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Abstract—1In this paper we present a consistent and dis-
tributed state estimator for multi-robot cooperative localization
(CL) which efficiently fuses environmental features and loop-
closure constraints across time and robots. In particular, we
leverage covariance intersection (CI) to allow each robot to
only estimate its own state and autocovariance and compensate
for the unknown correlations between robots. Two novel multi-
robot methods for utilizing common environmental SLAM
features are introduced and evaluated in terms of accuracy and
efficiency. Moreover, we adapt CI to enable drift-free estimation
through the use of loop-closure measurement constraints to
other robots’ historical poses without a significant increase in
computational cost. The proposed distributed CL estimator
is validated against its non-realtime centralized counterpart
extensively in both simulations and real-world experiments.

I. INTRODUCTION

Camera and inertial measurement unit (IMU) pairs have
been at the forefront of multi-robot (or mobile device)
applications due to their complementary nature, low cost
and small size. Accurate and efficient cooperative localiza-
tion (CL) that enables multi-user augmented reality (AR)
experiences, multi-device cooperative mapping, and multi-
vehicle formation control, is a key barrier to overcome due
to challenges of communication, distributed computation,
and complexity of multi-robot asynchronous measurement
constraints.

In this paper, building upon our recent work [l], we
propose a fully distributed multi-robot visual-inertial CL esti-
mator by delicately exploiting information contained in both
environmental SLAM landmarks and loop-closures across
robots and time. Specifically, we extend our prior Cl-based
cooperative visual-inertial odometry (VIO) system [!] to
include both SLAM features and incorporate loop-closure
constraints to historical states of other robots, thus limiting
the current robot’s localization drift essentially using asyn-
chronous common views seen from other robots’ historical
poses. As a result, the proposed distributed CL estimator does
not require simultaneous viewing of the same location due to
leveraging of historical common features (e.g., a robot can
gain information if another robot had previously explored the
same location), while significantly improving the localization
performance thanks to such common multi-robot measure-
ment information. In summary, the main contributions of this
work are the following:
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Fig. 1: Trajectory of groundtruth, independent, and distributed historical
trajectory for Robot 0 in the Vicon room dataset. It can be seen that
the use of common historical features limit drift in the z-axis along with
improvements in x-y accuracy. Please refer to the color figure.

« We develop a fully distributed CI-based visual-inertial
CL estimation algorithm, which allows for accurate,
efficient and consistent estimation of all robot states.

« We propose two different SLAM feature measurement
models that allow for cooperative estimation of common
long-lived environmental features, and validate their
relative accuracy and computational complexity through
a series of simulations.

e We introduce a computationally efficient method for
long-term loop-closure to reduce localization drift,
which enables multi-robot constraints between historical
poses and features, allowing for robots to gain additional
constraints even in the case when other robots are not
actively in the same location.

« We thoroughly validate the proposed approach in Monte
Carlo simulations and real world experiments by com-
paring to centralized CL algorithms.

II. RELATED WORK

Significant research efforts have recently been devoted
to visual-inertial navigation system (VINS) [2], while pri-
marily focusing on improving single-robot VINS accuracy,
efficiency, and robustness [3]-[5]. The extension to the multi-
robot case is not sufficiently explored as a naive approach
would be prohibitively costly and non-realtime. For example,
one could communicate all measurements generated from
itself to each other (or fusion center), where all mea-
surements could be optimally fused and all states can be
refined jointly. While this does allow for accurate estimation,
both the requirement for constant communication and the
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joint estimation of robot states requires cubic computational
complexity in terms of the number of robots. As such, a
multi-robot distributed estimator is needed to address these
shortcomings by relaxing communication requirements and
distributing the computation cost across all robots.

Efficient 2D CL has focused on the fusion of relative
measurements between robots (e.g., relative robot-to-robot
bearing or distance range measurements). Roumeliotis et
al. [6] proposed a decentralized algorithm that achieves
performance equivalent to the centralized formulation, but
required communication between all robots and increases in
computational cost due to its centralized nature as the number
of robots grow. Other works such as [7] have investigated the
approximation of the robot-to-robot cross-covariances that
are not involved in a relative measurement update to reduce
the computational cost, and while it performs close to its
centralized, it is unable to guarantee consistency and thus
can easily diverge. More recently, Jung et al. [8] extended
this work to the 3D case, but inherits the same underlying
issues and requires maintaining of the approximated robot-
to-robot cross-covariances. There exist other works aiming
at estimating the relative poses between robots using rel-
ative measurements [9], [10]. Alternative approaches have
leveraged CI [11], [12] to guarantee consistency and only
requires that each robot maintains its own state and auto-
covariance (the correlations between robots are ignored). By
contrast, in this work we specifically take advantage of the
CI formulation for 3D multi-robot state estimation, enabling
a consistent distributed algorithm which fuses inertial and
visual sparse environmental feature information.

As compared to CL with relative distance, bearing, or
poses between robots [6]-[15], common sparse environmen-
tal features are used in [16]-[19], which is appealing as
getting relative robot information can be difficult with visual-
inertial sensors in practice and requires both the detection
and tracking of other robots. For example, Melnyk et al.
[18] introduced CL-MSCKF using common environmental
feature constraints within a centralized formulation that
jointly estimated all robot states. They required that robots
communicate all sensor data to a common fusion center and
demonstrated its use for the two robot case in simulation.
Karrer et al. [17] developed a graph-based centralized server
which handled non-realtime computationally expensive loop
closure detection and optimization of all robot maps to find
the joint global optimal. In this paper, we instead focus on
the computationally efficient distributed localization problem
where each robot only estimates its own state and tries to
leverage information from other robots without a centralized
server or joint optimization.

As closest to our work, Sartipi et al. [19] introduced a
distributed method for multi-user AR experiences through
the use of multi-map feature constraints. Common features
were detected in environmental maps received from other
users and the transmitted feature position estimates were
used to constrain the user’s state directly. Instead of inflating
measurement noise to compensate for the unknown correla-
tions between the current user and the other user’s map, we
leverage CI that theoretically guarantee consistency to handle

the unknown correlations. Also, instead of requiring that all
common features must match to sparse features in the other
user’s map, we leverage the other user’s common feature
measurements directly allowing for update with additional
measurements.

III. COOPERATIVE VISUAL-INERTIAL SYSTEM

In this section, we briefly describe the cooperative visual-
inertial system that serves the basis for the proposed dis-
tributed CI-based estimator. The state vector for the i’th robot
contains its current IMU navigation state x7,, sliding window
of cloned IMU poses x¢;, spatial-temporal calibration pa-
rameters Xyy,, along with a small temporal map (i.e., SLAM
features) xps, (see [1], [20]).

T
Xik = [X[, X, XG X, (1
T
_ Lk T GAT Gy, T T T
X1 = {G kq pIi,k, Vfi,k bwwk ﬂi,k} @)
,- Ci = i 7
xw, = [“t;, {'qa" “pl <] 3)
_ |Lik-1-T G.T Lik—c-T G,T T 4
Xo;, = [G q Pr,,. " @ q pli,k—c:| 4)
T
xum; = [“Ph Pl (5

where g""(j is the unit quaternion parameterizing the rotation
C(ék(j) = "“*R from the global frame of reference {G} to
the IMU local frame {I} at time k for the i’th robot [21],
b, , and b, , are the gyroscope and accelerometer biases,
and “vy,, and “py, , are the velocity and position of the
IMU expressed in the global frame, respectively. The clone
state x¢ contains ¢ historical IMU poses in a sliding window,
while the temporal map state x,; has m features. Each
robot additionally calibrates its camera intrinsics ¢, camera-
IMU extrinsics, and camera-IMU temporal offset Cit 1, [20].
Finally, given a group of n robots, we have the following
combined state and covariance matrix decomposition:

Xk = [X] i ©6)
P, Py,

Py = : @)
Pin, Py,

Here we note that in the centralized formulation this is the
state that we jointly estimate along with the cross-covariance
terms, while in the distributed case each robot only estimates
a sub-set of the total state and correlations between robots
are dropped (e.g., robot ¢ only tracks x; ; and Py, ).

A. Inertial Propagation
The inertial state of the i’th robot x;, is propagated
forward using its own IMU measurements of linear accel-
erations (a,,,) and angular velocities (w,,,) based on the
following generic nonlinear IMU kinematics [22]:
Xl.k+1 = f(xi,k)) amk - nakywmk - nwk) (8)
where n, and n,, are the zero-mean white Gaussian noise of
the IMU measurements. We linearize this nonlinear model

at the current estimate for all robots, and can then propagate
the state covariance matrix forward in time:

Prjpo1=Pr1Pr_1p—1®i_1 + Qu1 ©)
®,_, = Diag (®P15-1,..., PN r_1) (10)
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Qi1 = Diag (Q1x-1,---,Qnr-1) (1n
where ®;;, and Q; j are respectively the system Jacobian
and discrete noise covariance for the ¢’th robot [3], and
Diag(- - - ) creates a block diagonal matrix from the specified
values. In the distributed case, all states can be propagated
independently since cross-covariance are not tracked.

B. Camera Measurement Update

A corner feature at time-step k£ can be be written as the
distortion of a perspective projection of a 3D point “i*p I
expressed in the 7’th robot’s camera frame:

71 = Nyist(Zkn, C;) + 1y, (12)
1 Cikg
_ f
Zk,n - Ci,sz |:C1’kyf:| (13)
. o Iin .
Cl'kpf = %:LR GYkR (pr - Gpli,,k) + Clpli (14)

where ny, is the zero-mean white Gaussian measurement
noise with covariance Ry, and hgy;s(+) is the camera dis-
tortion function which maps a normalized bearing zj , to
the raw distorted image plane. The linearization of this
measurement model (12) yields the following:

ry, = HiXp, +ny, = Hy, Xy, +Hy B +np, (15)
Once the measurement residual and Jacobian are computed

the state and error covariance can be updated using the
standard EKF update equations [23].

IV. DISTRIBUTED VISUAL-INERTIAL CL

As it is known that the standard EKF in the worst case has
cubic computation complexity due to its covariance update,
a naive implementation of the multi-robot visual-inertial
CL can become prohibitively expensive as the number of
robots grow in size. Note also that due to communication
constraints, the robots might not be able to communicate with
all the other robots or a common fusion center. To address
these issues, the key idea of our CL approach is to leverage
CI [24] to reduce the estimation cost, by only updating the
state and error covariance of the current robot (i.e., robot 7
only updates x; ; and P;;, ) while ensuring consistency.

In particular, each robot independently propagates its own
state and updates with measurements that are only a function
of its own state. When updating with measurements of
features observed from multiple robots, CI is employed
to consistently handle the unknown and untracked cross-
covariance terms between the involved robots. This means
that robots need to communicate their state and covari-
ance, along with visual feature information to the other
robots. Each robot tracks a set of visual features using
KLT optical flow [25], and communicates its latest tracks
and extracted ORB descriptors [26] to the other robots in
communication range. A robot then performs descriptor-
based feature matching and loop-closure detection to find
correspondences between its most recent features and other
robots’ feature tracks. After tracking and matching, feature
tracks are categorized as follows:

(A) VIO features which have only been tracked for a short
period of time.

(B) Temporal SLAM features which have been tracked
beyond the current sliding window.

(C) Common VIO features which have been matched to
features in another robot and tracked for only a short
period of time.

(D) Common SLAM features which have been matched to
features in another robot. Note that this feature might
be either a VIO or SLAM feature in the other robot.

In the following, we present in detail how we update our
state with these different feature variants. Note that for the
centralized case independent features update the full state
and covariance since cross-covariances are tracked, while in
the distributed case only the 7’th robot state and covariance
is updated thus allowing for computational savings.

A. Independent VIO Feature: MSCKF Update

For VIO features that have lost active track in the current
window, we perform MSCKF update [3]. In particular, we
first triangulate these features for computing the feature
Jacobians Hy,, and then project ry, [see (15)] onto the
left nullspace of Hy, (i.e, Qi Hy = 0) to yield the
measurement noise independent of state:

Qiry, =QH,, %1+ QyH; s+ Qyny,
= ry =H X, + 0, (17)

where H, , is the stacked measurement Jacobians with
respect to the navigation states in the current robot’s window.

(16)

B. Independent SLAM Feature: FEJ-EKF Update

SLAM features which a robot is able to reliably track
longer then its sliding window in length, will be initialized
into the SLAM map state vector x,s,. These features are
directly updated using the linearized system (15) and will
remain in the state until they have lost tracking. To improve
consistency, we employ First Estimate Jacobians (FEJ) [27],
[28] ensuring Jacobians are evaluated at the same lineariza-
tion points to prevent spurious information gain.

C. Common VIO Feature: CI-EKF Update

Consider we find a feature which has been seen from
multiple robots and want to use this information to update
the state. In the centralized case, we would directly update
our state with all available measurements (15) through the
standard EKF since we track the cross-covariance (e.g.,
P;n,). In the distributed case, a robot only tracks its own
state and autocovariance to ensure computational efficiency
and scalability with respect to the robot team size. This
presents two key challenges: (i) how to efficiently and
consistently fuse multiple robots’ autocovariances, and (ii)
how to find the data association between different features,
which motivates us to leverage CI to fuse estimates and
covariances transmitted from other robots.

1) CI-EKF Update: Consider the i’th robot has a mea-
surement which is a function of L other robot states. The
linearized measurement model can be computed as:

Ty = H’in,kii,k + H’Jfl,.L,kil--L,k + kaGf)f +np, (18)

where H,, , is the Jacobian in respect to the ¢’th robot
state using the k’th estimates, and H,, ,, is the stacked
Jacobian with respect to all other robots the measurement
is a function of. To guarantee consistency when updating
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with this measurement, we adopt the CI-EKF update [24] to
construct a prior covariance such that:
Diag (l/wiPiikv 1/“)1P11k7 Tty 1/WLPLLk) Z Pk (19)

where the left side is the CI covariance with zero off-
diagonal elements and the right hand side is the unknown
true covariance of the state with cross-covariances [see (7)].
The weights w; > 0 and >, w; = 1, for [ € {4,1..L}, can
be found optimally [24]. Substituting (19) into the standard
EKF equations and only selecting the portion that updates
the current robot’s state (say robot ¢) yields:

1 _
0Xj k= ;Pn‘,mqu;kSk v, (20)

1 1 _
Pii ke = ;Pn‘,ku@q —FPn,mqu;kSk Ha, P kih—1
; ,
l 1)
1
—H,, Poosp—1H,;, , +Ry,

Sk} = Z Lo,k
oe{i,1..L} ~°
where dx; j, is the correction to the state estimate X; .

2) Efficient Nullspace Projection: To process common
features which are short in length, we leverage the similar
logic as in Sec. IV-A. For example, we have multiple
measurements from two different robots and wish to update

our state:

(22)

rr] _ [He, O Hyp k] ot [Hfi_k}
| = | , 4B 23
|:rf2,k:| |: 0 Hﬂcz.k Hfz,k Gézf ng e (

We can then project both equations onto their left range and

nullspace (e.g., Hy, , = [Q:1 Qi2][U; 0]"):
1

r;‘i,k Q;IHrzk 0 U; % n£1k
rlfi,k _ Qi,QHl’z,k . 0 0 )’E? + n{uc
r£2,k 0 Q%lez,k U2 GﬁQf nfg,k
Yo 0 Q272Hw2=k 0 n?z,k

where we have defined that r} = Q/ry,, and n} =
Q/n .- Note that the last row is no longer dependent on
the current robot’s state, x 1, and thus, this can be discarded
since it will not update the state or covariance due to the
lack of tracked cross-covariances. This directly reduces the
number of measurements involved during update and makes
the computation of S,:l substantially cheaper [see (22)]. We
then have the following linear systems:

r;i,k _ IlHﬂfi,k 0 U; ;):? + n}qk
0 Q;—,lez,k U, 2 nk

r?ﬁk = QZQHl‘i,kili + nik (24)
A second nullspace projection onto the left nullspace of
H; = [U; Uy]" is performed to create a linear system
which is only a function of the x;, and x;, states. The
CI-EKF update [see (20) and (21)] is then used to update
the state x;,. The second equation [see (24)] can update
the current robot state without CI through the standard EKF
equations since it is only a function of the current robot state.
This update contains the same information as in the case
that we performed a “large” nullspace projection using the
full feature Jacobians in (23), but results in a much smaller
measurement size since we can drop measurement residuals
which are not a function of the 7’th robot’s state.

Prb Pfa
Z] TR e
= 7 IR
ZN \ RN
/ . ~
7/ .
{C21} NI I aihinivintly il HndURY
~—--——- 4--—|--
{Ci20}
{Can} {Ci21} '

Fig. 2: Illustration of the keyframe-aided 2D-to-2D matching for data
association. Assuming robot ¢’s 21st frame {C; 21} matches to the 2nd
robot’s N’th frame {Cy n }. We are able to find all feature correspondences
between the features the robot’s observer, namely z; .

D. Common SLAM Feature: CI-EKF Update

There are two different cases for temporal SLAM features:
(i) a SLAM feature in the current robot state matches to
a feature that is not a SLAM feature in another robot,
and (ii) a SLAM feature matches to another robot’s SLAM
feature. For example as in Fig. 2, in the first case we collect
the measurements from the other robot (z;. ) and directly
apply (18) and update both the current robot’s poses and its
estimate of the SLAM feature. In the second case, we can
either follow this same logic (i.e., grab the measurements
from the other robot and update current robot’s estimate) or
we can leverage the knowledge that the 3D position of these
two features should be equal. This SLAM feature constraint
model is similar to the one introduced in [29] for cooperative
mapping. Consider we have the following two robots:

T T

.

Xik = [X}rl Xw,  Xcy Gp}ra} (25)
-

Xo g = [x}; x%z xgz Gp}—b] (26)

If we have matched feature “p fa in the current 7’th robot
to the Gp f» in the other robot, then we can construct the
following feature constraint (see Fig. 2):

“Pra— P =0= 1. (Xik,X2) =0 (27

which can be linearized to yield:
re (Xig,X2n) + HiPra + Hpprn =0 (28)
=0 —r. (X5, Xok) ¥ Hp o Pra + Hp Do (29

This linearized system can then update the 7’th robot state
estimate using the CI-EKF update [see (20) and (21)]. Note
that this is a very efficient update, as it is only a function of
the two estimated feature positions.

E. Historical Features: CI-EKF Update

We now explain how to leverage loop-closure constraints
to previous robot states. First, to find the feature correspon-
dences between robots, as in [5], [30], each robot create
DBoW?2 [31] databases for all other robots. When a robot
receives feature tracks and descriptors from other robots they
are appended to their corresponding DBoW?2 database. The
current image can then be queried against the other robots’
databases to see if any other robots are or have been at the
current location. If a loop-closure is detected and verified
using a fundamental matrix geometric check, then we assume
that we have detected that another robot has been at our
current location. After matching descriptors, we know the
correspondences between a feature in the current robot, and
that of the features in the other robot (see Fig. 2). We can then
grab the history of measurements and formulate a common
feature update.
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TABLE I: Simulation parameters and prior standard deviations that pertur-
bations of measurements and initial states were drawn from.

TABLE II: ATE on simulated AR datasets in degrees / meters for each
algorithm variation. Green denotes the best, while blue is second best.

Parameter Value Parameter Value
Gyro. White Noise  1.6968e-04  Gyro. Rand. Walk ~ 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk  3.0000e-3

Pixel Proj. (px) 1 Robot Num. 3
IMU Freq. (hz) 400 Cam Freq. (hz) 10
AR Avg. Feats 25 AR Num. SLAM 3
ETH Avg. Feats 50 ETH Num. SLAM 5
Num. Clones 11 Feat. Rep. GLOBAL

——Robot 0
—Robot 1
Robot 2

——Robot 0
—Robot 1
Robot 2

Fig. 3: Simulated trajectories, axes are in units of meters. General hand-
held AR dataset (left) are 147, 93, and 100 meters long, while ETH EuRoC
MAV Vicon room datasets (right) are 70, 58, and 59 meters long for each
robot. Green square denotes the start and red diamond denotes the end.

To incorporate these measurements from historical states,
each robot records the measurement and previous states
received from the other agents.! Outside of the most recent
sliding window, these historical states can provide loop-
closure information if we are able to generate measurement
constraints to them. Specifically we store the following
historical states and covariances in addition to their most
recent states published:

x; = {Xi0, "y Xik—1}, Pi= {Piioa e ,Pn‘k_l} (30)
Since each one of these historical states contain a slid-
ing window of poses and SLAM features, we only store
non-overlapping sliding windows. To accelerate lookup we
only store historical descriptor information at a fixed rate
(normally 1Hz) since recent frames in the same sliding
window contain redundant loop-closure information. More
ideal heuristic could be leveraged here to increase match
rates. Once loop-closure is detected, we know old historical
feature correspondences which we can then use to retrieve
measurements and update our current robot state. This update
is identical to the CI-EKF update as in Sec. IV-C-IV-D,
which only needs to involve the historical windows that
contain the historical measurements, and thus is efficient
since historical states are not updated.

V. SIMULATION RESULTS

To validate the proposed method, we have simulated two
realistic scenarios both with three robots (see Fig. 3). The
first is a hand-held mobile AR dataset which has a series
of users look and move around a central table, while the
second is a series of trajectories from the ETH EuRoC MAV
dataset [32]. We employ the OpenVINS simulator [30] to
generate realistic visual-bearing and inertial measurements
from these supplied trajectories. On average each robot is
able to find common features on, respectively, 79.0% and

'In the future we plan to investigate the latency introduced due to
communication constraints, but historical matching ensures that the robot
will leverage all available information at the current time including delayed
information recently communicated.

Algorithm Robot 0 Robot 1 Robot 2 Average
indp 1.957/70.072 0.811/0.041 0.742/0.039 1.170 / 0.051
indp-slam  1.396 / 0.046  0.602 / 0.029  0.557 /0.022  0.852/0.032
ce-cmsckf  0.364 /0.017  0.323/0.015 0.355/0.015 0.347 / 0.016
ce-cmsckf-cslam  0.232/ 0.011  0.228 / 0.011  0.220 / 0.010 ~ 0.227 / 0.011
dc-cmsckf  0.759/0.029  0.540/0.025  0.553/0.020 0.617 / 0.025
dc-cmsckf-cslam  0.643 / 0.025  0.496/0.022 0.478/0.017  0.539 / 0.022
de-full-window ~ 0.644 / 0.024  0.547 /0.022  0.480/0.017  0.557 / 0.021
dc-full-history ~ 0.356 / 0.017  0.299 / 0.014  0.319/0.013  0.325/ 0.014

83.5% (43.7% and 62.7%) of the frames without or with
loop-closure in AR datasets (ETH dataset). This clearly
shows that advantage of historical loop-closure on datasets
which have limited temporal view overlaps between robots.
Simulation parameters used are documented in Tab. I. We fix
the weight of other robots’ covariance in the CI-EKF update
as w, = 0.001. While for the constraint measurement update
presented in Sec. IV-D, we use the value w, = 0.005 and a
synthetic measurement noise of 2cm. Note that while these
weights can be found by minimizing the trace or determinant
of Py; p [24], we have empirically found that using fixed
weights still ensures consistent performance. For fair and
thorough comparison, we define the following variations of
the centralized and proposed distributed CL estimators:
indp — No common features are found between robots and
all measurements are processed as independent features
which only relate to the current robot.
indp-slam — Same as indp, but temporal SLAM features are
included in each robot to show the relative improvement.
ce-cmsckf — The centralized estimator using the common
VIO features over the sliding window.
ce-cmsckf-cslam — The centralized estimator using the com-
mon VIO and SLAM features over the sliding window.
dc-cmsckf [ 1] — The distributed estimator using the common
VIO features over the sliding window.
dc-cmsckf-cslam — The distributed estimator using the com-
mon VIO and SLAM features over the sliding window
without enforcing the same feature constraint. For exam-
ple, even if a common SLAM feature is a SLAM feature
in another robot’s state, we grab the measurements from
the other robot and update as the first case in Sec. IV-D.
dc-full-window — The distributed estimator using the com-
mon VIO and SLAM features over the sliding window
with enforcing the same feature constraint.
dc-full-history — The distributed estimator using both the
common VIO and SLAM features over the sliding window
and from historical matching.
Note that the observed independent VIO features and SLAM
features are used in all these estimators. To ensure a fair
comparison, the same parameters reported in Tab. I are used
for all algorithms and for all robots.

A. Accuracy and Consistency Evaluation

We performed 20 Monte Carlo simulations on each
dataset. The average Absolute Trajectory Error (ATE) [33]
can be found in Tab. II and III. It is clear from the top
two rows that the additional SLAM features improve indp.
In the cooperative case, when using the common VIO
features, both ce-msckf and dc-msckf outperform the
indp-slam, and when including common SLAM features,
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TABLE III: ATE on simulated ETH datasets in degrees / meters for each
algorithm variation. Green denotes the best, while blue is second best.

Algorithm Robot 0 Robot 1 Robot 2 Average
indp 0.569/0.088 0.578/0.092  0.560 / 0.093  0.569 / 0.091
indp-slam 0371 /0.070  0.406 / 0.069  0.444 / 0.075  0.407 / 0.071
ce-cmsckf 0221 /0.052 0.221/0.049 0.221/0.051  0.221 / 0.050
ce-cmsckf-cslam  0.151 7/ 0.042  0.143 / 0.038  0.144 / 0.040  0.146 / 0.040
dc-cmsckf  0.329 /0.064  0.342/0.061  0.319/0.062  0.330 / 0.062
dc-cmsckf-cslam  0.298 / 0.054  0.325/0.050  0.290 / 0.052  0.304 / 0.052
de-full-window 0285/ 0.052  0.287 /0.047  0.268 / 0.047  0.280 / 0.049
de-full-history ~ 0.211 /7 0.029  0.207 7 0.031  0.218 / 0.030  0.212 / 0.030

Root Mean Squared Error
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the accuracy is further improved. It is worth noting that
the efficient dc-full-window with feature constraint
has close accuracy to its counterpart dc—cmsckf-cslam.
Moreover, when including the historical common features,
the distributed estimator becomes more accurate as expected.
Interestingly, with only the common features over the sliding
window, the ce—-cmsckf-cslam can achieve the best
performance on the AR dataset even without loop-closure.
This is likely due to the fact that over the whole dataset
all robots look in the same general location thus negating
any benefit of loop-closure detection. As show in Tab. III
and in the following real-world experiments, when robots do
not have many overlapping views, the historical information
plays an important role.

We additionally show the average Root Mean Square Error
(RMSE) [33] and Normalized Estimation Error Squared
(NEES) [34] of the distributed algorithms for Robot 0 in
Fig. 4. The results for the other two robots are similar
and are omitted here for space. The indp has the largest
drift that can be reduced as shown by indp-slam and
leveraging common features. The dc—-cmsckf-cslam and
dc-full-window have almost the same performance
while the dc—full-history achieves the best accuracy.
It is clear that all the distributed algorithms are conservative
in nature (NEES is smaller than three) and have smaller
NEES than the centralized ones.

Distributed | '
Centralized

400 -

time (ms)
g B 8

- i P —| -
0l el ST =5 =1
2 3 4 5 6
number of robots

Fig. 5: Sequential propagation and update time (ms). Note that while
decentralized can update in parallel, here we report its sequential timings.
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TABLE IV: Timing for AR dataset. Millisecond mean and deviation.

Algorithm Proposed Combined
MSCKEF update (window)  1.20 £ 0.94 2.88 + 3.90
MSCKEF update (hist) 4.11 £+ 5.52  22.75 £+ 159.65
Algorithm  Constraint No Constraint
SLAM update (window)  0.10 + 0.03 0.15 £ 0.16
SLAM update (hist)  0.17 + 0.06  27.11 £ 160.95

B. Timing Analysis

1) Multiple Robots: We now investigate the computa-
tional efficiency of the proposed work in comparison to
the centralized estimator using only common features over
the sliding window. We compare the timing results of
dc-full-window and ce-cmsckf-cslam while pro-
cessing the same amount of measurements. We first investi-
gate the performance as more robots are added to show the
efficiency gains from the distributed formulation. The results
in Fig. 5 show that as more robots are added, the centralized
estimator quickly becomes computationally expensive while
the distributed one is able to remain efficient since each
robot only needs to propagate and update its own state and
auto-covariance. Additionally, if one robot does not find
common features in a given frame, the robot can update
the estimator independently in the distributed case. On the
contrary, the centralized estimator needs to collected all data,
propagate, and update the whole state even if there are
no common features. The distributed algorithm does have
a slight increase in cost, which is due to the increase of
common measurements from the additional robots.

2) Common VIO Features: We next investigate the ef-
ficiency of the common VIO feature nullspace projection
and subsequent CI-EKF update introduced in Sec. IV-C.2.
We report the update time for dc-full-window (window)
and dc-full-history (history) without common SLAM
features. The results presented in Tab. IV show that if we use
the proposed method to first perform nullspace projection and
separate each robot’s systems into two systems (Proposed)
we are able to outperform the naive way of performing
nullspace projection on a ‘“stacked” Jacobian containing
all robot feature Jacobians (Combined). It is clear that in
both algorithms, the proposed method is able to have less
computational cost, especially in the historical case due to
the proposed system reducing the number of measurements
in the update. We also note that there is a high level of
variance in the historical case due to loop-closure introducing
large amounts of measurements in short intervals.

3) SLAM Constraint Update: Now we investigate the
efficiency of the common SLAM feature update introduced
in Sec. IV-D. Only common SLAM features that can be
matched to another robot’s SLAM feature are used to ensure
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Fig. 6: TUM-VI groundtruth (left) and Vicon room groundtruth trajectories
(right) TUM-VI trajectories are 146, 131, and 134 meters long, while the
Vicon room datasets are 507, 509, and 501 meters long.

TABLE V: Relative pose error (RPE) on TUM-VI datasets in degrees /
meters averaged over all robots for the dataset.

Algorithm 40m 60m 80m 100m 120m
indp-slam  1.818/0.093  2.833/0.126  2.604 /0.154  2.774/0.185 2716/ 0.215
ce-cmsckf  1.358 /0.071  1.321/0.091  1.357/0.108 0.843/0.128  0.932/0.140

ce-cmsckf-cslam  1.758 / 0.069 1.350 /0.079 1.027/0.100  0.718 /0.119  0.938 / 0.130
dc-cmsckf  1.662/0.075  2.005/0.104 1.605/0.129  1.142/0.141  1.531/0.170
dc-cmsckf-cslam  1.800 / 0.080  2.642/0.093  2.233/0.106 1.544/0.114  0.934 / 0.157
de-full-window 1768 / 0.075  2.218 / 0.091 1.788/0.109  1.257/0.123  0.854 / 0.159
dc-full-history ~ 1.213 /7 0.067 1.232 / 0.061 1.029 / 0.065  1.004 / 0.068  0.784 / 0.072

TABLE VI: Relative pose error (RPE) on Vicon room dataset in degrees /
meters averaged over all robots.

Algorithm 80m 100m 200m 300m 420m
indp-slam  2.022/0.276 2.416/0.334 3.872/0.613 5.222/0.870 8.045/1.189
ce-cmsckf-cslam  2.180 / 0.288  2.603 /0.333  2.771/0.548  3.050 / 0.770  3.557 / 1.044
dc-full-window ~ 2.197 / 0.281  2.340 / 0.332  3.322/0.580 3.670/0.804 5.977/1.102
dc-full-history 1.271/ 0.145 1.307 / 0.151 1.346 / 0.158 1.267 / 0.157 1.343 / 0.160

that both variants have the same number of measurements in
the update. When we match features in the current window,
the constraint update (Constraint) is slight more efficient than
the naive way of grabbing all the measurements from the
other robots (No Constraint) since all robots only have the
most recent measurements (in most cases just one). During
historical SLAM matching, by definition SLAM features
are long feature tracks, and thus many measurements and
clones states are associated with a historical SLAM feature.
This means that after loop-closure in the naive case (No
Constraint) we will process all measurements ever recorded
for a SLAM feature which can easily reach many sliding
windows in length. If instead we use the constraint update,
only the two feature positions are involved, thus the update
is extremely efficient in nature (bottom Tab. V).

VI. EXPERIMENTAL RESULTS

We have also evaluated the proposed distributed CL esti-
mators on the TUM-VI dataset [35] and a hand collected 10
minute long Vicon room dataset (see Fig. 6).> Both datasets
provide monochrome stereo images at 20Hz and IMU read-
ings at 200Hz. We only leverage the left camera and initialize
all robots based on the groundtruth orientation and position
with zero velocity. The specific datasets we run on for the
TUM-VI are the rooml, room3, and room5. For the Vicon
room dataset, the groundtruth has been generated using the
vicon2gt utility [36]. The shorter TUM-VI dataset has more
time periods where multiple robots are looking at the same
environmental location (26.7% and 41.8% of the frames
detected common features without and with loop-closure),
thus provides a good insight into an expected performance
in a multi-user AR case where many users are observing the
same environment at the same time. On the other hand, the
Vicon room dataset has near-zero time periods where we are

2A video demo https://youtu.be/boHBcVoMKk8

able to detect common features between robots by matching
the most recent features. Thus, we use the Vicon room dataset
to show the accuracy gain from leveraging historical loop-
closure information by matching to historical states (28.8%
of the frames detected common loop-closure features).

A. TUM-VI Dataset

We use a sliding window of 11, a max of 5 SLAM
features, max 30 VIO features per update, 300 active tracks,
and perform online calibration of all parameters. For the
historical method, we insert keyframes into our database at
5Hz and detect and match to historical keyframes at each
timestep. We used a static weight of w; = 0.99 and distribute
the remaining weight to all other robot covariances used in
the CI-EKF update, and for constraint measurement updates
[see Eq. (29)], we used a value of w; = 0.995 and injected
a synthetic measurement noise of 2cm to relax the hard
constraint.

The Relative Pose Error (RPE) [33] results are shown
in Tab. V solidify the performance gains due to leveraging
common features from other robot agents. The independent
methods which leverage only independent VIO and SLAM
feature updates have about three times the error compared
to the distributed method which leverages loop-closure in-
formation. Additionally, we can see that all variations which
leverage common features are able to reduce errors due to
the additional information. It is also important to note that
even though the distributed variants do not track the cross-
covariances between robotic states, the use of CI allows the
accuracy to be near the same level as that of the centralized
algorithm, and in the case where we leverage historical
information (which the centralized algorithm is unable to do),
we can slightly outperform for longer trajectory length. The
dc-full-history method, which leverages loop-closure
information, has a relatively constant error as the trajectory
lengths increase as expected (showing its drift-free nature).

B. Vicon Room Dataset

We now present results on the longer hand-held, approxi-
mately 500 meter and 10 minute trajectory. We use a sliding
window of 11, a max of 20 SLAM features, max 30 VIO
features per update, 200 active tracks, and perform online
calibration of all parameters. The RPE results for different
segment lengths can be found in Tab. VI and give the
same conclusion as the previous TUM-VI dataset. It is also
important to note that there is very similar performance of
the indp-slam and ce-cmsckf-cslam methods (and
their distributed equivalents). This is expected as there are
no time periods in any of the robotic trajectories where robots
are looking at the same location at the same time. Compared
to these cases, we have huge accuracy gains due to the
inclusion of common feature measurement constraints in the
historical case, with halved orientation errors and a quarter of
the position error at long trajectory lengths. We also plot the
groundtruth, indp-slam, and dc-full-history Robot
0 trajectories in Fig. 1, which reinforces that by leveraging
historical information we are able to prevent inherent drift
in the loop-closure-free case.
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VII. CONCLUSIONS AND FUTURE WORK

In this work we have presented a distributed visual-inertial
cooperative CL estimator that efficiently fuses constraints
between robots and leverages temporal SLAM and loop-
closure information. We have introduced two different ways
to incorporate temporal SLAM features: (i) directly update
using the other robot’s measurements, and (ii) if both robots
are estimating the SLAM feature, a constraint between the
two feature positions is leveraged. We have adapted CI to
ensure consistent fusion of loop-closure constraints to other
agent’s historical poses and SLAM features whose cross-
correlations are unknown. Extensive simulation and real-
world evaluations have demonstrated the performance of the
proposed method in realistic scenarios and showed impres-
sive accuracy gains over the single robot case. In the future
we will focus on the practical deployment to a low-cost low-
power multi-robot application and incorporate relative robot-
to-robot measurements to further increase accuracy gains.
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