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Macroscopic network circulation for planar graphs
Fariba Ariaei*, Zahra Askarzadeh*, Yongxin Chen, Tryphon T. Georgiou

Abstract—The analysis of networks, aimed at suitably
defined functionality, often focuses on partitions into sub-
networks that capture desired features. Chief among the
relevant concepts is a 2-partition; this underlies the clas-
sical Cheeger inequality and highlights a “constriction”
(bottleneck) that limits accessibility between the respective
parts of the network. In a similar spirit, we explore a
notion of global circulation which necessitates a concept
of a 3-partition that exposes this macroscopic feature
of network flows. Graph circulation is often present in
transportation networks as well as in certain biological
networks. We introduce a notion of circulation for general
graphs and then focus on planar graphs. For the case of
the latter we explain that a scalar potential characterizes
circulation in complete analogy with the curl of planar
vector fields and we present an algorithm for determining
values of the potential and, hence, quantify circulation. We
then discuss alternative notions of circulation, explain how
these may depend on graph embedding, draw parallels
between networks and Helmholtz-Hodge decomposition of
vector fields, and conclude with a suggestive application
of the framework in detecting abnormalities in cardiac
circulatory physiology.

I. INTRODUCTION

Time asymmetry of traffic flow in city streets is unmis-
takable, as it flows in one direction around city squares
and one-way in many city streets as well. Yet, from
a macroscopic vantage point, circulation may or may
not be evident. Flux from one part of town to another
may average out with flux in the opposite direction.
When this is not the case, it is of interest to identify
the nature and to quantify any large scale imbalance in
circulation. Likewise, in another example that motivated
this work, it is of interest to detect circulatory action
potentials in the heart electrical conduction system [1],
[2]. Such large scale imbalance patterns, peered via
a collection of sensors, underly self-sustaining cardiac
rhythm abnormalities1. Thus, herein, we seek to define
and identify macroscopic circulation in a network/graph
that captures flow asymmetry at large scale.
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1Circular propagation of action potentials known as “reentry” may

lead to life-threatening conditions and sudden cardiac death [3].

The mathematical setting we use to model flows
on graphs is that of a stationary discrete-time Markov
model, where the probability flux represents a vector
field on the network of the nodes and edges of a Markov
chain. In this setting, the famous Cheeger constant relates
the likelihood of transitioning between two parts in a
2-partition of the nodes and quantifies bottlenecks that
impede mixing. In a similar manner, contemplating the
elements of circulatory imbalance, we are led naturally to
a 3-partition of the network; tell-tale signs of circulatory
asymmetry requires partitioning with at least three parts.

Graph theory has impacted many fields in mathemat-
ics, physics, network science, biology, medicine, and en-
gineering [4]–[6]. Applications relate to clustering, com-
munity detection, parallel computation, and so on, and
in these, graph partitioning often plays a key role. For
instance, local [7], [8] and global [9] partitioning of undi-
rected and directed graphs in different contexts, partition-
ing having sparsest cuts [10], and various generalizations
of the classical Cheeger inequality [11], all provided
enabling new insights and techniques for applications. In
the recent years, Helmholtz-Hodge decomposition and
higher order graph Laplacians have also been used as
powerful tools to characterize structural properties of
flow fields on graphs, and to describe the dynamics
of processes on networks [12]–[14]. Yet the concept of
circulation discussed at present does not appear to have
been studied at any length. Thus, a main contribution
of the present work is motivate and study circulation
in graphs and the topology of corresponding partitions.
Further, a computational framework is developed that
applies to embedded planar graphs; for general graphs
macroscopic circulation and the corresponding graph
partitioning remain challenging combinatorial problems.

The structure of the paper is as follows. Section II
discusses probability currents and flow fields on graphs.
Section III discusses the concept of macroscopic cir-
culation. Section IV focuses on planar graphs and the
relevant decomposition of flows. Section V covers an
algorithm for calculating the scalar potential supported
on the dual graph; this quantifies circulation and dictates
corresponding 3-partitioning(s) the graph. The issue of
graph embedding is revisited in Section VI where an



example helps highlight that a given graph may have
non-equivalent embeddings; these may lead to different
values of macroscopic circulation. Section VII discusses
potential application to cardiac circulatory abnormalities.
For convenience, key notation is summarized in Table I
while the Appendix highlights basic cardiac electrophys-
iology as background for the application in Section VII.

II. PROBABILITY FLOW FIELDS ON GRAPHS

We explain flows on graphs in the context of Markov
chains. These can be thought as a canonical model
to represent flows on discrete spaces in the form of
probability currents induced by the Markov structure.

TABLE I: Table of notations.
Symbols Definitions

G directed graph G := (V,E)
V,E,F node, edge, face sets
N = |V| cardinality of V = {v1, . . . ,vN}; N > 3

GF graph with adjacency-matrix zero-pattern in F
G∗,Gchordal dual and triangulated graphs

Π,π transition probability matrix, stationary vector
∂AB boundary {(va,vb) ∈ E | va ∈A,vb ∈ B}

⊕ , ◦ entry-wise Boolean addition and multiplication
1, 0 (column) vectors with all 1’s and all 0’s

Consider a time-homogeneous, discrete-time, N-state
finite Markov chain Xt, with t ∈ N, with states V =
{v1, . . . , vN}, comprised of the nodes of a network, and
transition probabilities πij, i.e.,

P {Xt+1 = vj | Xt = vi} = πij.

We assume that the Markov chain is ergodic and
hence, irreducible and aperiodic. Thus, the matrix Π :=
[πij]

N
i,j=1 has non-negative entries and is such that Π1 =

1, where 1 denotes a column vector with all entries
equal to 1. The ergodicity assumption implies that for
a sufficiently large integer k (e.g., k = N), Πk has
all entries positive. The dimensionality of vectors and
matrices will be explicit, unless their dimension is clear
from the context. The Markov chain is associated to
a graph G := (V,E), where the (directed) edge set
E is specified by the allowed transitions, i.e., E =
{(vi, vj) |πij 6= 0}. Throughout, G is assumed strongly
connected as it follows from the ergodicity assumption
of the Markov chain.

Let now π = [πi]
N
i=1, where 1Tπ = 1, denote the sta-

tionary probability (column) vector of the Markov chain,
i.e., πTΠ = πT . Throughout, (·)T denotes transposition
and diag(π1, . . . ,πN) = diag(π) denotes a diagonal
matrix with the specified diagonal entries. Thence,

P := diag(π1, . . . ,πN)Π (1)

represent probability current pij = πiπij from vertex vi
to vj. Probability currents quantify flux on G.

Our aim is to identify (large scale) imbalance in the
net flux across G, and to this end, we will be working
mostly with the anti-symmetric part of P (modulo a
factor of 1/2)

F = P − PT . (2)

Any element of matrix F is the difference between the
incoming and outgoing flow between pairs of nodes of
G, defined as Fij = pij − pji, where pij is defined in
1. This retains information on only local flux imbalance
between any two nodes, and removes all the self-loops.
Note that since, Π1 = 1, it follows that P1 = PT1, and
therefore, that F1 = 0 (the zero vector) as well.

Imbalance between the incoming and outgoing flow at
a node indicates sink/source character which corresponds
to non-vanishing divergence in the case of vector fields.
Thus, we refer to a flow field F on G as “divergence
free” if and only if the local net flux imbalance at every
node is zero, i.e., F1 = 0. If F is not divergence free, for
the purposes of this paper, it is replaced by its restriction
on the complement of the range of 11T , namely, (I −
1
N
11T )F(I− 1

N
11T ), so that F1 = 0; this is a projection

onto the space of divergence-free flows.

For a flow field F on G originating from a Markov
model, besides

F = −FT (3a)
F1 = 0, (3b)

the positive part of F, namely, F+ := [max{Fij, 0}]Ni,j=1,
has entries that are less than or equal those in P, and
since 1TP1 = 1,

1TF+1 6 1. (3c)

It turns out that (3a-3c) characterize divergence-free flow
fields on graphs, i.e., any antisymmetric matrix with the
above properties originates from a Markovian probability
structure as stated next.

Proposition 1. Consider F ∈ RN×N where (3a-3c)
hold. Then F originates as a divergence-free flow-field
on G = (V,E), with |V| = N, for a Markov structure.

Proof. If (3c) holds with strict inequality, define

P :=M+ F+, (4)

for a symmetric matrix M = MT , of the same size,
with nonnegative entries such that 1TM1 = 1−1TF+1,
ensuring that πT := 1TP has all entries positive. Now,
verify that

Π = diag(πv1 , . . . ,πvN)−1P (5)
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is a transition probability matrix that leads to the
divergence-free flow field F. Specifically, i) Π has non-
negative entries. ii) In view of πT = 1TP and (5),
πTΠ = πT holds. iii) Note that F = F+ − FT+ and hence,
F+1 = FT+1 from (3b). It follows that P1 = PT1, and
from (5) the definition πT = 1TP, that Π1 = 1. iv)
Lastly, P−PT = F+−F

T
+ = F. If (3c) holds with equality,

let P = F+, and define Π = diag(πv1 , . . . ,πvN)−1P.
Here we have adopted the convention 0/0 = 0 in
case π has zero entries. One can verify this Π is a
transition probability matrix associated with the flow
field F following the same arguments as before.

III. MACROSCOPIC CIRCULATION ON GRAPHS

Consider an N × N antisymmetric matrix F of net
fluxes that defines a divergence-free flow field on a
graph G. We seek a suitable definition of (maximal)
macroscopic circulation by partitioning the states into
three subsets A, B, and C, in such a way so as to
maximize the flux between the parts. We discuss first
the simplest case, of three states, and proceed to define
the concept of circulation and flow-density in general.

Three-state example: We consider a three-state
Markov chain (N = 3) in Fig. 1, where for convenience
we label the three nodes as A,B,C, i.e., V = {A,B,C}.
The net flux matrix on G (anti-symmetric part of the
probability current matrix P, modulo a factor of 1/2) is

F =

 0 −γ γ
γ 0 −γ
−γ γ 0

 ,

with the directionality encoded in the sign of γ. Ob-
viously, the off-diagonal entries of F must have the
same magnitude, since F1 = 0. Evidently, the value
|γ| quantifies circulation in this example. The weighted
oriented graph of net fluxes is shown in Fig. 2. For

Fig. 1: Probability currents in a 3-state Markov chain.

the case of a three-state Markov chain, a close-form
expression for γ can be obtained in terms of Π, though
this is immaterial and not to be expected in general.

C

A B

pAC − pCA = γ γ = pCB − pBC

γ = pBA − pAB

Fig. 2: Weighted oriented graph of net fluxes.

General case: We now consider the general case with
N states, as before, and data for net flux between nodes
in F. We seek partitioning the graph into three subsets
of nodes A,B,C ⊂ V that are pairwise non-intersecting
with

V = A ∪B ∪ C.

Such a triple of subsets of V will be referred to as a
3-partition.

Define the characteristic (column) vector IS of a set
S ⊆ V, with V ordered, as follows: the vth entry of IS is
equal to 1 when v ∈ S and 0 otherwise. It is convenient
to define entry-wise Boolean addition and multiplication
of characteristic vectors, ⊕ and ◦, respectively, and also
the notation 1, 0 to denote the (column) vectors with all
1’s and all 0’s, respectively.

Lemma 2. (A,B,C) is a 3-partition of V if and only if

IA ⊕ IB ⊕ IC = 1, (6a)
IA ◦ IB = IB ◦ IC = IC ◦ IA = 0, (6b)

Proof. Relation (6a) is equivalent to V = A∪B∪C, and
(6b) to pair-wise non-intersection.

Given a flow field (net-probability flux) matrix F, as
before, and a 3-partition (A,B,C) of the (ordered) vertex
set V, then ITAFIB is the (signed) flux directed from A

to B. That is, if ITAFIB < 0, the net flux, summed over
all edges connecting directly A and B, is directed from
B into A. Thus, ITAFIB = −ITBFIA, while the absolute
value |ITAFIB| is the total net flux between the two parts.

Lemma 3. For any 3-partition (A,B,C) of the (ordered)
vertex set V,

ITAFIB = ITBFIC = ITCFIA.

Proof. Note that ITAFIA = 0, since F is antisymmetric,
and that IA ⊕ IB∪C = IA∪B∪C = 1. Then,

ITAFIB + ITAFIC = ITAFIB∪C

= ITAFIB∪C + ITAFIA

= ITAF1 = 0.
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Fig. 3: 3-partition into
non-contiguous pairs.

Fig. 4: 3-partition into
contiguous pairs

Thus, ITAFIB = −ITAFIC = ITCFIA. Similarly, ITBFIA =
ITCFIB.

In view of the above, it is natural to define the
circulation

c(A,B,C) := |ITAFIB|

associated to any given 3-partition and, accordingly, the
maximal macroscopic circulation

cmax := max
3-partitions

c(A,B,C).

Evidently, c(A,B,C) depends on the partition as well as
the “divergence-free” flow field on the graph G = (V,E)
that is specified by the skew symmetric matrix F. Herein,
we prefer to let F be specified from the context, instead of
using a more cumbersome notation such as cF(A,B,C).

A moment’s reflection reveals that these concepts do
not take into account the topology of the partition. More
specifically, the nature and size of the boundary between
the parts of the partition may be relevant to the type of
global feature we may want to capture. We highlight
this point with the following example, and then return
to define normalized notions of macroscopic circulation.

Six-state example: Consider hexagonal planar graph
in Fig. 3 and Fig. 4. The two figures display color-coded
3-partitions, where in the first, pairs that constitute each
of the three parts are not contiguous, whereas in the
second, pairs of nodes in each of the three parts are
neighboring and connected. The net flux matrix is

F =


0 1 0 0 0 −1
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
1 0 0 0 −1 0

.

Let A denote the green set of nodes and B the red. In
the first of these two 3-partitions, ITAFIB = 2, whereas
in the second ITAFIB = 1. The difference between the
two is that the “circulatory flux” in the first 3-partition is
counted twice due to the fact that the boundary between
the parts A and B, denoted by ∂AB has size 2, as it

consists of two edges, and is traversed “twice” by any
complete transport around a cycle. In the second choice
for a 3-partition, ∂AB = 1. 2

The above examples suggest normalizing the flux be-
tween any two parts of a partition, by dividing by the size
of the corresponding boundaries. That is, normalizing
ITAFIB by dividing with the size of the boundary, namely,
|∂AB| which denotes the cardinality of the set

∂AB := {(vi, vj) | vi ∈ A, vj ∈ B, and (vi, vj) ∈ E}

of edges between the two parts A, B, brings us to
a notion of density flux associated with the boundary
separating two parts of any partition,

f(∂AB) :=
|ITAFIB|

|∂AB|
.

Accordingly, the minimal density flux of the partition, is

fmin(A,B,C) := min{f(∂AB), f(∂
B
C ), f(∂

C
A)}, (7)

and similarly for the maximal. This approach leads us
to a combinatorial problem. In fact, for a graph with n
vertices, the total number of possible cases to consider
for solving (7) is equal to Stirling number of the second
kind, S(n, 3) [15]. Thus, below, we focus on planar
graphs and explain how to compute suitable notions of
macroscopic circulation via a scalar potential supported
on the dual graph.

IV. PLANAR GRAPHS AND NETWORK CIRCULATION

We assume that geographic proximity of nodes is
dictated by an actual embedding of a graph into a
linear metric space, specifically R2. Graphs that can be
embedded in R2, without intersection of edges, are called
planar. In this case flow fields have a strong resemblance
to planar vector fields.

For planar vector fields there is a well known de-
composition into gradient flow and curl that captures
circulation. In fact, circulation can be conveniently quan-
tified by a scalar potential. In a similar manner, for
planar graphs, circulation relates to a scalar potential
on the vertex set of a dual graph as we will explain
shortly. The dual G∗ of a planar graph G is itself a
planar graph whose vertices correspond to faces of G,
and whose faces correspond to vertices of G. Nodes in
G∗ are connected by an edge if the corresponding faces
in G have an edge as boundary. We proceed to review
some facts on planar graphs, as well as elements of
the Helmholtz-Hodge decomposition of vector fields that
provides insight into the corresponding decomposition of
flow fields on graphs.
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A. Planar graphs

A graph is referred to as planar when it can be drawn
on the plane in a way that no edges cross each other
and intersect only at their endpoints (vertices). The study
of planar graphs goes back to Euler who showed that,
for simple and connected planar graphs on the simply
connected space R2, i.e., with zero genus g,

|V|− |E|+ |F| = χ(g) = 2 (8)

where F is the set of faces2 and the Euler characteristic3

is χ(g) = 2 − 2g. Euler’s formula is not sufficient
to ensure planarity. A condition that fully characterizes
planarity was given in 1930’s by Kuratowski and Wagner
in the form of absence of two specific subgraphs, K5 or
K3,3 [16].

The next important consideration is how to embed a
planar graph in R2. For this we refer to [17]. It turns out
that there may exist several “nonequivalent embeddings”
[18], [19]. As we explain below, network circulation
depends on the particular embedding.

Every planar graph can be drawn on a sphere (and
vice versa) via stereographic projection. This amounts
to identifying points on R2 with points on the (Rie-
mann) sphere by corresponding the “north pole” with
the “point at ∞” and any other pair in line with the
north pole (the line containing a point on the sphere
and the corresponding projection on R2) (see Fig. 5).

Fig. 5: Stereographic projec-
tion.

For any planar graph G,
and any face f of G, the
graph can be redrawn on
the plane in such a way
that f is the “outside face”
of G. This can be effected
by rotating the projection of
the graph onto the Riemann
sphere so that the image of
the face contains the north
pole. However, besides slid-
ing and rotating the graph projection on the Riemann
sphere, other transformations are possible that may
change the local ordering of vertices, leading to non-
equivalent embeddings of the graph on R2.

More precisely, for our purposes, two graph embed-
dings are said to be equivalent if their corresponding

2The exterior of the graph needs to be counted as a face, and it is
referred to as the outside face.

3Euler characteristic is a topological invariant, a number that de-
scribes a topological space’s shape regardless of the way it is “bent.”

projections onto the sphere can be continuously rotated
(and the corresponding vertices shifted onto the sphere
without crossing edges) so as to match. The equivalence
of two graphs is exemplified in Fig. 6. For the reasons
we just explained, that the positioning of the north pole
leads to equivalent embeddings, there are |F| isomorphic
embeddings for every planar graph, as stated next.

Fig. 6: Isomorphic graphs and sequence of graph morphisms;
θ and h are rotation and projection maps, respectively.

Lemma 4. There are |F| isomorphic embeddings for
every planar graph.
Proof. Fig. 6 exemplifies the equivalence between two
planar embeddings, as discussed leading into the lemma.
More specifically, consider a graph G with a given
embedding h : R2 → S2 that maps G to Gs on sphere S2.
A homeomorphism θ : S2 → S2 rotates the position of
nodes and edges of Gs on the outside of S2, placing the
“north pole” within any of the |F| possible faces. Then,
h−1 ◦θ◦h produces an equivalent graph embedding.

B. Helmholtz-Hodge decomposition

We now turn to a brief overview of concepts of vector
fields. The Helmholtz-Hodge decomposition simplifies
the analysis by bringing up important properties such
as incompressibility and vorticity that can thereby be
studied directly [20].

The Helmholtz-Hodge decomposition states that the
space of vector fields decomposes into mutually L2-
orthogonal sub-spaces using potential functions [21].
The components can be calculated as the gradient of
a scalar potential φ and curl of a vector potential ψ,
namely,

W = ∇φ+∇×ψ+ h,

where ∇φ is the curl-free component (i.e., ∇×∇φ = 0)
of the vector field W, and ∇×ψ is its divergence-free
component (i.e., ∇ ·∇×ψ = 0), whereas the harmonic
component h is both divergence-free and curl-free.

The curl-free component: Since the divergence of a curl
is zero, we can compute φ, the scalar potential associated
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with the curl-free component of the vector field W, as
the solution of the following Poisson equation.

∇ ·W = ∇·∇φ = ∇2φ

where the last equality holds because the divergence of
a gradient is the Laplacian.

The divergence-free component: Since the vorticity
(normal component of the surface curl) of a gradient
field vanishes, n̂ . (∇ × W) = n̂ . (∇ × ψ). Since
vorticity of the surface curl of a scalar potential is the
surface Laplacian of the potential, we have

n̂ . (∇×W) = ∆ψ (9)

where n̂ is the normal vector. Equation (9) is obeyed
if the scalar field ψ is a solution of the above Poisson
equation.

In the case of vector fields on R2, the curl can be
expressed as Ψ = J∇ψ, where J is an antisymmetric
matrix and ψ a scalar potential. It follows (Stokes’
theorem) that the flux crossing any curve connecting two
points a and b on R2 is given by the difference of the
endpoint potentials, hence, we have the following.

Proposition 5. The flux across the path connecting the
extrema of a curl potential field is maximum.
Proof. With J the operator that rotates a vector on R2

counter-clockwise by 90o, the flux between a and b is

Iab =

∫b
a

J∇ψ · Jds = ψ (b) −ψ (a) , (10)

and
max(Iab) = max

a,b∈R2
(ψ(b) −ψ(a)). (11)

An analogue of Proposition 5 over discrete vector
fields on graphs is discussed next.

C. Planar Net Flux Graph

Starting with an antisymmetric net flux matrix F =
[Fij]i,j in (2) of a Markov chain on a planar graph, we
consider the graph with adjacency matrix having the
zero pattern of F; the space of vertices and edges are
the collection of the nodes and edges, respectively, that
have corresponding non-zero elements in F, VF = {vi ∈
V|Fij 6= 0 for some vj ∈ V}, EF = {eij ∈ E | Fij 6= 0} .
In addition we specify a sign function σ : VF × VF →
{−1, 1} that assigns an orientation, specifically σ(i, j) =
sign(Fij) for all non-zero elements of the net flux matrix,
and define the directed graph GF(VF,EF,σ). This is a
simple graph in that at most one edge exists between
pairs of nodes. The vector of edge flow weights

W = (wij)i,j

corresponding to edges eij ∈ EF with values wij = |Fij|
represents the flow field. The space of all flow fields
is denoted by UF and assumes a Helmholtz-Hodge
decomposition,

UF = Ucurl
F ⊕ Uharmonic

F ⊕ U
gradient
F ,

where U
gradient
F and Ucurl

F are curl-free and divergent-free
components and ⊕ denotes the direct sum of vector
spaces. If Wcurl,Wharmonic,Wgradient denote projections of
W in the respective components, then clearly Wgradient =
0, since by assumption F has no “sources.”

We wish to capture circulation in a similar manner
as in planar flow fields and thereby we seek a curl
potential ψ. The harmonic component Wharmonic relates
to circulation about “holes” (non-triangular faces [13])
in the graph. Thus, before we proceed, we triangulate
GF, and generate a new graph Gchordal

F so as to remove
holes and ensure that the harmonic component is zero.

D. Triangulated Planar Graph

The curl component of the flow field is defined on
triangles, i.e., cycles of length 3 [13]. The cycle graphs
of more than 3 vertices are considered as holes and their
edge flow as harmonic components of the flow field.

To remove the harmonics, we replace the holes that are
not bounded by triangles with chordal subgraphs. That
is, we add a minimum number of chords, as edges with
zero flux, that are not part of the cycle but each connects
two vertices of the cycle. This way, we generate a planar
chordal graph such that every chordless cycle subgraph
is a triangle. Fig. 10 in Section VI shows examples of
triangulated graphs with the original graphs in Fig. 9).
It turns out that graph triangulation strongly depends on
the embedding, which will be again discussed in Section
VI. The corresponding potential function ψ is defined
on the graph’s faces, and hence, can be assigned to
the nodes of the dual graph, (Gchordal

F )∗. The potential
ψ takes the same value on each triangular face that
originates in the same original non-triangular face. The
maximum flux, in complete analogy with (11), is then
obtained by identifying those vertices of the dual graph
with minimum and maximum curl potentials.

E. Non-planar Graphs

Graphs that cannot be drawn on a plane or sphere
without edge crossings, i.e., non-planar, can always be
drawn on a surface of higher genus [22]. A surface is
said to be of genus g ∈ {0, 1, 2 . . .} if it is topologically
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homeomorphic to a sphere with g handles. For instance,
the genus of a sphere is 0, and that of a torus is 1.
Accordingly, a graph is said to have genus g if it can
be drawn without crossings on a surface of genus g, but
not on one of genus g − 1. It can be easily seen that
K5 and K3,3 are graphs of genus 1 (toroidal graphs);
Fig. 7 exemplifies K3,3 drawn on the torus T 2. The
graph is drawn by assigning points and continuous, non-
intersecting (except at end-points) paths corresponding
to the vertices and edges of the graph, respectively. The
dual of a non-planar graph can also be drawn on the
torus in a similar fashion to a planar graph.

Fig. 7: A toroidal graph (K3,3): (a) Embedding on R2; (b) The
projective plane; (c) Embedding on a torus.

The decomposition of a continuous vector field on
the torus (as a manifold) is more complicated than on
a sphere. In this case, the divergence-free component
Ucurl
F , can be partitioned into a toroidal and a poloidal

part [23], [24] –a restricted form of the usual Helmholtz
decomposition. We contend that an analogous decompo-
sition of a flow field of genus 1 graph can be similarly
obtained; the corresponding poloidal component is once
again generated by a scalar potential (as in the case
of planar graphs) whereas the poloidal component is
harmonic and represents flux/circulation around holes
(of the torus). A detailed analysis on how to compute
maximal graph circulation for graphs of genus 1 is not
available at present.

V. GRAPH PARTITIONING

We summarize the insights gained and highlight the
steps needed in Algorithm 1 which helps obtain a 3-
partition corresponding to maximal circulation by pro-
viding the curl potential ψ on the vertices of its dual
graph (i.e., faces of the original graph) and how to
numerically calculate these. The outcome depends on
the embedding of GF (cf. Section VI).

Knowing ψ allows carving 3-partitions that entail
maximal circulation. Indeed, any set of two paths on the
dual graph between the points of ψ-extrema separates
the graph in the three regions, A,B and C, discussed
earlier. This is summarized next.

Theorem 6. Consider a divergence-free flow field W

on the edges of a strongly connected directed graph.

Algorithm 1: Finding curl potential extrema
Input:
An embedded strongly connected, aperiodic,
planar graph G with transition matrix Π.

Offline Preprocessing:
1. Calculate the net flux matrix F from (2).
2. Construct and triangulate GF as described in
Section IV-C, to generate Gchordal

F .
3. Find dual graph (Gchordal

F )∗.
4. Set the potential ψ for the outside face to zero.
Computations:
Find potential ψ for vertices of the dual graph
using (10), i.e., obtain ψ so that the difference
between values at the nodes of the dual graph
(corresponding to faces of the primal) equals
the flux of the corresponding edge of the primal
graph, ψ(faceleft) −ψ(faceright) = Fij assuming
a consistent orientation.

Output:
Two faces of the primal with potential extrema.

Algorithm 1 generates the chordal directed graph
Gchordal
F and its dual with an associated curl potential
ψ. There exist paths in the dual graph connecting two
chosen extrema points of ψ that provide a 3-partition
with maximal macroscopic circulation.

Proof. Completion of the graph into a chordal graph
is the first step of the algorithm and was explained
before. We compute ψ as follows. We assign 0 at the
vertex of the dual of the chordal graph corresponding
to the outside face, and proceed to assign values to
the remaining vertices of the dual graph so that the
difference between values of adjacent vertices equals the
(signed, e.g., in the counter-clockwise sense) flux on the
corresponding edge of the primal graph. We now explain
the last part of the theorem.

Since Gchordal
F is triangulated, its dual is 3-edge-

connected [25]. By Menger theorem [26], for 3-edge-
connected graphs every pair of vertices has 3 edge-
disjoint paths in between. Now consider a pair of vertices
on the dual graph, v∗min and v∗max, corresponding to the
minimum and maximum of ψ, respectively. There are 3
edge-disjoint paths P1, P2, and P3, connecting v∗min and
v∗max. These paths can generate three cycles as follows.

Cij = Pi ∪ Pj, (1 6 i < j 6 3)

where Cij ∈ C, and C is a family of cycles in (Gchordal
F )∗.

If paths P1, P2, and P3 are also internally disjoint, then
they will generate three cycles C12, C23, and C13. If C12
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and C23 are contractible, by 3-path condition [27]–[29],
C13 is also contractible. We only need to show that if P2
lies between P1 and P3, then C13 is surface separating
and4 int(C13) = int(C23) ∪ int(C12) ∪ P2. It follows
from Euler’s formula that the genus of int(C13) ∪ C13
is zero, and thus C13 is contractible.

Since Cij’s are also discrete Jordan curves and equiv-
alent to the bonds of Gchordal

F [22], [30], by properly
selecting interior or exterior of those cycles, these
delineate three disjoint and connected sets of primal
vertices. Then, by (11), the flow that crosses their shared
boundaries (i.e., P1, P2, and P3) is maximal.

If P1, P2, P3 are edge-disjoint paths between v∗min and
v∗max, but not internally disjoint, there exists cycles Cij’s
that are self-intersecting. That is, the int(Cij) is not
path-connected and, hence, not contractible.

Fig. 8: Cases of 3 edge-disjoint paths between v∗min and v∗max:
P1, P2, P3 are (a) internally disjoint, (b,c) not internally disjoint.

Fig. 8 exemplifies cases discussed in the above proof.
In case (a) the three cycles C12 = P1∪P2, C23 = P2∪P3,
and C13 = P1 ∪ P3 are contractible. Therefore, all 3-
partitions, int(C12), int(C23), ext(C13) are connected.
The cases (b,c) correspond to cycles that are self-
intersecting. Specifically, in Fig. 8(b) only C12 is
self-intersecting, whereas in Fig. 8(c) all three cycles
are self-intersecting. Accordingly, the corresponding
3-partitions may not be connected.

Corollary 7. If there exist 3 edge-disjoint paths that are
vertex-disjoint, then each 3-partition is connected.

Fig. 10 exemplifies Theorem 6 for a planar graph
with two non-equivalent embeddings, where P1, P2, P3
are marked with different colors and the 3-partitions
are marked using different colors (red, blue, green) and
shapes (�, ◦,4). In the next section we explain how the
output of Algorithm 1, and consequently the partitioning,
depends on the embedding.

4int(·) and ext(·) denote interior and exterior, respectively.

VI. EFFECT OF EMBEDDING

It is known that 3-connected graphs have unique em-
bedding, and consequently a unique dual graph [18]. But
in general, different embeddings with non-isomorphic
duals are possible. This is of importance since the output
of Algorithm 1 depends on the dual graph. We highlight
the issue with an example.

Fig. 9 displays two non-isomorphic embeddings of the
same graph. Assuming a transition probability matrix

Π =



0 0.25 0 0 0.25 0 0.25 0.25
0.333 0 0.333 0.333 0 0 0 0

0 0.25 0 0.25 0 0.25 0 0.25
0 0.333 0.333 0 0.333 0 0 0

0.333 0.333 0 0.333 0 0 0 0
0 0 0.333 0 0 0 0.333 0.333

0.5 0 0 0 0 0.5 0 0
0.25 0 0.25 0 0 0.25 0.25 0


, (12)

we apply Algorithm 1 to obtain the net flux ma-
trix, triangulated graphs, and the respective 3-partitions
shown in Fig. 10. The maximal circulation is 0.0301
and 0.0321, and the corresponding 3-partitions are
{{7}, {8}, {1, 2, 3, 4, 5, 6}} and {{4, 8}, {2, 3, 6}, {1, 5, 7}}, re-
spectively.

Fig. 9: Non-equivalent embeddings of the same graph.

Fig. 10: Triangles, duals and 3-partitions of graphs in Fig. 9.

VII. APPLICATION TO CARDIAC CIRCULATION

We now discuss the potential relevance of network cir-
culation for detecting and quantifying a specific pathol-
ogy that relates to what is known as “reentry” in cardiac
conduction systems. It is noted that application of graph
theory to cardiac electrophysiology is fairly new [31].
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A. Background

Reentry refers to a pathologic impulse conduction that
underlies a self-sustaining cardiac rhythm abnormality.
This may account for most tachyarrhythmias found in
patients that lead to life-threatening arrhythmias and
sudden cardiac death [3]. A model for reentry is shown in
Fig. 11(a). In normal conduction, a single action poten-
tial [32] travels down each branch and through a com-
mon, connecting pathway across the “active medium”
that constitutes the heart muscle. In reentry, the action
potential propagates in a circus-like closed-loop manner,
continuously depolarizing the cardiac muscles around an
abnormal area. It can take place within a small local

Fig. 11: (a) Normal conduction and reentry circuit; (b) Local
and global reentry in heart.

region within the heart or it can occur between the
atria and ventricles (global reentry) (see Fig. 11(b)),
and can cause atria and/or ventricular tachycardia. Local
reentry could be the result of conduction blocks, whereas
global reentry is formed due to accessory pathways
(muscle bridges, known as Kent bundles). A well-known
complication is the Wolff-Parkinson-White (WPW) pat-
tern that can transition into ventricular tachycardia and
sudden death without prompt diagnosis and treatment
[3]. A permanent treatment is cardiac ablation that
destroys the abnormal conduction pathways with heat. To
avoid complications it is crucial to locate the abnormal
conduction pathways by precise cardiac mapping [33].

B. Method

A model of the heart conduction system as a di-
rected graph, with nodes representing cardiac cells,
can help locate local or global re-entrant circulation.
Cardiac cells can be grouped as specialized cells that
have automatic action potential generation capability
(Sinoatrial (SA) node, Atrioventricular (AV) node, and
Purkinje fibers) that can be viewed as sources, and
excitable cells and fiber membranes. It should be noted
that all cardiac cells may have sink-source properties5

5During action potential propagation, an excited cell serves as a
source, whereas during the absolute refractory period it serves as a
sink [32].

[34]. A simplified illustration of a directed graph model
of heart is shown in Fig. 12. For simplicity, only a
few nodes are depicted and the directed arrows show
a time frame of the current propagation patterns. A
3-partition is also highlighted by sets of nodes in
green circles, red squares, and blue triangles. Fig. 12
also illustrates the atrioventricular circulation of exci-
tation (global reentry) WPW pattern (yellow arrow).

Fig. 12: An illustration of
directed graph modeling of
heart, global reentry, and 3-
partitions.

The following example is
based on a standard 12-
lead surface electrocardio-
gram (ECG) of a WPW
pattern presented in [35]
and displayed in Fig. 18 in
the Appendix. The voltage
(electric potential) in mV
was read from the patient’s
ECG for each of the 12
“physical” leads and transformed to XYZ “virtual” leads
(xyz-coordinates on a sphere with the origin at the center
of the heart) via

Φt = T Vt (13)

where Vt ∈ R12 is the vector of the 12 leads’ voltages,
Φt = (VX,VY ,VZ)T ∈ R3 is the vector of the XYZ
leads’ potentials, T is a transformation matrix6, while
t denotes time. The vector potential, Φt, (also known
as vector ECG) measures of cardiac electrical activities;
its magnitude is shown in Fig. 13. For the purposes of
our analysis we sampled Φt ∈ R3 every 0.2sec over the
interval of [0.8sec, 2.4sec] highlighted in the figure.

Fig. 13: Magnitude of vector ECG; the red rectangle boxes the
computational time-frame.

We form a graph on the sphere with “virtual”
nodes at 9 locations in the direction of each vector in
{Φ0.8, Φ1, . . . , Φ2.4}. This is shown in Fig. 14 along

6Analogous transformations to transform 12-lead ECG signals to
3-lead vector ECG and vice versa can be found in [36], [37].
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with the stereographic projection onto a planar graph.
This vertex set represents collection of heart’s excitable
cells that are excited at various instances in time. A
potential equal to the corresponding magnitude of the
vector ECG is associated with each vertex. We set
φ = (‖Φ0.8‖, ‖Φ1‖, . . . , ‖Φ2.4‖)T ∈ R9.

Edges are specified when an estimated net-current
between pairs of nodes is above a threshold. Specifically,
from the vector φ of electric potentials we compute
potential differences δφij = φi − φj, for all pairs
of vertices, and using Kirchhoff’s and Ohm’s laws we
calculate the (virtual) flow yij = R−1

ij δφij on potential
edges [38], [39]; R(ij) = ρ L(ij)/area where area is the
cross section of heart muscles, assumed to be unity, and
L(ij) is the physical distance between nodes on the heart.
(Physical distance on the heart between nodes can be
computed by the timing of traveling action potentials.)
For simplicity we assume that the electrical resistivity of
cardiac muscle is ρ = 268 (Ω.cm) [40]. The divergence
free net flux matrix F (i.e, the net-current between nodes)
is generated from y. By Algorithm 1, we calculate the
curl potentials on the dual graph, and the corresponding
3-partitions explained earlier.

Fig. 14: Stereographic projection of vector ECG.

C. Discussion

Fig. 15: Triangulated graph of
vector ECG and 3-partitions.

The time window on the
12-lead ECG was chosen
to capture propagation of
action potentials through
the heart muscles in
at least one cycle. The
maximum and minimum
curl potentials were found
that led to the 3-partition
{{5}, {6}, {1, 2, 3, 4, 7}}
shown in Fig. 15. The
figure highlights the
planar directed graph of
divergence free flow and the corresponding 3-parts with
red squares/blue triangles/green circles, respectively.
Isolated nodes are omitted for simplicity. The figure
shows that the flow is supported mostly by paths through
groups of cardiac cells in the patient’s right atrium and
ventricle, interpreting the readings from the ECG in

Fig. 18. It also underscores the path between nodes 6
and 5 (edge (5, 6)) that could be a candidate point for
ablation. Whereas the results of our analysis are not
be entirely conclusive, they may provide guidance to
physicians and a basis for potentially powerful future
diagnostic tools.

VIII. CONCLUDING THOUGHTS

We have introduced maximal graph circulation of
divergence free flows on graphs and their connection
to suitable 3-partitions. The 3-partitions can be seen
as “communities” (of nodes, cells, etc.) on the path
that supports a maximizing circulatory current. Whereas
computational issues for general graphs remain a com-
binatorial challenge, planar graphs are amenable to a
rigorous analysis framework.

A motivating application for our work originates in
cardiac electrophysiology. Because the heart muscle is
homeomorphic to a sphere, analysis of propagating
currents and action potentials to identify circulation is
possible using the proposed framework. To this end,
we worked out a suggestive example. However, the
conclusions are tentative as a more detailed analysis
and reliable data set are warranted. In this context, it
is our hope that the concepts laid out will facilitate the
development of diagnostic tools for detecting the source
of arrhythmias and potential target cells for ablation.

APPENDIX: ON CARDIAC ELECTROPHYSIOLOGY

We now provide background for the application in
Section VII. For a more complete expository on the topic
see [32], [41], [42].

The heart is an organ at the center of the human’s
circulatory system that pumps blood through the body.
It is made up of multiple layers of tissue, such as
specialized excitatory and conductive muscle fibers that
exhibit either automatic rhythmical electrical discharge
in the form of action potentials or conduction of the
action potentials through the heart. Action potential
is electrical stimulation created by a sequence of ion
fluxes through specialized channels in the membrane of
cardiomyocytes that leads to cardiac contraction.

The heart’s electrical conduction system controls the
rate and rhythm of the heartbeat. A group of the spe-
cialized cells is located in the superior posterolateral
wall of the right atrium, known as sinoatrial (SA) node.
The SA node depolarizations are transmitted to both
the antrioventricular (AV) node and the Purkinje fibers
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and discharge both before their own threshold for self-
excitation can occur. SA node virtually serves as the
pacemaker of the normal heart.

The recording of the electrical voltages from the
surface of the heart is known as an electrocardiogram
(ECG). A normal ECG is composed of a P wave, a
QRS complex and a T wave. Both the P wave and QRS
complex are depolarization waves and the T wave is the
re-polarization wave (see Fig. 16). Abnormalities in the
shape and duration of the ECG waveform is an indication
of underlying heart conditions.

Fig. 16: The normal ECG waveform.

Fig. 17: The 12-lead ECG
positioning (body coordi-
nate system).

The most common type
of ECG machines include
12 leads which can be
used to capture the multi-
directional view of space-
time cardiac electrical activ-
ities from twelve different
angles. Fig. 17 shows the
position of the leads. Lead
I, II, and III are the three
bipolar leads, recording the
voltage differences of elec-
trodes placed on the limbs. They observe the heart
from an angle of 0◦, 60◦, and 120◦, respectively. Leads
V1 to V6 are six chest leads, recording the voltage
differences of electrodes placed directly over the heart
and an indifferent electrode which is connected to the
right and left arms and left leg at the same time. Leads
aVL, aVR and aVF are augmented unipolar limb leads
and looking at the heart from an angle of −30◦, −150◦,
and 90◦, respectively. The example of 12-lead surface
ECG of a patient with WPW pattern used in our analysis
in Section VII is shown in Fig. 18.
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[29] É. C. De Verdière, “Algorithms for embedded graphs,”
2014. [Online]. Available: http://www.di.ens.fr/∼colin/cours/algo-
embedded-graphs.pdf

[30] Li Chen, “Discrete Jordan curve theorem,” in Vision Geometry
VIII, International Society for Optics and Photonics. SPIE,
September 1999, pp. 82–94.

[31] N. Vandersickel et al., “Directed networks as a novel way to de-
scribe and analyze cardiac excitation: Directed graph mapping,”
Frontiers in Physiology, vol. 10, p. 1138, 2019.

[32] J. Feher, “The Cardiac Action Potential,” in Quantitative Human
Physiology, 2nd ed. Academic Press, 2012, pp. 528 – 536.

[33] R. Cheng, M. Chang, and C. Yuan Ng, “Risks from catheter
ablation of atrial fibrillation: A review of methods, efficacy, and
safety,” Journal of atrial fibrillation, vol. 4, no. 6, p. 455, 2012.

[34] Z. F. Issa, J. M. Miller, and D. P. Zipes, “Molecular Mechanisms
of Cardiac Electrical Activity,” in Clinical Arrhythmology and
Electrophysiology, 3rd ed. Elsevier, 2019, pp. 1–14.

[35] F. Ali and H. Khanzada. (2019) WPW syndrome. Suma Health,
Cardiology-Patient Care Conference. [Online]. Available:
https://uploads-ssl.webflow.com/5b3e2727cec9e31eaecde40f/
5da5e25e23aef0cdf72a2463 2019-10-15-Cardiology%20Med%
20D%20Med%20C%20Patient%20Care%20Conference.pdf

[36] D. Dawson et al., “Linear affine transformations between 3-lead
(frank xyz leads) vectorcardiogram and 12-lead electrocardio-
gram signals,” Journal of Electrocardiology, vol. 42, no. 6, pp.
622–630, 2009.

[37] R. Jaros, R. Martinek, and L. Danys, “Comparison of different
electrocardiography with vectorcardiography transformations,”
Sensors, vol. 19, no. 14, 2019.

[38] K. H. Norian, “An electrical model of the heart,” The Interna-
tional Journal of Electrical Engineering & Education, vol. 45,
no. 1, pp. 26–33, 2012.

[39] R. Clayton et al., “Models of cardiac tissue electrophysiology:
Progress, challenges and open questions,” Progress in Biophysics
and Molecular Biology, vol. 104, no. 1, pp. 22–48, 2011.

[40] N. Sperelakis and T. Hoshiko, “Electrical impedance of cardiac
muscle,” Circulation Res., vol. 9, no. 6, pp. 1280–1283, 1961.

[41] A. C. Guyton and J. E. Hall, Textbook of Medical Physiology,
11th ed. Saunders Elsevier, 2006.

[42] R. Klabunde, Cardiovascular physiology concepts. LWW, 2011.

Fariba Ariaei received her BSc and MSc in
Mechanical and Aerospace Engineering from
Sharif University of Technology, Tehran,
Iran. She received her Ph.D. in Electrical En-
gineering from University of Southern Cali-
fornia (USC) in 2008. In 2011, she completed
her Postdoctoral Fellowship training at The
Johns Hopkins University. She is now an
Associate Researcher in the Department of
Mechanical and Aerospace Engineering at
the University of California, Irvine, and an

Adjunct Lecturer at Viterbi School of Engineering at USC. Her current
research focuses on Network Science, Stochastic Dynamical Systems,
and Biological Systems.

Zahra Askarzadeh obtained her BS degree
in Mechanical Engineering from Sharif Uni-
versity of Technology, Tehran, Iran, in 2015.
She is currently a Ph.D. student in Mechani-
cal and Aerospace Engineering at University
of California, Irvine.

Yongxin Chen received his BSc from Shang-
hai Jiao Tong University in 2011 and Ph.D.
from University of Minnesota in 2016, both
in Mechanical Engineering. He is now an as-
sistant professor in the School of Aerospace
Engineering at Georgia Tech. Before joining
Georgia Tech in 2018, he served on the
faculty at Iowa State University (2017-2018)
and prior to that he was for one year a
postdoctoral researcher at Memorial Sloan
Kettering Cancer Center in New York. He

received the George S. Axelby Best Paper Award in 2017 and the
NSF CAREER Award in 2020. His current research focuses on control,
machine learning and robotics.

Tryphon T. Georgiou (M’79–SM’99–F’00)
was educated at the National Technical Uni-
versity of Athens, Greece (1979) and the Uni-
versity of Florida, Gainesville (PhD. 1983).
He is currently a Distinguished Professor at
the Department of Mechanical and Aerospace
Engineering, University of California, Irvine,
CA, USA. Earlier, he served on the fac-
ulty of Florida Atlantic University (1983-
86), Iowa State University (1986-89), and the
University of Minnesota (1989-2016). He is

a recipient of the George S. Axelby Outstanding Paper award of the
IEEE Control Systems Society for the years 1992, 1999, 2003, and
2017, a Fellow of the IEEE, SIAM and IFAC, and a Foreign Member
of the Royal Swedish Academy of Engineering Sciences (IVA).

12

http://www.di.ens.fr/~colin/cours/algo-embedded-graphs.pdf
http://www.di.ens.fr/~colin/cours/algo-embedded-graphs.pdf
https://uploads-ssl.webflow.com/ 5b3e2727cec9e31eaecde40f/5da5e25e23aef0cdf72a2463_2019-10-15-Cardiology%20Med%20D%20Med%20C%20Patient%20Care%20Conference.pdf
https://uploads-ssl.webflow.com/ 5b3e2727cec9e31eaecde40f/5da5e25e23aef0cdf72a2463_2019-10-15-Cardiology%20Med%20D%20Med%20C%20Patient%20Care%20Conference.pdf
https://uploads-ssl.webflow.com/ 5b3e2727cec9e31eaecde40f/5da5e25e23aef0cdf72a2463_2019-10-15-Cardiology%20Med%20D%20Med%20C%20Patient%20Care%20Conference.pdf

	Introduction
	Probability flow fields on graphs
	Macroscopic circulation on graphs
	Planar graphs and network circulation
	Planar graphs
	Helmholtz-Hodge decomposition
	Planar Net Flux Graph
	Triangulated Planar Graph
	Non-planar Graphs

	Graph Partitioning
	Effect of Embedding
	Application to Cardiac Circulation
	Background
	Method
	Discussion

	Concluding Thoughts
	References
	Biographies
	Fariba Ariaei
	Zahra Askarzadeh
	Yongxin Chen
	Tryphon T. Georgiou


