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Abstract— Distributed Kalman filters have been widely stud-
ied in vector space and been applied to 2-D target state
estimation using sensor networks. In this paper, we introduce a
novel distributed invariant extended Kalman filer (DIEKF) that
exploits matrix Lie groups and is suitable to track the target’s
6-DOF motion in a 3-D environment. The DIEKF is based on
the proposed extended Covariance Intersection (CI) algorithm
that guarantees consistency in matrix Lie groups. The DIEKF
is fully distributed as each agent only uses the information
from itself and the one-hop communication neighbors, and it is
robust to a time-varying communication topology and changing
blind agents. To evaluate the performance, we apply the
algorithm in a camera network to track a target pose. Extensive
Monte-Carlo simulations have been performed to analyze the
performance. Overall, the proposed algorithm is more accurate
and more consistent in comparison with our recent work on
the quaternion-based distributed EKF (QDEKF).

I. INTRODUCTION

Sensor networks have been widely used in many applica-
tions. Today, distributed algorithms that use only each agent’s
own and communication neighbors’ information draw more
attention in both control and robotics society. In distributed
algorithms, each agent maintains an estimator of the same
target. To fuse the information from neighbors, there is
a need to handle the unknown cross-covariances between
different estimators on the agents. Naively fusing these
estimators yields an inconsistent estimator that will diverge.
The consensus [1] and the Covariance Intersection (CI) [2]
algorithms have been widely used to design a consistent dis-
tributed extended Kalman filter (EKF) in the existing works.
The consensus algorithm as a tool of information distributed
averaging has been applied to the information pairs (i.e.,
information vectors and matrices) [3], the measurements [3]
and the hybrid of the two in [4]. These approaches require
multiple communication iterations at each timestamp. To be
more efficient, the CI algorithm that computes a convex
combination of the local information pairs from one-hop
communication is used to design the DEKF. In [5], each
agent first updates the estimator using its own measurements
and then the resulting information pairs are fused with the
pairs from neighbors in CI. In [6], CI is first used to fuse
the prior information pairs among neighborhood and then
the improved prior information is updated with the local and
neighboring measurements. Note that all these algorithms
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work on vector space that has additive errors. Besides,
the effectiveness is only evaluated on the tracking problem
in 2D cases. Although, one can naively extend the vector
space algorithm to the 3D case by using the Euler angle
representation for rotations, it suffers the well-known Gimbal
lock problem.

To address this issue, our recent work [7] introduces a
quaternion-based distributed EKF (QDEFK) algorithm where
the 3D orientation is represented as a unit quaternion. CI is
for the first time extended to the 3D space using "quaternion
average" [8]. Good performance is shown by tracking a drone
using a camera network. However, the filer is built upon the
error-state EKF where the position, velocity and orientation
errors are decoupled [9], and the linearized error dynamics
Jacobian and the measurement Jacobian are still functions of
the estimated states. Then the unobservable states can gain
spurious information and become observable by the filter.
This hurts the consistency and then the accuracy. Besides,
like the vector space DEKF, we only study the case where
the target motion model is known.

Recently, a new type of EKF is designed based on the in-
variant observer theory [10]. The estimation error is invariant
under the action of matrix Lie groups and satisfies a log-
linear autonomous differential equation with nice properties
[11]. In particular, in the case of SEK(3), the position,
velocity and orientation errors are coupled. This invariant
EKF (IEKF) has been successfully applied to leg robot state
estimation [12] and SLAM [13], where the IEKF achieves
promising performance especially with poor initialization.
It is proved in these papers that the observability of the
linearized system is coincident with the original nonlinear
system.

However, the IEKF has not been applied to multi-agent
cases. In this paper, we design a distributed invariant EKF
(DIEKF) for solving the problem of distributed state estima-
tion using sensor networks in a 3D environment. To design
DIEKF, we extend the well-known CI to matrix Lie groups
for the first time. The proposed algorithm is fully distributed
that each agent only estimates its own state and covariance
by using the information among the neighborhood. The
algorithm is applied to track target 3D motion in a camera
network. The accuracy and consistency in both position and
orientation are improved as compared against the QDEKF
[7].
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II. PRELIMINARIES

A. Notation and Definitions

We denote 0m×n as a m × n zero matrix, and In (0n)
as n× n square identity (zero) matrix. Given a 3× 1 vector
q = [q1, q2, q3]

⊤, its skew symmetric matrix is defined as

(q)× =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 ,

and its projection function is defined as Π(q) = 1
q3
[q1, q2].

The Jacobian of the projection function is computed as

Hp(q) =
1

q3

[
1 0 − q1

q3

0 1 − q2
q3

]
. (1)

In a network of M agents, we define a directed graph
G = (V, E) to represent the communication topology among
agents, where V indicates the set of all the agents, and E
stands for the set of communication links defined as E ∈
V × V . Specifically, if (j, i) ∈ E , agent j is a neighbor of
agent i, and agent i can receive information from agent j. We
assume that self communication always exists, i.e., (i, i) ∈ E ,
∀i ∈ V . The set of all the communicating neighbors of agent
i is defined as Ni = {j|(j, i) ∈ E , j ∈ V}.

B. Problem Formulation

Consider a network of agents in the 3-D environment with
fixed and known positions aiming to cooperatively track a
moving target’s state. Each agent can communicate with its
neighbors and is equipped with an on-board camera. Denote
G, T , Ci as the global frame, the target frame, and ith agent’s
camera frame, respectively. Let G

TR be the rotation matrix
that describes the rotation from T to G. Let Gv and Gp
be the target’s velocity and position in the global frame. Let
GpCi

be the position of agent i’s camera in the global frame.
The target has additional non-representative feature points,
whose relative positions are unknown but fixed in the target
frame. For convenience, we assume that there is only one
non-representative feature point. However, the state can be
augmented to include multiple non-representative points. Let
T pf be the position of the non-representative feature point
in the target frame.

The state of the target is represented as

x = (GTR
Gv Gp T pf ), (2)

which includes the target’s 6-DoF pose G
TR and Gp, the

linear velocity Gv in the global frame, and the 3-D position
of a non-representative point in the target frame T pf . The
individual dynamics of the state is given as

G
T Ṙ =G

TR(ω − nω)×,
Gv̇ =G

TR(a− na) + g,
Gṗ =Gv,

T ṗf =03×1,

(3)

where ω and a are, respectively, the angular velocity and
the linear acceleration of the target in the target frame, the

corresponding nω and na are white Gaussian noises, and g
is the gravity vector.

The measurements of the representative feature at time tk
(specifying the target’s position) and the non-representative
feature obtained by agent i’s camera are given by, respec-
tively,

zki =Π(Cipk) + nk
i ,

zkfi =Π(Cipkf ) + nk
fi ,

(4)

where nk
i and nk

fi
are the measurement noises of agent i’s

camera at time tk, assumed to be white Gaussian, and Cipk

and Cipkf denote, respectively, the representative feature’s po-
sition (target’s position) and the non-representative feature’s
position in agent i’s camera frame at time tk. The objective
of our work is to let each agent compute an accurate estimate
of the target’s state.

C. Lie Group and Lie Algebra

Here we briefly introduce the matrix Lie group theory
that we will use to derive our algorithm. The material is
adopted from [10]. A matrix Lie group G is a subset of
square invertible N × N matrices satisfying IN ∈ G, ∀a ∈
G, a−1 ∈ G, and ∀a, b ∈ G, ab ∈ G.

Its Lie algebra is denoted as g, which is a vector space
with the same dimension as G. For convenience, let (·)∧ :
Rdim g → g be the linear map that transforms the elements
in the Lie algebra to the corresponding matrix representa-
tion. The exponential map is further defined as exp(ξ) =
expm(ξ∧) ∈ G, where ξ ∈ Rdim g is an element in g, and
expm is the matrix exponential. The logarithm map, which
is the inverse function of the exponential map, is denoted
by log(·), and satisfies log(·) = (logm(·))∨ : G → Rdim g,
where logm is the matrix logarithm, and (·)∨ is the inverse
operator of (·)∧.

Let Xt ∈ G be the state of a system at time t. The
dynamics of the system is denoted as d

dtXt = fut
(Xt),

where ut is the input. We denote Xt as the true state, and
X̄t as the estimate of the state. The right invariant estimation
error is then defined as

ηt = Xt(X̄t)
−1. (5)

The error (5) is invariant to right multiplication of any
element Υ ∈ G.

Let Id ∈ G be the identity element of G. If the dynamics of
the system satisfy fut

(XtX̄t) = fut
(Xt)X̄t+Xtfut

(X̄t)−
Xtfut(Id)X̄t, the system is group affine. Then the right
invariant error dynamics satisfy d

dtηt = gut(ηt), where
gut

(ηt) = fut
(ηt) − ηtfut

(Id). Define At as a matrix
satisfying gut

(exp(ξt)) ≜ (Atξt)
∧ + O(||ξt||2), and let ξt

be the solution of d
dtξt = Atξt. From the log-linear property

of the error ηt, given η0 = exp(ξ0), for t ≥ 0, the error ηt
can be computed from ξt by ηt = exp(ξt).
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D. Matrix Lie Group Representation

As shown in [10], [12], the state collection shown in (2)
forms a matrix Lie group SE3(3) represented as

X =


G
TR

Gv Gp T pf
01×3 1 0 0
01×3 0 1 0
01×3 0 0 1

 ∈ R6×6.

Let Xt be the state representation at time t, and X̄t be the
state estimate. Define the right invariant estimation error ηt
given as

ηt =Xt(X̄t)
−1 =


θ11, θ12, θ13, θ14
01×3, 1, 0, 0
01×3, 0, 1, 0
01×3, 0, 0, 1


where the individual terms are calculated as

θ11 =G
TRt(

G
T R̄t)

⊤,

θ12 =Gvt − G
TRt(

G
T R̄t)

⊤(Gv̄t)

θ13 =Gpt − G
TRt(

G
T R̄t)

⊤(Gp̄t)

θ14 =T pft − G
TRt(

G
T R̄t)

⊤(T p̄ft)

The error vector ξt, defined in the Lie algebra of SE3(3),
denoted by se3(3), is given by

ξt = [(ξRt
)⊤ (ξvt)

⊤ (ξpt
)⊤ (ξpf t

)⊤]⊤ ∈ R12,

where ξRt
, ξvt , ξpt

, and ξpft
∈ R3. Here, ηt = exp(ξt) =

expm(ξ∧t ), with ξ∧t given as

ξ∧t =


(ξRt

)× ξvt ξpt
ξpft

01×3 0 0 0
01×3 0 0 0
01×3 0 0 0

 ∈ R6×6. (6)

It is shown in [12] that (3) without noise is group affine, and
the dynamics of ξt are given as

d
dt
ξt =Atξt − AdX̄t

Ut, (7)

where At =


03 03 03 03

(g)× 03 03 03

03 I3 03 03

03 03 03 03

, and AdX̄t
denotes the

adjoint of SE3(3) at X̄t, and Ut = [n⊤
ωt
, n⊤

at
,01×6]

⊤.

III. PROPOSED ALGORITHM

For notation simplicity, let Xk denote the target state at
time tk. Also let X̄

k
i and X̂

k

i denote, respectively, agent
i’s prior and posterior estimates of the target state at time
tk. Let η

k|k−1
i = Xk(X̄

k
i )

−1 = exp(ξ
k|k−1
i ), and η

k|k
i =

Xk(X̂
k

i )
−1 = exp(ξ

k|k
i ) denote, respectively, agent i’s prior

and posterior estimation errors in SE3(3). Here ξ
k|k−1
i and

ξ
k|k
i denote, respectively, the prior and posterior estimation

errors in se3(3). The covariances associated with ξ
k|k−1
i and

ξ
k|k
i are denoted, repectively, as P̄ k

i and P̂ k
i .

The first step is to propagate the posterior estimation pair
(X̂

k−1

i , P̂ k−1
i ) to obtain the prior estimation pair (X̄

k
i , P̄

k
i ).

We can follow Appendix A is [12] to discretize (3) without
process noises to obtain X̄

k
i from X̂

k−1

i , ωk−1 and ak−1 (the
target’s angular velocity and acceleration at time tk−1), and
∆t = tk − tk−1. To propagate the covariance from P̂ k−1

i to
P̄ k
i , we use

Qk−1
i = Ad

X̂
k−1
i

cov(Uk−1)(Ad
X̂
k−1
i

)⊤,

Qk−1
d = Φ(tk, tk−1)Q

k−1
i Φ(tk, tk−1)∆t,

P̄ k
i = Φ(tk, tk−1)P̂

k−1
i Φ(tk, tk−1) +Qk−1

d ,

(8)

where the state transition matrix Φ(tk, tk−1) associated with
At defined in (7) is computed as

Φ(tk, tk−1) =


I3 03 03 03

(g)×∆t I3 03 03

03 I3∆t I3 03

03 03 03 I3

 ,

Uk−1 denotes Ut defined after (7) at time tk−1, and cov(·)
denotes the covariance.

In the second step, agent i aims to update its local estimate
by communicating with its neighbors. The goal is to fuse
all the prior estimates among the neighbors, i.e., (X̄

k
j , P̄ k

j ),

j ∈ N k
i , to obtain an intermediate estimation pair (X̆

k

i , P̆
k
i ).

By doing so, the agents with better estimates would help
those with poor estimates. For example, blind agents, which
refer to the agents that themselves and their one-hop com-
munication neighbors cannot see the target, would have
poor estimates. Because of the communication from previous
timesteps, and the fact that the agents are estimating the
same target, X̄

k
i and X̄

k
j would be correlated. However, in

the distributed setting, it is not possible to keep tracking
the cross-correlations and hence they are unknown. The CI
algorithm [14] can be used to fuse estimates with unknown
correlations. However, the CI algorithm is applicable in the
vector space and it is not clear how to fuse the Lie group
elements X̄

k
i and X̄

k
j , which are in SE3(3). Next, we extend

the CI algorithm in the context of error-state EKF in Lie
groups to estimate the error states represented in se3(3) and
map back to SE3(3).

Recall that for each j ∈ N k
i , ηk|k−1

j = Xk(X̄
k
j )

−1 is the
prior estimation error in SE3(3), and ξ

k|k−1
j = log(η

k|k−1
j )

is the corresponding prior estimation error in se3(3). We will
make use of X̄

k
j , j ∈ N k

i , to identify the estimates of ξk|k−1
i ,

and then fuse these estimates. Note that for each j ∈ N k
i ,

exp(ξ
k|k−1
j ) =Xk(X̄

k
j )

−1 = Xk(X̄
k
i )

−1(X̄
k
i )(X̄

k
j )

−1

=exp(ξ
k|k−1
i )(X̄

k
i )(X̄

k
j )

−1.

It follows that X̄
k
j (X

k
i )

−1 = exp(−ξ
k|k−1
j ) exp(ξ

k|k−1
i ).

According to the Baker–Campbell–Hausdorff (BCH)
formula, the exponential map satisfies the property
exp(ξ1) exp(ξ2) ≈ exp(ξ1+ξ2), if ξ1 and ξ2 are small. Then
(5) can be rewritten as X̄

k
j (X̄

k
i )

−1 ≈ exp(ξ
k|k−1
i − ξ

k|k−1
j ),
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which implies that ξ
k|k−1
i − ξ

k|k−1
j ≈ log(X̄

k
j (X̄

k
i )

−1),

or equivalently ξ
k|k−1
i − log(X̄

k
j (X̄

k
i )

−1) ≈ ξ
k|k−1
j , for

each j ∈ N k
i . As a result, each log(X̄

k
j (X̄

k
i )

−1), j ∈ N k
i ,

can be treated as one prior estimate of ξ
k|k−1
i , and the

corresponding estimation error is given by ξ
k|k−1
j with

covariance P̄ k
j . We can use the CI algorithm to fuse

all estimation pairs
(
log(X̄

k
j (X̄

k
i )

−1), P̄ k
j

)
to get an

intermediate estimation pair (ξ̆k|k−1
i , P̆ k

i ) for ξk|k−1
i by

P̆ k
i =

 ∑
j∈Nk

i

πk
j (P̄

k
j )

−1

−1

,

ξ̆
k|k−1
i = P̆ k

i

 ∑
j∈Nk

i

πk
j (P̄

k
j )

−1 log((X̄
k
j )(X̄

k
i )

−1)

 ,

where πk
j ∈ [0, 1] and

∑
j∈Ni

πk
j = 1. Note that as i ∈

N k
i , the prior estimate of ξ

k|k−1
i by agent i is simply

log(X̄
k
i (X̄

k
i )

−1) = 012×1 with covariance P̄ k
i , which is

consistent with the definition of ξ
k|k−1
i . While πk

j can be
solved from an optimization problem, a simplified algorithm
can be used to compute πk

j according to [14]:

πk
j =

1/Tr{P̄ k
j }∑

j∈Ni

1/Tr{P̄ k
j }

.

The intermediate state estimate of Xk in SE3(3), denoted by
X̆
k

i , can be recovered from ξ̆
k|k−1
i by

X̆
k

i = exp(ξ̆
k|k−1
i )X̄

k
i . (9)

Now define ε
k|k−1
i as the new error vector in se3(3) with X̆

k

i

being the prior estimate of Xk satisfying

exp(ε
k|k−1
i ) = Xk(X̆

k

i )
−1. (10)

Because we are going to apply the error-state EKF on the
intermediate estimation error ε

k|k−1
i , we need the corre-

sponding covariance. Note that

Xk = exp(ε
k|k−1
i )X̆

k

i =exp(ξ
k|k−1
i )X̄

k
i

⇒ exp(ε
k|k−1
i ) exp(ξ̆

k|k−1
i )X̄

k
i =exp(ξ

k|k−1
i )X̄

k
i

⇒ exp(ε
k|k−1
i ) exp(ξ̆

k|k−1
i ) = exp(ξ

k|k−1
i )

⇒ exp(ε
k|k−1
i ) = exp(ξ

k|k−1
i ) exp(−ξ̆

k|k−1
i )

⇒ exp(ε
k|k−1
i ) ≈ exp(ξ

k|k−1
i − ξ̆

k|k−1
i )

⇒ ε
k|k−1
i ≈ξ

k|k−1
i − ξ̆

k|k−1
i ,

(11)
and P̆ k

i is the estimated covariance for ξk|k−1
i − ξ̆

k|k−1
i . As

a result, P̆ k
i can be directly used as the estimated covariance

for the new error εk|k−1
i .

The third step is to fuse agent i’s intermediate estimation
pair (X̆

k

i , P̆
k
i ) with all the measurements from itself and its

neighbors, i.e., representative feature measurements zkj , ∀j ∈

N k
i , and non-representative feature measurements zkfj , ∀j ∈

N k
i , defined by (4). To calculate the Jacobian associated with

zkj , denoted by Hk
j , first define

Cj p̆ki =
Cj

G R
(
Gp̆ki − GpCj

)
, (12)

as the linearization point in agent j’s camera frame, where
Cj

G R and GpCj
together denote the 3-D pose of agent j’s

camera that is fixed and known. Then the difference between
the true target’s position and the linearization point in agent
j’s camera frame is calculated as

Cjpki − Cj p̆ki =
Cj

G R
(
Gpk − GpCj

)
− Cj

G R
(
Gp̆ki − GpCj

)
=

Cj

G R
(
Gpk − Gp̆ki

)
.

Note that ε
k|k−1
i is a column stack vector of ε

k|k−1
Ri

,
ε
k|k−1
vi , ε

k|k−1
pi , and ε

k|k−1
pfi

. Recall from (10) that Xk =

exp(ε
k|k−1
i )X̆

k

i ≈ (I6+(ε
k|k−1
i )∧)X̆

k

i , where (·)∧ is defined
by (6). The position of the target can be calculated as
Gpk ≈ [I3 + (ε

k|k−1
Ri

)×]
Gp̆ki + ε

k|k−1
pi = −(Gp̆ki )×ε

k|k−1
Ri

+

ε
k|k−1
pi + Gp̆ki . Hence the Jacobian Hk

j is calculated as

Hk
j =Hp(

Cj p̆ki )(
Cj

G R)
[
−(Gp̆ki )×, 03, I3, 03

]
,

where Hp(·) is defined by (1). To calculate the Jacobian
associated with the non-representative feature, denoted by
Hk

fj
, define

Cj p̆kfi =
Cj

G R
(
G
T R̆

k

i (
T p̆kfi) +

Gp̆ki − GpCj

)
(13)

as its linearization point. Then the difference between the
true position of the non-representative feature and the lin-
earization point is given by Cjpkfi −

Cj p̆kfi = Mk
i ε

k|k−1
Ri

+

ε
k|k−1
pi + G

T R̆
k

i ε
k|k−1
pfi

, where Mk
i is given by

Mk
i = −G

T R̆
k

i (
T p̆kfi)× − (GT R̆

k

i
T p̆kfi)× − (Gp̆ki )×. (14)

Hence the Jacobian Hk
fj

is calculated as Hk
fj

=

Hp(
Cj p̆kfi)(

Cj

G R)
[
Mk

i , 03, I3,
G
T R̆

k

i

]
. Note that at time

tk, it is possible that some or even all neighbors do not
see the representative or non-representative feature. Let
N̄ k

i ⊂ N k
i (respectively, N̄ k

fi
⊂ N k

i ) be the subset of
agent i’s neighbors that can see the representative feature
(respectively, non-representative feature) at time tk. Define
H̃k

i by stacking all Hk
j , j ∈ N̄ k

i , and Hk
fj

, j ∈ N̄ k
fi

.
Let C̃k

i be a block diagonal matrix with the measurement
noise covariances Ck

j , j ∈ N̄ k
i , and Ck

fj
, j ∈ N̄ k

fi
. Let

Sk
i = H̃k

i P̆
k
i (H̃

k
i )

⊤+C̃k
i . The Kalman gain Kk

i is calculated
as

Kk
i = P̆ k

i (H̃
k
i )

⊤(Sk
i )

−1, (15)

and the measurement residual yki is given by stacking zkj −
Π(Cj p̆ki ), j ∈ N̄ k

i , and zkfj − Π(Cj p̆kfi), j ∈ N̄ k
fi

. Then
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Fig. 1: Target’s visibility to the agents. The red lines indicate
the timesteps when the agent can directly observe the target’s
representative and non-representative features.

the posterior estimate of ε
k|k−1
i , denoted as ε̂ki , and its

covariance P̂ k
i are calculated as

ε̂ki =Kk
i y

k
i ,

P̂ k
i =(I12 −Kk

i H̃
k
i )P̆

k
i .

(16)

In the last step, we recover the estimated state X̂
k

i from
ε̂ki and X̆

k

i by (9) as

X̂
k

i = exp(ε̂ki )X̆
k

i . (17)

Note that a similar procedure to (11) can be used to show that
ξ
k|k
i ≈ ε

k|k−1
i − ε̂ki . Hence P̂ k

i can be used as the estimated
covariance for ξk|ki .

IV. SIMULATION RESULTS

We apply the DIEKF algorithm to solve the distributed
state estimation problem where 10 fixed agents equipped
with cameras are employed to track the 3-D motion of a
drone. The positions of the agents are known and the target’s
state is to be estimated. A non-representative point is created
in addition to the center feature point of the target. The
position of the non-representative point in the target frame is
unknown but is fixed. Based on the positions of the cameras
and the drone, the status of which agent can sense the
drone is shown in Figure 1. It is clear that each one of
the agents is not able to see the target for a long period
of time. Extensive Monte Carlo simulations are performed
to validate the algorithm. The results are quantified by rooted
mean square error (RMSE) that evaluates the accuracy, and
normalized estimation error squared (NEES) which evaluates
the consistency. The comparison to the results of our previous
QDEKF algorithm [7] is also included.

We set the noise of the linear acceleration ω and angular
velocity a to be white Gaussian noise with standard devia-
tions of 6.6968×10−3 rad/(s

√
Hz) and 2×10−2 m/(s2

√
Hz)

respectively. To show the result of cooperative tracking, we

define a communication rate, which means that each agent
has a certain probability to communicate with other agents.
For instance, 20% communication means that each agent
has 20% probability to communicate with each one of the
other agents. Hence the set of communication neighbors are
randomly determined at every time step.

In the first test, we assume that the agents have the knowl-
edge of the target’s ground truth state at the first timestep.
So we initialize our estimator with the ground truth, and
give it a very small initial covariance. We conduct 50 Monte
Carlo simulations and calculate the average result. Figure 2
shows the averaged position RMSE (PRMSE) and averaged
orientation RMSE (ORMSE) for different percentages of the
communication. A comparison with the QDEKF algorithm

Fig. 2: Averaged PRMSE and ORMSE using DIEKF at
different communication rates without initialization errors

in our previous work [7] is shown in Table I. It is clear

TABLE I: Averaged RMSE for the estimated target pose over 50 Monte-
Carlo runs and all timesteps.

communication rate 10 % 20 % 30 % 40%

QDEKF PRMSE (m) 0.0884 0.0352 0.0206 0.0158
ORMSE (deg) 1.4098 1.2291 1.1678 1.1311

DIEKF PRMSE (m) 0.0387 0.0195 0.0144 0.0124
ORMSE (deg) 1.1518 1.0773 1.0795 1.0611

that DIEKF outperforms the QDEKF in estimating both
position and orientation. In addition, the estimation accuracy
improves as communication rate increases.

We further show the NEES result at 40% communication
rate. As shown in Figure 3, while the orientation NEES
(ONEES) appears to be similar, the position NEES (PNEES)
for DIEKF is closer to 3 as compared to the QDEKF
algorithm. This indicates the improvement of the consistency
[15].

In the second test, we assume that the agents do not
have perfect knowledge of the target’s ground truth state
at the first timestep. We initialize our state estimator to a
value near the ground truth, and give it a larger covariance.
Similarly, we conduct 50 Monte Carlo simulations on the
DIEFK and QDEKF with the same initialized state estimate
and equivalent covariance. Figures 4 and 5 show the result
for both DIEKF and QDEKF using the same initialization,
measurements and noise. Compared with the results of
QDEKF, our DIEKF algorithm obviously converges faster
in the position estimation, and is more accurate in general.
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Fig. 3: PNEES and ONEES for DIEKF at 40% communica-
tion rate without initialization errors

Overall, our algorithm can accurately track the trajectory
of the target in the 3-D space, and can maintain consistency.

V. CONCLUSION

In this paper, by using the matrix Lie group representation
of the state, we introduced a new DIEKF algorithm that
yields consistent and accurate estimates of the target in the
3-D space over the sensor networks. The proposed algorithm
requires only one communication iteration with its communi-
cation neighbors at every time instant. Further the algorithm
is shown to be robust to changing communication topology
and blind agents. These properties ensure that our approach
can have a wide application in multi-agent scenarios. The
performance of the proposed algorithm is tested via Monte
Carlo simulations. Some key performance are compared with
the algorithm that did not use the Lie group representation
for the state.
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