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Abstract—The computer networking community has been
steadily increasing investigations into machine learning to help
solve tasks such as routing, traffic prediction, and resource
management. In particular, due to the recent successes in
other applications, Reinforcement Learning (RL) has seen steady
growth in network management and, more recently, in routing.
However, changes in the network topology prevent RL-based
routing approaches from being employed in real environments
due to the need for retraining. In this paper, we approach routing
as an RL problem with two novel twists: minimizing flow set
collisions and dealing with routing in dynamic network conditions
without retraining. We compare this approach to other routing
protocols, including multi-agent learning, to various Quality-of-
Service metrics, and we report our lesson learned.

Index Terms—Routing protocols, Machine learning algorithms,
Reinforcement learning, IP networks, Network Management.

I. INTRODUCTION

An emerging application of Machine Learning (ML) is the
automation of computer network management tasks. ML has
been used recently for various tasks in networking ranging
from traffic classification and resource management to attack
detection, to name a few. However, several solutions in the
networking field have recently proven that one of the most
prolific ML areas is Reinforcement Learning (RL). In particu-
lar, traditional approaches to packet routing using RL leverage
a single-agent learning approach to learn the environment.
Despite such recent achievements in routing with reinforce-
ment learning, a single agent still has to learn the topology
through a centralized strategy, representing an impractical
scenario for realistic environments. To cater to such needs,
centralized techniques, such as graph convolutional networks
or distributed RL approaches, have been recently designed,
bringing several benefits. For example, in multi-agent RL,
agents cooperate to achieve a shared objective, learn faster, and
occasionally safeguard privacy. They may withstand failures
overcoming the physical limitation of a single RL agent. For
example, in multi-agent RL, agents cooperate to achieve a
shared objective, learn faster, occasionally safeguard privacy,
to a certain extent and may withstand failures overcoming the
physical limitation of a single RL agent.

Prior traffic engineering solutions have focused on the
improvement of routing algorithms using RL with interesting
techniques, but without considering resiliency against network
changes during or after the learning process; Other solutions,
e.g., [1], ignored the need to explicitly improve path conges-
tion awareness, and merely focused on learning to route.
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In this paper, we approach the problem of routing with rein-
forcement learning with adaptability in mind. By adaptability,
we mean an approach that applies to both intra and inter-
domain routing problems, e.g., iBGP and eBGP, as well as
adaptability to network changes without the need to retrain
the RL algorithm. In some cases [2], to fine-tune traffic
engineering policies, it is desirable to overwrite classical
interior BGP routing rules, such as Equal Cost Multi-Path
(ECMP) and Open Shortest Path First (OSPF). In other cases,
a distributed approach is the only viable solution [3]. We
present the design, implementation, and evaluation of two
routing schemes based on RL, one using single-agent and
one using multi-agent learning. Each one is suitable for a
partially disjoint subset of computer networks. The Single-
Agent RL uses Graph Convolutional Networks [4] to minimize
retraining needs. The Multi-Agent RL instead uses Deep Q-
Networks, where federated routing agents cooperate, suiting
e.g., exterior BGP (eBGP) or Wide Area Networks under a
single administrative domain.

Our Single-Agent Graph Convolutional Network algorithm
(SA-GCN) operates directly on network traffic datasets en-
coded in a graph format, instead of a traditional vector and
matrix data representations. The advantage of having a graph
as input permits an RL policy to operate in any topology and
learn from changes in routing and congestion events without
the need to retrain.

In our Multi-Agent routing with Deep Q-Network algorithm
instead (MA-DQN), each agent makes its routing decisions
locally. By feeding the network topology to the RL agent’s
state space, the machine learning model is able to handle
changes in latency and bandwidth more efficiently. Moreover,
as RL agents learn about the network topology explicitly, the
training time significantly improves, confirming our intuitions.

Among our main findings, we report that our RL models
outperform the standard routing algorithms (with and without
RL) and achieve an overall improvement under several metrics.
Furthermore, we found that our MA-DQN routing algorithm
achieves the optimal policy much faster than our single-agent
counterpart (SA-GCN).

Our main contributions can hence be summarized as fol-
lows: we dissect the routing with reinforcement learning
problem through (i) separately analyzing advantages and
drawbacks of using both single-agent and multi-agent RL,
(#4) giving an overall comparison between them in terms
of network change resiliency and retraining needs. (iii) We
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discuss each model to leave insights on the optimization
process when tackling a challenging task such as network
routing with changes and (iv) we compare their performance
against existing routing algorithms.

The remainder of the paper is structured as follows. In
Section II we overview the state-of-art approaches on RL
for routing optimization, detailing both single and multi-agent
solutions. Section III defines the RL model for GCN and
DQN-based algorithms. Section IV reports the evaluation of
the results in terms of the achieved QoS metrics and compared
our approaches with the routing baselines. In Section V we
conclude the paper.

II. RELATED WORK

Routing protocols pose challenging requirements for ML
models, such as dealing with and scaling complex and dynamic
network topologies, learning the correlation between the se-
lected path and the perceived QoS, and the ability to forecast
the repercussions of routing decisions. Different techniques to
apply RL to the traffic routing problem have been proposed
in literature [5, 6, 7, 8]. These techniques differ in terms of
(¢) learning capability distribution and (i¢) the amount of
collaboration among numerous learners. The presence of a
central node —the controller in Software-Defined Networks
(SDN) and the sink in Internet of Things (IoT) networks,
respectively — allows for centralized learning in SDN [9]
and IoT. Routing in IoT, on the other hand, necessitates de-
centralized RL [10, 11], with the learning capability dispersed
across the routing nodes. In the rest of this section, we focus
on solutions that most closely match our contribution, with
respect to two dimensions: Single-Agent Q-learning solutions
for traffic engineering and routing with Multi-Agent learning.

A. Single-Agent Deep Q-learning for Traffic Engineering

A few recent solutions have employed Deep Q-Learning
to tackle traffic engineering problems. The authors in [12]
implement a deep-RL solution to improve the performance of
baseline TE algorithms of an SD-WAN-based network in terms
of service availability. Results show that Deep Q-Learning
achieves better performance with respect to the other deep-
RL algorithms and the baselines in terms of the percentage of
time in which the service is up. In [13], a greedy online QoS
routing method based on dueling deep Q-network is employed,
proving that this solution can learn the network topology to
solve multiple QoS metrics optimization tasks.

Differently from all these sound solutions, in this work, we
investigate the application of GCNs to Deep Q-Learning for a
QoS routing optimization problem.

B. Routing with Multi-Agent Reinforcement Learning

Although previous studies of DRL-based techniques have
demonstrated the ability to deploy routing configurations in
dynamic networks autonomously, some researchers have ar-
gued that centralized controller approaches are likely to face
challenges in large-scale networks due to the difficulties of
collecting widely distributed network status in real time.
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Multi-Agent Reinforcement Learning has rapidly become
an important research direction. A few authors have proposed
bringing these approaches to optimize routing protocols [14,
15, 16, 17]. In particular, [16] proposes a multi-agent rein-
forcement learning framework for adaptive routing in commu-
nication networks, which takes advantage of both the real-time
Q-learning and the actor-critic methods.

Pinyoanuntapong et al. [15] formulated the traffic engi-
neering decision-making problem as a Multi-Agent Markov
decision process (MA-MDP) In MA-MDP, observations, ac-
tions, and rewards of multiple agents are integrated for joint
learning. Similar to these approaches, we use the Q-routing
technique for traffic-aware routing, but our solution uses a
fully distributed multi-agent Deep Q-Learning Reinforcement
Learning algorithm to deal with QoS requirements and topo-
logical changes.

ITII. MODEL AND BACKGROUND ON GCN AND MA-DQN

In this section, we detail the design of our single-agent and
multi-agent routing approaches. Specifically, we describe the
RL model and define the state and action space along with
the selected reward functions both for GCN-based algorithm
(Section III-A) and DQN (Section III-B).

A. Single Agent GCN Policy Background and Settings

GCNs (Graph Convolutional Networks) [4] are a graph-
based variation of Convolutional Neural Networks (CNNs).
GCNs stack layers of learned first-order spectrum filters fol-
lowed by a nonlinear activation function to learn a graph
representation.

The key benefit of using GCNs as the policy network is the
policy’s ability to not be restricted to one network topology.
The topology is explicitly provided as an input to the policy
network. This topology agnostic approach is demonstrated
in our experiments. A network experiences congestion when
several flow sets coexist on the same underlying path. We aim
at learning how to minimize the coexistence of flow sets as long
as alternative routes exist. We define such flow coexistence
to be a collision, when two or more flow sets coexist in the
same forwarding application process, i.e, a (virtual) router or
switch, at the same time.

Since an action that an RL agent chooses influences subse-
quent actions, we model the problem as a Sequential Decision-
making Problem (SDP). The following tuple characterizes
an instance of our problem: M =< S, A R,y >, where
S is a finite set of states, A is a finite set of actions, R
is the immediate reward, and ~ is the discount factor. We
denote f as the number of flow sets in the system, and
N is the number of nodes in the system. We design our
RL algorithm by leveraging an “on-policy approach”, aiming
to optimize our policy network output (i.e., the probability
distribution of actions). In order to achieve a more stable
training and avoid divergence, we use the PPO (Proximity
Policy Optimization [18]) algorithm. We next describe each
element of the Sequential Decision-making Problem tuple in
detail.
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State Space. Let S denote the finite set of states that are
admissible in the environment. An arbitrary state contains
three parts. The first part is the adjacency matrix of the
network. The second part is a 2-column matrix containing a
one-hot encoding of the source and destination nodes of the
flow set to be routed by the GCN. The third part is a f x 2
matrix where each layer of the matrix is a similar 2-column
matrix but of a competing flow set in the network. The state
does not contain what path other flow sets are taking across
the network but merely their source and sink nodes.

Action Space. Let A denote the finite set of actions that the
agent can take. As in [19], we construct the action space as
a one-hot vector the size of the highest degree node in the
graph.

Reward Functions. Let R(s, a) denote the immediate reward
(or expected immediate reward) received for selecting an
action (routing decision) a € A at a state s € S which causes
the state transition s — s’, and R(s,a) € [—1,1].

—1 could not reach destination
r reached destination
R(s,a) = ey
0.1 moved closer to target
0 otherwise

The environment in which the agent operates receives a
one-hot encoding of the destination as input. The input is
then passed onto a feed-forward neural network with a ReLU
activation. The input layer has a size equal to the number of
nodes in the graph. Subsequently, there are two hidden layers
of size Y1 followed by an output layer with a size equal to

2
the number of neighbors for that agent.

B. Multi Agent DON Background and Settings

In our MA-DQN approach, we design an algorithm that uses
a Deep Q-Network (DQN), a combination of reinforcement
learning techniques and deep neural networks [20].

To stabilize the training, we first employ a replay buffer
in our algorithm that keeps track of the (s, a,r,s’,a’) tuple,
where s denotes the current state, a denotes the current action,
r denotes the current reward, s’ denotes the next state, and
a’ denotes the next action. Secondly, DQN uses an iterative
update that periodically adjusts action values to the target
values to avoid correlations.

The computer network in which the RL agent operates is
described by a standard graph G(V, E') where V represents the
set of routing nodes and E represents the set of transmission
links. Each transmission link contains some traffic that we
simulate. The goal is to find the path that minimizes the latency
between each source (s) and destination (d).

In the MA-DQN model, each node is an agent that imple-
ments DQN independently. Each agent has its neural network
and makes routing decisions independently.

State Space. To train our RL model, we construct the state
space as a one-hot encoding vector whose size equals |V,
i.e., the number of routers. The one-hot vector represents the
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destination of the packet. In each episode, the state space
remains similar among all agents.
Action Space. We construct the action space also as a one-
hot vector whose size equals the number of neighbors of each
agent. At each time step ¢, the agent chooses a neighbor after
observing the state space.
Reward Functions. To route in larger networks, we use a
dense reward function. Per our reward function in Equation 2-
3, the agent receives either a positive or a negative reward
for each routing decision taken. We find that this structure
significantly increases the rate at which the model converges.
Therefore, if the packet is more than one step away from
the destination:

R(s,a) = {

Where a is the difference between the time it would take the
packet to reach the destination from the node it is currently
at, and the time it would take for the packet to reach the
destination from the node it was at. If the packet can reach
the destination using one link, the reward structure is:

- {1.5
3)

—.75

The environment in which the agent operates receives a
one-hot encoding of the destination as input. The input is
then passed onto a feed-forward neural network with a ReLU
activation. The input layer has a size equal to the number of
nodes in the graph. Subsequently, there are two hidden layers
of size X followed by an output layer with a size equal to
the number of neighbors for that agent.

a moved closer to destination

2

—.75 otherwise

took best link to destination

S, a

R
( took sub-optimal link to destination

2

IV. EVALUATION

In this section, we evaluate both proposed algorithms,
single-agent via GCN and multi-agent via DQN, with respect
to Quality of Service (QoS) metrics for traffic engineering.

A. Evaluation Settings

In all our experiments, we considered network topologies
following both Waxman (random-biased) and Barabasi-Albert
(preferential attachment) topologies. Our networks have sizes
50 Vertices, 100 edges (50V, 100E), (100V, 200E), and
(150V, 300E). These topologies were generated using the
BRITE topology generator [21]. After generating these net-
work topologies, we simulate several traffic scenarios in static
and dynamic conditions. In particular, in our experiments, we
simulate traffic by generating flows that take the shortest path
from randomly generated source-destination pairs. For each
packet traveling on a (virtual) link, we reduce the correspond-
ing residual capacity and increase the latency proportionally
to the flow packet size. Unless otherwise specified, we use
a replay buffer size of 5000, a batch size of 192, and the
RMSprop optimizer. Specifically, in our SA-GCN solution,
we improve vanilla Q-Routing by implementing two different
approaches: Double Q Learning [22] and Dueling DQN [23].
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Figure 1: CDF of the latency of a converged MA-DQN model on (a) (50V, 100E), (b) (100V, 200E), and (c) (150V, 300E)
Barabasi-Albert Network. We observe that the MA-DQN model can consistently outperform OSPF and ECMP. (d) Episodic
latency of the MA-DQN model during training in Barabasi-Albert Networks.
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Figure 2: CDF of the latency of a converged MA-DQN model on (a) (50V, 100E), (b) (100V, 200E), and (c) (150V, 300E)
Waxman Network. (d) Episodic latency of the MA-DQN model during training in Waxman.
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Figure 3: (a) Evaluating the MA-DQN model’s accuracy during training when 5 nodes of a (50V, 100E) Barabasi topology
is removed after the model converges (b) Evaluating the latency for the same experiment (c) Evaluating the model’s accuracy
when 5 nodes from a (100V,200E) Barabasi-Albert network is removed. (d) Evaluating the model’s latency for the same

experiment.

B. Evaluation of Multi Agent DON

1) Multi Agent DON based policies outperforms OSPF and
ECMP: In this section, we compare the latency of converged
DQN policies, OSPF and ECMP.

Figures 1(a-c) and 2(a-c) compare the latency of the afore-
mentioned policies on networks of various sizes and topology,
showing that Multi-Agent DQN based policies learn near-
optimal routing policies with networks of sizes up to (150V,
300E). One of the most significant results from our experi-
ments is the model’s scalability, as we found that our solution
outperforms classically adopted routing protocols such as
OSPF and ECMP even on large networks. From Figures 1(d)
and 2(d) we observe that the training time scales well with
respect to the topology size. We attribute this to the fact that
the network topology is built into the neural network of each
agent. Our application of a dense reward function plays a
significant role in performance.
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2) Impact of Retraining Needs: In this experiment set, we
further investigate the performance of the model when the
topology changes. We observe the model’s performance when
a number of nodes are removed (become unavailable) after
the model reaches convergence. The results in Figure 3(a-b)
are generated from a 50 Node network following the Barabasi-
Albert model. For each experiment trial, we remove 5 nodes at
random after the RL model training had converged. We route
2000 packets after the model is fully trained. As expected, after
removing the nodes, the model can relearn the optimal routing
strategy. However, for larger networks the re-learning time
grows significantly. Figures 3(c-d) show that when removing 5
nodes from a (100V, 200E) Barabasi-Albert network topology
after the model converges, the model is unable to relearn an
optimal policy quickly, suggesting that it is faster to retrain
the model from scratch on larger networks especially since the
model converges relatively quickly when trained from scratch.
Since the neural network retains the environment’s topology,
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reduction of nodes resulted in a topology change too large for
the machine learning model to relearn an optimal policy.

C. Evaluation of GCN

1) GCN based Policies leads to Faster Convergence and
Stronger Reward Signals: In this experiment set, we com-
pare the characteristics of converged GCN-based policies, Q-
routing policies, and the policy used by the Learning to Route
paper [1], used as benchmark (Figure 4).

We used a test set of a hundred different topologies for
every tested algorithm for every network size. Once the model
is fully trained, we test the model using 200 source-destination
pairs for the SA-GCN model. The source and destination are
chosen randomly.

Figures 4-a shows the optimal score percentage between our
solution and benchmarks, varying the network size. We can
see how our SA-GCN approach outperforms the others when
optimizing the reward to prioritize low-latency paths. Figure
4-b compares the time steps required for policy convergence.
Such convergence requires the policy to successfully route
every source-destination in the test set of 100 randomized
topologies for every network size.

Lastly, in Figure 4-c, we explore how various reward
functions operate with respect to throughput and latency on
a Barabasi-Albert graph sized (100V, 350E). For additional
comparison, the performance of two of the most commonly
used iBGP routing protocols, OSPF and ECMP, are plotted
as well. The three reward structures explored are as follows:
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(i) optimize latency only, (ii) optimize bandwidth only, and
(iii) co-optimize latency and bandwidth. As shown, each
algorithm was capable of optimizing what each respective
reward function sought to be optimized, showing that RL-
based approaches can potentially be customized according to
a particular set of QoS metrics.

2) Latency: In Figure 5 we show the network performance
in terms of latency on a test set of 100 networks for each
topology type. We selected a Fat Tree topology to simulate
data center networks. Waxman and Barabasi-Albert topology
generators were used for the other two topology classes. It
is worth noticing that for each network topology and all the
three sizes, a trained GCN-based policy outperforms a trained
Q-Network in both median latency and standard deviation.

V. CONCLUSION

In this paper, we explored packet routing with reinforcement
learning with a few novel twists. Our objective has been
to study the impact of topology and traffic changes on a
trained neural network. To do so, we focused on single domain
routing, suitable e.g., for interior BGP, and on multi-domain
routing, valuable for larger scale routing protocols such as
exterior BGP. We proposed a Single Agent RL model, based
on a Graph Convolutional Network (GCN), to fit the former,
and a Multi-Agent Deep Q-Learning Network model for the
latter. We evaluate both single and multi-agent solutions with
different network size and connectivity models. We found that
single-agent with GCN improves on the ability to achieve high
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QoS-metrics when the computer network topology changes
after the RL training had converged. We also found that our
multi-agent model is able to scale well with larger networks,
consistently outperforming OSPF and ECMP.
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