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Abstract—One of the key problems in tensor network based
quantum circuit simulation is the construction of a contraction
tree which minimizes the cost of the simulation, where the cost
can be expressed in the number of operations as a proxy for
the simulation running time. This same problem arises in a
variety of application areas, such as combinatorial scientific
computing, marginalization in probabilistic graphical models,
and solving constraint satisfaction problems. In this paper, we
reduce the computationally hard portion of this problem to
one of graph linear ordering, and demonstrate how existing
approaches in this area can be utilized to achieve results up
to several orders of magnitude better than existing state of the
art methods for the same running time. To do so, we introduce
a novel polynomial time algorithm for constructing an optimal
contraction tree from a given order. Furthermore, we introduce a
fast and high quality linear ordering solver, and demonstrate its
applicability as a heuristic for providing orderings for contraction
trees. Finally, we compare our solver with competing methods
for constructing contraction trees in quantum circuit simulation
on a collection of randomly generated Quantum Approximate
Optimization Algorithm Max Cut circuits and show that our
method achieves superior results on a majority of tested quantum
circuits.
Reproducibility: Our source code and data are available at
https://github.com/cameton/HPEC2022 ContractionTrees.

Index Terms—Contraction Tree, Tensor Network, Quantum
Circuit Simulation, QAOA

I. INTRODUCTION

Tensor networks have become a ubiquitous tool for describ-

ing high dimensional, data-sparse tensors in a space efficient

manner [8], [15], [30]. In quantum circuit simulation, tensor

networks can be used to model circuits with far more qubits

than a more direct approach such as state vector simulation,

so long as the circuit is sufficiently simple [25]. As such,

tensor network based simulation methods will remain vital for

the study of quantum algorithms that require a large number

of qubits until sufficient advances are made with quantum

hardware [25]. Moreover, even with the advanced hardware,

such simulation methods will be important for such tasks as

finding suitable parameters in variational quantum algorithms

that utilize both quantum and classical machines [22]. These

networks arise naturally in a variety of disciplines such as

Combinatorial Scientific Computing [?], Probabilistic Mod-

elling [30], Constraint Satisfaction [20], Machine Learning and

Data Mining [12], Physics Modelling [28], and Quantum &

Classical Circuit Simulation [15], [27].

A tensor network is most easily conceptualized as a collec-

tion of high-order matrices called tensors which are connected

by edges. These networks are often used to represent tensors

which are impractical to store explicitly in memory [8]. The

fundamental operation performed on these networks is called

a tensor contraction, where two tensors are combined to create

a third tensor. A series of tensor contractions performed on the

network is called a tensor network contraction, which is used

to reduce the overall size of the network in order to evaluate

entries of the underlying tensor that the network represents.

It is useful to represent a tensor network contraction as

a contraction tree, a binary tree whose leaves are tensors in

the network, where each internal vertex represents the tensor

contraction of its two children. In the general case, the cost of

any single tensor contraction is exponential in the number of

dimensions of its inputs, as is the size of its output [29]. As

such, a vital part of performing a tensor network contraction

is choosing a contraction tree which minimizes some cost,

such as minimizing the size of any intermediary tensor or

the total number of operations performed during your tensor

network contraction [15]. However, it is NP-hard to construct

an optimal contraction tree in the general case for these

objectives [29], meaning no optimal solution can been found

deterministically in polynomial time.

Our contribution In this paper, we will show how the

computationally hard portion of constructing a contraction tree

can be reduced to a problem of linear ordering, and give

algorithms for constructing an optimal contraction tree for a

given ordering. Furthermore, we will give a useful heuristic for

choosing orderings which will result in high quality contrac-

tion trees. This algorithm is being developed with integration

with the QTensor quantum circuit simulation library in mind

[23]–[26]. In general, in order to run simulations of quantum

circuits with large numbers of qubits, we must be able to

find a good quality contraction order. As such, finding optimal

or near optimal contraction orders is critical for the develop-

ment and testing of new quantum algorithms, benchmarking

and profiling upcoming quantum devices, and verification of

quantum advantage and supremacy claims to name a few

applications [3] Even small improvements to the quality of
the contraction tree will lead to a significant acceleration
of quantum simulation. We demonstrate an improvement over
competitive solvers by orders of magnitude on some instances

https://github.com/cameton/HPEC2022_ContractionTrees


for a comparable running time.
The paper is structured the following way. Section II pro-

vides an introduction to tensor networks and linear orderings.
Section III introduces existing solvers used for constructing
contraction trees for quantum circuit simulation, which we use
for benchmarking the proposed algorithm. In Section IV, we
present a novel polynomial time algorithm for constructing an
optimal contraction tree from a given order and explain the
ordering heuristic that was used. In Section V, we evaluate
the developed tree structure optimization algorithm against
Tamaki-2017, FlowCutter, and Cotengra on a collection of
QAOA circuits on different comparison metrics. Finally, Sec-
tion VI discusses possible areas for future work, while Section
VII offers a conclusion.

II. BACKGROUND AND NOTATION

A. Matrix Chains and Tensor Networks

An m by n matrix M is a 2 dimensional array of scalar
numbers from some field F (e.g. R, C). We say this matrix
has two indices, i and j, where size(i) = m and size(j) = n.
The size of M is size(M) = size(i) size(j).

A matrix M1 with indices {i, j} and a matrix M2 with
indices {j, k} can be combined to form a matrix M1∗M2 with
indices {i, k} using an operation known as matrix multiplica-
tion. Note that the output has the indices of both its inputs with
the shared index removed. The number of operations required
to perform a matrix multiplication is size(i) size(j) size(k).

Say we are given matrices M1,M2, . . . ,Mn−1,Mn with in-
dices {i1, i2}, {i2, i3}, . . . , {in−1, in}, {in, in+1}. The Matrix
Chain Ordering Problem aims to find the optimal parenthe-
sization of the matrix chain expression

M1 ∗M2 ∗ · · · ∗Mn−1 ∗Mn

which minimizes the cost of computing this product [9]. Note
that this setup assumes each matrix shares indices only with
its neighbors. A given parenthesization can be expressed as a
binary tree with leaves labeled with matrices. For example, the
binary tree in Fig. 1 corresponds to the parenthesized matrix
chain

((A ∗B) ∗ C) ∗ (D ∗ E).

We define tensors analogously. A tensor X is an N-
dimensional array of scalar numbers from some field F with
indices I = {i1, . . . , iN} (for other perspectives, see [5]).

For a tensor X and an index i, we say that X and i are
incident to one another if i is an index of X . We define inc(X)
as the set of indices incident to X and inc(i) as the set of
tensors incident to i. The size of a tensor X is given by

size(X) =
∏

i∈inc(X)

size(i)

Two tensors X1 with indices I1 and X2 with indices I2 can
similarly be combined using an operation known as tensor
contraction. The output X1 ∗ X2 will have indices I14I2,
where 4 denotes symmetric difference. That is, the output

A B
C D E

Fig. 1: An example contraction tree with labeled leaves.

has indices equal to the union of the input indices, with the
intersection removed. I14I2 are known as output indices,
while I1 ∩ I2 are known as the shared indices. The number
of scalar operations required to perform a tensor contraction
is given by

ops(X,Y ) = size(X ∗ Y ) share(X,Y )

where

share(X,Y ) =
∏
i∈S

size(i), S = inc(X) ∩ inc(Y ).

A set of tensors T = {X1, . . . , Xn} with indices

I =
⋃
X∈T

inc(X)

is known as a tensor network. Defining T (0) = T , a tensor
network contraction iteratively picks X(k), Y (k) ∈ T (k) to
produce

T (k+1) =
(
T (k) \

{
X(k), Y (k)

})
∪
{
X(k) ∗ Y (k)

}
,

terminating when |T (k)| = 1. A contraction order used for
this tensor network contraction can again be represented as
a binary tree [29]. For example, the tree shown in Fig. 1
corresponds to the network contraction

T (0) = {A,B,C,D,E}
T (1) = {A ∗B,C,D,E}
T (2) = {(A ∗B) ∗ C,D,E}
T (3) = {(A ∗B) ∗ C,D ∗ E}
T (4) = {((A ∗B) ∗ C) ∗ (D ∗ E)}.

Contraction of a tensor network is #P-Hard in the gen-
eral case [29]. However, many tensor networks arising in
practice may be contracted efficiently given a good quality
contraction order with respect to some cost function. The
costs we consider in this paper are the sum of the number
of scalar operations, maximum number of scalar operations,
and maximum tensor size, which are defined as follows:∑

k

ops
(
X(k), Y (k)

)
, (1)

max
k

ops
(
X(k), Y (k)

)
, max

k
size

(
X(k) ∗ Y (k)

)
. (2)

The problem of finding an optimal contraction order is itself
NP-Hard [29].



While minimizing the number of scalar operations required
would seem to be more useful than minimizing the maximum
number of operations for any contraction, the latter is actually
useful in a parallel setting where many contractions can be
performed simultaneously [21].

B. Quantum Circuits and QAOA

An overview to quantum circuits and quantum computing
can be found here [43]. A particular type of quantum circuit
which has garnered great deal of research interest in recent
years is the Quantum Approximate Optimization Algorithm
ansatz, particularly those developed to target the graph theo-
retic MaxCut problem [13]. QAOA is a variational quantum-
classical algorithm inspired by the adiabatic evolution princi-
ple. It is essentially a quantum annealer with a finite number
of steps p. The quality of the final solution increases with p,
as does the complexity of the circuit.

In quantum circuit simulation, it is possible to represent a
quantum circuit as a high dimensional tensor over the complex
numbers [44] or, equivalently, as a tensor network [27]. In this
perspective, each quantum gate is associated with a tensor X
with indices corresponding to the inputs and outputs of the
gate. Two tensors in such a network will share an index only
if it corresponds to a value that has been passed from one
corresponding gate to the other. For the purposes of this paper,
we will assume the size of every index in the network is 2.

With this construction, the costs described in Eq 2 are
related to older literature which achieved similar estimations
on the computational cost of tensor network contractions
via quantities called vertex congestion, edge congestion, and
treewidth [27], [29].

In particular, vertex congestion and treewidth are equal to
the log of the maximum number of operations needed for any
contraction

max
k

log2 ops
(
X(k), Y (k)

)
, (3)

while edge congestion is equal to the log of the maximum size
of any intermediate tensor

max
k

log2 size
(
X(k) ∗ Y (k)

)
. (4)

C. Tensor Networks as Graphs

An undirected graph G = (V,E) with no loops and multi-
edges, is a set V of vertices and a set E ⊆

(
V
2

)
of edges. The

weights on the edges of the graph are denoted by the weighting
function w : E → R≥0. For an edge uv ∈ E, w(uv) denotes
its weight. The set of incident edges of a vertex v is the set of
edges containing v, denoted inc(v) = {e ∈ E | v ∈ e}. The
degree of v is the number of edges incident to v, deg(v) =
|inc(v)|.

Say we have a tensor network T with indices I where
|inc(i)| = 2 for all i ∈ I. Then T admits a representation as a
weighted, undirected graph G = (V,E). Let F be the function
which assigns tensors to vertices and indices to edges, such
that F (i) = {F (X), F (Y )} if and only if i ∈ inc(X)∩inc(Y ).
The weight function w is defined as w(F (i)) = log2 size(i).

A linear vertex ordering for a graph G = (V,E) is a
bijective mapping σ : V → {1, . . . , |V |}. A linear ordering
problem on a graph generally aims to find a linear ordering
which minimizes a given cost function, such as the p-Sum
objective, which is defined as(∑

uv∈E
w(uv)|σ(u)− σ(v)|p

)1/p

[33]. For the special case where p = 1, this problem is known
as the Minimum Linear Arrangement Problem [32].

D. Multilevel algorithms and refinement

The multilevel approach is a big class of algorithms actively
used in many different areas of scientific computing, optimiza-
tion, and machine learning [6]. In the context of this work, we
briefly describe a version of multilevel algorithms for graph
optimization problems [7], [31]. When the graph is large and
a fast solution of an optimization problem is required for a
specific application, it is often useful to compress the problem
by (possibly nonlinearly) aggregating variables into, so called,
coarse variables. This is done in a such way that a solution
for each coarse variable can be effectively interpolated back
to those variables that participated in the aggregation. The
entire process of problem coarsening is performed gradually
forming a multilevel hierarchy of coarse problems. Each next
coarser problem approximates the previous finer problem from
which it has been created. Thus, the number of variables at
each level of this hierarchy is decreasing which allows to
solve them faster that the original problem. When sufficiently
small coarsest level is created, the best possible (often exact)
solution is computed. The last stage of framework (called
uncoarsening) is to gradually solve the problems at each level
of coarseness by (1) interpolating the initial solution for the
current fine level from the coarser level, and (2) refining the
interpolated solution.

If both coarsening and uncoarsening are computed locally
(i.e., their complexity is linear in the number of variables)
then the entire multilevel framework becomes of linear or
nearly-linear complexity assuming that the number of variables
at each level is decreasing within a factor of 1.5-2.5. It is
important to mention that this approach is different than such
one-shot compression approaches as truncated SVD. Such
problems on graphs as partitioning [2], [34], various linear
orderings [18], [35], and community detection [19], [41] have
benefited from the multilevel approaches to mention just few
of them [42].

III. RELATED WORK

A. FlowCutter

FlowCutter is used collectively to refer to an algorithm for
computing small, balanced s-t cuts using Pareto optimization
[17], as well as an algorithm utilizing the former to construct
a tree decomposition of the input graph via recursive bisection
[39], that is also a form of a multilevel algorithm.



FlowCutter was entered into heuristic track of the PACE
2017 Parameterized Algorithms and Computational Experi-
ments Challenge on minimizing treewidth, where it placed
second as the only solver to find a solution for all test instances
in the allotted 30 minutes [10], [39]. Moreover, FlowCutter is
known to be useful in finding high quality tensor network
contraction [11].

B. Tamaki-2017

The Tamaki-2017 solver is a tree decomposition solver with
components submitted to the exact and heuristic tracks for
PACE 2017 [10]. On the heuristic track, this solver ranked first
place, tending to achieve better results on smaller instances
than the competitive approaches, while sometimes failing to
find an answer in the allotted time for larger instances [39].

The Tamaki-2017 algorithm is based on positive-instance
driven dynamic programming, and, similar to FlowCutter,
operates recursively on minimal separators of the instance
graph [40].

C. Cotengra

Cotengra is a library for the efficient contraction of tensor
networks [16]. In their seminal paper on the subject, the
authors introduce a method for directly constructing con-
traction trees based on recursive bisection [15]. By utilizing
existing hypergraph partitioning solvers such as KaHyPar [36],
Cotengra is able to construct contraction trees utilizing the
hypergraph structure of some inputs that arise in Quantum
Circuit Simulation [15]. Cotengra also utilizes the Bayesian
optimization strategy, varying the hyperparameters of the
partitioning solver at various levels in order to account for
a changing graph structure as the algorithm progresses [15].

D. cuTENSOR

cuTENSOR is a tensor network CUDA library in develop-
ment by NVidia, which aims to bring high performance tensor
primatives to the GPU [1]. Because not much information
about their specific method for determining contraction orders
is publicly available at the time of writing, we will not be
comparing to cuTENSOR at this time.

IV. CONSTRUCTING A CONTRACTION TREE

Our approach is founded on the observation that a paren-
thesization of a matrix chain expression or a contraction order
for a tensor network both admit representations as binary trees
with labelled leaves.

It is useful to introduce a more direct tensor variant of the
Matrix Chain Ordering Problem, known as the Tensor Chain
Ordering Problem. Given tensors X1, . . . , Xn, find an optimal
parenthesization of the tensor chain expression

X1 ∗ · · · ∗Xn

which minimizes one of the costs introduced in Eqs 1,2.
Notably, indices are not restricted to immediate neighbors in
the chain.

Given a binary tree T representing a contraction order O for
a tensor network T , consider the linear ordering σ of tensors

corresponding to a left to right traversal of the labelled leaves
of T . Then T could be considered a possible solution to the
Tensor Chain Ordering Problem for the chain

σ−1(1) ∗ · · ·σ−1(n).

Then finding a contraction order for a tensor network can
actually be reframed as finding a linear ordering of the tensors
in the network, then solving the Tensor Chain Order Problem.

min
O

cost(T , O) = min
σ

min
T

cost(T , σ, T ).

We call solving the Tensor Chain Order Problem for a fixed
linear order σ tree structure optimization. Notably, an optimal
contraction order of the Tensor Chain Order Problem can be
found deterministically in polynomial time as demonstrated in
the following section. This decouples the actual computation-
ally Hard task of finding an optimal order of the chain, from
the more tractable task of actually constructing the tree.

A. Tree Structure Optimization

In this section, we introduce a simple dynamic programming
solution to the Tensor Chain Order Problem. Say we are given
the tensor chain expression X1 ∗ · · · ∗ Xn. Let Xi,j = Xi ∗
Xi+1 ∗ · · · ∗Xj for i < j.

From this, we find the following recursion for computing
the minimal edge congestion of any parenthesization of the
tensor chain

c(i, i) = size(Xi)

c(i, j) = min
i≤k<j

max


log2 size(Xi,k ∗Xk+1,j)

c(i, k)

c(k + 1, j)

(5)

as well as the minimal vertex congestion

c(i, i) = size(Xi)

c(i, j) = min
i≤k<j

max


log ops(Xi,k, Xk+1,j)

c(i, k)

c(k + 1, j)

(6)

It is beneficial to avoid attempting to calculate
share(Xi,k, Xk+1,j) at each iteration. Instead, we introduce
the subroutine Alg. 1 which more efficiently calculates
every value of shared as k is varied across the sequence. If
d = maxX∈T |inc(X)| is the maximum degree of any tensor
in T , this can be done in O(d|T |) time.

From these recursions, we introduce Alg. 2, a dynamic
programming algorithm for computing the minimal possible
size of the largest tensor for any contraction tree given an
order. We make use of pruning in order to reduce the number
of needed computations, as there is no need to evaluate
the second subsequence in a split if the first has already
exceeded the current best result. Performance can be further
improved by making use of memoization to cache previous
calls. Additional gains may be achieved by parallelizing the
evaluation of disjoint subproblem calls, which is an ongoing
project. Utilizing these techniques, the complexity of Alg. 2
is O(|E||V |2 + d|V |3).



Algorithm 1 CalcShared

Require: A tensor chain C = (X1, . . . , Xn), 1 ≤ i ≤ j ≤ n
shared← [0 | for i ≤ k < j]
(upper, lower)← ({Xi, . . . , Xk−1}, {Xk+1, . . . , Xj})
for i ≤ k < j do
new ← sum(size, {a ∈ inc(Xi) | inc(a)∩ upper 6= ∅})
old← sum(size, {b ∈ inc(Xi) | inc(b) ∩ lower 6= ∅})
shared[k]← shared[k] + new − old
shared[k + 1]← shared[k]

end for
return shared

Algorithm 2 Tree Structure Optimization

Require: A tensor chain C = (X1, . . . , Xn), 1 ≤ i ≤ j ≤ n
Require: x⊕ y = x+ y or max(x, y)

if i == j then
return (size(Xi), i)

end if
shared← CalcShared(C, i, j)
outsize← size(Xi,j)
(c∗, t∗)←∞, i
for i ≤ k < j do
c← COST (outsize, shared[k])
if c > c∗ then

continue
end if
(cl, l)← TreeStructureOptimization(C, i, k)
c← c⊕ cl
if c > c∗ then

continue
end if
(cr, r)← TreeStructureOptimization(C, k + 1, j)
c← c⊕ cr
if c < c∗ then
(c∗, t∗)← (c, (l, r))

end if
end for
return (c∗, t∗)

A variant for the classical total number of operations can
be achieved simply by looking at the incremental sum of the
left and right trees rather than the max.

c(i, i) = size(Xi)

c(i, j) = min
i≤k<j

ops(Xi,k, Xk+1,j) + c(i, k) + c(k + 1, j)

(7)

B. Heuristic Order Choices

While we have introduced algorithms for constructing an
optimal contraction tree given a particular order, we must now
tackle the problem of actually choosing an order. We turn to a
heuristic approach for solving this problem. In particular, we
select an order which minimizes the sum total of lengths of
stretched edges in the graph. This is known as the Minimal

Linear Arrangement of the vertices in the graph, and is defined
as ∑

uv∈E
w(uv)|σ(u)− σ(v)|

This is motivated by the property of matrix chains sharing
indices only with their immediate neighbors. An order which
minimizes MLA discourages long stretched edges on the
chain. We have empirically observed this to be effective in
reducing the congestion of the resulting contraction tree, which
will be discussed further in the Results section.

In order to calculate an order which effectively minimizes
MLA, we utilize the LinearOrdering.jl package, a Julia pack-
age for multilevel linear ordering that is currently in devel-
opment by the authors. This package utilizes a volume based
coarsening strategy as well as node by node minimization in
order to find a high quality arrangement [32]. The package
can be found at https://github.com/cameton/LinearOrdering.jl.

V. EXPERIMENTAL RESULTS

We evaluate tree structure optimization against existing state
of the art algorithms Tamaki-2017, FlowCutter, and Cotengra
on a collection of randomly generated QAOA circuits. To
generate test results for tree structure optimization, we find an
order for the graph with a good Minimum Linear Arrangement
objective, then run tree structure optimization with the relevant
cost. This is done repeatedly while varying the random seed
for a set amount of time, returning the best result at the end.
In most cases we observe a significant improvement in the
quality of results given a comparable running time (that is
usually negligible in comparison to the quantum simulation
time itself).

For our tests, for a fixed depth p and degree d, we construct
a p layer QAOA ansatz circuit targeting the Max Cut problem
on a random 32 vertex d-regular graph using the QTensor
library [23]. Each circuit will have a number of qubits equal
to the number of vertices in the given graph. For each
combination of d = 3, 4, 5 and QAOA depth p = 2, 3, 4, 5,
we generate 10 random circuits to form our test set. The
source code and generated circuits are available at https:
//github.com/cameton/HPEC2022 ContractionTrees. In doing
so, we sample a variety of circuits with a varying level of
connectedness and depth, which we use as a proxy for the
complexity of the circuit; such circuits are commonly used in
evaluations of contraction order solvers for quantum circuits
as in [15].

A. Vertex Congestion

We compare the vertex congestion (Eq. 3) of the solution
found by our tree structure optimizer for the test set against
that found by Tamaki-2017 and FlowCutter by finding the tree
decomposition of the line graph. As Cotengra has functionality
to minimize edge congestion and number of FLOPS, it will
be evaluated separately. For these experiments, we ran each of
these optimizers for 5 seconds. Results for this test are given
in Fig. 2.

https://github.com/cameton/LinearOrdering.jl
https://github.com/cameton/HPEC2022_ContractionTrees
https://github.com/cameton/HPEC2022_ContractionTrees


Fig. 2: Vertex Congestion achieved by Tamaki-2017 (left) and FlowCutter (right) plotted against the vertex congestion found
by our tree structure optimization on a Minimum Linear Arrangement order. The blue line represents the threshold at which
both solvers achieved the same objective value. Points above this threshold indicate that tree structure optimization found a
superior value.

Our tree structure optimization based approach performed
strictly better than Flowcutter on 96.4% of points and better
than Tamaki on 90.0% of points, while never achieving a
worse cost. What’s more, the margin of improvement increases
significantly as the vertex congestion of the circuit increases.

As vertex and edge congestion represent the log of the
maximum size and maximum number of operations, even
small improvements in congestion lead to significant gains.
As such, having such a large improvement on so many points
represents advantage of our solver over competitive solvers
run for the same amount of time.

B. Edge Congestion and Operation Count

We compare the edge congestion (Eq. 4) and estimated
number of operations (Eq. 1) of the solution found by our
tree structure optimizer on the test set against those found
by Cotengra. For these tests, Cotengra was run for 5 seconds
with default settings and the KaHyPar partitioner backend.
Two tests were run using Cotengra: one minimizing edge
congestion and one minimizing the total number of scalar
operations. Results are given in Fig. 3.

From Fig. 3, we see that tree structure optimization is highly
competitive with Cotengra, in every case finding a solution
which is close to or better than Cotengra in terms of both
estimated number of FLOPS and edge congestion.

Our solver bests Cotengra on a full 95% of points when
minimizing total number of operations, and on 84.1% of
points when minimizing edge congestion. This once again
demonstrates the superiority of our solver for comparatively
short run times.

C. Varying the Number of Qubits

We may also wish to compare these solvers as we vary the
number of vertices in the input graph, by extension varying
the number of qubits. To avoid redundancy, we restrict our
comparison for this section to Cotengra and Total FLOPS
alone. For these tests, we construct a 2 layer QAOA ansatz
circuit targeting the Max Cut problem for random 3-regular
graphs with 32, 64, 96 and 128 vertices. For each size, we
generate 10 random circuits. Because each circuit has a

number of qubits equal to the size of the input graph, we
can examine circuits of a similar complexity across a variety
of different qubit counts. For these tests, we ran both Cotengra
and the ordering solver for 10 seconds for each input.

The results of this test are shown in Fig. 4. Averaging over
the 32 qubit circuits, our tree structure optimization based
approach produced results around 28.6% better than Cotengra,
improving to 74.1% when averaging over the 64 qubit circuits.
For the 96 and 128 qubit circuits, nearly every result produced
by our tree structure optimization approach is several orders
of magnitude better than Cotengra for the 10 second running
time.

VI. FUTURE WORK

A. Width Refinement
The current refinement strategy used in this paper minimizes

Minimum Linear Arrangement by making local changes to
the order at each level of the algorithm [33]. While we have
shown thus far that Minimum Linear Arrangement works as
a effective heuristic for the tested circuits, we may be able
to achieve further improvements through the development of
refinement strategies which directly target the width of the
order. That is, we would like the ability to make local changes
which serve to reduce the width of the overall order, potentially
achieving better results than the more general Minimum Linear
Arrangement heuristic.

B. Performance & Scalability
The algorithms introduced here for tree structure optimiza-

tion are currently not parallelized. The development of a tree
structure optimization algorithm which takes advantage of the
graph structure for improved performance is vital to the ap-
plication of this technique to fields outside of quantum circuit
simulation, such as in large scale shortest path acceleration
[17].

Although the multilevel algorithm component is already
fast, it will be valuable to develop a strongly parallelized
version of these algorithms which may be better suited for a
high performance computing environment, particularly where
such hardware is being used for circuit simulation already.



Fig. 3: Edge congestion of Cotengra minimizing edge congestion against tree structure optimization (left) and Cotengra
minimizing operation count against tree structure optimization on a log-log scale (right). The blue line represents the threshold
at which both solvers achieved the same objective value. Points above this threshold indicate that tree structure optimization
found a superior value.

Fig. 4: Cotengra minimizing operation count against tree
structure optimization on a log-log scale for circuits with 32,
64, 96, and 128 qubits. The blue line represents the threshold
at which both solvers achieved the same objective value. Points
above this threshold indicate that tree structure optimization
found a superior value.

C. Higher Order Structures

Thus far we have primarily considered tensor networks
representable as normal undirected graphs. In this context,
we associate each index in the circuit with a corresponding
edge in the graph. For some quantum circuits, a possible cost-
saving technique is to reconsider certain collections of indices
as hyperindices, in essence a single index connecting multiple
gates [24]. This introduces a hypergraph structure to our
tensor network representation, a higher order generalization
of undirected graphs.

As it stands, our work has yet to be extended to ac-
commodate these higher order structures, something which
Cotengra is currently able to handle by making use of existing
hypergraph partitioning software [15]. In particular, attention
needs to be paid to how the hypergraph structure may inform
the coarsening portion of the ordering problem. For example,
this can be done by evaluating various kernels and similarity
measures on high order structures such as in [4], [14], [37],
[38]. Moreover, this necessitates a tree structure optimization
algorithm for higher order structures.

VII. CONCLUSION

Accelerating quantum circuit simulation is a critical prob-
lem not only for demonstrating quantum advantage but also
for hybrid quantum-classical algorithms which require com-
putationally heavy parameter optimization backend on the
classical machine. In this paper, we presented novel algorithms
for constructing an optimal contraction tree from a given
order. We introduced a multilevel solver for the Minimum
Linear Arrangement problem on graphs and demonstrated
its applicability as a heuristic for providing orderings for
contraction trees. We compared the performance of our solver
against state-of-the-art industry solvers Tamaki-2017, Flow-
Cutter, and Cotengra on a collection of randomly generated
QAOA circuits. We have shown that our method achieves
results that are superior by orders of magnitude on some
instances to competitors when run for a comparable amount
of time. There is work under way to produce higher quality
orders for producing contraction trees, and on improving the
speed of tree structure optimization.
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