
An Optimization Approach to Fully Distributed Active Joint
Localization and Target Tracking in Multi-Robot Systems

Shaoshu Su, Pengxiang Zhu and Wei Ren

Abstract— In this paper, the problem of multi-robot active
joint localization and target tracking (AJLATT) is studied. Here
a team of mobile robots equipped with sensors of limited field
of view is driven to actively and cooperatively estimate their
own and the target’s states. A motion strategy is designed to
drive each robot to achieve better self-localization and target-
tracking performance while avoiding collisions. By leveraging
our previous work on joint localization and target tracking
(JLATT), we propose a fully distributed optimization-based
algorithm to solve the problem of AJLATT, where each robot
uses only its own and one-hop communicating neighbors’ infor-
mation. The proposed algorithm aims to minimize an objective
function which includes both the target’s and robots’ estimation
uncertainties and as well as a potential function which is used
for collision avoidance and communication connectivity mainte-
nance. Monte Carlo simulations are performed to demonstrate
the effectiveness of our algorithm. As compared to JLATT with
random motion, the accuracy of both localization and target
tracking is improved.

I. INTRODUCTION

Autonomous multi-robot systems have wide applications
such as search, rescue, and region monitoring. However, in
some scenarios where a GPS signal, motion-capture system,
or prior map is not available, the positioning of the multi-
robot system and the target becomes a critical problem. There
are many results on multi-robot cooperative localization or
pure target tracking1 or both. We refer the task that jointly
estimates the states of a team of robots and the target as
joint localization and target tracking (JLATT). There are
some existing works that solve the JLATT problem, both
in a centralized [1]–[3] or fully distributed manner [4],
[5].2 However, all the aforementioned works [1]–[5] have
a assumption that the sensors or robots are either static or
move randomly without active motion control.

Some algorithms have been proposed to solve the active
target tracking problem from the control or optimization
perspective. In the controls field, there are numerous results
on distributed tracking or leader-follower tracking (see, e.g.,
[6]). However, in these results, both the robots’ and target’s
states are usually assumed to be known, and the emphasis is
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on designing distributed controllers. In [7], the target’s state
is assumed to be unknown, but an all-to-all communication
network is required. In [8], an information-driven flocking
algorithm is proposed to achieve the distributed target state
estimation, but the estimator relies on a restrictive assump-
tion that the target is jointly observed by each robot and its
neighbors. For the optimization-based approaches, the idea
is to find control to optimize certain objective functions in
a centralized manner [9]–[12] or a decentralized manner but
with multi-hop information transmission required [13]. In all
the works above, the robots’ states are required to be known,
which is not so practical in real-world applications.

There exist some works addressing the active joint lo-
calization and target tracking (AJLATT) problem. In these
works, the improvement of the target tracking and/or robot
self-localization performance can be actively achieved by
designing certain motion strategies for the robots. Consider-
ing limited sensing capabilities, [14] proposes an algorithm
which plans robots’ motions and switches the team’s sensing
topology to minimize the uncertainty of the target’s state es-
timate. In [15], a gradient-based control strategy is designed
to minimize the estimation uncertainty of both the robots’
and the target’s states. While these two works take jointly
estimating both robots’ states and target’s state into con-
sideration, both approaches utilize a centralized estimation
framework. Although centralized approaches are well known
for their optimal estimation and planning performance, a
heavy burden in computation and the strict requirement on
the communication topology limit their applications in real-
world scenarios. In [16], a distributed method is proposed
to solve the AJLATT problem. However, the method is not
fully distributed since multi-hop information transmission is
required. To the best of our knowledge, there is no existing
fully distributed algorithm solving the AJLATT problem.

Considering all the limitations of the previous works,
we aim to propose a fully distributed optimization-based
algorithm to solve the problem of AJLATT. Our previous
work [5] introduces a framework to distributively solve the
pure joint localization and target tracking (JLATT) problem
without designing motion strategies for the robots. Leverag-
ing that framework, in this paper we design a fully distributed
motion strategy for each robot so that each robot can actively
improve its self-localization and target tracking performance.
Using only its own and one-hop communicating neighbors’
information, each robot selects its motion strategy by mini-
mizing an objective function which includes both the target’s
and robots’ estimation uncertainties and as well as a potential
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function used for collision avoidance and communication
connectivity maintenance. To the best of our knowledge, our
algorithm is the first fully distributed approach to solve the
AJLATT problem. Extensive Monte-Carlo simulations are
performed to validate its performance.

II. PRELIMINARIES

A. Motion and Measurement Models

We consider the scenario where M robots track a target
on a surface. We use the vectors xki and xkT to represent,
respectively, the true state of robot i and the target at time
k. Their movements are driven by a nonlinear motion model
as

xki = fi(x
k−1
i ,uk−1i ,wk−1

i ), (1)

xkT = g(xk−1T ,uk−1T ,wk−1
T ), (2)

where uk−1i and uk−1T are, respectively, the control inputs for
robot i and the target. wk−1

i ∼ N (0,Qk−1
i ) and wk−1

T ∼
N (0,Qk−1

T ) are, respectively, the zero-mean white Gaussian
process noises for robot i and the target.

We define x̄ki and x̂ki as, respectively, robot i’s prior and
posterior estimates of its true state xki , and x̄kTi

and x̂kTi

as, respectively, each robot i’s prior and posterior estimates
of the target’s state xkTi

. Their corresponding approximated
prior and posterior covariances are defined as p̄ki , p̂ki , p̄kTi

,
and p̂kTi

, respectively.
At time k, if robot j or the target is within the sensing

region of robot i, robot i can obtain a robot-to-robot mea-
surement zkRij

or a robot-to-target measurement zkRiT
. The

measurement models are defined as

zkRij
= hij(x

k
i ,x

k
j ) + vkRij

,

zkRiT
= hiT (xki ,x

k
T ) + vkRiT ,

(3)

where vkRij
∼ N (0,Rk

ij) and vkRiT
∼ N (0,Rk

iT ) are the
measurement noises assumed to be zero-mean white Gaus-
sian. The measurement noises are assumed to be mutually
uncorrelated across robots and uncorrelated with the process
noises.

B. Graphs

In the team of M robots, a directed communication graph
Gkc = (V, Ekc ) is defined, where V = {R1, . . . , RM} is the
robot set and Ekc ⊆ V × V is the edge set representing the
communication links between robots at time k. If robot i
receives information from robot j at time k, then a directed
edge (j, i) exists in Ekc . We assume that the self edge (i, i)
exists in Ekc , ∀i ∈ V , which means robot i can also use
the information from itself. At time k, the communicating
neighbor set of robot i is defined as N k

c,i = {l|(l, i) ∈
Ekc ,∀l 6= i, l ∈ V}. Then, the inclusive communicating
neighbor set of robot i is Ikc,i = N k

c,i ∪ {i}. Similarly, we
define a directed sensing graph Gks = (V, Eks ) to describe
robot-to-robot measurements, where Eks ⊆ V×V is the edge
set, which represents the detection links between robots at
time k. If robot i can detect robot j at time k, a directed
edge (j, i) exists in Eks . At time k, we define robot i’s

sensing neighbors (all robots detected by robot i) as N k
s,i =

{l|(l, i) ∈ Eks ,∀l 6= i, l ∈ V}. We assume that for each robot,
the communication radius is larger than the sensing radii of
all robots. Then when robot i detects robot j, robot i can
receive the information from robot j.

C. Joint Localization and Target Tracking
In this section, we briefly introduce our previous work

about JLATT [5]. In this work, each robot can estimate
the pose of itself (localization) and the state of a target
(tracking) using only its own information and the information
from its one-hop communicating neighbors while preserving
estimation consistency.

1) Robot Propagation: The estimate of robot i’s state and
its corresponding covariance are propagated at time k− 1 as

x̄ki = fi(x̂
k−1
i ,uk−1i , 0),

p̄ki = Φk−1
i p̂k−1i (Φk−1

i )T + Q̄
k−1
i

= ρRp(p̂
k−1
i , x̂k−1i ,Qk−1

i ),

(4)

where Φk−1
i = ∂fi

∂xi
(x̂k−1i ,uk−1i , 0), Gk−1

i =
∂fi
∂wi

(x̂k−1i ,uk−1i , 0), and Q̄
k−1
i = Gk−1

i Qk−1
i (Gk−1

i )T.
2) Target Propagation: Robot i propagates its estimate

of the target’s state and its corresponding covariance at time
k − 1 as

x̄kTi
= g(x̂k−1Ti

,uk−1T , 0),

p̄kTi
= Φk

Ti
p̂k−1Ti

(Φk−1
Ti

)T + Q̄k−1
Ti

= ρTp(p̂
k−1
Ti

, x̂k−1Ti
,Qk−1

Ti
),

(5)

where Φk−1
Ti

= ∂g
∂xT

(x̂k−1Ti
,uk−1T , 0), Gk−1

Ti
=

∂g
∂wT

(x̂k−1Ti
,uk−1T , 0), and Q̄k−1

Ti
= Gk−1

Ti
Qk−1
Ti

(Gk−1
Ti

)T.
3) Robot State Update: To update the estimate of robot

i’s state, we first obtain the correction pairs (skRil
,ykRil

) and
(skRiT

,ykRiT
) using robot i’s robot-robot measurements zkRil

,
l ∈ N k

s,i, and robot-target measurement zkRiT
, respectively.

These correction pairs are calculated as

skRil
= (Hk

il)
T(R̄

k
il)
−1Hk

il, (6a)

ykRil
= (Hk

il)
T(R̄k

il)
−1(z̄kRil

+ Hk
ilx̄

k
i ), (6b)

where Hk
il = ∂hil

∂xk
i

(x̄ki , x̄
k
l ), R̄k

il = Rk
il + H̃k

ilp̄
k
l (H̃k

il)
T,

H̃k
il = ∂hil

∂xk
l

(x̄ki , x̄
k
l ), and z̄kRil

= zkRil
− hil(x̄

k
i , x̄

k
l ), and

skRiT = (Hk
iT )T(R̄k

iT )−1Hk
iT , (7a)

ykRiT = (Hk
iT )T(R̄k

iT )−1(z̄kRiT + Hk
iT x̄ki ), (7b)

where Hk
iT = ∂hiT

∂xk
i

(x̄ki , x̄
k
Ti

), R̄k
iT = Rk

iT+H̃k
iT p̄kTi

(H̃k
iT )T,

H̃k
iT = ∂hiT

∂xk
Ti

(x̄ki , x̄
k
Ti

), and z̄kRiT
= zkRiT

− hiT (x̄ki , x̄
k
Ti

).
Then, we apply the CI algorithm [17] on these correction

pairs to compute a consistent estimate x̆i and its correspond-
ing covariance p̆i as

p̆ki = (
∑
l∈Nk

s,i

ηkils
k
Ril

+ ηkiT skRiT )−1, (8a)

x̆ki = p̆ki (
∑
l∈Nk

s,i

ηkily
k
Ril

+ ηkiTykRiT ), (8b)
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where ηkil ∈ [0, 1], and ηkiT = 0 if robot i cannot detect the
target and otherwise ηkiT ∈ [0, 1] subject to

∑
l∈Nk

s,i
ηkil +

ηkiT = 1. These ηil and ηiT can be calculated to minimize
the trace of p̆ki .

After we obtain the estimation pair (p̆ki , x̆
k
i ) using relative

measurements and also the prior estimation pair (p̄ki , x̄
k
i )

from the robot propagation step, we can use the CI algorithm
to fuse these two estimation pairs to obtain the posterior
estimation pair (p̂ki , x̂

k
i ) as

p̂ki =
(
ζki1(p̆ki )−1 + ζki2(p̄ki )−1

)−1
, (9a)

x̂ki = p̂ki

(
ζki1(p̆ki )−1x̆ki + ζki2(p̄ki )−1x̄ki

)
, (9b)

where ζki1 and ζki2 ∈ [0, 1], subject to ζki1 + ζki2 = 1, can be
calculated to minimize the trace of p̂ki .

4) Target State Update: Similarly, for the target state
estimation, each robot i first collects the target correction
pairs (s̃kRjT

, ỹkRjT
) from available robot-target measurements

calculated by its inclusive communicating neighbors j, j ∈
Ikc,i,

s̃kRjT = (H̃k
jT )T(R̃k

jT )−1H̃k
jT , (10a)

ỹkRjT = (H̃k
jT )T(R̃k

jT )−1(z̄kRjT + H̃k
jT x̄kTj

), (10b)

where R̃k
jT = Rk

jT + Hk
jT p̄kj (Hk

jT )T.
Then, at time k, by combining all available target correc-

tion pairs, we obtain an intermediate estimation pair as

p̆kTi
= (

∑
j∈Ikc,i

η̃kj s̃
k
RjT )−1, (11a)

x̆kTi
= p̆kTi

(
∑
j∈Ikc,i

η̃kj ỹ
k
RjT ), (11b)

where η̃kj = 0 if robot j cannot directly detect the target,
and otherwise η̃kj ∈ [0, 1] subject to

∑
j∈Ikc,i

η̃kj = 1.
Then we fuse all available prior estimation pairs

(p̄kTj
, x̄kTj

), ∀j ∈ Ikc,i with the CI algorithm as

p̌kTi
=

 ∑
j∈Ikc,i

πkj (p̄kTj
)−1

−1 , (12a)

x̌kTi
= p̌kTi

 ∑
j∈Ikc,i

πkj (p̄kTj
)−1x̄kTj

 , (12b)

where πkj ∈ [0, 1], subject to
∑
j∈Ikc,i

πkj = 1, can be
calculated to minimize the trace of p̌kTi

.
Eventually, after obtaining the pairs (p̌kTi

, x̌kTi
) and

(p̆kTi
, x̆kTi

), we calculate the posterior estimation pair
(p̂kTi

, x̂kTi
) of the target as

p̂kTi
=
(
ζkiT1

(p̌kTi
)−1 + ζkiT2

(p̆kTi
)−1
)−1

, (13a)

x̂kTi
= p̂kTi

(
ζkiT1

(p̌kTi
)−1x̌kTi

+ ζkiT2
(p̆kTi

)−1x̆kTi

)
, (13b)

where ζkiT1
and ζkiT2

∈ [0, 1], subject to ζkiT1
+ ζkiT2

= 1, can
be calculated to minimize the trace of p̂kTi

.

III. ACTIVE JOINT LOCALIZATION AND TARGET
TRACKING

While our previous work [5] achieves fully distributed
JLATT, the robots’ motions are not actively controlled or
planned and they simply move around randomly. As a result,
the full potential to improve the localization and target
tracking performance is not exploited. In this paper, we aim
to actively control the motions of the robots to achieve better
localization and target tracking performance than random
movements. We use the term AJLATT to emphasise the fact
that we try to not only estimate the states of the robots
and the target but also design proper control actions to
improve the estimation performance. Our goal is to design
the control input uki for each robot i modeled by (1) at
each time k in a fully distributed manner by using only
its own information and the information from its one-hop
communicating neighbors. Next, an optimization approach
to AJLATT is presented.

An overview of the proposed AJLATT algorithm is
summarized in Table I. In Step 3, we implement our
optimization-based AJLATT algorithm (14) to solve the
AJLATT problem. The goal is to find an optimal control
input uk−1i for each robot i modeled by (1), to optimize
certain objective functions.

There exist some previous works solving a related problem
from the optimization perspective. However, they either
ignore the robot localization [9]–[13] or are implemented in
a centralized manner [14], [15]. In contrast, here the robot
localization is explicitly considered and the problem is solved
in a fully distributed manner by using each robot’s own and
its one-hop neighbors’ information. There is no center node
required for computation, global parameter shared among the
entire team, or information transmitted via multiple hops.

Our optimization-based AJLATT algorithm can be sum-
marized as

uk−1i = arg min
uk−1

i ∈Ui
αRi

tr(p̄k+t2i ) + αTi
tr(p̄k+t2Ti

)

+βi
∑
j∈Nk−1

c,i ∪{Ti} J
k+t1
Rij

, i = 1, . . . ,M

s.t. (x̄k+t1j , x̄k+t1Tj
, p̄k+t2i , p̄k+t2Ti

) =

SACP (x̂k−1j , x̂k−1Tj
, p̂k−1j , p̂k−1Tj

,uk−2j ,uk−1T ), j ∈ Ik−1c,i

(14)
where Ui is the control space of robot i. αRi , αTi , and βi
are three positive constant parameters that are used to adjust
the influence of each term on the objective function. p̄k+t2i

and p̄k+t2Ti
are, respectively, the predicted robot and target

covariances at time k + t2 representing, respectively, robot
i’s predicted self-localization and target tracking uncertainty.
Jk+t1Rij

, j ∈ N k−1
c,i ∪ {Ti}, is the potential function term at

time k + t1, which is used to maintain communication
connectivity, avoid collisions, and keep sight of the target.
t1 and t2 are, respectively, the planning horizons for the
potential function term and covariance terms. In general, we
have t1 < t2, since the difference of uncertainty between
different control inputs needs more time to show up, but the
potential function term that helps robots to quickly avoid
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TABLE I: AJLATT by Robot i

Initialization:
1 Initialize x̂0

i ,p̂0
i , x̂

0
Ti
, p̂0

Ti
, and set u−1

i = 0.

At time k − 1
Information Exchange for AJLATT:
2.1 Send x̂k−1

i , p̂k−1
i ,uk−2

i , fi(·), x̂k−1
Ti

, p̂k−1
Ti

to robot j,
i ∈ N k−1

c,j .

2.2 Receive x̂k−1
j , p̂k−1

j ,uk−2
j , fj(·), x̂k−1

Tj
, p̂k−1

Tj
from robot

j, j ∈ N k−1
c,i .

AJLATT Motion Planning:
3 Calculate uk−1

i using the optimization-based AJLATT
algorithm (14).

Propagation:
4 Propagate robot i’s estimate of its own state x̂k−1

i and
covariance p̂k−1

i with the obtained uk−1
i using (4) and the

target’s state x̂k−1
Ti

and covariance p̂k−1
Ti

using (5) to
obtain x̄k

i , p̄
k
i , x̄

k
Ti

and p̄k
Ti

.

At time k
Update:
5.1 Obtain the robot-robot measurements zkRil

, l ∈ N k
s,i, and

robot-target measurement zkRiT
(if the target is detected

by robot i) and generate the corresponding correction
pairs (skRil

,yk
Ril

), (skRiT
,yk

RiT
), (s̃kRiT

, ỹk
RiT

) using (6),
(7), (10).

5.2 Send (s̃kRiT
, ỹk

RiT
), (p̄k

Ti
, x̄k

Ti
) to robot j, i ∈ N k

c,j .
5.3 Receive (s̃kRjT

, ỹk
RjT

), (p̄k
Tj
, x̄k

Tj
) from robot j, j ∈ N k

c,i.
5.4 Calculate the posterior robot estimate pair (p̂k

i , x̂
k
i ) using

(8), (9), and the posterior target estimate pair (p̂k
Ti
, x̂k

Ti
)

using (11), (12), (13).

collision and frequently keep communication connectivity
needs to be computed in a shorter time period. SACP is
a function that is used to predict the estimate of the states
x̄k+t1j , x̄k+t1Tj

and covariances p̄k+t2i , p̄k+t2Ti
at time k + t1

and k + t2, respectively, and will be shown in detail later.
Let ri = [xi, yi]

T be the position part of the state x̂i in
(1). For each robot i, the potential function JRij

is defined
as

JRij
=


∞ , ‖r̄i − r̄j‖ 6 di
−10log(

‖r̄i−r̄j‖−di
ai

), di < ‖r̄i − r̄j‖ 6 di + ai
0, di + ai < ‖r̄i − r̄j‖ 6 d̄i − ai
10(‖r̄i − r̄j‖ − (d̄i − ai))2, ‖r̄i − r̄j‖ > d̄i − ai

(15)
where r̄i = [x̄i, ȳi]

T is the prior estimate of ri, ‖r̄i −
r̄j‖, j ∈ Nc,i ∪ {Ti}, is the estimated robot-robot or robot-
target distance, di and d̄i are, respectively, the minimum
and maximum acceptable distances that are used to avoid
collisions and maintain communication connectivity, and ai
is the length of the non-zero interval. Note that the definition
of JRij accommodates both robot-robot potential and robot-
target potential.

According to the definition of the potential function JRij
,

there are several properties that we would like to point out:
1) JRij = 0, when ‖r̄i − r̄j‖ ∈ [di + ai, d̄i − ai], which
means that only when other robots or the target moves too
close to the minimum range or almost moves out of the

maximum acceptable range, this potential function will play
a role. Otherwise, only the covariance terms take effect in the
objective function in (14). 2) JRij →∞, if ‖r̄i − r̄j‖ → di
or ‖r̄i − r̄j‖ → ∞. The potential function will immediately
give a large penalty (close to infinity) when the robot comes
too close to its neighbors or the target to avoid collisions. In
contrast, it gives a relatively soft and weak penalty when the
robot moves far away from its neighbors or the target so as
to maintain communication connectivity or not lose sight of
the target, respectively.

The State and Covariance Prediction (SACP) process is
first used to predict robot i’s estimates of its own and the
target’s states, and robot i’s estimates of each neighbor j’s
state at time k + t1 so as to calculate the potential function
term Jk+t1Rij

. The process is consecutively used to predict
robot i’s covariance p̄k+t2i and the target covariance p̄k+t2Ti

at time k+ t2 which constitute the uncertainty minimization
terms in the objective function in (14). The SACP process
is shown in Table II.

Remark 1. Since uk−1j is the optimization variable for each
robot j, robot i propagates its neighbor j’s state estimate
with the neighbor’s latest available control input uk−2j at
time k−2. Robot i’s own state is propagated with uk−1i . The
target’s state is propagated with uk−1T , which is assumed to
be known for each robot at time k − 1.

Remark 2. In Step 2 in Table II, ∗N k
s,i and ∗Ikc,i are two

predicted neighbor sets at time k in the prediction process.
Since the real movement does not happen, robot i can only
utilize the information from its communicating neighbors at
time k−1. Thus ∗N k

s,i and ∗Ikc,i are the subsets of the known
set Ik−1c,i , where ∗N k

s,i = {i|(l, i) ∈ (∗Eks ∩ Ek−1c ),∀l 6=
i, l ∈ V} and ∗Ikc,i = {i|(l, i) ∈ (∗Ekc ∩ Ek−1c ), l ∈ V}.
Here ∗Eks and ∗Ekc are, respectively, the predicted sensing
and communication edge set at time k which are determined
by the predicted estimates of the robots’ states x̄kj together
with, respectively, the robots’ sensing fields of view and
communication radii. In addition, ηkiT in (8a) is determined
by x̄ki and the estimate of the target’s state x̄kTi

together with
the robots’ sensing fields of view.

Remark 3. In Step 4 in Table II, each robot i propagates its
own state estimate and its estimate of the target’s state up to
time k+t1. For each of robot i’s communicating neighbors at
time k−1 (j ∈ N k−1

c,i ), robot i also propagates neighbor j’s
state estimate up to time k+ t1. The potential function term
in (14) would result in a larger penalty when robot i loses
communication connectivity with its neighbor j, j ∈ N k−1

c,i ,
at time k + t1. Instead, if the potential function term were
given by βi

∑
j∈∗Nk+t1

c,i ∪{Ti}
Jk+t1Rij

in (22), then a smaller
value would be obtained due to the removal of robot j in
∗N k+t1

c,i .

IV. SIMULATION

In this section, we will use Monte-Carlo simulations to
demonstrate the performance of our algorithm.
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A. Simulation Setup

Consider the scenario where M = 6 robots and a target
move on a surface. Here we adopt the widely used unicycle
model for both robots and the target in the simulation. The
robot pose xki consists of the position (xki , y

k
i ) and the

orientation θki in the global frame. The motion models (1)
and (2) can be expressed as

xki = xk−1i + (vk−1i + wk−1vi )δtcos(θk−1i ),

yki = yk−1i + (vk−1i + wk−1vi )δtsin(θk−1i ),

θki = θk−1i + (ωk−1i + wk−1ωi
)δt,

(16)

where i ∈ {1, . . . ,M} ∪ {T}, δt = 1 s is the sampling
interval, uk−1i = [vk−1i , ωk−1i ]T represents the linear and

TABLE II: State and Covariance Prediction (SACP) by Robot i at k − 1

One-step Propagation and Predicted Update:
1 Propagate each inclusive communicating neighbor j’s,

j ∈ Ik−1
c,i , estimates of its own and the target’s states and

covariances in one step.

x̄k
i = fi(x̂

k−1
i ,uk−1

i , 0), p̄k
i = ρRp(p̂k−1

i , x̂k−1
i ,Qk−1

i ),
x̄k
j = fj(x̂

k−1
j ,uk−2

j , 0), j ∈ N k−1
c,i

p̄k
j = ρRp(p̂k−1

j , x̂k−1
j ,Qk−1

j ), j ∈ N k−1
c,i

x̄k
Tj

= g(x̂k−1
Tj

,uk−1
T , 0), j ∈ Ik−1

c,i

p̄k
Tj

= ρTp(p̂k−1
Tj

, x̂k−1
Tj

,Qk−1
Tj

), j ∈ Ik−1
c,i

2 Generate one-step predicted correction terms skRil
,

l ∈ ∗N k
s,i, s

k
RiT

, s̃kRjT
, j ∈ ∗Ikc,i, using (6a), (7a), (10a).

3 Calculate one-step predicted posterior robot covariance p̂k
i

using (8a), (9a), and one-step predicted posterior target
covariance p̂k

Ti
using (11a), (12a), (13a).

Propagation in t1 and t2 Planning Horizons:
4 Propagate robot i’s estimate of the target’s state and

corresponding covariance and each inclusive communicating
neighbor j’s, j ∈ Ik−1

c,i , estimates of its own state and
corresponding covariance for the potential function term in
t1 planning horizon:
t = 0, . . . , t1 − 1,

x̄k+t+1
Ti

= g(x̄k+t
Ti

,uk−1
T , 0),{

p̄k+t+1
Ti

= ρTp(p̂k+t
Ti

, x̄k+t
Ti

,Qk+t
Ti

), if t = 0

p̄k+t+1
Ti

= ρTp(p̄k+t
Ti

, x̄k+t
Ti

,Qk+t
Ti

), if t > 1

x̄k+t+1
i = fi(x̄

k+t
i ,uk−1

i , 0),{
p̄k+t+1
i = ρRp(p̂k+t

i , x̄k+t
i ,Qk+t

i ), if t = 0
p̄k+t+1
i = ρRp(p̄k+t

i , x̄k+t
i ,Qk+t

i ), if t > 1
x̄k+t+1
j = fj(x̄

k+t
j ,uk−2

j , 0), j ∈ N k−1
c,i

Compute Jk+t1
Rij

using ‖r̄k+t1
i − r̄k+t1

j ‖, j ∈ N k−1
c,i ∪ {Ti}.

5 Propagate robot i’s estimates of its own and the target’s
states and corresponding covariances to obtain the
covariance terms in t2 planning horizon
t = t1, . . . , t2 − 1,

x̄k+t+1
i = fi(x̄

k+t
i ,uk−1

i , 0), x̄k+t+1
Ti

= g(x̄k+t
Ti

,uk−1
T , 0),

p̄k+t+1
i = ρRp(p̄k+t

i , x̄k+t
i ,Qk+t

i ),

p̄k+t+1
Ti

= ρTp(p̄k+t
Ti

, x̄k+t
Ti

,Qk+t
Ti

).

angular velocities as the input for robot i, and wi =
[wk−1vi , wk−1ωi

]T represents process noises for the linear and
angular velocities. For robot i, the input uk−1i is calculated
by our AJLATT algorithm. The target’s input is assumed to
be constant with vT = 0.25 m/s and ωT = 0. The target’s
input uT = [vT , ωT ]T is known by every robot i. The
corresponding process noise wi, i ∈ {1, . . . ,M} ∪ {T}, is
assumed to be white Gaussian, with the standard deviations
for wk−1vi and wk−1ωi

as, respectively, σk−1vi =
√
2
2 σ

k−1
i

and σk−1ωi
= 2

√
2σk−1i , where σk−1i is proportional to

the linear velocity as σk−1i = 1%vk−1i for each robot i,
i ∈ {1, . . . ,M}, and σk−1T = 3%vk−1T for the target. Hence
Qk−1
i , i ∈ {1, . . . ,M} ∪ {T} defined after (1) and (2) is

given as Qk−1
i =

[
(σk−1vi )2 0

0 (σk−1ωi
)2

]
.

We assume that each robot has a limited communication
range with a radius of Ri = 30 m and a limited field of
view with Rmin = 2 m and Rmax = 15 m for the range
and φ = 60◦ for the angle of view. As for the measurement
model, we consider an indoor application scenario in this
work and assume that these robots do not have access to
the absolute position measurement. The relative distance-
bearing measurement model is adopted for each robot in
our simulation. If robot i detects robot j at time instant k,
then the relative measurement can be expressed as zkRij

=[ √
(xkj − xki )2 + (ykj − yki )2

atan2((ykj − yki ), (xkj − xki ))− θki

]
+ vkRij

,where vRij
is a

zero-mean white Gaussian noise. The standard deviation of
the distance noise is set to be 3% of the actual distance,
and the standard deviation of the bearing noise equals to 1◦.
The same measurement model is used for the robot-to-target
measurement zRiT .

Since the absolute measurement is not available, we as-
sume that each robot initializes its estimated pose x̂0

i with
its true pose x0

i , and the initial pose covariance p̂0
i is set

to p̂0
i = 10−3I3. The initial estimate of the target’s state

obtained by each robot i, x̂0
Ti

, does not necessarily equal
to the true initial state of the target x0

T . In our simulation,
we set x̂0

T = [10, 10, 0] while the true initial target state
is x0

T = [10, 5, 0]. Since we assume that an accurate initial
target state is not available, we initialize the target covariance
with relatively large uncertainty as p̂0

Ti
= I3.

We compare the performance of the following two motion
strategies: 1) Random Motion (RM): In this case, each robot
moves with a constant linear velocity of vi = 0.5 m/s. Its
angular velocity ωi is uniformly chosen from an interval of
[−π5 ,

π
5 ] rad/s. These robots behave as in our previous work

[5] except that there is no moving field boundary for them.
By adopting the RM strategy, robots do not tend to pursue
the target or maintain communication connectivity with other
robots, which eventually results in worse localization and
tracking performance than the proposed AJLATT algorithm
as shown later. 2) Optimization-based AJLATT (AJLATT-O):
In this setting, the robots’ linear and angular velocities are
calculated by the optimization-based AJLATT algorithm in
Section III. The parameters of the optimization objective
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function are set to αRi
= 0.2, αTi

= 1, and βi = 1. As for
the parameters on robot i, we set the length of the non-zero
interval as ai = 2 m and di = 2 m in (15) for both the robot-
robot and robot-target potential functions. We also set d̄i =
30 m in (15) for the robot-robot potential function to make
the robots maintain the communication with its neighbors,
and d̄i = 20 m for the robot-target potential function to
help keep sight of the target. The planning horizons are
t1 = 4 and t2 = 11 for the SACP process. The control space
of each robot i is set as U = {(vi, ωi)|vi ∈ [0, 0.5] m/s,
ωi ∈ [−π5 ,

π
5 ] rad/s}.

Fig. 1: Position and orientation estimate RMSE for the target
on robot 2 (tracking).

Fig. 2: Position and orientation estimate RMSE for robot 2
(localization).

We run 50 Monte Carlo simulations and use the root mean
square error (RMSE) as the metric for accuracy to test the
performance of these algorithms. Here we choose robot 2
as an example to show the performance of our proposed
approach. Figure 1 shows robot 2’s average target position
and orientation estimate RMSE for target tracking. Figure
2 shows robot 2’s own average position and orientation
estimate RMSE for localization.

As shown in Figures 1 and 2, the robots using AJLATT-O
algorithm achieve significant better performance than RM.
The result confirms our expectation. The RM approach does
not actively drive a one robot to observe the target and other
robots or maintain the communication connectivity with its
neighbors. As a result, the robot obtains fewer measurements
and has fewer neighbors to exchange information, thus
obtaining less accurate estimates of its own and the target’s
states compared with the proposed AJLATT-O algorithm.
Hence the RM approach has worse performance.

V. CONCLUSION

In this paper, we have proposed an optimization-based
algorithm to solve the AJLATT problem in a fully dis-
tributed (communication, estimation, planning) manner to
drive a team of robots to actively track a target and localize
itself so as to achieve better self-localization and target
tracking performance. The proposed algorithm tries to find
the optimal motion so that optimal robot localization and

target tracking performance can be achieved while collision
avoidance and communication maintenance are considered
at the same time. Monte-Carlo simulations are performed to
illustrate the effectiveness of our approach.
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