


joint estimation of robot states requires cubic computational

complexity in terms of the number of robots. As such, a

multi-robot distributed estimator is needed to address these

shortcomings by relaxing communication requirements and

distributing the computation cost across all robots.

Efficient 2D CL has focused on the fusion of relative

measurements between robots (e.g., relative robot-to-robot

bearing or distance range measurements). Roumeliotis et

al. [6] proposed a decentralized algorithm that achieves

performance equivalent to the centralized formulation, but

required communication between all robots and increases in

computational cost due to its centralized nature as the number

of robots grow. Other works such as [7] have investigated the

approximation of the robot-to-robot cross-covariances that

are not involved in a relative measurement update to reduce

the computational cost, and while it performs close to its

centralized, it is unable to guarantee consistency and thus

can easily diverge. More recently, Jung et al. [8] extended

this work to the 3D case, but inherits the same underlying

issues and requires maintaining of the approximated robot-

to-robot cross-covariances. There exist other works aiming

at estimating the relative poses between robots using rel-

ative measurements [9], [10]. Alternative approaches have

leveraged CI [11], [12] to guarantee consistency and only

requires that each robot maintains its own state and auto-

covariance (the correlations between robots are ignored). By

contrast, in this work we specifically take advantage of the

CI formulation for 3D multi-robot state estimation, enabling

a consistent distributed algorithm which fuses inertial and

visual sparse environmental feature information.

As compared to CL with relative distance, bearing, or

poses between robots [6]–[15], common sparse environmen-

tal features are used in [16]–[19], which is appealing as

getting relative robot information can be difficult with visual-

inertial sensors in practice and requires both the detection

and tracking of other robots. For example, Melnyk et al.

[18] introduced CL-MSCKF using common environmental

feature constraints within a centralized formulation that

jointly estimated all robot states. They required that robots

communicate all sensor data to a common fusion center and

demonstrated its use for the two robot case in simulation.

Karrer et al. [17] developed a graph-based centralized server

which handled non-realtime computationally expensive loop

closure detection and optimization of all robot maps to find

the joint global optimal. In this paper, we instead focus on

the computationally efficient distributed localization problem

where each robot only estimates its own state and tries to

leverage information from other robots without a centralized

server or joint optimization.

As closest to our work, Sartipi et al. [19] introduced a

distributed method for multi-user AR experiences through

the use of multi-map feature constraints. Common features

were detected in environmental maps received from other

users and the transmitted feature position estimates were

used to constrain the user’s state directly. Instead of inflating

measurement noise to compensate for the unknown correla-

tions between the current user and the other user’s map, we

leverage CI that theoretically guarantee consistency to handle

the unknown correlations. Also, instead of requiring that all

common features must match to sparse features in the other

user’s map, we leverage the other user’s common feature

measurements directly allowing for update with additional

measurements.

III. COOPERATIVE VISUAL-INERTIAL SYSTEM

In this section, we briefly describe the cooperative visual-

inertial system that serves the basis for the proposed dis-

tributed CI-based estimator. The state vector for the i’th robot

contains its current IMU navigation state xIi , sliding window

of cloned IMU poses xCi
, spatial-temporal calibration pa-

rameters xWi
, along with a small temporal map (i.e., SLAM

features) xMi
(see [1], [20]).

xi,k =
[
x>
Ii

x>
Wi

x>
Ci

x>
Mi

]>
(1)

xIi =
[
Ii,k
G q̄> Gp>

Ii,k
Gv>

Ii,k
b>
ωi,k

b>
ai,k

]>
(2)

xWi
=

[
CitIi

Ci

Ii
q̄> Cip>

Ii
ζ>
i

]>
(3)

xCi
=

[
Ii,k−1

G q̄> Gp>
Ii,k−1

· · ·
Ii,k−c

G q̄> Gp>
Ii,k−c

]>
(4)

xMi
=

[
Gp>

f1 · · · Gp>
fm

]>
(5)

where
Ii,k
G q̄ is the unit quaternion parameterizing the rotation

C(
Ii,k
G q̄) =

Ii,k
G R from the global frame of reference {G} to

the IMU local frame {Ik} at time k for the i’th robot [21],

bωi,k
and bai,k

are the gyroscope and accelerometer biases,

and GvIi,k and GpIi,k are the velocity and position of the

IMU expressed in the global frame, respectively. The clone

state xC contains c historical IMU poses in a sliding window,

while the temporal map state xM has m features. Each

robot additionally calibrates its camera intrinsics ζi, camera-

IMU extrinsics, and camera-IMU temporal offset CitIi [20].

Finally, given a group of n robots, we have the following

combined state and covariance matrix decomposition:

xk =
[
x>
1,k · · · x>

n,k

]>
(6)

Pk =



P11k · · · PN1k

...
. . .

...

P1Nk
· · · PNNk


 (7)

Here we note that in the centralized formulation this is the

state that we jointly estimate along with the cross-covariance

terms, while in the distributed case each robot only estimates

a sub-set of the total state and correlations between robots

are dropped (e.g., robot i only tracks xi,k and Piik ).

A. Inertial Propagation

The inertial state of the i’th robot xIi is propagated

forward using its own IMU measurements of linear accel-

erations (ami
) and angular velocities (ωmi

) based on the

following generic nonlinear IMU kinematics [22]:

xi,k+1 = f(xi,k,amk
− nak

,ωmk
− nωk

) (8)

where na and nω are the zero-mean white Gaussian noise of

the IMU measurements. We linearize this nonlinear model

at the current estimate for all robots, and can then propagate

the state covariance matrix forward in time:

Pk|k−1 = Φk−1Pk−1|k−1Φ
>
k−1 +Qk−1 (9)

Φk−1 = Diag (Φ1,k−1, . . . ,ΦN,k−1) (10)
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Qk−1 = Diag (Q1,k−1, . . . ,QN,k−1) (11)

where Φi,k and Qi,k are respectively the system Jacobian

and discrete noise covariance for the i’th robot [3], and

Diag(· · · ) creates a block diagonal matrix from the specified

values. In the distributed case, all states can be propagated

independently since cross-covariance are not tracked.

B. Camera Measurement Update

A corner feature at time-step k can be be written as the

distortion of a perspective projection of a 3D point Ci,kpf ,

expressed in the i’th robot’s camera frame:

zk = hdist(zk,n, ζi) + nfk (12)

zk,n =
1

Ci,kzf

[
Ci,kxf
Ci,kyf

]
(13)

Ci,kpf = Ci

Ii
R

Ii,k
G R

(
Gpf − GpIi,k

)
+ CipIi (14)

where nfk is the zero-mean white Gaussian measurement

noise with covariance Rk, and hdist(·) is the camera dis-

tortion function which maps a normalized bearing zk,n to

the raw distorted image plane. The linearization of this

measurement model (12) yields the following:

rfk = Hkx̃k + nfk = Hxi,k
x̃Ii +Hfk

Gp̃f + nfk (15)

Once the measurement residual and Jacobian are computed

the state and error covariance can be updated using the

standard EKF update equations [23].

IV. DISTRIBUTED VISUAL-INERTIAL CL

As it is known that the standard EKF in the worst case has

cubic computation complexity due to its covariance update,

a naive implementation of the multi-robot visual-inertial

CL can become prohibitively expensive as the number of

robots grow in size. Note also that due to communication

constraints, the robots might not be able to communicate with

all the other robots or a common fusion center. To address

these issues, the key idea of our CL approach is to leverage

CI [24] to reduce the estimation cost, by only updating the

state and error covariance of the current robot (i.e., robot i
only updates xi,k and Piik ) while ensuring consistency.

In particular, each robot independently propagates its own

state and updates with measurements that are only a function

of its own state. When updating with measurements of

features observed from multiple robots, CI is employed

to consistently handle the unknown and untracked cross-

covariance terms between the involved robots. This means

that robots need to communicate their state and covari-

ance, along with visual feature information to the other

robots. Each robot tracks a set of visual features using

KLT optical flow [25], and communicates its latest tracks

and extracted ORB descriptors [26] to the other robots in

communication range. A robot then performs descriptor-

based feature matching and loop-closure detection to find

correspondences between its most recent features and other

robots’ feature tracks. After tracking and matching, feature

tracks are categorized as follows:

(A) VIO features which have only been tracked for a short

period of time.

(B) Temporal SLAM features which have been tracked

beyond the current sliding window.

(C) Common VIO features which have been matched to

features in another robot and tracked for only a short

period of time.

(D) Common SLAM features which have been matched to

features in another robot. Note that this feature might

be either a VIO or SLAM feature in the other robot.

In the following, we present in detail how we update our

state with these different feature variants. Note that for the

centralized case independent features update the full state

and covariance since cross-covariances are tracked, while in

the distributed case only the i’th robot state and covariance

is updated thus allowing for computational savings.

A. Independent VIO Feature: MSCKF Update

For VIO features that have lost active track in the current

window, we perform MSCKF update [3]. In particular, we

first triangulate these features for computing the feature

Jacobians Hfk , and then project rfk [see (15)] onto the

left nullspace of Hfk (i.e., Q>
2 Hfk = 0) to yield the

measurement noise independent of state:

Q>
2 rfk = Q>

2 Hxi,k
x̃i,k +Q>

2 Hfk
Gp̃f +Q>

2 nfk (16)

⇒ r′fk = H′
xx̃k + n′

fk
(17)

where Hxi,k
is the stacked measurement Jacobians with

respect to the navigation states in the current robot’s window.

B. Independent SLAM Feature: FEJ-EKF Update

SLAM features which a robot is able to reliably track

longer then its sliding window in length, will be initialized

into the SLAM map state vector xMi
. These features are

directly updated using the linearized system (15) and will

remain in the state until they have lost tracking. To improve

consistency, we employ First Estimate Jacobians (FEJ) [27],

[28] ensuring Jacobians are evaluated at the same lineariza-

tion points to prevent spurious information gain.

C. Common VIO Feature: CI-EKF Update

Consider we find a feature which has been seen from

multiple robots and want to use this information to update

the state. In the centralized case, we would directly update

our state with all available measurements (15) through the

standard EKF since we track the cross-covariance (e.g.,

PiNk
). In the distributed case, a robot only tracks its own

state and autocovariance to ensure computational efficiency

and scalability with respect to the robot team size. This

presents two key challenges: (i) how to efficiently and

consistently fuse multiple robots’ autocovariances, and (ii)

how to find the data association between different features,

which motivates us to leverage CI to fuse estimates and

covariances transmitted from other robots.

1) CI-EKF Update: Consider the i’th robot has a mea-

surement which is a function of L other robot states. The

linearized measurement model can be computed as:

rfk = Hxi,k
x̃i,k +Hx1..L,k

x̃1..L,k +Hfk
Gp̃f + nfk (18)

where Hxi,k
is the Jacobian in respect to the i’th robot

state using the k’th estimates, and Hx1..L,k
is the stacked

Jacobian with respect to all other robots the measurement

is a function of. To guarantee consistency when updating
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with this measurement, we adopt the CI-EKF update [24] to

construct a prior covariance such that:

Diag (1/ωiPiik , 1/ω1P11k , · · · , 1/ωLPLLk
) ≥ Pk (19)

where the left side is the CI covariance with zero off-

diagonal elements and the right hand side is the unknown

true covariance of the state with cross-covariances [see (7)].

The weights ωl > 0 and
∑

l ωl = 1, for l ∈ {i, 1..L}, can

be found optimally [24]. Substituting (19) into the standard

EKF equations and only selecting the portion that updates

the current robot’s state (say robot i) yields:

δxi,k =
1

ωi

Pii,k|k−1H
>
xi,k

S−1

k r′fk (20)

Pii,k|k =
1

ωi

Pii,k|k−1−
1

ω2
i

Pii,k|k−1H
>
xi,k

S−1

k Hxi,k
Pii,k|k−1

(21)

Sk =
∑

o∈{i,1..L}

1

ωo

Hxo,k
Poo,k|k−1H

>
xo,k

+Rfk (22)

where δxi,k is the correction to the state estimate x̂i,k.
2) Efficient Nullspace Projection: To process common

features which are short in length, we leverage the similar

logic as in Sec. IV-A. For example, we have multiple

measurements from two different robots and wish to update

our state:
[
rfi,k
rf2,k

]
=

[
Hxi,k

0 Hfi,k

0 Hx2,k
Hf2,k

]

x̃Ii

x̃I2
Gp̃f


+

[
nfi,k

nf2,k

]
(23)

We can then project both equations onto their left range and

nullspace (e.g., Hfi,k = [Qi,1 Qi,2][Ui 0]
>):




r1fi,k
r2fi,k
r1f2,k
r2f2,k


 =




Q>
i,1Hxi,k

0 Ui

Q>
i,2Hxi,k

0 0

0 Q>
2,1Hx2,k

U2

0 Q>
2,2Hx2,k

0






x̃Ii

x̃I2
Gp̃f


+




n1
fi,k

n2
fi,k

n1
f2,k

n2
f2,k




where we have defined that r1fi,k = Q>
i,1rfi,k and n1

fi,k
=

Q>
i,1nfi,k . Note that the last row is no longer dependent on

the current robot’s state, xIi , and thus, this can be discarded

since it will not update the state or covariance due to the

lack of tracked cross-covariances. This directly reduces the

number of measurements involved during update and makes

the computation of S−1

k substantially cheaper [see (22)]. We

then have the following linear systems:
[
r1fi,k
r1f2,k

]
=

[
Q>

i,1Hxi,k
0 Ui

0 Q>
2,1Hx2,k

U2

]

x̃Ii

x̃I2
Gp̃f


+

[
n1
fi,k

n1
f2,k

]

r2fi,k = Q>
i,2Hxi,k

x̃Ii + n2
fi,k

(24)

A second nullspace projection onto the left nullspace of

Hf = [Ui U2]
> is performed to create a linear system

which is only a function of the xIi and xI2 states. The

CI-EKF update [see (20) and (21)] is then used to update

the state xIi . The second equation [see (24)] can update

the current robot state without CI through the standard EKF

equations since it is only a function of the current robot state.

This update contains the same information as in the case

that we performed a “large” nullspace projection using the

full feature Jacobians in (23), but results in a much smaller

measurement size since we can drop measurement residuals

which are not a function of the i’th robot’s state.

{Ci,21}
{Ci,20}

pfa
pfb

{C2,N}

z1

zN

{C2,1} · · ·

Fig. 2: Illustration of the keyframe-aided 2D-to-2D matching for data
association. Assuming robot i’s 21st frame {Ci,21} matches to the 2nd
robot’s N ’th frame {C2,N}. We are able to find all feature correspondences
between the features the robot’s observer, namely z1..N .

D. Common SLAM Feature: CI-EKF Update

There are two different cases for temporal SLAM features:

(i) a SLAM feature in the current robot state matches to

a feature that is not a SLAM feature in another robot,

and (ii) a SLAM feature matches to another robot’s SLAM

feature. For example as in Fig. 2, in the first case we collect

the measurements from the other robot (z1..N ) and directly

apply (18) and update both the current robot’s poses and its

estimate of the SLAM feature. In the second case, we can

either follow this same logic (i.e., grab the measurements

from the other robot and update current robot’s estimate) or

we can leverage the knowledge that the 3D position of these

two features should be equal. This SLAM feature constraint

model is similar to the one introduced in [29] for cooperative

mapping. Consider we have the following two robots:

xi,k =
[
x>
Ii

x>
Wi

x>
Ci

Gp>
fa

]>
(25)

x2,k =
[
x>
I2

x>
W2

x>
C2

Gp>
fb

]>
(26)

If we have matched feature Gpfa in the current i’th robot

to the Gpfb in the other robot, then we can construct the

following feature constraint (see Fig. 2):

Gpfa −
Gpfb = 0 ⇒ rc (xi,k,x2,k) = 0 (27)

which can be linearized to yield:

rc (x̂i,k, x̂2,k) +Hfa
Gp̃fa +Hfb

Gp̃fb ≈ 0 (28)

⇒0− rc (x̂i,k, x̂2,k) ≈ Hfa
Gp̃fa +Hfb

Gp̃fb (29)

This linearized system can then update the i’th robot state

estimate using the CI-EKF update [see (20) and (21)]. Note

that this is a very efficient update, as it is only a function of

the two estimated feature positions.

E. Historical Features: CI-EKF Update

We now explain how to leverage loop-closure constraints

to previous robot states. First, to find the feature correspon-

dences between robots, as in [5], [30], each robot create

DBoW2 [31] databases for all other robots. When a robot

receives feature tracks and descriptors from other robots they

are appended to their corresponding DBoW2 database. The

current image can then be queried against the other robots’

databases to see if any other robots are or have been at the

current location. If a loop-closure is detected and verified

using a fundamental matrix geometric check, then we assume

that we have detected that another robot has been at our

current location. After matching descriptors, we know the

correspondences between a feature in the current robot, and

that of the features in the other robot (see Fig. 2). We can then

grab the history of measurements and formulate a common

feature update.
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TABLE I: Simulation parameters and prior standard deviations that pertur-
bations of measurements and initial states were drawn from.

Parameter Value Parameter Value

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Pixel Proj. (px) 1 Robot Num. 3
IMU Freq. (hz) 400 Cam Freq. (hz) 10
AR Avg. Feats 25 AR Num. SLAM 3

ETH Avg. Feats 50 ETH Num. SLAM 5
Num. Clones 11 Feat. Rep. GLOBAL

Fig. 3: Simulated trajectories, axes are in units of meters. General hand-
held AR dataset (left) are 147, 93, and 100 meters long, while ETH EuRoC
MAV Vicon room datasets (right) are 70, 58, and 59 meters long for each
robot. Green square denotes the start and red diamond denotes the end.

To incorporate these measurements from historical states,

each robot records the measurement and previous states

received from the other agents.1 Outside of the most recent

sliding window, these historical states can provide loop-

closure information if we are able to generate measurement

constraints to them. Specifically we store the following

historical states and covariances in addition to their most

recent states published:

xi = {xi,0, · · · ,xi,k−1} , Pi =
{
Pii0 , · · · ,Piik−1

}
(30)

Since each one of these historical states contain a slid-

ing window of poses and SLAM features, we only store

non-overlapping sliding windows. To accelerate lookup we

only store historical descriptor information at a fixed rate

(normally 1Hz) since recent frames in the same sliding

window contain redundant loop-closure information. More

ideal heuristic could be leveraged here to increase match

rates. Once loop-closure is detected, we know old historical

feature correspondences which we can then use to retrieve

measurements and update our current robot state. This update

is identical to the CI-EKF update as in Sec. IV-C–IV-D,

which only needs to involve the historical windows that

contain the historical measurements, and thus is efficient

since historical states are not updated.

V. SIMULATION RESULTS

To validate the proposed method, we have simulated two

realistic scenarios both with three robots (see Fig. 3). The

first is a hand-held mobile AR dataset which has a series

of users look and move around a central table, while the

second is a series of trajectories from the ETH EuRoC MAV

dataset [32]. We employ the OpenVINS simulator [30] to

generate realistic visual-bearing and inertial measurements

from these supplied trajectories. On average each robot is

able to find common features on, respectively, 79.0% and

1In the future we plan to investigate the latency introduced due to
communication constraints, but historical matching ensures that the robot
will leverage all available information at the current time including delayed
information recently communicated.

TABLE II: ATE on simulated AR datasets in degrees / meters for each
algorithm variation. Green denotes the best, while blue is second best.

Algorithm Robot 0 Robot 1 Robot 2 Average

indp 1.957 / 0.072 0.811 / 0.041 0.742 / 0.039 1.170 / 0.051
indp-slam 1.396 / 0.046 0.602 / 0.029 0.557 / 0.022 0.852 / 0.032

ce-cmsckf 0.364 / 0.017 0.323 / 0.015 0.355 / 0.015 0.347 / 0.016
ce-cmsckf-cslam 0.232 / 0.011 0.228 / 0.011 0.220 / 0.010 0.227 / 0.011

dc-cmsckf 0.759 / 0.029 0.540 / 0.025 0.553 / 0.020 0.617 / 0.025
dc-cmsckf-cslam 0.643 / 0.025 0.496 / 0.022 0.478 / 0.017 0.539 / 0.022

dc-full-window 0.644 / 0.024 0.547 / 0.022 0.480 / 0.017 0.557 / 0.021
dc-full-history 0.356 / 0.017 0.299 / 0.014 0.319 / 0.013 0.325 / 0.014

83.5% (43.7% and 62.7%) of the frames without or with

loop-closure in AR datasets (ETH dataset). This clearly

shows that advantage of historical loop-closure on datasets

which have limited temporal view overlaps between robots.

Simulation parameters used are documented in Tab. I. We fix

the weight of other robots’ covariance in the CI-EKF update

as ωo = 0.001. While for the constraint measurement update

presented in Sec. IV-D, we use the value ωo = 0.005 and a

synthetic measurement noise of 2cm. Note that while these

weights can be found by minimizing the trace or determinant

of Pii,k|k [24], we have empirically found that using fixed

weights still ensures consistent performance. For fair and

thorough comparison, we define the following variations of

the centralized and proposed distributed CL estimators:

indp – No common features are found between robots and

all measurements are processed as independent features

which only relate to the current robot.

indp-slam – Same as indp, but temporal SLAM features are

included in each robot to show the relative improvement.

ce-cmsckf – The centralized estimator using the common

VIO features over the sliding window.

ce-cmsckf-cslam – The centralized estimator using the com-

mon VIO and SLAM features over the sliding window.

dc-cmsckf [1] – The distributed estimator using the common

VIO features over the sliding window.

dc-cmsckf-cslam – The distributed estimator using the com-

mon VIO and SLAM features over the sliding window

without enforcing the same feature constraint. For exam-

ple, even if a common SLAM feature is a SLAM feature

in another robot’s state, we grab the measurements from

the other robot and update as the first case in Sec. IV-D.

dc-full-window – The distributed estimator using the com-

mon VIO and SLAM features over the sliding window

with enforcing the same feature constraint.

dc-full-history – The distributed estimator using both the

common VIO and SLAM features over the sliding window

and from historical matching.

Note that the observed independent VIO features and SLAM

features are used in all these estimators. To ensure a fair

comparison, the same parameters reported in Tab. I are used

for all algorithms and for all robots.

A. Accuracy and Consistency Evaluation

We performed 20 Monte Carlo simulations on each

dataset. The average Absolute Trajectory Error (ATE) [33]

can be found in Tab. II and III. It is clear from the top

two rows that the additional SLAM features improve indp.

In the cooperative case, when using the common VIO

features, both ce-msckf and dc-msckf outperform the

indp-slam, and when including common SLAM features,
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Fig. 6: TUM-VI groundtruth (left) and Vicon room groundtruth trajectories
(right) TUM-VI trajectories are 146, 131, and 134 meters long, while the
Vicon room datasets are 507, 509, and 501 meters long.

TABLE V: Relative pose error (RPE) on TUM-VI datasets in degrees /
meters averaged over all robots for the dataset.

Algorithm 40m 60m 80m 100m 120m

indp-slam 1.818 / 0.093 2.833 / 0.126 2.604 / 0.154 2.774 / 0.185 2.716 / 0.215

ce-cmsckf 1.358 / 0.071 1.321 / 0.091 1.357 / 0.108 0.843 / 0.128 0.932 / 0.140
ce-cmsckf-cslam 1.758 / 0.069 1.350 /0.079 1.027 / 0.100 0.718 / 0.119 0.938 / 0.130

dc-cmsckf 1.662 / 0.075 2.005 / 0.104 1.605 / 0.129 1.142 / 0.141 1.531 / 0.170
dc-cmsckf-cslam 1.800 / 0.080 2.642 / 0.093 2.233 / 0.106 1.544 / 0.114 0.934 / 0.157

dc-full-window 1.768 / 0.075 2.218 / 0.091 1.788 / 0.109 1.257 / 0.123 0.854 / 0.159
dc-full-history 1.213 / 0.067 1.232 / 0.061 1.029 / 0.065 1.004 / 0.068 0.784 / 0.072

TABLE VI: Relative pose error (RPE) on Vicon room dataset in degrees /
meters averaged over all robots.

Algorithm 80m 100m 200m 300m 420m

indp-slam 2.022 / 0.276 2.416 / 0.334 3.872 / 0.613 5.222 / 0.870 8.045 / 1.189

ce-cmsckf-cslam 2.180 / 0.288 2.603 / 0.333 2.771 / 0.548 3.050 / 0.770 3.557 / 1.044

dc-full-window 2.197 / 0.281 2.340 / 0.332 3.322 / 0.580 3.670 / 0.804 5.977 / 1.102
dc-full-history 1.271 / 0.145 1.307 / 0.151 1.346 / 0.158 1.267 / 0.157 1.343 / 0.160

that both variants have the same number of measurements in

the update. When we match features in the current window,

the constraint update (Constraint) is slight more efficient than

the naive way of grabbing all the measurements from the

other robots (No Constraint) since all robots only have the

most recent measurements (in most cases just one). During

historical SLAM matching, by definition SLAM features

are long feature tracks, and thus many measurements and

clones states are associated with a historical SLAM feature.

This means that after loop-closure in the naive case (No

Constraint) we will process all measurements ever recorded

for a SLAM feature which can easily reach many sliding

windows in length. If instead we use the constraint update,

only the two feature positions are involved, thus the update

is extremely efficient in nature (bottom Tab. IV).

VI. EXPERIMENTAL RESULTS

We have also evaluated the proposed distributed CL esti-

mators on the TUM-VI dataset [35] and a hand collected 10

minute long Vicon room dataset (see Fig. 6).2 Both datasets

provide monochrome stereo images at 20Hz and IMU read-

ings at 200Hz. We only leverage the left camera and initialize

all robots based on the groundtruth orientation and position

with zero velocity. The specific datasets we run on for the

TUM-VI are the room1, room3, and room5. For the Vicon

room dataset, the groundtruth has been generated using the

vicon2gt utility [36]. The shorter TUM-VI dataset has more

time periods where multiple robots are looking at the same

environmental location (26.7% and 41.8% of the frames

detected common features without and with loop-closure),

thus provides a good insight into an expected performance

in a multi-user AR case where many users are observing the

same environment at the same time. On the other hand, the

Vicon room dataset has near-zero time periods where we are

2A video demo https://youtu.be/boHBcVoMKk8

able to detect common features between robots by matching

the most recent features. Thus, we use the Vicon room dataset

to show the accuracy gain from leveraging historical loop-

closure information by matching to historical states (28.8%
of the frames detected common loop-closure features).

A. TUM-VI Dataset

We use a sliding window of 11, a max of 5 SLAM

features, max 30 VIO features per update, 300 active tracks,

and perform online calibration of all parameters. For the

historical method, we insert keyframes into our database at

5Hz and detect and match to historical keyframes at each

timestep. We used a static weight of ωi = 0.99 and distribute

the remaining weight to all other robot covariances used in

the CI-EKF update, and for constraint measurement updates

[see Eq. (29)], we used a value of ωi = 0.995 and injected

a synthetic measurement noise of 2cm to relax the hard

constraint.

The Relative Pose Error (RPE) [33] results are shown

in Tab. V solidify the performance gains due to leveraging

common features from other robot agents. The independent

methods which leverage only independent VIO and SLAM

feature updates have about three times the error compared

to the distributed method which leverages loop-closure in-

formation. Additionally, we can see that all variations which

leverage common features are able to reduce errors due to

the additional information. It is also important to note that

even though the distributed variants do not track the cross-

covariances between robotic states, the use of CI allows the

accuracy to be near the same level as that of the centralized

algorithm, and in the case where we leverage historical

information (which the centralized algorithm is unable to do),

we can slightly outperform for longer trajectory length. The

dc-full-history method, which leverages loop-closure

information, has a relatively constant error as the trajectory

lengths increase as expected (showing its drift-free nature).

B. Vicon Room Dataset

We now present results on the longer hand-held, approxi-

mately 500 meter and 10 minute trajectory. We use a sliding

window of 11, a max of 20 SLAM features, max 30 VIO

features per update, 200 active tracks, and perform online

calibration of all parameters. The RPE results for different

segment lengths can be found in Tab. VI and give the

same conclusion as the previous TUM-VI dataset. It is also

important to note that there is very similar performance of

the indp-slam and ce-cmsckf-cslam methods (and

their distributed equivalents). This is expected as there are

no time periods in any of the robotic trajectories where robots

are looking at the same location at the same time. Compared

to these cases, we have huge accuracy gains due to the

inclusion of common feature measurement constraints in the

historical case, with halved orientation errors and a quarter of

the position error at long trajectory lengths. We also plot the

groundtruth, indp-slam, and dc-full-history Robot

0 trajectories in Fig. 1, which reinforces that by leveraging

historical information we are able to prevent inherent drift

in the loop-closure-free case.
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VII. CONCLUSIONS AND FUTURE WORK

In this work we have presented a distributed visual-inertial

cooperative CL estimator that efficiently fuses constraints

between robots and leverages temporal SLAM and loop-

closure information. We have introduced two different ways

to incorporate temporal SLAM features: (i) directly update

using the other robot’s measurements, and (ii) if both robots

are estimating the SLAM feature, a constraint between the

two feature positions is leveraged. We have adapted CI to

ensure consistent fusion of loop-closure constraints to other

agent’s historical poses and SLAM features whose cross-

correlations are unknown. Extensive simulation and real-

world evaluations have demonstrated the performance of the

proposed method in realistic scenarios and showed impres-

sive accuracy gains over the single robot case. In the future

we will focus on the practical deployment to a low-cost low-

power multi-robot application and incorporate relative robot-

to-robot measurements to further increase accuracy gains.
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