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ABSTRACT

The deep learning approach to detecting malicious software (mal-
ware) is promising but has yet to tackle the problem of dataset
shift, namely that the joint distribution of examples and their labels
associated with the test set is different from that of the training set.
This problem causes the degradation of deep learning models with-
out users’ notice. In order to alleviate the problem, one approach
is to let a classifier not only predict the label on a given example
but also present its uncertainty (or confidence) on the predicted
label, whereby a defender can decide whether to use the predicted
label or not. While intuitive and clearly important, the capabilities
and limitations of this approach have not been well understood. In
this paper, we conduct an empirical study to evaluate the quality
of predictive uncertainties of malware detectors. Specifically, we
re-design and build 24 Android malware detectors (by transforming
four off-the-shelf detectors with six calibration methods) and quan-
tify their uncertainties with nine metrics, including three metrics
dealing with data imbalance. Our main findings are: (i) predictive
uncertainty indeed helps achieve reliable malware detection in the
presence of dataset shift, but cannot cope with adversarial evasion
attacks; (ii) approximate Bayesian methods are promising to cali-
brate and generalize malware detectors to deal with dataset shift,
but cannot cope with adversarial evasion attacks; (iii) adversarial
evasion attacks can render calibration methods useless, and it is
an open problem to quantify the uncertainty associated with the
predicted labels of adversarial examples (i.e., it is not effective to
use predictive uncertainty to detect adversarial examples).
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1 INTRODUCTION

Malware is a big threat to cybersecurity. Despite tremendous efforts,
communities still suffer from this problem because the number of
malware examples consistently increases. For example, Kaspersky
[24] detected 21.6 million unique malware in 2018, 24.6 million in
2019, and 33.4 million in 2020. This highlights the necessity of au-
tomating malware detection via machine learning techniques [48].
However, a fundamental assumption made by machine learning
is that the training data distribution and the test data distribution
are identical. In practice, this assumption is often invalid because
of the dataset shift problem [37]. Note that dataset shift is related
to, but different from, the concept drift problem, which emphasizes
that the conditional distribution of the labels conditioned on the
input associated with the test data is different from its counterpart
associated with the training data [46]. While some people use these
two terms interchangeably [28, 50], we choose to use dataset shift
because it is a broader concept than concept drift.

Several approaches have been proposed for alleviating the dataset
shift problem, such as: periodically retraining malware detectors
[10, 47], extracting invariant features [49], and detecting example
anomalies [20]. One fundamental open problem is to quantify the
uncertainty that is inherent to the outcomes of malware detectors
(or the confidence a detector has in its prediction). A well-calibrated
uncertainty indicates the potential risk of the accuracy decrease
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and enables malware analysts to conduct informative decisions (i.e.,
using the predicted label or not). One may argue that a deep learn-
ing model associates its label space with a probability distribution.
However, this “as is” method is poorly calibrated and causes poor
uncertainty estimates [18]. This problem has motivated researchers
to propose multiple methods to calibrate the probabilities, such
as: variational Bayesian inference [6], Monte Carlo dropout [15],
stochastic gradient MCMC [45], and non-Bayesian methods such
as ensemble [25]. Quantifying the uncertainty associated with pre-
dicted labels (i.e., predictive uncertainty) in the presence of dataset
shift has received a due amount of attention in the context of image
classification [6, 25], medical diagnoses [26], and natural language
processing [39], but not in the context of malware detection. This
motivates us to answer the question in the title.

Our contributions. In this paper, we empirically quantify the pre-
dictive uncertainty of 24 deep learning-based Android malware
detectors. These detectors correspond to combinations of four mal-
ware detectors, which include two multiple layer perceptron based
methods (i.e., DeepDrebin [17] and MultimodalNN [22]) and one
convolutional neural network based method (DeepDroid [30]), and
the recurrent neural network based method (Droidetec [29]); and
six calibration methods, which are vanilla (no effort made for cali-
bration), temperature scaling [18], Monte Carlo (MC) dropout [15],
Variational Bayesian Inference (VBI) [39], deep ensemble [25] and
its weighted version. The vanilla and temperature scaling calibra-
tion methods belong to the post-hoc strategy, while the others are
ad-hoc and require us to transform the layers of an original neural
network in a principled manner (e.g., sampling parameters from a
learned distribution). In order to evaluate the quality of predictive
uncertainty on imbalanced datasets, we propose useful variants of
three standard metrics.

By applying the aforementioned 24 malware detectors to three
Android malware datasets, we draw the following insights: (i) We
can leverage predictive uncertainty to achieve reliable malware de-
tection in the presence of dataset shift to some extent, while noting
that a defender should trust the predicted labels with uncertainty
below a certain threshold. (ii) Approximate Bayesian methods are
promising to calibrate and generalize malware detectors to deal
with dataset shift. (iii) Adversarial evasion attacks can render cali-
bration methods useless and thus the predictive uncertainty.

We have made the code of our framework publicly available
at https://github.com/deqangss/malware-uncertainty. It is worth
mentioning that after the present paper is accepted, we became
aware of a preprint [32], which investigates how to leverage predic-
tive uncertainty to deal with false positives of Windows malware
detectors, rather than dealing with dataset shift issues.

2 PROBLEM STATEMENT
2.1 Android Apps and Malware Detection

Since Android malware is a major problem and deep learning is
a promising technique, our empirical study focuses on Android
malware detection. Recall that an Android Package Kit (APK) is a
zipped file that mainly contains: (i) AndroidManifest.xml, which de-
clares various kinds of attributes about the APK (e.g., package name,
required permissions, activities, services, hardware); (ii) classes.dex,
which contains the APK’s functionalities that can be understood by
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the Java virtual machines (e.g., Android Runtime); (iii) res folder and
resources.arsc, which contain the resources used by an APK; (iv) lib
folder, which contains the native binaries compatible to different
Central Processing Unit (CPU) architectures (e.g., ARM and x86);
(v) META-INF folder, which contains the signatures of an APK. For
analysis purposes, one can unzip an APK to obtain its files in the
binary format, or disassemble an APK by using an appropriate tool
(e.g., Apktool [42] and Androguard [13]), to obtain human-readable
codes and manifest data (e.g., AndroidManifest.xml).

A malware detector is often modeled as a supervised binary
classifier that labels an example as benign (‘0’) or malicious (‘1’).
Let Z denote the example space (i.e., consisting of benign and
malicious software) and Y/ = {0, 1} denote the label space. Let
p*(z,y) = p*(ylz)p*(z) denote the underlying joint distribution,
where z € Z and y € Y. The task of malware detection deals with
the conditional distribution p*(y|z). Specifically, given a software
sample z € Z, we consider Deep Neural Network (DNN) p(y =
1|z, 6), which uses the sigmoid function in its output layer, to model
p*(y|z), where 6 represents the learnable parameters. A detector
denoted by f : Z — Y, which consists of DNNs and is learned
from the training set Dyygin, returns 1 if p(y = 1|z,0) > 0.5 and 0
otherwise. We obtain p(y = 0|z) = 1 — p(y = 1|z, §). Moreover, let
p’(x, y) denote the underlying distribution of test dataset Dyes;-

2.2 Problem Statement

There are two kinds of uncertainty associated with machine learn-
ing: epistemic vs. aleatoric [39]. The epistemic uncertainty tells us
about which region of the input space is not perceived by a model
[5]. That is, a data sample in the dense region will get a low epis-
temic uncertainty and get a high epistemic uncertainty in the sparse
region. On the other hand, the aleatoric uncertainty is triggered by
data noises and is not investigated in this paper.

It is widely assumed that p’(z,y) = p*(z,y) in malware detec-
tion and in the broader context of machine learning. However, this
assumption does not hold in the presence of dataset shift, which re-
flects non-stationary environments (e.g., data distribution changed
over time or the presence of adversarial evasion attacks) [37]. Most
dataset shifts possibly incur changes in terms of epistemic un-
certainty (excluding label flipping or concept of input z changed
thoroughly). We consider three settings that potentially trigger the
p'(z,y) # p*(z,y):

o Out of source: The Dyes; and Dy rqipn are drawn from different
sources [12].

o Temporal covariate shift: The test data or p’(z) evolves over
time [35].

o Adversarial evasion attack: The test data is manipulated ad-
versarially; i.e., (z',y = 1) ~ p’(z,y = 1) is perturbed from
(z,y = 1) ~ p*(z,y = 1), where z’ and z have the same
functionality and ‘~’ denotes “is sampled from” [27].

One approach to coping with these kinds of dataset shifts is to make
a malware detector additionally quantify the uncertainty associated
with a prediction so that a decision-maker decides whether to use
the prediction [25, 39, 44]. This means that a detector p(y|z, 0)
should be able to model p*(y|z) well while predicting examples z
of (z,y) ~ p’(z,y) with high uncertainties when (z,y) ~ p*(z,y),
where ~ denotes “does not obey the distribution of”. Specifically, the
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quality of prediction uncertainty can be assessed by their confidence
scores. This can be achieved by leveraging the notion of calibration
[25]. A malware detector is said to be well-calibrated if the detector
returns a same confidence score g € [0, 1] for a set of test examples
Zg S Z, in which the malware examples are distributed as g
[43]. Formally, let Pr(y = 1|Z4) denote the proportion of malware
examples in the set Z; that are indeed malicious. We have

DEFINITION 1 (WELL-CALIBRATED MALWARE DETECTOR, ADAPTED
FROM [43]). A probabilistic malware detector p(-,0) : Z — [0,1] is
well-calibrated if for each confidence q € [0,1] and Zg = {z : p(y =
1lz,0) = q,Vz € Z}, it holds that Pr(y = 1|Zy) = q.

Note that Definition 1 means that for a well-calibrated detector,
the fraction of malware examples in example set Zg is indeed g. This
means that we can use q as a confidence score for quantifying un-
certainty when assessing the trustworthiness of a detector’s predic-
tions. This also implies that detection accuracy and well-calibration
are two different concepts. This is so because an accurate detector is
not necessarily well-calibrated (e.g., when correct predictions with
confidence scores near 0.5). Moreover, a well-calibrated malware
detector is also not necessarily accurate.

It would be ideal if we can rigorously quantify or prove the un-
certainty (or bounds) associated with a malware detector. However,
this turns out to be a big challenge that has yet to be tackled. This
motivates us to conduct an empirical study to characterize the un-
certainty associated with Android malware detectors. Hopefully
the empirical findings will contribute to theoretical breakthrough
in the near future.

Specifically, our empirical study is centered at the question in
title, which is further disintegrated as four Research Questions
(RQs) as follows:

e RQ1: What is the predictive uncertainty of malware detec-
tors in the absence of dataset shift?

e RQ2: What is the predictive uncertainty of malware detec-
tors with respect to out-of-source examples?

e RQ3: What is the predictive uncertainty of malware detec-
tors under temporal covariate shift?

e RQ4: What is the predictive uncertainty of malware detec-
tors under adversarial evasion attacks?

Towards answering these questions, we need to empirically study
the predictive distribution p(y|z, ) of malware detectors in a num-
ber of scenarios.

3 EMPIRICAL ANALYSIS METHODOLOGY

In order to design a competent methodology, we need to select
malware detector that are accurate in detecting malware, select the
calibration methods that are appropriate for these detectors, and
metrics. This is important because a “blindly” designed method-
ology would suffer from incompatibility issues (e.g., integrating
different feature extractions modularly, or integrating post- and
ad-hoc calibration methods together). The methodology will be de-
signed in a modular way so that it can be extended to accommodate
other models or calibration methods in a plug-and-play fashion.
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3.1 Selecting Candidate Detectors

We focus on deep learning based Android malware detectors and
more specifically choose the following four Android malware de-
tectors.

DeepDrebin [17]: It is a Multiple Layer Perceptron (MLP)-based
malware detector learned from the Drebin features [4], which are
extracted from the AndroidManifest.xml file and the classes.dex file
reviewed above. These features are represented by binary vectors,
with each element indicating the presence or absence of a feature.
MultimodalNN [22]: It is a multimodal detector that contains
five headers and an integrated part, all of which are realized by
MLP. The 5 headers respectively learn from 5 kinds of features:
(i) permission-component-environment features extracted from the
manifest file; (ii) strings (e.g., IP address); (iii) system APIs; (iv)
Dalvik opcode; and (v) ARM opcodes from native binaries. These
features are represented by their occurrence frequencies. These 5
headers produce 5 pieces of high-level representations, which are
concatenated to pass through the integrated part for classification.
DeepDroid [30]: It is Convolutional Neural Network (CNN)-based
and uses the TextCNN architecture [23]. The features are Dalvik
opcode sequences of smali codes.

Droidetec [29] is an RNN-based malware detector with the archi-
tecture of Bi-directional Long Short Term Memory (Bi-LSTM) [41].
Droidetec partitions a Function Call Graph (FCG) into sequences
according to the caller-callee relation and then concatenates these
sequences for passing through the Bi-LSTM model.

These detectors leverage several types of deep learning models.
Indeed, we also implement an end-to-end method (R2-D2 [19]) and
find it ineffectiveness due to the over-fitting issue. Therefore, we
eliminate it from our study.

3.2 Selecting Calibration Methods

In order to select calibration methods to calibrate the malware
detectors, the following two criteria can be used: (i) they are known
to be effective and (ii) they are scalable for learning a deep learning
model. In particular, the preceding highlights the importance of
the computational complexity of a calibration method. Based on
a previous study [39], these criteria lead us to select the following
six methods.

Vanilla: It serves as a baseline and means that no effort is made to
calibrate a model p(y = 1|z, 0).

Temperature scaling (Temp scaling) [18]: It is a post-processing
method that learns extra parameters to scale the logits of deep
learning models on the validation set, where logits are the input of
the activation of sigmoid.

Monte Carlo dropout (MC dropout) [15]: It technically adds a
dropout layer [40] before the input of every layer contained in a
model. This dropout operation is performed in both the training
and test phases different from the normal usage that turns dropout
on in the training phase and off in the test phase. In theory, MC
dropout is an approximate Bayesian inference, which takes as input
an example z and marginalizes the parameters 0 out for returning
the predictive probability:

p(y = 112 Derain) = / 2y = 112.0pODerain)dd (1)
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Due to the intricate neural networks, an analytical solution to ob-
taining p(0|D¢rqin) is absent. One alternative is to approximate
p(0|D¢rain) via a known functional form distribution g(w) with
variables @, leading to p(ylz, Dirain) ® Eg(g)w)p(ylz, 0). Specifi-
cally, let 0 = {W; }le be the set of | parameters of a neural network,
MC dropout defines g(w) as:

W; = M; - V; with V; ~ Bernoulli(r;), 2)

where M; is learnable variables, entities of V; are sampled from
a Bernoulli distribution with the probability r; (i.e., dropout rate),
and w = {M;, ri}le. In the training phase, variational learning is
leveraged to look for {M; }5:1 [6, 16], which minimizes the Kullback-
Leibler (KL) divergence between p(0|D;rqin) and g(w). In the test
phase, Eq.(1) is degraded by averaging T(T > 0) models {6/ }szl
(each of which is sampled from g(w)), namely:

T
Py =112 = = 3 ply=11z0) ©
=

Eq.3 says p(y = 1|z) is obtained just by keeping the dropout
switched and averaging the results of T times predictions.
Variational Bayesian Inference (VBI) [39]: It is also an approxi-
mate Bayesian method. Distinguishing from MC dropout, the pa-
rameters 0 of neural network are directly sampled from a known
form distribution g(w) with variables w. That is

W ~ g(w) with W € 0 (4)

The training and test manner is the same as MC dropout.
Deep Ensemble [25]: It learns T independent neural networks,
which are diversified by randomly initialized parameters. The intu-
ition behind this idea is that dropout itself is an ensemble [40].
Weighted Deep Ensemble (wEnsemble): It has the same setting
as Deep Ensemble, except for the weighted voting

T

plylz) = > wiply = 1]z,0%) 5)
i=1

with w; > 0 and ZIT:1 w; = 1.

3.3 Calibrating Detectors

Figure 1 highlights our methodology in calibrating deep malware
detectors for answering the research questions mentioned above
(i.e., RQ1-RQ4). Each calibration method is calibrated into each of
the select detectors. The methodology has a training phase and a
testing phase. Each phase has five modules: preprocessing, layers
customization, deep neural network, ensemble wrapper, and model
post-processing, which are described below.

The preprocessing module transforms program files into the data
formats that can be processed by deep learning models, including
feature extraction and low-level feature representation. The layers
customization module modifies the layers of standard deep learn-
ing models to incorporate appropriate calibration methods, such
as placing a dropout layer before the input of the fully connected
layer, the convolutional layer, or the LSTM layer; sampling param-
eters from learnable distributions. The deep neural network module
constructs the deep learning models with the customized layers
mentioned above to process the preprocessed data for training or
testing purposes. The ensemble wrapper module uses an ensemble of
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Figure 1: Our methodology for calibrating deep malware
detectors to answer the aforementioned RQ1-RQ4, where
dashed boxes indicate that the modules may not be neces-
sary for some calibration methods. In the training phase, we
learn the calibrated malware detectors. In the test phase, pre-
dicted probabilities (with weights if applicable) are obtained.

deep learning models in the training and testing phases according
to the incorporated calibration method. In this module, we load
basic block models sequentially in the training and test phases for
relieving the memory complexity. The model post-processing module
copes with the requirements of post-hoc calibration methods. The
input to this module is the detector’s output (i.e., predicted prob-
ability that a file belongs to which class) and a validation dataset
(which is a fraction of data sampled from the same distribution as
the training set). This means that this module does not affect the
parameters 6 of neural networks.

3.4 Selecting Metrics

In order to quantify the predictive uncertainty of a calibrated de-
tector, we need to use a test dataset, denoted by D;¢s;, and some
metrics. In order to make the methodology widely applicable, we
consider two scenarios: the ground-truth labels of testing dataset
are available vs. are not available. It is important to make this dis-
tinction is important because ground-truth labels, when available,
can be used to validate the trustworthiness of detectors’ predictive
uncertainties. However, ground-truth labels are often hard to costly
to obtain, which motivates us to accommodate this more realis-
tic scenario. This is relevant because even if the detector trainer
may have access to ground-truth labels when learning detectors,
these ground-truth labels may not be available to those that aim to
quantify the detectors’ uncertainties in making predictions.

3.4.1 Selecting Metrics When Ground-Truth Labels Are Given. There
are standard metrics that can be applied for this purpose. However,
these metrics treat each example as equally important and are in-
sensitive to data imbalance, which is often encountered in malware
detection. This prompts us to propose variants of standard metrics
to deal with the issue of data imbalance. Specifically, we use the
following three predictive uncertainty metrics, which are applicable
when ground-truth labels are known.

The first standard metric is known as Negative Log-Likelihood
(NLL), which are commonly used as a loss function for training
a model and intuitively measure the goodness of a model fitting
the dataset [9]. A smaller NLL value means a better calibration.
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Formally, this metric is defined as:

E(z,y)eD;esr = (ylogp(y = 1]2,0) + (1 = y) log(1 - p(y = 1|2,0))) .

In order to deal with imbalanced data, we propose using the follow-
ing Variant dubbed Balanced NLL (bNLL), which is formally defined

as: \y\ Zlyl NLL(D: +)» Where NLL(D: ;) is the expectation of

negative log-likelihood on the test set D, of class i, i € {0,1}.
bNLL treats each class equally important, while NLL treats each
sample equally.

The second standard metric is known as Brier Score Error (BSE),
which measures the accuracy of probabilistic predictions [7, 39].
A smaller BSE value means a better calibration. This metric is
formally defined as: E(; y)ep,.,, (¥ — p(y = 1z, 0))?. In order to
deal with imbalanced data, we propose using the following vari-
ant dubbed balanced BSE (bBSE), which is formally defined as:

|~V| Zl‘yl Brler(Dtest) where Brler(Dtes

BSE on the test set D;est of class i, i € {0,1}.

The third standard metric is known as Expected Calibration Error
(ECE), which also measures accuracy of predicted probabilities yet
in a fine-grained manner [31]. A smaller ECE value means a better
calibration. Formally, this metric is defined as follows. Given S

tes tes

;) is the expectation of

buckets corresponding to quantiles of the probabilities {p; }l 1> the
ECE is defined as
5\ B
ECE = SZ_; ﬁs| Pr(y = 1|B) — conf(Bs)|, (6)
where with a little abuse of notation, Bs = {(z,y) € Drest :

ply = 1|z,0) € (ps, ps+1]} is the number of examples in bucket
s, Pr(y = 1|Bs) = |Bs|™! 2(z,y)eB, [y = 1] is the fraction of ma-
licious examples, conf(Bs) = |Bs|™! X(zy)eB, Py = 1]z, 0), and
N = |D¢est|. The ECE metric suffers from imbalanced data be-
cause the majority class dominates some bins owing to the weights
Bs/N. In order to deal with imbalanced data, we propose using
the following variant, dubbed Unweighted ECE (uECE), which is
formally defined as follows.

S
1
UECE = Z 5| Px(y = 1[B) — conf(B)].
s=1

3.4.2 Selecting Metrics When Ground-Truth Labels Are Not Given.
There are three metrics [21, 25, 34] that can be applied to quantify
predictive uncertainty in the absence of ground-truth labels. These
metrics are applied to a point (i.e., expectation is not considered),
which indicates these metrics do not suffer from the imbalanced
dataset.

The first metric is known as Entropy, which intuitively measure
a state of disorder in a physical system [21]. A larger entropy value
means a higher uncertainty; Formally, this metric is defined as:

—(p(ylz. 0) log p(ylz, ) + (1 = p(ylz, 6)) log(1 - p(ylz,0))),  (7)

where p(y|z, 0) denotes the model output p(y = 1|z, 0) or Eq.(3).
The second metric is known as Standard Deviation (SD), which

intuitively measures the inconsistency between the base classi-

fiers and the ensemble one [34]. A larger SD value means a higher
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uncertainty. Formally, this metric is defined as:

T
77 2w (p(ylz.01) ~ p(ylz.6))°,
i=1

where 6% denotes the i-th DNN model, which has a weight w; (ref.
Eq.(5)) or w; = 1/T.

The third metric is known as the KL divergence, which is an
alternative to SD [25]. A larger KL value means a higher uncertainty.
Formally, this metric is defined as:

T
D wilKL(p(ylz, 0")l[p(ylz, 0))),

i=1
where KL denotes the Kullback-Leibler divergence.

3.5 Answering ROQs

At this point, one can apply the calibrated detectors to quantify their
predictive uncertainties. It should be clear that this methodology
can be adopted or adapted by other researchers to conduct empirical
studies with more kinds of detectors and more metrics.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Experimental setup

We implement the framework using TensorFlow [2] and TensorFlow
Probability libraries [1] and run experiments on a CUDA-enabled
GTX 2080 Ti GPU. We below detail datasets and hyperparameters.

4.1.1 Datasets. We use 3 widely-used Android datasets: Drebin
[4], VirusShare [11], and Androzoo [3].

Drebin: The Drebin dataset is built before the year of 2013 and is
prepossessed by a recent study [27], which relabels the APKs using
the VirusTotal service [38] that contains more than 70 antivirus
scanners. An APK is treated as malicious if four or more scanners
say it is malicious, and benign if no scanners say it is malicious;
theoretical justification of such heuristic but widely-used practice
has yet to be made [14]. The resultant Drebin dataset contains 5,560
malicious APKs and 42,333 benign APKs.

VirusShare: VirusShare is a repository of potential malware. We
chose the APKs collected in 2013 and treat this dataset as out-of-
source in regards to the Drebin dataset. These APKs are labeled
using the same fashion as the Drebin dataset, producing 12,383
malicious APKs and 340 benign APKs, while throwing away the
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Figure 2: The Androzoo examples of APKs with time [35].



ACSAC °21, December 6-10, 2021, Virtual Event, USA

469 APKs in the grey area (i.e., at least one, but at most three,
scanners say they are malicious).

Androzoo: Androzoo is an APK repository, including over 10 mil-
lion examples, along with their VirusTotal reports. These APKs were
crawled from the known markets (e.g., Google Play, AppChina).
Following a previous study [35], we use a subset of these APKs
spanning from January 2014 to December 2016, which includes
12,735 malicious examples and 116,993 benign examples. Figure 2
plots the monthly distribution of these examples with time [35].

4.1.2  Hyper-parameters. We present the hyper-parameters for mal-
ware detectors and then for calibration methods.

DeepDrebin [17] is an MLP, consisting of two fully-connected
hidden layers, each with 200 neurons.

MultimodalNN [22] has five headers and an integrated part, where
each header consists of two fully-connected layers of 500 neurons.
The integrated part consists of two fully-connected layers of 200
neurons.

DeepDroid [30] has an embedding layer, followed by a convolu-
tional layer and two fully-connected layers. The vocabulary of the
embedding layer has 256 words, which correspond to 256 Dalvik
opcodes; the embedding dimension is 8; the convolutional layer has
the kernels of size 8x8 with 64 kernels; the fully-connected layer
has 200 neurons. Limited by the GPU memory, DeepDroid can only
deal with a maximum sequence of length 700,000, meaning that
APKs with longer opcode sequences are truncated and APKs with
shorter opcode sequences are padded with 0’s (which correspond
to nop).

Droidetec [29] has an embedding layer with vocabulary size 100,000
and embedding dimension 8, the bi-directional LSTM layer with 64
units, and a fully-connected hidden layer with 200 neurons. Droide-
tec allows the maximum length of API sequence 100,000. We further
clip the gradient values into the range of [-100, 100] for Droidetec
in case of gradient explosion.

All models mentioned above use the ReLU activation function.
We also place a dropout layer with a dropout rate 0.4 before the
last fully-connected layer (i.e., the output layer). We implement
the four malware detectors by ourselves. The hyperparameters of
calibration methods are detailed below.

Vanilla and Temp scaling: We have the same settings as the mal-
ware detectors mentioned above.

MC dropout: We use a dropout layer with a dropout rate 0.4. We
add the dropout layer into the fully-connected layer, convolutional
layer, and the LSTM layer, respectively. Following a recent study
[39], we neglect the {5 regularization that could decline the detec-
tion accuracy. In the test phase, we sample 10 predictions for each
example.

VBI: We sample the parameters of the fully-connected layer or
the convolutional layer (i.e., weights and bias) from Gaussian dis-
tributions. A Gaussian distribution has the variables (mean and
standard deviation), which are learned via back propagation using
the reparameterization technique [6]. We do not implement VBI for
Bi-LSTM, due to the effectiveness issue [39, 44]. This means only
the last layer of Droidetec is calibrated by VBI. In the test phase,
we sample 10 predictions for each example.

Ensemble and wEnsemble: We learn 10 base instances for each
ensemble-based method.
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We learn these models using the Adam optimizer with 30 epochs,
batch size 16, and learning rate 0.001. A model is selected for evalu-
ation when it achieves the highest accuracy on the validation set in
the training phase. In addition, we calculate the validation accuracy
at the end of each epoch.

4.2 Answering RQ1

In order to quantify the predictive uncertainty of malware detectors
in the absence of dataset shift, we learn the aforementioned 24
malware detectors on the Drebin dataset, by splitting it into three
disjoint sets of 60% for training, 20% for validation, and 20% for
testing.

Table 1 summarizes the results, including detection estimation us-
ing the metrics False Negative Rate (FNR), False Positive Rate (FPR),
Accuracy (Acc) or percentage of detecting benign and malicious
samples correctly, balanced Accuracy (bAcc) [8] and F1 score [36],
and uncertainty evaluation using the metrics NLL, bNLL, BSE, bBSE,
ECE, and uECE. We make four observations. First, Temp scaling
achieves the same detection accuracy as its vanilla model because it
is a post-processing method without changing the learned parame-
ters. On the other hand, MC dropout, Ensemble and wEnsemble im-
prove detection accuracy but VBI degrades detection accuracy some-
what when compared with the vanilla model. In terms of balanced
accuracy, the calibration methods do not always improve detection
accuracy because the vanilla MultimodalNN actually achieves the
highest balanced accuracy 98.61% among all those detectors. The
reason may be that MultimodalNN itself is an ensemble model (e.g.,
5 headers are equipped).

Second, ensemble methods (i.e., Ensemble and wEnsemble) re-
duce the calibration error when compared with the respective
vanilla models. Moreover, the two ensemble methods exceed the
other calibration methods in terms of the NLL, BSE and bBSE met-
rics, except for DeepDrebin (suggesting MC Dropout is best for
calibration). Third, the measurements of the balanced metrics are
notably larger than their imbalanced counterparts (e.g., bNLL vs.
NLL), because benign examples dominate the test set and malware
detectors predict benign examples more accurately than predicting
malicious ones.

Fourth, uECE shows inconsistent results in terms of bNLL and
bBSE. In order to understand the reasons, we plot the reliability dia-
gram [33], which demonstrates the difference between the fraction
of malicious examples in each bin, namely the difference between
the Pr(y = 1|Bs) in Eq.(6) and the mean of the predicted confi-
dence conf(Bs). Figure 3 plots the results of the vanilla malware
detectors, along with the number of examples in the bins. Figure 3a
shows that most examples belong to bins B; and Bs. Figure 3b says
DeepDroid achieves the lowest error (because it is closest to the
diagonal than others), and shall be best calibrated, which contracts
the ECE values in Table 1 (demonstrating that MultimodalNN is
best instead). This is because as shown in Figure 3a, most benign
examples belong to bin By and most malicious examples belong to
bin Bs. As a comparison, uECE does not suffer from this issue.

INsiGHT 1. Calibration methods reduce malware detection uncer-
tainty; variational Bayesian inference degrades detection accuracy
and F1 score in the absence of dataset shift; balanced metrics (i.e.,
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Table 1: Detection estimation and uncertainty evaluation of calibrated malware detectors in the absence of dataset shift.

Malware ‘ Calibration ‘ Detection estimation (%) ‘ Uncertainty evaluation
detector | method " |'pNR FPR  Acc  bAcc  FI | NLL bNLL | BSE bBSE | ECE uECE
Vanilla 390 031 99.28 9790 96.84 | 0.100 0.329 | 0.007 0.020 | 0.006 0.104
Temp scaling | 3.90 031 99.28 97.90 96.84 | 0.052 0.109 | 0.006 0.018 | 0.007 0.062
DeepDrebin MC Dropout | 345 032 9932 98.12 97.04 | 0.033 0.094 | 0.006 0.015 | 0.002 0.056
VBI 336 0.83 98.88 9791 9522 | 0.054 0.094 | 0.009 0.016 | 0.012 0.102
Ensemble 3.99 0.19 99.37 9791 97.24 | 0.063 0.211 | 0.005 0.018 | 0.005 0.160
wEnsemble 399 0.20 9936 9790 97.20 | 0.058 0.190 | 0.005 0.018 | 0.004 0.095
Vanilla 216 0.63 99.20 98.61 96.58 | 0.087 0.207 | 0.007 0.013 | 0.007 0.162
Temp scaling | 2.16 0.63 99.20 98.61 96.58 | 0.053 0.086 | 0.007 0.012 | 0.010 0.182
MultimodalNN MC Dropout | 2.97 039 9931 9832 97.03 | 0.077 0.225 | 0.005 0.014 | 0.003 0.072
VBI 8.45 033 98.73 9561 9435 | 0.073 0.253 | 0.010 0.036 | 0.004 0.078
Ensemble 252 039 9936 98.55 97.26 | 0.063 0.188 | 0.005 0.012 | 0.004 0.144
wEnsemble 288 0.26 99.44 98.43 97.56 | 0.046 0.153 | 0.005 0.013 | 0.002 0.045
Vanilla 8.53 0.69 98.41 9539 9299 | 0.097 0.311 | 0.013 0.039 | 0.009 0.059
Temp scaling | 8.53 0.69 98.41 9539 92.99 | 0.076 0.220 | 0.013 0.038 | 0.002 0.023
DeepDroid MC Dropout | 7.62 0.66 9854 9586 93.57 | 0.078 0.239 | 0.012 0.035 | 0.004 0.055
VBI 12.7 035 9822 9347 91.88 | 0.084 0.305 | 0.014 0.052 | 0.010 0.092
Ensemble 744 0.11 99.05 96.23 95.73 | 0.049 0.171 | 0.008 0.029 | 0.006 0.162
wEnsemble 499 0.27 99.18 97.37 96.41 | 0.050 0.131 | 0.007 0.022 | 0.008 0.066
Vanilla 414 153 98.17 97.17 9230 | 0.119 0.208 | 0.016 0.026 | 0.014 0.205
Temp scaling | 4.14 1.53 98.17 97.17 9230 | 0.101 0.167 | 0.016 0.026 | 0.015 0.180
Droidetec MC Dropout | 3.03 140 9841 97.78 93.32 | 0.088 0.142 | 0.014 0.020 | 0.013 0.207
VBI 3.22 1.67 98.15 9755 9229 | 0.118 0.202 | 0.015 0.022 | 0.015 0.262
Ensemble 3.13 0.75 9898 98.06 95.60 | 0.055 0.107 | 0.009 0.016 | 0.010 0.143
wEnsemble 349 0.59 99.07 9796 9598 | 0.046 0.101 | 0.007 0.016 | 0.008 0.116
8e3 " : 1.0 datasets obtained after removing the examples for which the de-
\ —~ DeepDrebin 8o. tectors are uncertain (i.e., with an entropy value above a threshold
L MultimodalNN | 2 08 ’ Py
g6e3 “ -~ DeepDroid 0.6 7); this corresponds to the real-world usefulness of quantifying
g4e3 \ ..=- Droidetec “go . predictive uncertainty (i.e., discarding prediction results for which
s \ N detector is uncertain).
% 2e3 “ A 502 Table 2 summarizes the uncertainty evaluation and the cor-
000 5=F-5 5. B BZ—B;B;B;, 08% 03 04 0% 08 10 responding detection accuracy. We make three observations. (i)

Benware Malware Mean of predicted value

(a) # of examples per bin. (b) Reliability diagram
Figure 3: Reliability diagram of vanilla malware detectors.
There are 5 bins By, . . ., B; and “Benware” denotes the benign
software.

bDNLL, bBSE and uECE) are more sensitive than their imbalanced
counterparts (i.e., NLL, BSE and ECE) when data imbalance is present.

4.3 Answering RQ2

In order to quantify the predictive uncertainty of malware detec-
tors with respect to out-of-source examples, we apply the Drebin
malware detectors to the VirusShare dataset. We assess predictive
distribution and report the accuracy of malware detectors on the
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Malware detectors achieve low accuracy with out-of-source test
examples. Nevertheless, DeepDrebin incorporating VBI obtain an
accuracy of 82.69%, which notably outperforms other detectors. It is
reminding that VBI hinders the detection accuracy in the absence of
dataset shift. (ii) Calibration methods (e.g., VBI or Ensemble) reduce
the uncertainty in terms of bNLL and bBSE when compared with
the vanilla models, except for the MultimodaINN model incorporat-
ing MC dropout. (iii) DeepDrebin incorporating VBI also achieves
the best calibration results, suggesting that VBI benefits from both
regularization and calibration. On the other hand, DeepDroid and
Droidetec suffer from the setting of out of source. Both models han-
dle the very long sequential data that would be truncated due to
the limited GPU memory, leading to the inferior results.

Figure 4 illustrates the density of predictive entropy. Figure 4b
further shows the accuracy on the examples after removing the ones
for which the detectors are uncertain about their predictions. We
make the following observations. (i) The vanilla models return zero
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Figure 4: Predictive entropy (see Eq.(7)) of malware detectors trained on the Drebin dataset and tested on the VirusShare: (a)
histogram of predictive entropy; (b) accuracy on the dataset after excluding the examples for which the detector has high
uncertainties (i.e., the examples for which the predictive entropy is above a pre-determined threshold 7), which corresponds
to the real-world use of the quantified predictive uncertainty.

Table 2: Predictive uncertainty of malware detectors that are VvBI VBI
learned on the Drebin dataset and tested on the VirusShare.

‘ Calibration ‘ Detection(%)

Uncertainty evaluation

| method 1 "ac bAce NLL bNLL|BSE bBSE | ECE uECE
_ | Vanilla 63.96 7759|552 3.58 [0.35 0.21 |0.359 0.483 Ensemble
‘8 | Temp scaling | 63.96 77.59 | 1.65 1.39 | 0.31 0.19 | 0.363 0.468
é‘) MC Dropout | 74.39 83.53|1.48 0.95 |0.20 0.13 | 0.274 0.463
& | VBI 82.69 87.07|0.64 0.52 |0.13 0.10 | 0.210 0.434
8 Ensemble 61.76 78.04|3.43 2.15 (032 0.19 | 0.394 0.466 g
>
wEnsemble |59.49 76.59|3.08 1.79 |0.32 0.19 |0.397 0.469 S 0.2
3 ;
o5 . g i
Z, | Vanilla 69.02 80.48|4.05 259|029 0.18 |0.306 0.463 * %% 02 02 06 08 10 °%% 02 07 06 08 1o
% Temp scaling | 69.02 80.48 | 1.45 1.13 [ 0.25 0.17 | 0.303 0.464 Entropy Entropy
S | MC Dropout | 64.38 7838 | 4.61 2.58 [0.32 0.18 | 0.361 0.473
g . .
= | VB °8.17 77.2112.32 1.25 10.33 0.18 | 0.414 0478 Figure 5: Scatter points of the randomly selected 2,000 test
5 | Ensemble 72.66 82.20|2.24 1.34 [0.21 0.14 |0.279 0.450 . . .
= examples from the VirusShare dataset with paired values

wEnsemble |61.73 7774|221 126 [0.30 0.17 |0.379 0.471

(Entropy, KL) and (Entropy, SD) that are obtained by apply-

Vanilla 5285 7002|344 2111042 0.27 | 0463 0481 ing DeepDrebin incorporating VBI or Ensemble.

Temp scaling | 52.85 70.02 | 2.09 1.31 [0.39 0.25 | 0.460 0.477
MC Dropout |65.50 74.22|1.54 1.10 | 0.26 0.20 |0.338 0.465
VBI 56.57 72.65|2.44 146 |0.40 0.25 |0.476 0.475
Ensemble 56.57 72.65|1.78 1.12 |0.33 0.20 | 0.435 0.475
wEnsemble |64.11 74.22|1.22 1.00 |0.24 0.19 | 0.350 0.461

this situation notably. Considering that the higher entropy deliv-
ers more uncertainty, vanilla model is poorly calibrated regarding
the out-of-source examples. This is further confirmed that vanilla
models exhibit a limited change along with increasing thresholds
in Figure 4b. (ii) Ensemble and wEnsemble increase the robustness
of deep learning models in detecting out-of-source examples. For

DeepDroid

Vanilla 59.98 70.04|2.22 1.59 |0.34 0.253]0.389 0.476
Temp scaling | 59.98 70.04 | 1.66 1.20 | 0.32 0.235 | 0.390 0.476
MC Dropout | 64.99 72.61|1.57 1.33 |0.27 0.222|0.344 0.472

Droidetec

VBI 65.30 74.21|2.14 1.85 |0.27 0.210 |0.315 0.473
Ensemble 63.83 72.45|1.33 0.94 |0.24 0.185| 0343 0470 example, the MultimodalNN, DeepDroid, and Droidetec models can
wEnsemble | 62.26 71.64 | 1.50 1.23 |0.28 0219|0375 0.465 be enhanced by Ensemble and wEnsemble to some extent, espe-
cially when applied to predicting the examples with entropy values
below 0.3 (i.e., the detectors are relatively certain about their pre-
dictions). (iii) DeepDrebin incorporating either VBI or MC dropout
entropy value for many examples, but calibration methods relieve make a significant achievement by comparing with ensemble-based
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Figure 6: Illustration of balanced accuracy (bAcc), balanced NLL (bNLL), balanced BSE (bBSE) under temporal covariate shift.
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Figure 7: Predictive entropy (see Eq.(7)) of malware detectors on Androzoo dataset: (a) accuracy (upper row) and bAccuracy
(bottom row) on the Androzoo test set after excluding the examples for which the detectors have high uncertainties (i.e., the
examples for which the predictive entropy is above a pre-determined threshold 7); (b) test sample density of predictive entropy.

calibrations. Because VBI requires suitable prior distributions, it is
challenging to generalize this calibration to all models effectively
[6]. (iv) Temp scaling demonstrates an un-intuitive phenomenon
that it achieves almost 100% accuracy at the start of the curves when
applied to DeepDrebin, MultimodalNN and Droidetec, but degrades
the accuracy of DeepDroid. The is because Temp scaling tends to
over-approximate the predicted probabilities, resulting in high con-
fidence score for examples, some of which are mis-classified, how-
ever. In addition, the balanced accuracy demonstrates the similar
experimental results (cf. the appendix materials for details).
Figure 5 plots the relationship between the entropy and the KL
divergence (KL), and the relationship between the entropy and the
Standard Deviation (SD). A scatter point represents a test example
based on the paired value. We observe that these three measure-
ments are closely related, which explains why we use the entropy
to characterize the predictive uncertainty solely. We only report
the results for the calibrated DeepDrebin with VBI and Ensemble,
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because similar phenomena are observed for the other models. Note
that Vanilla and Temp scaling do not apply to KL divergence and
standard deviation.

INSIGHT 2. Deep ensemble benefits calibration of malware detec-
tors against out-of-source test examples, but a carefully tuned VBI
model could achieve a higher quality of uncertainty than ensemble-
based methods; Measurements of entropy, KL divergence and standard
deviation are closely related.

4.4 Answering RQ3

In order to quantify the predictive uncertainty of malware detectors
under temporal covariate shift, we use Androzoo dataset. Specifi-
cally, we train malware detectors upon the APKs collected in the
year of 2014, and test these malware detectors upon APKs collected
in the year of 2015 and 2016 at the month granularity. We also split
the APKs in the year of 2014 into three disjoint datasets, 83.4% for
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Table 3: Effectiveness of calibrated malware detectors under adversarial evasion attacks.

Malware ‘ Calibration ‘ No attack “Max” PGDs+GDKDE attack ‘ Mimicry attack
detector | method |Acc (%) NLL BSE ECE |Acc(%) NLL BSE ECE |Acc(%) NLL BSE ECE
Vanilla 96.09 0.629 0.037 0.039| 0.00 33.22 1.000 1.000| 66.09 4.778 0.317 0.334
Temp Scaling 96.09 0.184 0.033 0.042| 0.00 7.015 0.985 0.992| 66.09 1.427 0.266 0.332
DeepDrebin MC Dropout | 96.55 0.186 0.029 0.040| 0.00 33.22 1.000 1.000| 69.18 1.639 0.245 0.317
VBI 96.27 0.142 0.025 0.051| 0.00 33.22 1.000 1.000| 69.91 1.034 0.211 0.320
Ensemble 96.00 0.403 0.034 0.042| 0.00 33.22 1.000 1.000| 64.82 3.296 0.295 0.363
wEnsemble 96.00 0.362 0.034 0.042| 0.00 33.22 1.000 1.000| 64.64 2.944 0.296 0.362
Vanilla 97.82 0.368 0.020 0.023| 0.00 33.22 1.000 1.000| 87.64 1.530 0.107 0.119
Temp scaling | 97.82 0.129 0.019 0.025| 0.00 8.871 0.996 0.998| 87.64 0.562 0.094 0.122
Multimo |MC Dropout | 97.18 0.399 0.024 0.030| 0.00 33.22 1.000 1.000 | 85.64 1.822 0.121 0.152
-daINN VBI 96.82 0.166 0.026 0.042| 0.00 33.22 1.000 1.000| 89.64 0.506 0.080 0.119
Ensemble 97.45 0.355 0.021 0.026 | 0.00 33.22 1.000 1.000| 88.09 1.148 0.091 0.129
wEnsemble 97.09 0.295 0.025 0.035| 0.00 33.22 1.000 1.000| 84.27 1.124 0.123 0.187
Vanilla 91.55 0.587 0.073 0.095| 85.45 0.773 0.116 0.148 | 86.09 0.786 0.110 0.142
Temp scaling | 91.55 0.404 0.069 0.113| 85.45 0.536 0.105 0.165| 86.09 0.538 0.101 0.158
DeepDroid MC Dropout | 92.55 0.451 0.066 0.097 | 93.55 0.273 0.048 0.074| 90.18 0.529 0.083 0.126
VBI 87.27 0.592 0.102 0.151| 84.00 0.592 0.117 0.180| 82.00 0.705 0.136 0.200
Ensemble 92.55 0.329 0.058 0.099 | 90.64 0.366 0.068 0.129 | 89.55 0.433 0.079 0.142
wEnsemble 95.00 0.237 0.040 0.069| 93.00 0.309 0.057 0.111| 92.82 0.348 0.061 0.111
Vanilla 98.08 0.123 0.016 0.028 | 66.03 2.331 0.298 0.341| 88.80 0.656 0.099 0.126
Temp Scaling 98.08 0.113 0.017 0.039| 66.03 1.717 0.285 0.345| 88.80 0.514 0.095 0.138
Droidetec MC Dropout | 98.81 0.063 0.009 0.018 | 67.30 2.066 0.272 0.330 | 93.17 0.268 0.052 0.090
VBI 98.54 0.095 0.012 0.016 | 71.31 1.996 0.250 0.292| 93.08 0.396 0.060 0.078
Ensemble 99.18 0.060 0.008 0.014| 80.87 0.657 0.138 0.215| 96.17 0.175 0.030 0.068
wEnsemble 99.00 0.048 0.008 0.015| 80.05 0.776 0.151 0.232| 95.90 0.156 0.029 0.066

training, 8.33% for validation (8.33% is the average percentage of
APKs emerging in each month of 2014), and 8.33% for testing.

Figure 6 plots the balanced accuracy (bAccuracy), balanced NLL
(bNLL) and balanced BSE (bBSE) under temporal covariate shift
(more results are presented in the appendix materials). We make the
following observations. (i) Malware detectors encounter a signifi-
cantly decreasing of accuracy and increasing of bNLL and bBSE with
newer test data. This can be attributed to the natural software evolu-
tion that Google gradually updates Android APIs and practitioners
upgrade their APKs to support new services. In particular, Droide-
tec suffer a lot from temporal covariate shift and exhibits a low
detection accuracy. As mentioned earlier, this may be that Droidetec
is permitted to learn from a limited number of APIs, which inhibits
handling the APKs with a broad range of APIs. (ii) Temp scaling
has the same effect as the vanilla model in terms of bAccuracy; En-
semble enhances the vanilla models (DeepDrebin, MultimodalNN,
and DeepDroid) at the start of several months but then this en-
hancement diminishes; VBI makes MultimodalNN to achieve the
highest robustness under data evolution (but only achieves ~80%
bAccuracy). (iii) Ensemble methods benefit calibration in terms of
bNLL and bBSE when compared with the vanilla model; VBI in-
corporating DeepDrebin or MultimodalNN achieves an impressive
result.
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Figure 7a plots the accuracy (at the upper half) and the balanced
accuracy (at the lower half) after excluding the examples for which
the detectors have entropy values greater than a threshold 7. Fig-
ure 7b plots the sample density of predictive entropy. We observe
that (i) either accuracy or balanced accuracy decreases dramati-
cally when the entropy increases, which is particularly true for
DeepDroid and Droidetec. (i) MultimodalNN incorporating VBI
seems to work very well in terms of accuracy, but not necessary for
balanced Accuracy. This is because the model classifies most benign
samples correctly but not malicious ones until the threshold value is
approach 0.9. Moreover, it is interesting to see that MultimodalNN
incorporating VBI achieves the best bAccuracy without consider-
ing uncertainty (cf. Figure 6, which is in sharp contrast to Figure
7a). The reason behind this is that MultimodalNN incorporating
VBI correctly classifies a portion of examples with high entropy
value, as shown in Figure 7b. (iii) DeepDrebin incorporating VBI
outperforms the other Drebin-based models, which resonates the
results obtained in our second group of experiments (cf. Figure
4b in Section 4.3). (iv) Figure 7b says that for all of the malware
detectors except MultimodalNN incorporating VBI and DeepDrebin
incorporating VBI, most examples tend to have a small entropy.
This suggests ineffective calibrations of malware detectors under
temporal covariate shifts and a lack of good calibration method.
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INSIGHT 3. Calibrated malware detectors cannot cope with tempo-
ral datashit shift effectively, but VBI is promising for calibration and
generalization under temporal covariate shift.

4.5 Answering RQ4

In order to quantify the predictive uncertainty of malware detectors
under adversarial evasion attacks, we wage transfer attacks and
generate adversarial APKs via a surrogate DeepDrebin model. We do
not include adversarial APKs with respect to MultimodalNN, Deep-
Droid, and Droidetec because we do not find effective solutions.
The surrogate DeepDrebin model consists of two fully-connected
layers of 160 neurons with the ReLU activation function. We learn
the model using the Adam optimizer with learning rate 0.001, batch
size 128, and 150 epochs. We then generate adversarial examples
against the surrogate model to perturb the 1,112 malicious APKs
in the test dataset. Specifically, by following a recent study [27],
we first perturb the feature vectors of the APKs using the “max”
PGDs+GDKDE attack and the Mimicry attack, and then obtain ad-
versarial APKs by using obfuscation techniques. In total, we obtain
1100 perturbed APK files for both attacks, respectively.

Table 3 summarizes the results of the malware detectors under
the “max” PGDs+GDKDE attack and the Mimicry attack. Because
the test dataset contains malware samples solely, we consider the
Accuracy, NLL, BSE and ECE rather than their balanced versions.
We observe that (i) the “max” PGDs+GDKDE attack renders Deep-
Drebin and MultimodalNN models useless, regardless of the calibra-
tion methods. Nevertheless, DeepDroid is robust against this attack
because opcode are not used by the DeepDrebin and thus is unfo-
cused by the attacker. However, DeepDroid still suffers somewhat
from this attack because of the opcode manipulations is leveraged
for preserving the malicious functionality. (ii) Under the Mimicry
attack, VBI makes DeepDrebin and MultimodalNN achieve the best
accuracy and the lowest calibration error (in terms of NLL and
BSE), while weighted Ensemble makes both obtain the worst re-
sults. However, this situation is changed in regards to DeepDroid
and Droidetec. This might be that DeepDrebin and MultimodalNN
are more sensitive to Mimicry attack than DeepDroid and Droide-
tec, leading to that an ensemble of vulnerable models decreases the
robustness against the attack.

INSIGHT 4. Adversarial evasion attacks can render calibrated mal-
ware detectors, and therefore the quantified predictive uncertainty,
useless, but heterogeneous feature extraction does improve the robust-
ness of malware detectors against the transfer attacks.

5 CONCLUSION

We empirically quantified the predictive uncertainty of four deep
malware detectors with six calibration strategies (i.e., 24 detectors
in total). We found that the predictive uncertainty of calibrated
malware detectors is useful except for adversarial examples. We
hope this study will motivate and inspire more research in quanti-
fying the uncertainty of malware detectors, which is of paramount
importance in practice but it is currently little understood.
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Temp scaling on DeepDrebin and MultimodalNN. This is because
the model predicts benign examples accurately, but do not predict
malicious examples accurately.

B EXPERIMENTAL RESULTS ON THE
ANDROOZOO DATASET

Figure 9 plots the Accuracy, NLL and BSE of malware detectors
under temporal covariate shifts. We observe that the Accuracy, NLL,
and BSE are smaller than their balanced counterparts plotted in
Figure 6, owing to the data imbalance exhibited by the Androzoo
dataset, despite that they all exhibit a similar trend.


https://www.kaspersky.com
https://arxiv.org/abs/2002.03594
https://doi.org/10.1145/3029806.3029823
https://arxiv.org/abs/2108.04081
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.virustotal.com
https://ibotpeaches.github.io/Apktool
https://ibotpeaches.github.io/Apktool

Can We Leverage Predictive Uncertainty to Detect Dataset Shift and Adversarial Examples in Android Malware Detection?’ACSAC "21, December 6-10, 2021, Virtual Event, USA

'\ﬂ DeepDrebin MultimodalNN DeepDroid Droidetec
31'0 —-— Vanilla
sg Temp scaling
5% 0.9 MC dropout
e VBI
=)
58 0.8 Ensemble
<3 wEnsemble
%07 } i
d 0002040608 1.0 0002040608 10000204 06 08 1.0 0.0 02 04 06 08 1.0

Threshold T Threshold T Threshold T Threshold T

Figure 8: The balanced accuracy on the VirusShare dataset after excluding the examples for which the detector has high
uncertainties (i.e., the examples for which the predictive entropy is above a pre-determined threshold 7). For each curve, a
shadow region is obtained from the 95% confidence interval using a bootstrapping with 103 repetitions and sampling size
being the number of examples in the VirusShare dataset.
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Figure 9: Illustration of accuracy, NLL, BSE under temporal covariate shift on the Androzoo dataset. A shadow region is ob-
tained from the 95% confidence interval using a bootstrapping with 103 repetitions and sampling size being the number of
APKs in per month (cf. Figure 2).
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