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THE WORK OF SÉBASTIEN GOUËZEL ON LIMIT THEOREMS
AND ON WEIGHTED BANACH SPACES

DMITRY DOLGOPYAT
(Communicated by Giovanni Forni)

ABSTRACT. We review recent advances in the spectral approach to studying
statistical properties of dynamical systems highlighting, in particular, the role
played by Sébastien Gouëzel.

1. BACKGROUND

An important discovery of the last century is that deterministic systems may
display stochastic behavior. In particular, ergodic sums along the orbits of the
deterministic systems often obey the same limit theorems as sums of indepen-
dent identically distributed (i.i.d) random variables.

Let us review the basic results about summations of i.i.d. random variables.

Let SN =
N−1∑
n=0

ξn , where {ξn} are i.i.d. bounded random variables. Then
SN −NE(ξ)√

nVar(ξ)
converges in law as N →∞ to a standard Gaussian. That is, for each z ∈R

lim
N→∞

P

(
SN −NE(ξ)√

nVar(ξ)
≤ z

)
=Φ(z) :=

∫z

−∞
e−s2/2d s.

Stronger results include Berry-Esseen Theorem saying that∣∣∣∣∣P
(

SN −NE(ξ)√
nVar(ξ)

≤ z

)
−Φ(z)

∣∣∣∣∣≤ C (ξ)p
N

and the Local Limit Theorem saying that, unless ξ ∈ a+hZ with probability one,
we have that for each z ∈R and each interval I

lim
N→∞

p
NP(SN −NE(ξ)−

p
N z ∈ I ) = 1√

2πVar(ξ)
e−z2/(2Var(ξ))|I |.

Note that the normalization constants appearing in these results, namely E(ξ)
and Var(ξ), depend smoothly on ξ.

One could also consider unbounded observables. The case where

P(ξ> t ) ≈ c+`(t )

t s , P(ξ<−t ) ≈ c−`(t )

t s
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for some constants c+,c− ∈ R+, s ∈ (0,2] and a slowly varying function ` is of
particular interest. In this case SN converges, after a proper normalization, to a
stable random variable of index s.

A lot of work in probability theory is devoted to extending these basic results
to weakly dependent random variables. There are many methods for proving
limit theorems in the weakly dependent case. One of the most powerful is the
spectral method developed by Nagaev (see [48] for an excellent review and [56,
69] for the detailed exposition of the results obtained in the last century).

A classical approach to limit theorems and related results is the asymptotic
analysis of the characteristic function. Namely, the CLT amounts to proving that
for each u ∈R

lim
N→∞

E

(
exp

i u(SN −NE(ξ))√
N Var(ξ)

)
= e−u2/2.(1.1)

In the i.i.d. case the key fact is that E
(
e i uSN

)
= E

(
e i uξ

)N
, so the Taylor expansion

of the characteristic function of ξ near 0 gives (1.1).
To illustrate the spectral method, consider a Markov chain {xn} on state space

S defined by the transition kernel K (x,d y) (this includes dynamical systems

xn = f n(x0) as a degenerate case) and let SN =
N−1∑
n=0

A(xn) where A is a function

on S . Using the first step analysis we get

E
(
e i uSN

)
= E

(
e i u A(x0)Ex1

(
e i uSN−1

))
.(1.2)

Introducing the operator (Uuh)(x0) = Ex0

(
e i u A(x0)h(x1)

)
and iterating (1.2) we

get

E
(
e i uSN

)
=

∫
U N

u (1)dν(x0)

where ν denotes the initial distribution of our Markov chain. One could also
consider the adjoint operator Lu =U ∗

u and write

E
(
e i uSN

)
= 〈L N

u 1,1〉,
where 〈. . .〉 is the scalar product in L2(ν).

In the case our Markov chain has a bounded density with respect to some
background measure K (xn ,d xn+1) = k(xn , xn+1)dν(xn+1), both Uu and Lu are
compact operators. Moreover, under natural mixing assumptions (e.g., if k is
bounded from below) 1 is an isolated eigenvalue of L0, and there are no other
eigenvalues on the unit circle. Hence, by a classical perturbation theory (see
e.g., [57]) for small u

L N
u (h) =λN

u `u(h)φu +O(θN )

for some θ < 1, where λu ∈ C, φu ∈ L∞(S ,C), `u ∈ L1(S ,C), and the map u 7→
(λu ,φu ,`u) is analytic in a small neighborhood of 0. Now one could prove the
CLT (and other results) by the Taylor expansion similar to the independent case.
In fact, compactness is not necessary, it suffices that L0 is quasi-compact, that
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is, its essential spectral radius ρess(L0) is strictly smaller than its spectral radius
ρ(L0). A standard condition for quasi-compactness is so called Doeblin-Fortet-
Lasota-Yorke inequality [30, 60]. Namely, let an operator L act on a Banach
spaces (B,‖ · ‖) and (Bw ,‖ · ‖w ) so that B ⊂ Bw and the inclusion is compact.
Suppose that there are positive constants M ,R, k ∈N and r < ρ(L ,B) such that

‖L k h‖w ≤ M‖h‖w , ‖L k h‖ ≤ r k‖h‖+R‖h‖w ,(1.3)

then ρess(L ,B) ≤ r.
A classical example of applicability of this criterion is Doeblin condition.

Namely, consider a Markov operator K such that there is a constant θ ∈ (0,1)
such that

K (x,d y) = θk(x, y)dν(y)+ (1−θ)K̄ (x,d y),

where k(·, ·) is bounded from above and below and K̄ is an arbitrary kernel. In
this case (1.3) holds with ‖ · ‖ = ‖ · ‖L∞ , ‖ · ‖w = ‖ · ‖L1 . The quasi compactness
may also hold in the dynamical systems setting. Namely, let f : T1 →T1 be an
orientation preserving expanding map, that is, there exists Λ> 1 such that for
all x ∈T1, f ′(x) ≥Λ. Then

(L h)(x) = ∑
f y=x

h(y)

f ′(y)
.(1.4)

Taking ‖ ·‖ = ‖ ·‖C 1 , ‖ ·‖w = ‖·‖C 0 , we get

∂

∂x
(L h)(x) = ∑

f y=x

h′(y)

f ′(y)2 − ∑
f y=x

h(y) f ′′(y)

| f ′(y)|2 .

The second term is controlled by the weak norm, while the first one is smaller

than
∑

f y=x

|h′(y)|
Λ f ′(y)

≤ L |h′|
Λ

. One could use the above estimates to show that in

this case ρ(L ,C 1) = ρ(L ,C 0) = 1 while ρess(L ,C 1) ≤Λ−1. A similar argument
(see e.g. [24, 71]) shows that ρess(L ,C r ) ≤Λ−r for each r ∈N.

We note that quasi compactness is useful not only in the study of the charac-
teristic function. In particular, it could also be used to obtain the asymptotics
of the correlation functions via the identity∫

A( f n x)B(x)d x =
∫

(L nB)(y)A(y)d y.

Thus if ρess(L0,B) = ρ on some space B, then for B ∈ B, A ∈ B∗ and any ε > 0
one can write∫

A( f n x)B(x)d x =µ(A)
∫

B(x)d x +
Nε∑

k=1
Pk (n)λn

k +O((ρ+ε)n).(1.5)

The program of studying the dynamical systems using the spectral approach
was pioneered in the works of Lasota-Yorke ([60]), and Guivarc’h and collabora-
tors ([52, 53]). However, by the end of the last century this approach was only
applicable to uniformly hyperbolic systems such as

• expanding maps (see above);
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• piecewise expanding maps (with Bw = L1, B= BV );
• subshifts of a finite type (with Bw =C 0 and B–Holder).

Now the spectral approach has been applied successfully to a large class of
non-uniformly hyperbolic as well as some partially hyperbolic systems, and
it remains very much in the forefront of the modern research in dynamics.
Sébastien Gouëzel played a central role in this development proving the op-
timal results in many cases as well as opening new directions of research. In
this survey, I will provide some highlights of his contributions, directing the
readers to the original papers for additional details.

There are two natural ways for extending the spectral approach beyond the
uniformly hyperbolic realm.

1. Given a map f one can define an induced map F (x) = f τ(x)(x) so that F is
uniformly hyperbolic.

2. One can construct a Banach space B adapted to the geometry of f , so that
the transfer operator is quasi-compact.

Sébastien Gouëzel made fundamental contributions to both directions. This
work was recognized in his 2019 Brin Prize citation. The contributions to the
inducing approach are described in Section 2 while the results using adapted
Banach spaces are discussed in Section 3.

2. INDUCTION

If F (x) = f τ(x)(x), where τ is defined so that f τ(x) ∈ Y ⊂ X , then X can be
conveniently represented as a tower of Y . This approach was actively pursued
by Lai-Sang Young in the late 90s (see [81, 82]). She proved that many systems
admit a so called Young tower and established the quasi compactness of the
transfer operators provided that τ has exponential tail mes(x : τ(x) > n) ≤Cθn

for some C > 0,θ < 1. In the case of polynomial tails the quasi-compactness fails,
so only partial results were available.

We note that the induction also serves as a powerful tool in probability. For
example, given a Markov chain with a countable phase space, one can select
a site s0 and consider only the times when our process visits this site. Since
consecutive excursions away from s0 are independent, the process starts afresh
after each return. To control the process between the visits to s0 one uses so
called renewal theory. The central object in this theory is the renewal equation
which I will explain now in the context of mixing, following [70, 72].

Let A and B be the functions supported on Y . Denote

ρn(A,B) = 〈A,B ◦ f n〉
and consider the generating function

t (z) =∑
n

ρn(A,B)zn =: 〈T (z)A,B〉 = 〈A,U (z)B〉,

where
U (z)B =∑

n
z̄nB ◦ f n = B + z̄τU (B ◦F ).
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Hence

〈T (z)A,B〉 = 〈A,B〉+〈R(z)T (z)A,B〉,
where R(z) is the adjoint to B 7→ z̄τB ◦ f τ. Thus we have

T (z) = I +R(z)T (z), that is, T (z) = (I −R(z))−1 .

Our goal is to understand the coefficients of T (z) in terms of the coefficients of
R which are given explicitly in terms the hitting time τ. This is achieved by the
following result.

Let D denote the unit disc D= {|z| < 1}.

THEOREM 2.1 ([72, 44]). Suppose that T (z) and R(z) are holomorphic families
of operators acting on some Banach space B so that on D

T (z) = I +
∞∑

n=1
znTn , R(z) =

∞∑
n=1

znRn .

where Tn and Rn are bounded operators on B and
∑
n
‖Rn‖ ≤∞. Assume

(a) Renewal equation: T (z) = (I −R(z))−1 in D;
(b) Spectral gap: 1 is a simple isolated eigenvalue of R(1) on unit circle, with

eigenprojection P ;
(c) Aperiodicity: I −R(z) is invertible on D− {1};
(d) Polynomial tails:

∑
k>n

‖Rk‖ =O(1/nβ), β> 1;

(e) Transversality1 : PR′(1)P 6= 0.

Then

Tn = 1

µ
P + 1

µ2

∑
k>n

Pk +En ,(2.1)

where µ is defined by the condition PR′(1)P = µP, Pn = ∑
k>n

PRk P, and ‖En‖ =

O(γβ(n)), where γβ(n) =


1/nβ if β> 2,

(lnn)/n2 if β= 2,

1/n2β−2 if 2 >β> 1.

Note that the error in the above theorem is smaller than the second term in
(2.1) which is typically of order n1−β.

Theorem 2.1 was proved in [72] under the assumption that β> 2 and with a
weaker error bound γβ(n) = 1

n[β] (for β> 2). The optimal result above is due to
[44].

Combining (2.1) with property (d) we obtain.

COROLLARY 2.2 ([44]). If PA = 0 then Tn A =O(1/nβ).

1The differentiability of R at 1 follows from (d) since
∞∑

n=1
n‖Rn‖ =

∞∑
n=1

∑
k≥n

‖Rk‖.
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In the theorem below, we say that F on Y is uniformly hyperbolic if every
point y ∈ Y possesses strong stable and strong unstable manifolds W s(y) and
W u(y), respectively, Y has a local product structure (that is, for y1, y2 nearby,
W u(y1) intersects W s(y2) transversally), F uniformly contracts stable manifolds,
F−1 uniformly contracts unstable manifolds and F has bounded distortion (see
[81, Section 1] for the precise conditions).

THEOREM 2.3 ([44]). If F is uniformly hyperbolic, and A,B are Hölder and sup-
ported on Y , then

(a) ρn(A,B)−µ(A)µ(B) =µ(A)µ(B)
∑

k>n m(τ> k)+O(γβ(n)).

(b) If µ(A) = 0, then ρn(A,B) =O(1/nβ).
(c) Without assuming that A,B are supported on Y , we get

ρn(A,B)−µ(A)µ(B) =O(1/nβ−1).

Let AN (x) =
N−1∑
n=0

A( f n x) denote the ergodic sum of A.

THEOREM 2.4 ([44]). Ergodic sums AN (x) satisfy CLT if either β> 2 or β> 1, A is
supported on Y and µ(A) = 0.

To derive this result from Theorem 2.1, consider first the case when the func-
tions are constant on the stable manifolds. For such function the operator R

behaves similarly to the transfer operator (1.4) for the expanding map, so the
asymptotics of the correlation function follows from Theorem 2.1. Arbitrary
observables are approximated by functions A(k), B(k) such that A(k) ◦F−k and
B(k) ◦F−k are constant on the stable manifolds and use the invariance of the
correlation functions by the dynamics.

The last theorem gives CLT for slow mixing systems, where it was not ex-
pected before. This result has several important applications, my favorite being
semidispersing billiards.

We consider two classical examples: Bunimovich stadium and a billiard with
one cusp (see Figure 1).

R

R

P

FIGURE 1. Semidispersing billiards

In the first case, let IB =
∫

R
A(s,0)d s.

In the second case, let IC =
∫π/2

−π/2
[A(p−,φ)+ A(p+,φ)]dφ.
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THEOREM 2.5. (a)([15]) For stadium there is a constant c such that
ANp

N ln N
converges as N → ∞ to the normal distribution with zero mean and variance
cI 2

B . 2 If IB = 0, then standard CLT holds.
(b)([14]) the same result holds for cusp with with IB replaced by IC .

In the early 2000s, Sébastien Gouëzel made a systematic studies of dynamical
systems admitting uniformly hyperbolic inducing schemes. This includes

• stable laws [45];
• local limit theorem [46];
• Berry–Esseen theorem for the rate of convergence (it turns out that the

optimal rate is n−δ/2 where δ= min(β−1,1)), see [46];
• almost sure CLT [23];
• almost sure invariance principle [47];
• large and moderate deviations [25].

Currently, the dynamical renewal theory is an important tool in statistical
properties of dynamical systems. Active research topics include continuous
time systems ([1, 68, 31]), infinite measure systems ([64, 67]) as well as the re-
newal theory for sequential systems ([2, 55]).

3. WEIGHTED BANACH SPACES

3.1. First steps. The work described in Section 2 constitute a significant ad-
vance in understanding of stochastic properties of non-uniformly hyperbolic
systems. However, there were still a few shortcomings.

(a) While the restriction of F to Y could be made much better than the orig-
inal map f : X → X , if we want to study F using symbolic dynamics we need
F (x) to have a Markov return and it may be difficult to control the tail of the
return time.

2In order to understand an anomalous
p

N ln N scaling for the stadium we note that the
orbits with poor hyperbolicity properties stay for a long time on the same boundary component.
It turns out that the main problem appears when the orbit moves for a long time almost parallel
to the straight boundary. Therefore, one can take F to be the induced map to the circular part
of the boundary and let τ be the corresponding return time. One can see that if τ> t then the
orbit should make an angle O(1/t ) with the normal to the straight part and the corresponding
orbit hits a circle for a last last time in a O(1/t ) neighborhood of an endpoint of the circular
arc. It follows that P (τ > t ) = c̄ t−2(1+o(1)) as t →∞ where c̄ is some constant. Next if A is a

smooth function then Ā(x) :=
τ(x)−1∑

n=0
A(x) = c̄ IBτ(1+o(1)). It follows that the distribution function

of Ā belongs domain of attraction of stable law with index 2 (which is normal distribution) and
moreover E(Ā21|Ā|<T ) = ĉ lnT (1+o(1)) which explains the extra log factor in Theorem 2.5. We

also not that in contrast with i.i.d. case the prefactor in front of
p

N ln N is determined not only
by the variance E(Ā21|Ā|<T ) but also by the covariances E(Ā(x)Ā(F n x)1|Ā(x)|<T ), see Section 4 of

[15], in particular, Remark 4.11 where. The justification for
p

N ln N scaling for the cusp is similar
but the computation is more involved, we refer to [65] for details. In fact a similar reasoning
explains the superdiffusion in infinite horizon Lorentz gas, see [16] for the heuristic argument
and [77] for the rigorous treatment based on the method of [15].
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(b) The dependence of the coefficients of the limit laws on parameters was
unclear.

(c) The essential spectrum obtained by the standard approach was large (cf.
[24]) making it impossible to obtain the complete asymptotics of the correlation
function.

One way to address these issues is to work directly with the transfer operator
of the smooth system. To this end, one needs to design Banach spaces Bα so
that the transfer operator has good spectral properties on Bα. There are two
approaches to this problem.

(I) Geometric approach. Recall that if f is a contraction then U A = A ◦ f
improves smoothness since

Dk (U A) = (Dk A)d f k +L.O.T.,

where L.O.T. includes the derivatives of order less than k (which could be con-
trolled using the weak norms). Accordingly if f is expanding, then U improves
the regularity in the dual space (C k )∗. So one needs to consider the functions
which “are smooth in the stable directions and are distributions in the unstable
ones.” The same reasoning applies to the transfer operators, that is, the adjoint
to U given by

L (A) = A ◦ f −1

det(d f )◦ f −1 ,(3.1)

however, since one composes with f −1 rather than f , then the roles of stable
and unstable directions are interchanged.3

(II) Microlocal approach. Let L : T2 →T2 be a linear Anosov map. Let ek (x) =
e2πi 〈k,x〉. Then

(ek ◦L)(x) = e2πi 〈k,Lx〉 = eL∗k (x).

Since the orbits of L∗ are hyperbolas, one can easily construct Lyapunov func-
tions decaying along the orbits. Namely, if e = eu + es , where eu and es de-
note the unstable and stable components of e and V (e) = ‖es‖αs /‖eu‖αu . Then
V (L∗(e)) ≤ θV (e) with θ =λ

αs
s /λαu

u , where λs and λu are weakest expansion and
contraction rates of L∗. Thus, denoting ‖A‖2 = ∑

k
V (k)|ck |2, where A = ∑

k
ck ek

has zero mean, we get

‖A ◦L‖2 =∑
k

V (L∗(k))|ck |2 ≤ θ
∑
k

V (k)|ck |2 ≤ θ‖A‖2.

For nonlinear maps the idea of construction is similar, however, since the Fourier
harmonics are no longer preserved one needs to use microlocal analysis to de-
scribe high frequency dynamics of wave packets.

3In dynamics literature one usually deals with operators L involving backward composi-
tions, because in the case of expanding maps whose operators behave well on the space of
smooth functions. In probability literature one more often considers forward looking operators
(U A)(x0) = Ex0 (A(x1)). In the case of hyperbolic maps which are considered in this section both
forward and backward operators lead to similar results.
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In §3.2 I concentrate mostly on geometric method, since it was chronolog-
ically the first and so it made stronger impact on the field. Moreover, most of
the work of Sébastien Gouëzel relies on this method. On the other hand, in §3.3
describing the current research I include papers using both methods. Indeed,
many problems could be approached by both methods with similar results. An
advantage of microlocal method is that one use Banach spaces from the PDE
literature whose properties are well established. On the other hand, the geomet-
ric method works better for systems of low regularity such as piecewise smooth
maps, since it is easy to adapt the Banach spaces to the geometry of the singu-
larities.

Since the early work on Banach spaces adapted to dynamics dealt with uni-
formly hyperbolic systems let me recall a few definitions.

Let f be a smooth diffeo of a manifold X . A set Λ is called a basic hyperbolic

set if there is a neighborhood U of Λ such that
∞⋂

n=−∞
f nU = Λ and there is a

continuous d f invariant splitting TΛX = E u ⊕E s , a Riemannian metric ‖ · ‖ and
constants λs < 1,λu > 1 such that

(a) f uniformly contracts E s , i.e. for all v ∈ E s ‖d f v‖ ≤λs‖v‖;
(b) f uniformly expands E u , i.e. for all v ∈ E u ‖d f v‖ ≥λu‖v‖.
If f is hyperbolic, then the unstable cones

C u = {v = vu + v s , v∗ ∈ E∗ : ‖v s‖ ≤ δ‖vu‖}

are forward invariant while the stable cones

C s = {v = vu + v s , v∗ ∈ E∗ : ‖vu‖ ≤ δ‖v s‖}

are backward invariant.
If, additionally, U could be chosen to be forward invariant, then we say that Λ

is a hyperbolic attractor and if Λ= X we say that f is an Anosov diffeomorphism.
For topologically transitive hyperbolic attractors, a classical result of Sinai ([74])
says that there is an invariant measure, called SRB measure, µSRB such that if x is

distributed according to a smooth density and A is Hölder then AN (x)−NµSRB (A)p
N

converges in Law as N → ∞ to the normal distribution with zero mean and
some variance σ2(A). Moreover, µSRB enjoys exponential decay of correlations
[74]. The first task in the Banach space approach was to reprove and precise the
results cited above.

The first construction of a Banach space adapted to a smooth system was
achieved in [20]. Let f be an Anosov diffeomorphism whose invariant distribu-
tions are of class Cτ. Fix constants β and γ such that 0 <β< γ< τ, β< τγ, and
consider

‖A‖s = sup
‖φ‖

Cβ(W s )
≤1

∫
φAdm, ‖A‖u = sup

v∈E u ,‖v‖
Cβ(W s )

≤1
V (A)dm,

‖A‖ = ‖A‖u +‖A‖s , ‖A‖w = sup
‖φ‖Cγ(W s )≤1

∫
φAdm.
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Here Cβ(W s) denote functions (or vector fields) which are bounded and such
that their restrictions to stable leaves are uniformly Hölder and V (A) is the Lie
derivative of A along V.

[20] proved that the essential spectrum of L defined by (3.1) is smaller than

max
( 1

λu
,λτ+ε

s

)
. While [20] showed that one can go beyond the symbolic set-

ting and get the quasi compactness, this paper did not solve the issues (a)–(c)
mentioned at the beginning of this section. In particular, the Banach spaces con-
structed in [20] depend heavily on f , so that nearby maps lead to completely
different spaces, making it impossible to develop a perturbation theory in those
spaces.

3.2. The contribution of Gouëzel. The next breakthrough was achieved in the
work of Gouëzel-Liverani. They introduced the following norms:

‖A‖−p,q = sup
W ∈A

sup
v1,...vp

‖v j ‖C r ≤1

sup
φ∈C q

0 (W )

∫
W

(v1 . . . vp A)φdm,

‖A‖p,q = max
0≤k≤p

‖A‖−k,q+k .

Here A denotes the class of admissible manifolds, i.e., those with tangent spaces
in the stable cones and having bounded geometry in the sense that their sizes
are neither too small nor too large and their C r -norms with r > p +q are con-
trolled (see [50, Section 3] for the precise definition), v1, . . . vp are (C r )-smooth
vector fields defined near W and φ are (C q )-smooth functions on W with com-
pact support. Let Bp,q denote the closure of C∞(M) with respect to ‖·‖p,q . Then
Bp,q is good for all maps near f .

THEOREM 3.1 ([50]). ρess(L ,Bp,q ) ≤ max(λ−p
u ,λq

s ).

In particular, if f ∈ C∞, then one can make ρess(L ,Bp,q ) as small as one
wishes by taking p and q large.

COROLLARY 3.2.
∫

A(x)B( f n x)dVol(x) admits complete asymptotic expansion
(that is, ρ in (1.5) can be made arbitrarily small).

COROLLARY 3.3. The maps (A, f ) 7→µSRB (A, f ), (A, f ) 7→σSRB (A, f ) are smooth.

Thus [50] addressed issues (b) and (c) mentioned at the beginning of Section
3. Issue (a) was not addressed, because it required an ability to handle discon-
tinuous maps such as F (x) = f (x)τ(x), where τ is piecewise constant but not
constant. However, following the ideas of [50], the papers [13, 11, 12, 27, 28, 29]
designed Banach spaces adapted to piecewise smooth maps addressing (a).

To convey the flavor of [50] let me discuss the Lasota-Yorke inequality. We
need to estimate ∫

W
(v1 . . . vp )

(
A

det(d f n)
◦ f −n

)
φdm.
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If E u and E s were smooth, then we could split v j = vu
j + v s

j , get rid of v s
j using

the integration by parts (paying by a weaker norm!) and reduce the problem to
estimating ∫

W
(vu

1 . . . vu
p )

(
A

det(d f n)
◦ f −n

)
φdm.(3.2)

Covering f −nW ⊂
s⋃

j=1
W j , where W j are admissible, the cover has bounded in-

tersection multiplicity, and, taking the partition of unity 1 =∑
j
ρ j with ρ j sup-

ported on W j , we get

(3.2) =∑
j

∫
W j

[
((d f −n vu

1 ) . . . (d f −n vu
p ))A

][
(φ◦ f n)

det(d f n |T W j )

det(d f n)

]
dm.

Since ‖d f −n |E u‖ ≤Cλ−n
u , the bounded distortion property of the determinants

in the last formula allows us to estimate (3.2) by

λ
−np
u ‖A‖−p,q

∑
j

∫
W j

[
det(d f n |T W j )

det(d f n)

]
dm =λ

−np
u ‖A‖−p,q

∫
W

det(d f −n)dm.

Since the last integral is controlled by ‖L n1‖ which is bounded (see footnote 4
below) we conclude that the contribution of (3.2) is O

(
λ
−p
u

)
.

Unfortunately, E u and E s are not smooth and, as a result, vu
j and v s

j are not
smooth. However, the following estimate holds.

LEMMA 3.4 ([50]). In a small neighbourhood U of f n(W j ) one can split v = w̃u +
w̃ s so that

(a) for x ∈ f n(W j ) we have w̃ s(x) ∈ T ( f nW j ),
(b) ‖w̃ s‖C r+1(U ) ≤Cn and ‖w̃u‖C r+1(U ) ≤Cn , where Cn is a constant which may

depend on n;
(c) ‖w̃ s ◦ f n‖C r (W j ) ≤C and ‖(d f −n w̃u)◦ f n‖C p+q ( f −nU ) ≤Cλ−n

u .

Thus one can prove Theorem 3.1 by repeating the above argument using the
splitting v = w̃u + w̃ s instead of v = vu + v s .

The next advance came in the paper [51], where the authors extended results
of [50] to the Gibbs states on basic hyperbolic sets. Recall that, given a map
f and a function (potential) φ, an equilibrium state (Gibbs measure) µφ is an
argmax of the pressure functional

P (µ) = sup
µ− f invariant

[
hµ+µ(φ)

]
.

For topologically transitive hyperbolic basic sets, Gibbs states for Hölder po-
tentials exists and are unique [19, 69, 74]. It is also clear from the definition
that homologous functions have the same Gibbs states. In particular, the Gibbs
states for φ, φ ◦ f and φ ◦ f −1 are the same. Moreover, the SRB measure is a
Gibbs state with the potential

ψu(x) =− lndet(d f |E u)(x).(3.3)
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A natural idea to handle more general Gibbs states is to consider weighted trans-
fer operators which are adjoint to

Uφ(A) = eφ(A ◦ f )(3.4)

(note that the weighted operators were also used in Section 1 to prove the Cen-
tral Limit Theorem). In fact, one can show that (see e.g. [59])∫

(U n
φ A)dm(x) = `(A)eP (φ+ψu )(1+oN→∞(1)).

The same results apply to f −1 with ψu being replaced by the SRB potential
for f −1 given by4

ψs = lndet(d f |E s).(3.5)

Accordingly, the arguments of [50] could be extended with some additional
work to handle the Gibbs measure with potentials ψ(x) =ψu(x)+φ(x), where
φ is a smooth function. However, since ψu is not smooth, such an extension
would be insufficient to cover smooth potentials such as ψ ≡ 0. The authors
point out that one could overcome this difficulty by considering the actions on
the forms of dimension du (or dimension ds for backward composition). Indeed,
if W is a piece of an unstable manifold and ω is a du form whose restriction on
unstable distribution equals A dmu , then∫

f W
eφ◦ f −1

ω=
∫

W
(A ◦ f )eφ det(d f |Eu)dmu =

∫
W

(A ◦ f )eφ−ψu dmu ,

so the spectral radius of the resulting operator is equal to

eP ((φ−ψu )+ψu ) = eP (φ),

as needed. In fact, in order to handle both smooth potentials such as φ= 0 and
non-smooth ones such as ψu and ψs it is convenient to consider more general
objects. Let F be the induced action on Grassmannians of dimension ds . Then,
if Λ is a basic hyperbolic set for f , then F−1 possesses a basic hyperbolic set Λ̄
which is a graph of E s . [51] consider a space B whose elements are maps which
associate to each subspace E of dimension ds a volume form on E . Thus, if
W is a submanifold of dimension ds , and α ∈ B then one can integrate α over
W by integrating α(x,TxW ) over W . Given a smooth potential φ(x,E) on the
Grassmann bundle, consider the operator

Lφ(α)(x,E) =π( f −1x)eφ(F−1(x,E)) f ∗(α◦F−1),

4 In particular, the spectral radius of the operator L in (3.1) equals eP (− lndet(d f )+ψs ) =
eP (ψu ) = 1, since P (ψu ) = 0 by the Pesin formula. The same result could also be deduced from
the asymptotics∫

A(x)B( f n x)dm(x) =
∫

B(y)(L n A)(y)d y = m(A)µSRB (B)+o(1)

valid for continuous A and B.
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where π is a cutoff function supported in a small neighborhood of Λ and equal
to 1 on Λ. In other words,∫

W
BLφ(α) =

∫
f −1W

(B ◦ f )πeφα.

Set φ̄(x) = φ(x,E s(x)). Note that, if φ depends only on x, then φ̄= φ, while for
φ(x,E) = lndet(d f |E), we get φ̄=ψs given by (3.5), and for

φ(x,E) = lndet(d f |E)(x)− lndet(d f )(x),

we get φ̄=ψu given by (3.3).
The results of [51] could be summarized as follows

THEOREM 3.5. There are Banach spaces Bp,q (defined similarly to [50] but with
f replaced by F ) such that

(a) The spectral radius of Lφ is eP (φ̄), while the essential spectral radius is at

most max(λ−p
u ,λq

s )eP (φ̄).
(b) L has a unique eigenvector α0 with eigenvalue eP (φ) and its adjoint has

unique eigenvector `0 with eigenvalue eP (φ). The functional µφ(A) = `0(Aα0)
is the Gibbs measure with potential φ̄.

(c) If A,B are smooth, then the correlation function µφ((A ◦ f n)B) admits as-
ymptotic expansion (1.5).

COROLLARY 3.6. The maps ( f , A,φ) 7→ µφ̄( f , A) and ( f , A,φ) 7→ σ2( f , A, φ̄) are
smooth.

This result extends significantly the previous results in this area ([58]).

The papers discussed above provided a new look at uniformly hyperbolic
system but the method of weighted Banach spaces proved useful far beyond this
setting. Some of the areas where it has been applied successfully are described
in §3.3 below.

3.3. Current research. The rules of Brin prize stipulate that the prize is given
for work which has a lasting impact on the field. For this reason, in this sub-
section I describe some of the spectacular advances which rely on the theory of
weighted Banach spaces pioneered by Sébastien Gouëzel. As it was mentioned
in Section 1, the most straightforward application of the quasi compactness is
to obtain the refined asymptotics of the correlation function

ρn(A,B) =
∫

A(x)B( f n x)dµ(x)

for smooth A and B and natural invariant measures µ. In fact, more general
integrals of the form ∫

H(x, f n x)dµ(x)(3.6)

can be handled provided that H is sufficiently smooth, by expanding H as the
sum of products H(x, y) = ∑

k
Ak (x)Bk (y). Moreover, the requirement that H is
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smooth is not optimal, some singularities are allowed provided that the resulting
observables belong to appropriate Banach spaces. The current developments
of the theory proceeds mostly in the following three directions

(i) Extending the theory to more general dynamical systems;
(ii) Extending the theory to more singular observables to fit the needs of appli-

cations;
(iii) Describing the exponents λk in (1.5) (called Pollicott-Ruelle resonances)

and relating them to geometry or physics of the system at hand.

While there are many open questions pertaining to each of the above men-
tioned directions, the results obtained so far convincingly demonstrate the power
of the theory.

3.3.1. Decay of correlations. The spectral approach is very useful for obtain-
ing precise asymptotics of the correlation function using the identity (1.5). A
promising direction of current research is to use the spectral approach to under-
stand mixing properties of partially hyperbolic systems. Notable partial results
on this subject include [5, 18, 21, 78].

One particular important class of partially hyperbolic systems are transversely
hyperbolic system with symmetries, where the central direction is spanned by
the symmetry group of the system. Perhaps the most studied example is pro-
vided by hyperbolic flows. In this setting one could combine in a nice way the
techniques of Banach spaces with the renewal theoretic approach described in
Section 2. Recent important developments on this subject include exponen-
tial mixing for Sinai billiard flows [10], and for mixing Anosov flows on three
dimensional manifolds [80] (extending a earlier work [79]).

Another major development is the paper [4] proving exponential mixing of
the Teichmüller geodesic flow with respect to all SL2(R) invariant measures.
This result combines the classification of the invariant measures obtained in
the work of Eskin–Mirzakhani with representation theory and the theory of
weighted Banach spaces. [4] extends an earlier work of [6] which treats the
mixing with respect to the absolutely continuous measure on strata. We refer
the readers to [61, Section 3] for a more detailed discussion of this topic.

Finally I would like to mention paper [9] where weighted Banach spaces are
used to study mixing properties of Gibbs measures for piecewise hyperbolic
systems with singularities.

3.3.2. Periodic orbits. One of the classical questions in dynamics is growth of the
number of periodic points. This can be considered as a special case of the mix-
ing problem (3.6) where H is a product of a smooth function and δ-function on
the diagonal (cf. see [66])5. More generally one can consider weighted counting

problems where a periodic orbit p of period n has weight
n−1∏
k=0

eφ( f k p). Similarly,

for a flow g t one can assign to a periodic point p of weight T weight eφT (p),

5In fact, a simpler treatment could be made if one considers a product map f × f −1 acting on
X ×X , [63].
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where φT (p) =
∫T

0
φ(g t p)d t . While weighted periodic orbits could be counted

using mixing properties of appropriate transfer operators there is an alternative
approach based on the trace formulae. The idea is to regard the transfer opera-
tor as an integral operator with kernel involving the delta function δ(y − f (x)).
Since the trace of an integral operator equals to the integral of the kernel on the
diagonal, in the present setting we get a weighted sum of periodic orbits. On
the other hand, if the transfer operator is quasi compact, then it can be split as
L = K +R, where K has finite rank and the spectral radius of R is smaller
than the essential spectral radius of L plus an an arbitrary small error. How-
ever, while the trace of K is well understood and is related to the resonances
of L , the trace of R could be infinite. Therefore, a significant work involving
additional approximations is required to related the poles of the zeta function
(the generating function of orbit counting) to the spectrum of L (cf. [3, 7, 62]).

Below I discuss some of the spectacular recent advances in this area which
rely heavily on the techniques of weighted Banach spaces. I will limit myself to
the flow case where the most significant progress have been achieved. Given
an Anosov flow g t and a smooth function φ, consider the generalized Ruelle
ζ-function

ζ
φ

R (z) =∏
τ

(1−eφ`(τ)−z`(τ))−1 = exp

[
−∑

τ

∑
m

1

m
emφ`(τ)−m`(τ)

]
,

where the product is over the prime periodic orbits and `(τ) is the period of τ.
This includes the classical Ruelle zeta function ζR (z) = ∏

τ
(1− e−z`(τ))−1 corre-

sponding to φ= 0.

It was shown in the work of Fried [39] that if g t is analytic then ζ
φ

R (z) admits
a meromorphic extension to the whole complex plane. This result was extended
to C∞ flows in [43] and [32]. For example, [43] utilizes Gouëzel–Liverani type

Banach spaces to show that if g t is C r then ζ
φ

R admits a meromorphic extension
to a strip

ℜ(z) > P (φ, g 1)− c

[
r −1

2

]
where the constant c is determined by the Anosov splitting and [·] denotes the

integer part. Moreover, poles and zeroes of ζ
φ

R have spectral interpretation as
the eigenvalues of appropriate transfer operators acting on forms in even and
odd dimensions.

Once meromorphic continuation is established, one can ask about the prop-
erties of zeta functions and and their relations to the topology of the phase
space. In this direction it is shown in [33] that if g t is a geodesic flow on a nega-
tively curved surface Q then Ruelle zeta function ζR vanishes at zero to the order
given by the absolute value of the Euler characteristic. Previously such result
was only known in constant curvature (see [39]) where one can use the relation
between Ruelle and Selberg zeta functions as well as Selberg Trace Formula.

JOURNAL OF MODERN DYNAMICS VOLUME 16, 2020, 351–371



366 DMITRY DOLGOPYAT

This result implies that for a negatively curved connected oriented Riemann-
ian surface, its length spectrum (that is, lengths of closed geodesics counted
with multiplicity) determines its genus. Remarkably, for hyperbolic three mani-
folds, the order of zero is not a topological invariant. Namely ([22]), this order
is equal to 4−2b1(Q) for constant curvature metrics and it is equal to 4−b1(Q)
for generic conformal perturbations of such metrics (here b1(Q) is the first Betti
number of Q).

The results mentioned above discuss the behavior of the zeta function near
zero. The behavior for large ℑ(z) including the numbers of zeroes and poles in
growing regions is also of considerable interest. In particular, the case where g t

is the geodesic flow on a unit tangent bundle over a negatively curved manifold
Q was discussed in the physics literature, since this system corresponds to the
motion of the classical particle on Q and one would like to see how this motion
reflects the behavior of the quantum counterpart. A significant progress in this
area has been achieved in the work of Faure–Tsujii (see [35]–[38]). Those papers
discuss contact Anosov flows (which includes geodesic flows on the unit tangent
bundles of negatively curved manifolds). The authors show that the spectra of
operators X +φ (which are infinitesimal analogues of (3.4)) have a band struc-
ture and the number of resonances in each band satisfies the (averaged) Weyl
Law. The strongest results pertain to the semiclassical zeta function

ζQ (z) = exp
[
−∑

τ

∑
m

e−zm`(τ)

m
√|det(I −Dm

τ )|
]

,

where Dτ is the transversal Jacobian matrix along a prime periodic orbit τ (this
function plays an important role in quantum chaos, see [54]). [37] shows that
there exists κ > 0 such that all zeroes of ζQ in the region ℜ(z) > −κ converge
to the imaginary axis. The authors also obtain a constructive estimate for the
spectral gap for Liouville measure. We refer the reader to [49] for an excellent in-
troduction to the field of dynamical resonances and the role played by weighted
Banach spaces in the recent developments.

We note that the precise description of the Ruelle spectrum is available in
only few special cases, including geodesic flows on manifolds of constant nega-
tive curvature where one can use Selberg trace formula (see [73]), linear pseudo
Anosov maps analyzed in [34], as well as some hyperbolic maps coming from
Blaschke products [75, 76].

3.3.3. Deviations of ergodic averages. The results of Section 2 provide a precise
control of ergodic sums and integrals for hyperbolic systems. In contrast, the be-
havior of ergodic integrals for parabolic systems where the deviations of nearby
orbits is only polynomial is understood only a few cases. One case where a lot of
information can be obtained is renormalizable systems. Namely, suppose that
a flow hs and a diffeomorphism f satisfy f nhs = han f n for some a > 1. Assume
further the distributions φ=φx,t given by

〈φ, A〉 =
∫t

0
A(hs x)d s(3.7)
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belongs to a suitable weighted Banach space for the renormalizing map f and
that correlation functions for observables in that space satisfy the asymptotic
expansion (1.5). Since

〈φ, A ◦ f n〉 = 1

an

∫an t

0
A(hs f n x)d s,

choosing t ∈ [1, a] and n such that t an = T , we obtain that∫T

0
A(hs x)d s =µ(A)+

Nε∑
k=1

Pk (lnT )T αk +O(T β+δ),

where αk = λk
ln a and β= min

( ρ
ln a ,1

)
, where ρ is the essential spectral radius of

the associated transfer operator. One can also handle the case where f expands
the orbit foliation of {hs} with different rates at different points by considering
a weighted transfer operator.

However, in order to get a small essential spectral radius one usually needs
to impose a smoothness assumption in the unstable direction which rules out
the observables given by (3.7). Instead one can accommodate observables of
the form

〈ψ, A〉 =
∫∞

−∞
Θ(s)A(hs x)d s,(3.8)

where Θ is a smooth compactly supported function. A method to overcome this
difficulty was recently developed in [42], where the authors decompose the ob-
servable (3.7) into a infinite sum of observables satisfying (3.8). It turns out that
the resonances λk in (1.5) leading to αk > 0 correspond to deviations of ergodic
sums while the resonances leading to αk ≤ 0 are responsible for obstructions
for having smooth solutions to the cohomological equation.

This provides a correspondence between the resonances of the renormalizing
map and the deviations exponents of the renormalized flow, which opens a
fruitful interaction between hyperbolic and parabolic dynamics. A sample of
papers exploring this connection includes [8, 17, 40, 41, 34], but this is a very
active research area and many new results could be expected soon.

4. CONCLUSION

Sebastien Gouëzel made significant contribution to dynamics by developing
new tools to put probabilistic and geometric intuition into a firm analytic frame-
work. His methods already brought spectacular applications to geometry and
group theory and they are playing a central role in several current investiga-
tions. The present survey provides a very brief overview of some of the ideas
behind those developments and I urge the readers to study the original papers
for deeper insights.

Acknowledgments. The author thanks Giovanni Forni for careful reading of the
manuscript and numerous suggestions for improving the exposition.
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