underlying graphical structure of
the inference problems with aggregate observations; a key projection
step in the Sinkhorn algorithm, which could be potentially expensive,
can be realized efficiently by standard BP for tree graphical models.
This accelerated version of our algorithm is named Sinkhorn belief
propagation (SBP).

SBP exhibits convergence guarantees when the underlying graph is
a tree. The contributions of the paper are summarized as follows.

o We discover an equivalent relation between OT theory and
inference/filtering problems with aggregate observations;

o Based on OT theory and belief propagation, we propose an
efficient marginal inference/filtering algorithm with aggregate
data that has a global convergence guarantee;

o We study the filtering problem in collective HMMSs and establish
connections between collective and standard filtering problems;

+ We demonstrate the performance of our algorithm on applica-
tions such as inferring population flow from aggregate observa-
tions.

Related Work: Early works on aggregate data focused on learning
of the parameters of the underlying models. For example, [10], [11],
[12] studied the modeling of a single Markov chain by maximizing
the aggregate posterior. More recent learning methods from aggregate
data include [27], [14]. Since the formalism of CGMs by [13]
there have been multiple works on inference for aggregate data. The
complexity of exact inference in CGMs has been investigated in [[15]
and an approximate MAP formulation has been proposed in the same
paper. The non-linear belief propagation algorithm [[16] is a message
passing type algorithm for approximate MAP inference in CGMs, but
it does not have a convergence guarantee. The learning of a Markov
chain within the CGM framework has been presented in [28]. On the
other hand, the application of OT theory in filtering and estimation
problems have been investigated in [29], [30], [31], [32]. Another
closely related problem is the Schrodinger bridge problem [33], [34],
[35], which is essentially equivalent to an entropic OT problem.
Our work is also closely related to linear/nonlinear filtering [36],
1370, (381, 3], (391, [40], which is widely studied in the control
community. To some degree, our framework can be viewed as an
extension of standard filtering theory to the setting with aggregate
observations. More recently, built on this work, in [41] we developed
a sliding window implementation of the collective forward-backward
algorithm for aggregate filtering over HMMs to approximate the
solution more efficiently. It is also important to note that our work
is not aimed at improving the computational efficiency of solving
MOT problems. There are multiple works towards this direction
including [42], [43]. Instead, the focus of this paper is on solving the
aggregate filtering problems via formulating it as an MOT problem.

The rest of the article is organized as follows. In Section|II} we briefly
discuss related background including PGMs, BP, CGMs, and MOT.
We present our main results and the Sinkhorn belief propagation
algorithm (Algorithm |4) in Section [[II} In Section [[V| we specialize
SBP to HMMs and obtain the collective forward-backward algorithm.
It is followed by the experimental results in Section[V]and conclusion
in Section [VI]

II. BACKGROUND

In this section, we briefly present relevant background on the compo-
nents of our method which includes probabilistic graphical models,
collective graphical models, and multi-marginal optimal transport.

A. Probabilistic Graphical Models

Probabilistic graphical models [1] are graph-based representations of
a collection of random vectors that capture the conditional dependen-
cies between them. A PGM is associated with an underlying graph
G = (V, E) where V and E denotes the set of vertices and edges
respectively. Each node 7 € V corresponds to a random variable
X; which can be either discrete or continuous, though we consider
the setting with discrete random variables throughout. The random
variable at each node takes values from the samef] finite set X', with
cardinality |X'| = d. Assuming that the underlying graph is undirected
with J = |V| nodes, the probability of the PGM is given by

p(x):p(xl,xg,...,:rJ):% H Vi (xi,x5), @)
(i,j)€E

where x = {z1,...,xs} is a particular assignment to the corre-
sponding random variables, 1);; are known as edge potentials and
Z is a normalization constant. The edge potential 1);; describes the
correlation between the random variables X; and X;. For instance,
the joint probability distribution of the four random variables in the
PGM in Figure [1] factorizes as

1
p(w1,T2,23,24) = 2%2(%17$2)¢23($2,1?3)1/124($27$4)-

Occasionally, (local) node potentials ¢;(x;) induced by, e.g., mea-

Fig. 1: An example PGM.

surements, are also included in (1)) to define the joint probability, but
they can always be absorbed into the edge potentials [1]. Thus, for
the sake of simplicity and without loss of generality, we adopt the
probability structure (T).

In this paper, we restrict our attention to PGMs with undirected
underlying graphs. Indeed, a large class of PGMs are associated with
directed graphs, including hidden Markov models (HMMs) which are
widely used in the control and estimation community, however these
directed models can be converted to undirected ones using a technique
known as moralization [4]. The purpose of moralization is to ensure
that all the dependencies implied by the local conditional distributions
of the directed graph are captured in the corresponding moralized
undirected graph. More specifically, the equivalent moralized graph
of a directed graph is formed by converting all edges in the graph into
undirected ones and adding additional edges between all pairs of non-
adjacent nodes with a common child node. As an example, consider
the directed graph in Figure [2a] with three directed edges. Each link
(edge) is associated with a conditional probability. This directed
graph can be converted to an undirected graph via moralization
as depicted in Figure [@} Since no two variables have a common
child, the moralization does not result in additional edges. The
conditional probabilities can be viewed as the edge potentials, e.g.,
V24(22, 24) = p(2a|2).

2This is only for the ease of notation. In general, these random variables
can take values in different sets.



(a) Directed (b) Undirected (Moralized)
Fig. 2: Moralization of a PGM.

A fundamental problem in PGMs is to estimate the marginals of each
variable from the given joint distribution p(x); this is known as the
Bayesian inference problem [1]. Belief propagation (BP) [6] is one
of the most popular algorithms for accomplishing this task.

Belief Propagation: BP is an effective message-passing type algo-
rithm for Bayesian inference in PGMs. It updates the marginal dis-
tribution of each node through communications of beliefs/messages
between them. These messages are updated through

mi_>j(xj) X Zlf}z] 1’171’] H mk*}l xz 2)

Tj keN(i)\j

where m;_,;(x;) denotes the message from variable node ¢ to
variable node j, encapsulating the belief of node ¢ on node j. Here,
N (i) is the set of neighboring nodes of ¢, and thus N(4)\j denotes
the set of neighbors of 7 except for j. The messages in (2) are updated
iteratively over the graph. When the algorithm converges, the node
and edge marginals are given by

bi(zi) H Mi—i(zi) (3a)
kEN (i)
bij (s, @5) o< i (s, 5) | [ mw—i(@) [ [ mess(x). (3b)
kEN (i)\j LEN(j)\i

When the graph has no cycles (i.e., tree) it is well-known that the
belief propagation algorithm converges globally [7] and the estimated
marginal distributions in recover the true marginals exactly. For
general graphs with cycles, convergence is not guaranteed but it works
well in practice [1].

Note that many time-sequence based filtering algorithms used in
control and estimation, including Kalman filter [36], are instances
of the BP algorithm operating on Gaussian HMM, a special kind of
graphical model (see Section [IV] for more details).

B. Collective Graphical Models

CGMs were first introduced in [13]] as a framework for inference and
learning in graphical models with aggregate data. CGMs describe
the distribution of the aggregate counts of a population sampled
independently from a discrete PGM. Assume all the individuals share
the same PGM ().

Let X,L-("”) be the random variable representing the state of the m®"

individual at node ¢. To generate the aggregate data, first assume
that M independent sample vectors xW | x®) are drawn from
the individual probability model to represent the individuals in a
population. Here, each entry of the vector x(m) corresponding to node
7 1s xim that takes one of the d possible states. Let n; € N9 be the
aggregate node distribution with entries n;(z;) = S M_ T[X m =
x;] that count the number of individuals in each state. Here, I[]
denotes indicator function. Moreover, let n;; € N%*¢ be the aggre-
gate edge distributions with entries n;;(z;, x;) = Zm Nipe (m) —

i, XJ(.m) = z;]. The vectors n1, ..., n constitute the aggregate data
and the aggregate edge distributions n;; represent sufficient statistics
of the individual model [13]. The collection of all the aggregate node

distributions n; together with the aggregate edge distributions n;; is
denoted as n, i.e., n = {n;, n;;}.

In CGMs [13], the observation noise is modeled explicitly as a
conditional distribution p(y|n) with y being the aggregate noisy
observations that probabilistically depend on the aggregate data n.
For instance, for a count n, the associated observation may follow a
Poisson distribution Poisson(8n) for some coefficient 5 > 0. The
goal of inference in CGMs is to estimate n from the aggregate
noisy observations through the posterior distribution p(n|y)
p(n)p(y|n), where p(n) is known as the CGM distribution [13]
which is derived from the individual model (I). When the underlying
graph is a tree, the CGM distribution p(n) equals

[Tiev Haci((ni(ilii)!)(d’i_l) "

(M)
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p(n) = M!

where d; = |N(¢)] is the number of neighbors of node ¢ in G and
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is the joint probability of the entire population. The integer coefficient

[licv Hzl ((ni(mi)!)(dﬁl)
H(z‘,j)eE Hzlz] ni;(xi, ;)

accounts for the fact that the individuals in aggregate observation are
indistinguishable.

M!

The support of the CGM distribution p(n) is such that each entry of
n is an integer and n satisfies the following constraints
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, , , (%)
VieV, je N(®).
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Exact inference of n, either maximum a posterior probability estimate
or Bayesian inference, based on p(n|y) is unrealistic for large
populations, since the computational complexity increases rapidly as
the population size M grows [15]]. It was pointed out in [15] that
—Inp(nl|y) can be approximated by (up to a constant addition and
multiplication) the CGM free energy

Foom(n) = Ucam(n) — Heam(n), (6)

where Ucam(n) equals
S0 nj(@s, x) ey (2, 2;5) — In pyn),
(,J)€EE i,z

and

E E i (@i, 23) Inni; (2, 25)

(i,J)€EE Ti,%
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After relaxing the constraints that n;(z;), nij(z;, ;) are integers
and under the assumption that the observation model p(y | n) is
log-concave, the resulting problem of minimizing Fcgm is a convex
optimization problem. This is the approximate MAP [15] framework
for CGMs. Note that the problem size of minimizing Fcgm iS
independent of the population size M. Even though the approximate
MAP framework is insensitive to population size, its complexity
grows rapidly as the number of variables J increases. Two algorithms
designed to solve the approximate MAP problems more efficiently



are non-linear belief propagation (NLBP) [16] and Bethe regularized
dual averaging (Bethe-RDA) [17].

Non-linear Belief Propagation: The NLBP [16] algorithm addresses
the aggregate inference problem by establishing a connection be-
tween the Bethe free energy [44] and the objective function @ for
approximate MAP inference in CGMs. It is a message passing type
algorithm for aggregate MAP inference. Roughly, it is equivalent to
running standard BP on a PGM with edge potentials 72}1']' which are
being updated at each iteration. The steps of the NLBP algorithm
are listed in Algorithm |1} Similar to BP, after convergence of the

Algorithm 1 Non-Linear Belief Propagation (NLBP)

Initialize ni; (i, x;) x ¥i;(zi, x;), V(i,5) € E,Va;,
repeat
Update the following in any order for all (i,j) € £

5 OUccm(n)
Yij(Ti, x5) = exp (—7
1]( G J) 8n1]($1,$])
i () o Zq/)ij(xiyxj) H Mk (T;)
Y kEN(i)\j
nij (s, 25) o P (i, x;) [ [mesi(@s) [ [mess(z))
kEN(i)\j LEN(j)\i

until convergence

messages in Algorithm [1} the aggregate marginals can be estimated
as
ni(as) o< [ masi(z). @)

kEN (i)

One of the major drawbacks of the NLBP algorithm is that it does not
exhibit any convergence guarantee [16]. The major factor affecting
the convergence of NLBP is the update of the potentials 12@- which
requires gradient computations of p(y|n). These gradients depend
on the observation model at hand and might cause the explosion
or saturation of potential updates based on the smoothness of the
observation model p(y|n). To stabilize the NLBP to some degree, it
was proposed [L16] to dampen the estimates n as n = (1 — a)n +
an™®” in each iteration, where 0 < o < 1 and n"“" is the estimate
in the current iteration. However, the selection of the parameter «
has to be done carefully to ensure appropriate potential updates [16].

Bethe regularized dual averaging: Another algorithm for solving
the aggregate inference problem is Bethe-RDA [17] which is inspired
by one type of proximal algorithms called regularized dual averaging
(RDA) [45]. The Bethe-RDA algorithm has been proven to be faster
than NLBP by an order of magnitude in various experiments [17].
Similar to NLBP, in Bethe-RDA, standard BP is used to compute
the marginals at each iteration based on modified edge potentials.
However, the way to update these potentials in Bethe-RDA is very
different. At iteration ¢, the edge potentials Uy = {4}; (i, z;)} are
updated according to

t
In ¥, =In ¥ - —— 7, 8
n W n ﬁt Tt g: ®)
where ¥ = {5, (z;,x;)} is the original potential, 5; is the learning
rate, and
__t=1_ 1 Olnp(yn:—1)
GET I T T o
After updating the potentials, the required marginals n; are computed
according to the standard BP algorithm. The steps of the Bethe-RDA

algorithm are listed in Algorithm E}

. ©)

Algorithm 2 Bethe-RDA

Initialize all the marginals no = BP[¥], and go = 0
repeat

- _ t—1 =
9¢ = 5 Y9i—1 —

1 Olnp(yln,_1)
t on

In ¥, =1In \I/—ﬁgt
n; = BP[\I/t]

until convergence

C. Multimarginal Optimal Transport

In an MOT [21]], [22]] problem one aims to find an optimal trans-
port plan among a set of marginal distributions, minimizing an
underlying given cost function. We consider the discrete settings
where the marginal distributions are described by probability vectors
uj €ERY j eI € {1,2,...,J} and denote the cost function and
the transport plan by the J-mode tensors C,B € R**% X4 The
Kantorovich formulation of MOT with constraints on a subset of
marginals I' C {1,2,...,J} reads [46]

r(r}in , (C,B)
BeR(* X (10)
subject to P;(B) = pj, for j € T,

where (C,B) =3, . Ci .i,Bi . i, and the projection on

the j-th marginal of B is defined by

P;(B) = >

Bl b — 158541500

1)

Bil,...,ij,l,ij,ij+1,“.,i_7-

Note that the standard OT problem with two marginals is a special
case of with J =2 and " = {1, 2}.

Though is a standard linear programming, it can be computa-
tional expensive for large d and J. For faster computations, it was
proposed by [26], [20], [47] to add a regularizing entropy term

HB)=—- > Bi,..in (Bi, i) (12)
1,0ty
to the objective. This results in the strongly convex problem
min (C,B) — eH(B)
BeRy e (13)

subject to P;(B) = pj, for j € T,
where € > 0 is a regularization parameter.

It can be shown that the unique optimal solution to (I8) is of the
form

B=KoU, (14)

where K = exp(—C/¢) and U = u1 Qua®- - -Quy with u; = 1 (1
denotes the vector of all entries being 1) for j ¢ I". Here ® denotes
tensor product and exp is entry-wise exponential map. The Sinkhorn
scheme [48]], [24], [26] for finding the vectors u;, given that they are
initialized to be 1, is to iteratively update them according to

u; < u; O u;./P;(KoU), (15)

for all j € T'. Here ® and ./ denote entry-wise multiplication and
division, respectively. It is worth noting that the update step
in Algorithm [3]is a scaling step that ensures that the j-th marginal
of the updated tensor K @ U satisfies the constraint in (13), i.e.,
P;(K ® U) = p;. The steps of Sinkhorn scheme are summarized
in Algorithm [§] for future reference. The Sinkhorn algorithm may
for instance be derived as Bregman iterations [20] or dual block



Algorithm 3 Sinkhorn Algorithm for MOT

Compute K = exp(—C/e)
Initialize w1, u2,...,us to 1
repeat
for j €T do
U—uiQue®@---Quy
uj < u; © py. /Py (K ©U)
end for
until convergence

coordinate ascend [46]. It has global convergence guarantee with
linear rate [49], [50]. We remark that even though the Sinkhorn
algorithm has linear convergence rate, the cost for each update step
could be high due to the projection P;, whose complexity scales
exponentially with J.

III. INFERENCE WITH AGGREGATE DATA

We consider Bayesian marginal inference problems with aggregate
data as in CGMs with a different observation model. We reformulate
them into MOT problems and then leverage Sinkhorn algorithm
(Algorithm [3) to develop an efficient algorithm for our problems.

A. Problem formulation

Assume that the graph G = (V, E) encodes the relationships among
the node variables X1, Xo, ..., X of each individual, which consists
of unobserved as well as observed variables, and let I' C V' be the
set of observation nodes. Let the unobserved individual variables take
values in a finite set X, and the observations come from another
finite set X,, where in general, X,, # X,. The joint distribution of
individual variables is assumed to be factored as ().

Then, similar to the generative model of aggregate data in CGMs,
by drawing M independent samples from the individual model, the
aggregate counts corresponding to each node is generated. Therefore,
the aggregate data constitute ni,ns,...,ny (here J = |V|). We
assume that the system is closed [12], i.e., the population size M
remains fixed. In such closed settings, the aggregate data can be
thought of as probability distributions when normalized with the
population size. With this setup, when the underlying graph structure
is a tree, the aggregate variables have the same graph structure as
of the individual probability model; this is due to the hyper-Markov
property [15]. Now, we have the aggregate distributions constituting
ni, ng,...,ny with the underlying structure G. Suppose aggregate
observations are made from a subset of nodes I' C V' and denote
these aggregate observation by y;, Vi € I', then our goal is to infer
the aggregate marginals n,, Vi ¢ T

Remark 1. Without loss of generality, we assume that the observation
nodes can only be leaves, otherwise, we can always split the under-
lying tree graph over the observation node and then each subgraph
will have this observation node as a leaf.

Note that in our setting, the observation model is a subset of the
underlying graph as opposed to the original CGM setting, where
the observation model is treated separately. Figure [g] depicts this
difference between the noise models. In [[15], the observation model
we use here was regarded as exact observation since the aggregate
measurements are exact marginal distributions of the associated node
variable. We argue that this type of observation can also handle
measurement noise. Taking Figure [3] as an example, X4 is treated
as a measurement node of X, therefore, the measurement noise is
already encoded in the edge potential between them. Indeed, this

m=1:M

m=1:M

(@) (b)

Fig. 3: Different aggregate observation models (shaded nodes repre-
sent aggregate observations): (a) CGMs in its original form model
the aggregate noisy observations explicitly and (b) in our model, the
observation noise is incorporated in the underlying graphical model
itself.

is the measurement noise model used in standard HMMs [51]]; the
measurement noise is captured by the emission probability, which is
the edge potential between a hidden state node and an observation
node (see Sectioanor more details). As a side note, the algorithms
developed in [15], [16], [17] do not apply to the cases with “exact
observation”. Taking the limit of those algorithms designed for “noisy
observation” with vanishing noise will cause ill-conditioning issues
in the updates of the algorithms.

In the following we derive an optimization problem to find the
aggregate marginals {n;,7 ¢ I'}. The arguments are adopted from
the theory of large deviations [52]. In particular, the marginals
can be found by maximizing the posterior distribution p(y|n) o<
p(n,y), which is equivalent to minimizing the negative logarithm
—Inp(n,y). Since we model the observation variables within the
graphical model as in Figure |3b] the observation noise is implicitly
incorporated in the CGM distribution given by Equation (@).

Using Equation (), we arrive at the following

—In p(n,y)=—1In M!-— Z(dl -1) Zln(n,(a}l)')
eV x4
+ Z Z ln(nu(wl,:pj)') + Mln Z
(4,J)eE i,z
= D0 niy(wi ) In (i, a5).

(i,5)EE zi,xj

Again, as in CGM, it is computationally intractable to directly
minimize the negative logarithm —In p(n,y) due to the presence
of factorial terms and n being integers. By invoking the Stirling
approximation In(a!) = a In a —a + O(In a) as in [13] (see
also [30, Prop. 1]), we obtain

—In p(n,y)=— Z(dz -1) an(xl) In n;(xz;)

i€V o
* Z Z nij(xi, i) In ng;(ag, ;)
(i,§)EE T2
— Z Z nij (@i, @) In(iz (@i, 25))
(i,j)EE z4,@;

—MIn(M/Z)+ O(In M).

Denote n; = n;/M and 1n,; = n,;/M the normalizations of the



aggregate distributions, then it follows

eV x4

=+ Z Z ﬁij(mi,mj) In flij(l‘i,l‘j) +InZ
(4,J)€EE x4,z

S0 fuglws, my) In( (2, 35)) + 0(% In M).

(i,j)€E z4,z;

—%ln p(n,y) =—

Thus, when M is large, the (scaled) log-likelihood converges to a
quantity depending only on the normalized marginals 1n;, n;;. For
the sake of simplicity, from now on, we use the n;, n;; instead
of n;,n;; to denote the normalized marginal distributions. The
aggregate observations y;, V¢ € I' are also normalized so that
> .. yi(zs) = 1. We further denote their joint distributions by N.
Thanks to the tree structure of the underlying graph, minimizing the
above is equivalent to the following problem.

Problem 1.

min  KL(N || J] vu(ee) (6w
(4,J)EE
=y;, Vjer, (16b)

subject to P;(N)

where P; denotes projection operation, i.e., n; = P;(N).

Problem [1] is similar to the variational inference formulation in
standard PGM [44] except for the existence of the extra constraints
(16b). Such a constrained version of variational inference has indeed
been studied in [53]], however, from a very different perspective.
Problem [1|provides a new viewpoint for our CGM inference problem:
finding a joint aggregate distribution N that is closest to the prior
model of the PGM while satisfying the marginal constraints (I6b).
A special case of Problem [1| that has been widely studied is the
Schrodinger bridge problem [33[, [34], which corresponds to the
choice J = 2 and I = {1, 2}. Thus, Problem|T]can also be viewed as
a multi-marginal generalization of the Schrédinger bridge problems.

B. Multimarginal Optimal Transport Approach

When treating the pairwise potentials of the graphical model as the
local components of the cost function in MOT, i.e.,

= I (i, 7)), (17)
0,7

Problem can be viewed as a regularized MOT problem. Indeed,
the regularized MOT problem can be rewritten as

w(n109(-9)

Pj(B):,LLj, vjerl.

Plugging into the above and taking ¢ = 1 yields exactly the
same expression as in (16a).

min

Bemix...xd (18)

subject to

Consequently, we can adopt the Sinkhorn algorithm (Algorithm 3) to
solve the MOT Problem |y, and this is guaranteed to converge [25].
Thanks to the graphical structure of the cost C, we can further
accelerate the algorithm by utilizing standard BP to realize the key
projection step P;(K ® U) in the Sinkhorn algorithm; we call this
combination of Sinkhorn and BP the Sinkhorn belief propagation
(SBP) algorithm.

Before presenting our algorithm, we first characterize the stationary
points of the optimization (16) in terms of local messages; these will
be used to compute the projections in a Sinkhorn scaling step. When

the underlying graph is a tree, the objective function of is the
same as the Bethe free energy [44]

TL Ty Ly

FBethe Z Z Nij mumj w El‘ fL‘J;
eE T T )

—Zd -1) an )Inmn;(z;).

Departing from the CGM free energy given by (6) which contains an
explicit term for the observation noise model, the Bethe free energy
equation above does not have such a term since the observations are
encoded as nodes in the model. Thus, Problem (1] takes the form

min FBethe(n) (20a)
n;;,n;
subject to ni(x;) = yi(z:), Vi €T (20b)

> nij(@s, w5) = ni(@:),¥(i,4) € B (20c)

D> ni(m) =1, VieV. (20d)

zq

Here corresponds to aggregate observation constraints and
(20c)-(20d) represent consistency constraints. One can apply La-
grangian duality theory [54] to the constrained convex optimization
to obtain Theorem [1} The proof is deferred to the Appendix.

Theorem 1. The solution to the aggregate inference problem is
characterized by

[[ mwoil@), vigT 1)

kEN (4)
where m;_;(x;) are fixed points of
mi—;(z;) 21/]1] (w3, 5) H Mi—i(T1);
kEN (i)\j
Vz ¢TI, Vje N(®),

wa i, 7;) yz(%)

J—'l(xl)7

VZEF, V5 € N(3).

(22a)

Misj xj
(22b)

The expression m;_,; in can be viewed as messages between
nodes, as in BP. Among the two classes of messages in (22), (224)
resembles that in standard BP while corresponds to the scaling

step (13).

Taking all these components into account, we arrive at the Sinkhorn
belief propagation (SBP) algorithm (Algorithm [4). The SBP algo-
rithm has convergence guarantees due to convergence of the Sinkhorn
algorithm. Once converged, the marginals can be recovered by (21).
The initialization runs a standard BP algorithm over the same PGM
without accounting for the constraints (I6b). Let ' be a sequence
containing elements in I' such that all neighboring elements are
different and each element in T' appear in T' infinitely often. For
instance, T' can be set to be {1,2,3,1,2,3,...,} for the example in
Figure l For an element i € T', denote the element following ¢ by

Znext

Remark 2. The SBP algorithm inherits properties of the Sinkhorn
algorithm and is a special case of a dual block ascent algorithm. It
does not preserve primal feasibility in each update, but the algorithm
converges to satisfies that ) ;. || P;(N) —y;ll1 < 6 for an arbitrary
chosen precision §.

In the language of the Sinkhorn algorithm (Algorithm , Mi—sj 1S
associated with u;, thus step i) corresponds to modifying the PGM
potential from K to K ® U with the most recent U. The update ii)



Algorithm 4 Sinkhorn Belief Propagation (SBP)

Initialize all the messages m;—;(x;)
while not converged do
for i € T do
i) Update m;_,;(z;) using
ii) Update all the messages on the path from ¢ to Znext

according to (224)
end for
end while

Fig. 4: Example graph demonstrating sequence of message updates.

then calculates the marginal distribution at node inext of the PGM
with this modified potential. Due to the tree structure of the PGM, it
suffices to update only messages from node ¢ to ¢next as in step ii) of
Algorithm This can be easily explained via an example as depicted
in Figure 4| with ¢ = 1,4next = 2. After updating the message
mi—a4(x4), we only need to update m4—¢(x¢) and me—2(x2) since
these are the only two messages that contribute to the next scaling
update of m2_.6(xs) as explained by (22b).

Remark 3. If the cost tensor C is finite, then the Sinkhorn algorithm
(Algorithm [3) has a linear convergence rate [49]], [155]]. Therefore, if
all edge potentials 1);; are strictly positive, the SBP algorithm on a
tree (Algorithm E]) also converges linearly.

Each update in Algorithm [3| requires a projection step P;, which
is realized by belief propagation between neighboring observation
nodes ¢ and ¢next. For a graph with J nodes, where each node takes
d possible values, the complexity of operation is O(d?). The
update ii) in SBP takes at most J numbers of operation (22a), thus,
the worst case complexity of SBP for each update is O(Jd?).

IV. FILTERING OVER COLLECTIVE HIDDEN MARKOV MODELS

In this section, we study filtering problems in a hidden Markov model
with aggregate observations. Towards this, we present the collective
forward-backward algorithm (Algorithm [5) which is a special case of
SBP in HMMs. We also discuss the connections between collective
filtering and filtering in standard (individual) HMMs.

An HMM consists of a hidden (unobservable) Markov chain that
evolves over time and corresponding noisy variables that are ob-
served. For the sake of simplicity in notation, denote the unob-
served variables as X1, X2, ... and observed variables as O1, Oa, .. ..
Therefore, the underlying graph consists of the variables V =
{X1,X2, ey 01,02,.. } with I' = {Ol, Oa,.. } An HMM is
parameterized by the initial distribution 7(X1), the state transi-
tion probabilities p(X¢+1 | X¢), and the observation probabilities
p(O¢ | X¢) for each time step ¢ = 1,2,.... An HMM of length T’
is represented graphically as shown in Figure

Fig. 5: Graphical representation of a length 7" HMM.

The joint distribution of an HMM with length 7" can be factorized
as

T—1
p(x,0) = (1) [] pl@err [2e) [] plos [2e),  (23)
t=1 t=1
where x = {z1,z2,...,2z7} and o = {o1,02,...,07} represent
a particular assignment of hidden and observation variables respec-
tively. Although the graphical model of HMM depicted in Figure [3]
is directed, it can be equivalently represented by an undirected model
(Markov random field) via the moralization technique as discussed
in Section It turns out that the corresponding undirected model
for an HMM is found by just replacing all the directed edges with
undirected ones as in Figure [6] More specifically, the factorization
of the joint distribution described by in terms of transition and
emission probabilities is equivalent to the factorization in with
edge potentials being the corresponding conditional probabilities, e.g.,

Y1,1(21,01) = plo1 | z1)p(x1)
Pee(e,00) = plog | x¢) fort=2,...,T,
Ve p41(Tt, Teg1) = p(Xeq1 | 2e) fort=1,...,7 —1.

A. Collective forward-backward algorithm

To generate aggregate data in HMM settings, we follow the generative
model discussed in Section using trajectories of a large number
(M) of individuals. Let us denote the messages in collective HMM as
shown in Figure @ where «(x+) are the messages in the forward di-
rection and B¢ (x+) are the messages in the backward direction. More-
over, y¢(z¢) denote the messages from observation node to hidden
node and & (o;) are the messages from hidden node to observation
node. Note that the forward messages are a;(z¢) = m¢—1-¢(x¢) and
the backward messages are [B:(x¢) = mit+1-:(x¢). Moreover, the
upward and downward messages correspond to v (x¢) = mi—¢ ()
and &:(0t) = mei—(o¢), respectively. By abuse of notation, here
both the upward and downward messages are denoted as mi—¢,
and distinguished only by the argument. Based on Theorem |1] these
messages are characterized via the following.

Corollary 1. The solution to aggregate filtering problem (Problem

in a collective HMM is
nt(:ct) OCCYt(l’t)Bt(IZ’t)’yt(.’Et), Vt: 1,2,T (24)

where o (xt), Be(xt), and v (x+) are the fixed points of the following
updates

at(xt) X Z p(mt|xt_1)at—1(%-1)%—1(%—1), (25a)

Be(ze) o > plaelee) Bt (@err)yes (Teg1), (25b)
Ti4

o) o Srlode) 23, @50

&(or) (25d)

> plod|z)a () B (),



Fig. 6: Messages for inference in a collective HMM.

with boundary conditions

ai(z1) =m(z1) and Pr(zr) =1. (26)

Algorithm 5 Collective forward-backward algorithm

Initialize all the messages au(x¢), Be(xt), e (), & (0r)
while not converged do
Forward pass:
fort=2,3,...,7 do
i) Update ~y;—1(z¢—1) using
ii) Update o (z¢), £:(0:) using and

end for
Backward pass:
fort=T-1,...,1do

i) Update yt1(x¢+1) using
ii) Update B:(x+), & (0¢) using (25b) and (25d)

end for
end while

Combining Corollary |1/ and Algorithm |4 we arrive at the collective
forward-backward algorithm (Algorithm [5). Since the underlying
graph in HMM is a tree, Algorithm [5|is guaranteed to converge
and the estimated marginals are exact. Upon the convergence of the
algorithm, the marginals can be estimated as

ne(ze) o< (@) Be(me)ye(ze), VE=1,2...,T.

Note that Algorithm uses the scheduling sequence I' =
{01,02,...,07,07_1,...,01,02,...}. Other choice of T would also
work. The sequence message updates involving all the messages in
the forward pass and backward pass is termed as a single iteration.
Next, we discuss the scenario where the measurements y1, y2, . . ., yr
are Diracs and show that, in such a case, Algorithm |j reduces to the
standard forward-backward algorithm [37] which is widely used in
filtering problems for HMMs.

B. Connections to standard HMM filtering

In standard HMMs, a fixed observation sample is recorded at each
time step ¢ forming a 7" length sequence constituting an individual’s
observations. This filtering/smoothing task in a standard HMM is
achieved using the standard BP algorithm discussed in Section [[I-A]
In this special case of HMM graph as depicted in Figure |5} the stan-
dard BP takes a simple form, known as forward-backward algorithm
[37].

The required marginals, given the observation sequence O1.7 =
{61,02,...,07}, are

| )p(e)

p(xt|61:7) o< (61
(01:4—1]2¢)p(0¢|@e)p(Ot+1.7 |24 ) ()
(o
(

plo
p

= p(6¢|@e)p(01:6—1, T¢)P(6t4 1.7 |T1)

p(0¢|ze) o (we) Be (1), @27

Algorithm 6 Forward-backward algorithm

Initialize the messages o (z+), Be(x¢) with aq(x1) = w(z1) and
Br(zr) =1
Forward pass:
fort=2,3,...,7T do
Update oy () using
end for
Backward pass:
fort=T-1,...,1do
Update S:(x+) using
end for

ar(@t) Bi(x+)

\ messages
/ get

| messages
., bounce

/" back " absorbed

pdf (Dirac function)

(b) Delta observations (standard)

(a) Aggregate observations

Fig. 7: Relationship between standard and collective HMMs.

where ai(x:) = p(x¢,61:4—1) denote the forward messages and
Be(zt) = p(6¢41:.7|ze) represent the backward messages. These
messages in the forward-backward algorithm take the form

a(xe) = p(e, 61:4—1)

= Z p(xe, Xe—1,01:4—1)

Tt—1

= Z P(6t—1|xe—1)p(xt|Ti—1, 01:6—2)p(Ti—1, 01:6—2)

Tt—1

= > pladeer)aci(ze-1)p(or-1]we-1), (28)
Tt—1
ﬁt(xt) = p(5t+1:T|CUt)

= Z P(0t11, Ott2.1, Tey1|Te)
Ti41

= Z p(xey1]|2e)p(0et 2.7 |Te11)p(0e41|2e41)
Ti41

=Y p(@ipr]e) Besr (@ 1)p(Bega|weg). (29)
Tyt

All the steps of the standard forward-backward algorithm are listed
in Algorithm [6] Now we establish the relationship between filtering
in standard and collective HMMs.

Theorem 2. In case of Dirac observations, the collective forward-
backward algorithm reduces to the standard forward-backward algo-
rithm.

Proof. In case of Dirac observations, a fixed sequence of observations
01, 02, ...,0r is made and the (aggregate) observations take the form

yt(0r) = 6(or — 6¢), (30)

where 0(-) denotes Dirac function. With these fixed delta observa-
tions, the messages in Equation (25c) become

Ot - Ot)
E p(ot|wt) =
(0¢)

p(6¢|zt)

£:(0r)




Note that the denominator in the last term of the above equation can
be omitted since it only serves as a scaling coefficient and therefore,

Ye(xe) = p(6t|z:). @31
Now the forward and backward messages take the form
ar(m) o< Y pl@ilze—1)a—1(zi1)p(6r—1|i-1), (32a)
Tg_1
Be(we) o< > p(wer1|e) Besr (wes1)p(Orsalzesn).  (32b)
Ti41
Using above, the required marginals are estimated as
’I’Lt(l‘t) X p(ét|xt)at(xt)ﬁt(a:t). (33)

The messages given by Equation are nothing but the messages
used in the forward-backward algorithm for standard HMMSs as in
Algorithm [6] O

The relationship between the filtering problems in standard and
collective HMM s can be intuitively explained as depicted in Figure|[7]
In case of general aggregate observations, the downward messages
&:(ot) bounce back (Figure and contribute to the corresponding
upward messages v:(z:) as in Equation (25¢). In case of Dirac
measurements, the aggregate observations result in Dirac distribu-
tions and as a consequence, the downward messages get absorbed
(Figure [7b) and do not contribute to upward messages as explained
by Equation (31).

Remark 4. Indeed, the relationship between standard HMM and
collective HMM can be extended to more general graphical models.
It turns out that for any arbitrary tree graphical model, in the case of
fixed Dirac aggregate observations, the collective inference algorithm
SBP coincides with the standard BP.

V. EVALUATION

We conduct four sets of experiments to evaluate the performance
of our algorithms. The first one aims to evaluate the efficiency and
convergence rate of SBP, compared with NLBP and Bethe-RDA.
Note that since SBP uses a different observation model to NLBP
and Bethe-RDA, this experiment is carried out only to compare the
convergent behaviors of the algorithms. In the second experiment, we
present an application of SBP in estimating ensembles with sparse
information. The third experiment is concerned with the sensor fusion
problem where the underlying graph is a star graph. Finally, we
empirically show that SBP algorithms can have good performance
even in a PGM with loops. All the experiment were run on Intel i7-
9700 CPU.

A. Bird Migration

First, we study a synthetic bird migration problem with underlying
generative model following an HMM. Similar to the environment in
[16], we simulate M birds flying over a L x L grid, aiming from
bottom-left to top-right. The position transition probability between
previous time and current time step follows a log-linear distribution
that accounts for four factors: the distance between two positions,
the angle between the movements direction and the wind, the angle
between the direction of movement and the direction to the goal,
and the preference to stay in the original cell. Each bird is simulated
independently, following a 7T-length Markov chain. The parameter
for the log-linear model is denoted by w. In the NLBP setting,
the sensors count the number of birds flying through each cell.
Independent Poisson noise is added to each sensor measurement,
which follows y o Poisson(fn). In the SBP settings, we incorporate

the noise in the observations via a discrete Gaussian kernel [56] with
bandwidth of 4 such that the probability for an individual bird to be
observed by a sensor follows a discrete Gaussian distribution centered
at the sensor. In all experiments, we employ model parameters
w = (3,5,5,10); the same parameters are used in all the inference
algorithms. We set M = 5000, and § = 1. We compare the
convergence performance between NLBP, Bethe-RDA and SBP with
different L and 7' values, as depicted in Figure [8] In fact, we
also implemented a simplified version, PROX, of Bethe-RDA which
is based on standard proximal gradient algorithm with Kullback-
Leibler divergence. When 7' is fixed and L varies, SBP is faster
than NLBP, Bethe-RDA and PROX. When L is fixed and T varies,
SBP is also faster than NLBP, Bethe-RDA and PROX. Moreover,
we find that the run time does not grow much as 7" increases. This
makes SBP suitable for large HMMs. The convergence behaviors of
NLBP, Bethe-RDA, PROX, and SBP are displayed in Figures [8¢|
Note that we show the total number of iterations instead of total
running time for the comparison as all these algorithms have similar
per iteration complexity. The 1-norm distance between true marginal
distributions and the estimated distributions decrease monotonically
for SBP, Bethe-RDA and PROX, whereas some instability occurs for
NLBP. To stabilize NLBP, a damping ratio « is needed. However,
higher damping rate implies smaller step size which in turn slows
down the algorithm. We also find that the convergence property of
NLBP is sensitive to the prior distribution and damping ratio when
T is large.

B. Ensemble Estimation with Sparse Information

Next, we conduct a more challenging experiment wherein the aggre-
gate observations are sparse. The task is to track ensembles over a
network with limited number of sensors. The sensors can not tell the
exact locations of the agents, such as in the case of Wi-Fi hotspots,
or cell phone based stations, which can only tell the number of
connected devices. Ensemble estimation is needed in tracking the
human group activity without loss of individual privacy. We evaluate
the model over a 20 x 20 grid network with 16 sensors placed
randomly as in Figure [9] The problem is modeled as a collective
HMM, where the hidden state space has cardinality |X,| = 400, and
the observation state space has cardinality |X,| = 16.

At each timestamp, each sensor observes a count, which records
the number of agents connected to the sensor. Each agent can
only connect with one sensor at a time and the probability of the
connection decreases exponentially as the distance between agent
and the sensor increases. To demonstrate the performance of SBP in
estimating multi-modal distributions, we simulate a population with
two clusters: one from left-bottom and one from center-bottom; both
aim to the right-top corner of the grid in a 7" = 15 time interval.
We model the transition probability as in the bird migration setup
discussed in Section [V-A.

We run simulations with 100 agents (Figure [@]) and 10000 agents
(Figure[10b). As can be seen from the figures, even with such a sparse
observation model, SBP can still infer the population movements to
a satisfying accuracy.

C. SBP on sensor fusion problems

In this experiment, we consider the sensor fusion problem [46] where
the goal is to combine the measurements from multiple sensors into
one by some sort of averaging. In the aggregate setting, each sensor
is associated with a distribution and the problem can be formulated
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Fig. 9: Sensor Location

as a aggregate inference problem with the graph structure shown in
Figure[11] The edge potentials are induced by the quadratic Euclidean
distance which penalizes the differences between the average and the
sensor measurements. In the simulation, we generate 50-dimensional
discrete distributions from a symmetric Dirichlet distribution with
concentration parameter 1.0 for the leaf nodes. We compare the
convergence behavior in terms of the 1-norm distance with respect
to the true average in Figure Note that in cases of NLBP,
Bethe-RDA, or PROX algorithms, Poisson noise is added to the
measurements. It can be observed from Figure that our SBP
algorithm converges faster than the other algorithms for this example
as well.

D. Empirical Loopy Graph Validation

Finally, we run a simple experiment where the underlying graph has
loops as shown in Figure |13] The purpose of this experiment is to
show that our proposed SBP algorithm may also be applicable to
graphs with loops similar to the standard BP algorithm in loopy
graphs [57]]. We set | X, | = |X,| = 5 and generate the aggregate node
distributions randomly. Moreover, the edge potential were generated
using exp(I + @), where I is the identity matrix and @ represents
a random matrix generated by a Gaussian distribution. We estimate
the marginal distribution by solving using the SBP algorithm
and then compare them with exact marginals by solving using
generic convex optimization algorithms. The convergence of the
estimates for five different random seeds in terms or 1-norm distance

is shown in Figure[14] We observe that the SBP algorithm has a good
performance on the loopy graph in this example.

VI. CONCLUSION

In this paper, we presented a reliable algorithm for inference/filtering
from aggregate data based on multi-marginal optimal transport theory.
We established that the aggregate inference/filtering problem is a
special case of the entropic regularized MOT problem when the cost
of MOT is structured according to the graphical model. We then com-
bined the Sinkhorn algorithm for the MOT problems and the standard
belief propagation algorithm to establish our method. Our algorithm
enjoys fast convergence and has a convergence guarantee when the
underlying graph structure is a tree. For the cases of HMMs which
are widely used in control and estimation, we specialize our SBP
algorithm to establish the collective forward-backward algorithm.
The latter naturally generalizes the forward-backward algorithm in
standard filtering problems for HMMs. We evaluated the performance
of our algorithm on multiple applications involving inference from
aggregate data such as bird migration and human mobility based on
hidden Markov models. In the future, we plan to extend our current
algorithm to cover graphical models with continuous state space. We
also plan to investigate the parameter learning of CGMs using the
MOT framework.
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APPENDIX

A. Proof of Theorem I

We first construct a Lagrangian for Problem with Lagrange
multipliers v;;(x;) corresponding to the marginalization constraints
(20c), and ¢; corresponding to the normalization constraints (20d).
This yields the Lagrangian

L= FBcthc(n)

£ Y T

i€V jEN(i) x;

+> G (Zn x; —1>

i€V

D nig(wi, x;) — i)

(34)

Since the marginal constraints are trivial, we choose not to

introduce Lagrangian multipliers for them and instead use these

constraints explicitly when optimizing the Lagrangian. Differentiating

the Lagrangian with respect to the aggregate marginals n;; and
equating this derivative to zero, we obtain

oL :1+1n nij(xi,a:j)

Onij (i, ;) Vi (i, 25)

= nij (i, T5) < Yij (@i, z5)exp (—vji(z:) —

+ vji(wi) + vij(z;) = 0
Vij (xj)) . (35)
Now differentiating the Lagrangian with respect to n;, for ¢ ¢ I" and
d; > 1, we have

oL =( — (dl — 1)[1 + lnm(ml)] — Z Vji(ilfi) =0

Ona(z:) JEN(i)
= ni(e:) xexp | ——— PBRZIED) (36)
N (i) X P d— 1 4 A 'ji\Tq
JEN(7)
Similarly, when ¢ ¢ T" and d; = 1, we have
oL
—F— =0 = i(x;) — ¢ =0, 37
87’14(.’[1) VJ (m) C ( )
where j € N (i) is the only neighbor of node 4.
Denote
M () Zwm (@i, ;) exp(—vyi(x:)). (38)

T4

Using (35), (36) and marginalization constraint (20c), we obtain, for
i such that d; > 1,

D (i ;) exp (—vjilwi) —

zj

vij(5)) o

1
exp | —— E vji(23)
di—1 | “~
JEN ()
|| exp (

JEN (i)

= [ mioi(m:) exp(—vyi(a)) <
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1
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It follows that, by leveraging the fact that |N(¢)| = d,
[T mi—i(@) exp(—vsi(@:)) o

JEN(i)
1
H exp (—vji(z)) %1 H exp (—vri(zi))
JEN(4) keN (i)
1
= H mj—i(zi) H exp (—vji(zi)) G-T. (39)
JEN(i) JEN(3)
Combining and (39), we arrive at
ni(z;) H m;—i(x;) (40)

JEN(4)
which is ford; >1and: ¢T.

For ¢ ¢ I" and d; = 1, i.e., unconstrained variable at a leaf node,
using and we deduce that

nij (@i, 25) o< iz (@i, x5) exp (—vij(x;)) . 1)
In view of (38) and marginalization constraint (20c), we get
ni () Zn” Ty Tj)
SN Z%’j (zi,25) exp (—vij(z;))
;
= mji(z), (42)
which is fordi=1and: ¢T.
Combining and (20¢), we obtain
> i (@i, w5) exp (—vji(ws) — vig(5)) o na(:)
z;
= mji(w:) exp(—vji(w:)) o< ni(ws)
exp( V.N(xl)) S8 m]ﬁﬂ(l‘z)
ni(x;
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z; ]—n(l'z)
= mi;(z; Zw, Ti, Tj nz(ml) (43)
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Therefore, for ¢ ¢ T, using and (3), we get
[keney mr—i(e:)
mi—j(z;) o Zwu(%,%) (1)
o Zwu (z4,x5) H mr—i(zi), (44)
kEN (i)\j

which is (224).

Furthermore, for ¢ € I', combining and observation (fixed
marginal) constraints (20b), we arrive at

ZWJ T, T5)

which is (22b). This completes the proof.
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