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THREE PROBLEMS SOLVED BY SÉBASTIEN GOUËZEL
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(Communicated by Giovanni Forni)

ABSTRACT. We present three results of Sébastien Gouëzel’s: the local limit
theorem for random walks on hyperbolic groups, a multiplicative ergodic
theorem for non-expansive mappings (joint work with Anders Karlsson), and
the description of the essential spectrum of the Laplacian on SL(2,R) orbits
in the moduli space (joint work with Artur Avila).

INTRODUCTION

Sébastien Gouëzel was awarded the 2019 Brin prize for his groundbreaking
and influential work on statistical properties of dynamical systems and random
walks. Dima Dolgopyat presents in [7] the main thread of this work. I chose to
concentrate on three other examples of groundbreaking and influential contri-
butions from Sébastien Gouëzel. They are the topic of the following papers

1. [11] Local limit theorems for symmetric random walks in Gromov hyper-
bolic groups, J. Amer. Math. Soc., 27 (2014), 893–928.

2. [13] Subadditive and multiplicative ergodic theorems (with A. Karlsson), J.
Euro. Math. Soc. (JEMS), 22 (2020),1893–1915.

3. [2] Small eigenvalues of the Laplacian for algebraic measures in moduli
space, and mixing properties of the Teichmüller flow (with A. Avila), Ann.
of Math. (2), 178 (2013), 385–442.

We discuss these three results in the three sections of this paper.

1. LOCAL LIMIT THEOREMS FOR RANDOM WALKS ON HYPERBOLIC GROUPS

1.1. Statements and background.

THEOREM 1.1 ([11]). Let Γ be a non-elementary finitely generated Gromov hyper-
bolic group, µ a symmetric probability measure on G. Assume that the support
of µ is finite, that it generates G as a group and is aperiodic. Consider the n-fold
convolution µ(∗n). Then there are a number R > 1 and a positive function C on Γ

such that, as n →∞,
µ(∗n)(x) ∼ C (x)R−nn−3/2.
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The number R−1 is the spectral radius of the Markov operator

PF (x) := ∑
y∈Γ

F (y−1x)µ(y)

on `2(Γ). By Kesten’s classical result, since Γ is non-amenable, R > 1. Moreover,
by the spectral theory of the operator P , for all x ∈ Γ,

− 1

n
logµ(∗n)(x) → logR.

The Local Limit Theorem 1.1 gives the precise asymptotics of µ(∗n)(x), in par-
ticular with the universal term n−3/2. One sees directly that the function C is a
positive eigenfunction for the Markov operator with eigenvalue R−1. The most
general result so far is in [12]: Theorem 1.1 holds even if the measure µ has
infinite support, as soon as it satisfies a strong exponential moment condition,
namely

∑
g eα|g |µ(g ) < +∞ for all α > 0, where |g | is the word length of an ele-

ment g in some finite system of generators of Γ.
Theorem 1.1 was proven by S. Lalley ([23]) when G is a free group with d ≥ 2

generators (by [16] when µ is supported by the free generators). The exponent
3/2 appears in the Local Limit Theorem proved by P. Bougerol ([6]) for rank
one semi-simple groups when µ satisfies an isotropy condition (see also [26]
for the p-adic case); in that case, C is the Harish-Chandra function. Theorem
1.1 was first proven by S. Gouëzel and S. Lalley ([14]) in the case of surface
groups. The strategy in [23], [14] and [11] uses the behavior of the resolvent
Gr ,Gr = (I− r P )−1 as r → R. Namely, set, for r < R,

Gr (x) := ∑
n≥0

r nµ(∗n)(x) <+∞.

It is known that GR (x) := ∑
n≥0 Rnµ(∗n)(x) is finite as well.

THEOREM 1.2 ([11]). Same setting as Theorem 1. Then, there exists a positive
function C ′ on Γ, such that, as r ↗ R,

dGr (x)

dr
∼ C ′(x)p

R − r
.

Theorem 1.1 follows from Theorem 1.2 using Karamata theorem and some
a priori regularity of µ(∗n)(x) in n. The symmetry of µ is used in the Taube-
rian argument. Sébastien Gouëzel conjectures that it is not necessary. See the
Appendix of [11] for results in the case of surface groups without assuming µ

symmetric.
It can be seen that dGr (x)

dr is comparable to (R − r )−1/2. The point of Theorem
1.2 is that there is a precise equivalent. S. Lalley proved Theorem 1.2 for the free
groups by observing that, as functions of r , Gr (x) satisfy algebraic equations
and then applying Puiseux Theorem. There is no similar argument for other
hyperbolic groups.
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1.2. A geometric proof in the free group case. In this section, we present the
ingredients of the proofs of Theorem 1.2 in [14] and [11], in the case of a sym-
metric measure with finite support on the free group Fd with d generators. We
assume that

⋃
n supportµ(∗n) = Fd .

(a) Assume y is a point on the segment [e, x]. Since its steps are bounded, a
trajectory from e to x has to pass near y . In particular, there is a constant D
such that, uniformly in r,1 ≤ r ≤ R,

Gr (x) ≤ DGr (y)Gr (y−1x).

The other inequality follows from the support condition: there is a constant
(also denoted D) such that uniformly in r,1 ≤ r ≤ R,

D−1Gr (y)Gr (y−1x) ≤Gr (x).

(b) The boundary ∂Fd of Fd is the one-sided subshift of finite type Σ+ with al-
phabet {a±1

1 , . . . , a±1
d } and forbidden words ai a−1

i , a−1
i ai , i = 1, . . . ,d . Inequalities

in (a) and Ancona theory of the Martin boundary (cf. [5], [20]) yield

PROPOSITION 1.3. For all r,1 ≤ r ≤ R, there are functions Kr (x,ξ) on Fd ×∂Fd

and θr (η,ξ) on ∂Fd ×∂Fd such that, as y → ξ, x → η,

Gr (x−1 y)

Gr (y)
→ Kr (x,ξ),

Gr (x−1 y)

Gr (x−1)Gr (y)
→ θr (η,ξ).

Moreover, there is α such that, for any r , the function ξ 7→ Kr (x,ξ) is α-Hölder
continuous on ∂Fd and the function (ξ,η) 7→ θr (η,ξ) is α-Hölder continuous
outside of the diagonal of ∂Fd × ∂Fd . The functions r 7→ Kr and r 7→ θr are
continuous into the spaces of Hölder continuous functions.

(c) We identify the two-sided shift Σ with alphabet {a±1
1 , . . . , a±1

d } and forbidden
words ai a−1

i , a−1
i ai , i = 1, . . . ,d with a subset of the product ∂Fd×∂Fd by defining

π(ξ), for ξ= {ξn ,n ∈Z} , as π(ξ) := (limm→∞ ξ−1
−1 · · ·ξ−1

m , limn→∞ ξ0 · · ·ξn).
For ξ= {ξn ,n ∈Z} ∈Σ, set ξ+ = ξ0,ξ1, . . . ∈Σ+, let ϕr (ξ) :=−2logKr (ξ0,ξ+) and

let P (r ) be the pressure of the function ϕr :

P (r ) := max
m

{
hm(σ)+

∫
ϕr dm

}
,

where m varies over all shift invariant probability measures on Σ and hm(σ)
denotes the measure entropy of m for the shift σ. Let mr be the unique invariant
probability measure that realizes the maximum.

For two sequences of positive numbers {an ,bn}, write

an ∼
n→∞ bn if lim

n→∞an/bn = 1.

Thermodynamical formalism (see, e.g., [27]) yields a Hölder continuous func-
tion hr on Σ+ such that, for a fixed z of word length n, z = g1 · · ·gn , if gn 6= ξ0,
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uniformly on r and ξ,

mr

[{
ξ,ξ−n · · ·ξ−1 = z

}|ξ+]
= e−nP (r )K 2

r (z−1,ξ+)
hr (g−1

1 · · ·g−1
n ,ξ0,ξ1, . . .)

hr (ξ+)

∼
n→∞ e−nP (r )G2

r (z)θ2
r (η,ξ+)

hr (g−1
1 · · ·g−1

n ,ξ0,ξ1, . . .)

hr (ξ+)
,

where η is any point in Σ+ beginning as z−1. Uniformity on r comes from the
continuity of r 7→ ϕr (respectively r 7→ θr ) in the space of Hölder continuous
functions on Σ+ (respectively Σ) (Step (b)). So, we get, uniformly on r,

e−nP (r )G2
r (z) ∼

n→∞

∫
{ξ,ξ−n ...ξ−1=z}

θ−2
r

(
π(σ−nξ)

) hr (ξ+)

hr ((σ−nξ)+)
dmr (ξ).

PROPOSITION 1.4. For 1 ≤ r ≤ R, there is a positive constant Cr such that

e−nP (r )
∑

z,|z|=n
G2

r (z) ∼
n→∞ Cr .(1.1)

Moreover, the mapping r 7→Cr is continuous on [1,R].

Proof. By the above computation, e−nP (r ) ∑
z,|z|=n G2

r (z) has the same limit, as

n →∞, as
∫
Σθ−2

r

(
π(σ−nξ)

) hr (ξ+)

hr ((σ−nξ)+) dmr (ξ). Assume that hr is normalised so

that
∫

hr dmr = 1. Since the measure mr is shift-mixing, the limit is

Cr :=
∫
Σ
θ−2

r ◦πh−1
r dmr .

The continuity and the positivity follow from the corresponding properties of
θr and hr , the continuity of r 7→ mr and the uniformity on r of the limit as
n →∞.

(d) The following observation is easy to prove and very general:

PROPOSITION 1.5 ([14], Proposition 1.9). For any r,1 ≤ r < R, any x, y ∈ G , we
have

d

dr
Gr (x−1 y) = 1

r

∑
z

Gr (x−1z)Gr (z−1 y)− 1

r
Gr (x−1 y).(1.2)

So, the quantity of interest in Theorem 1.2 is

d

dr
Gr (e) = 1

r

∑
z

G2
r (z)− 1

r
Gr (e).

COROLLARY 1.6. For 1 ≤ r < R, P (r ) < 0. P (R) ≤ 0.

Proof. Set F (r ) :=∑
z G2

r (z) By (1.2), F (r ) <+∞ for r < R. Reporting in (1.1), this
is possible only if P (r ) < 0. P (R) ≤ 0 follows by continuity.

Another consequence of (1.2) is the following

d

dr
F (r ) = 2

r

∑
z,y

Gr (y)Gr (y−1z)Gr (z)− 2

r
F (r ).(1.3)
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(e) P (R) = 0. Indeed, we know that P (R) ≤ 0 by Corollary 1.6. By (1.2), if P (R) < 0,
there is a δ > 0 such that

∑
z eδ|z|G2

r (z) < +∞. From this, it follows that there
exists ε> 0 such that GR+ε(e) <+∞, a contradiction with the definition of R. A
clever qualitative way of showing GR+ε(e) <+∞ is presented in [14], based on
the interpretation of Gr as the Green function of the branching random walk
with distribution of steps given by µ and distribution of the number of offsprings
given by a Poisson law with parameter r .

COROLLARY 1.7. lim
r→R

−P (r )
d

dr
Gr (e) = CR

R
. In particular,

d

dr
Gr (e) → +∞ as

r → R.

Proof. By (1.2), it suffices to show that limr→R −P (r )F (r ) = CR . We have, for n
large and r close to R,

−P (r )
∑

z
G2

r (z) =−P (r )
∑
n

enP (r )
∑

z:|z|=n
e−nP (r )G2

r (z)

∼
n→∞−P (r )

∑
n

enP (r )Cr →CR .

(f ) The final step goes through a further derivative estimate.

PROPOSITION 1.8. There is a positive number C such that

lim
r→R

−P (r )3 d

dr
F (r ) =C .

Proof. d
dr F (r ) is given by (1.3). By Corollary 1.7, as r → R, the second term goes

to 0 when multiplied by P (r )3. We have to consider

lim
r→R

−P (r )3
∑
z,y

Gr (y)Gr (y−1z)Gr (z) = lim
r→R

−P (r )3
∑
w

∑
z,y :z∧y=w

Gr (y)Gr (y−1z)Gr (z),

where z ∧ y is the initial common part of the shortest writing of z and y . We
write:

Gr (y) =Gr (w)Gr (w−1 y)
Gr (y)

Gr (w)Gr (w−1 y)
,

Gr (z) =Gr (w)Gr (w−1z)
Gr (z)

Gr (w)Gr (w−1z)

and

Gr (y−1z) =Gr (y−1w)Gr (w−1z)
Gr (y−1z)

Gr (y−1w)Gr (w−1z)
,

so that we have to consider

lim
r→R

−P (r )3
∑
w

∑
z,y :z∧y=w

G2
r (w)G2

r (w−1z)G2
r (w−1 y)φ(w, y, z),

where φ(w, y, z) is bounded and converges to a Hölder continuous function on
the set of points (ζ,η,ξ) ∈ ∂Fd ×∂Fd ×∂Fd with pairwise distinct first letters when
w−1 → ζ, w−1 y → η and w−1z → ξ. It follows from Corollary 1.7 that the terms
with |w |, |w−1 y | or |w−1 y z| bounded do not contribute to the limit.
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The proof of Proposition 1.8 goes through a similar computation to the one
in Step (c) and in Corollary 1.7, done successively with respect to z ′ := w−1z,
y ′ = w−1 y and w .1

We can now prove Theorem 1.2. The function F (r ) = r d
dr Gr (e)+Gr (e) satisfies

lim
r→R

−P (r )F (r ) =CR , lim
r→R

−P (r )3 d

dr
F (r ) =C and lim

r→R
F (r ) =+∞.

It follows that d
dr (1/F 2(r )) converges as r → R to a positive constant. Since

limr→R F (r ) =+∞, Theorem 1.2 follows for x = e. The general case for dGr (x)
dr is

proven in the same way. The careful reader can follow the proofs and find an
expression for the function C ′(x).

1.3. The hyperbolic case. The proof in the general case follows the above
scheme. The most important step is the analog of (a).

THEOREM 1.9. Let µ be a symmetric probability measure with finite support on
a finitely generated hyperbolic group Γ. Assume the the group generated by the
support of µ is the whole Γ. Consider y is a point on the segment [e, x]. There is
a constant D such that, uniformly in r,1 ≤ r ≤ R,

Gr (x) ≤ DGr (y)Gr (y−1x).

For a fixed r < R, Theorem 1.9 is the central result of [4], but the constant
D obtained in the proof depends on r and goes to infinity as r → R. The new
uniform argument considers first a superexponential estimate as follows.

For D⊂G , x, y ∈D, write Gr (x, y :D) for the r -Green function of the random
walk with the constraint that the trajectories stay in D at all times. Then

LEMMA 1.10. There exist n0 > 0 and ε> 0 such that for n ≥ n0, whenever x, y, z
are three points in that order on a geodesic segment with d(x, y),d(x, z) ≥ 10n,

GR (x, z : (B(y,n))c ) ≤ 2−eεn
.

Theorem 1.9 follows from Lemma 1.10 by a nested induction. The proof of
Lemma 1.10 uses a family of N := eεn barriers that a trajectory that goes from x
to z avoiding B(y,n) should cross in succession. By hyperbolicity, it is possible
to choose the barriers far enough from one another that each barrier makes
the Green function outside of B(y,n) drop by a factor 1/2. The computation of
this drop is quite clever. Among others, a trick is to make the barriers slightly
random to be able to choose a suitable family. Another difference with the free
group case is that one has to prove the a priori estimate supn

∑
z,|z|=n G2

R (z) <
+∞ which is already used in the proof of Lemma 1.10.

Step (b) is classical in hyperbolic groups (see e.g. [18]). An important feature
is the reinforcement of Theorem 1.9 to a qualitative approximation of the Cayley
graph of Γ by trees. Say the pairs of pairs of points {(x, x ′), (y, y ′)} are n-apart if
there exists a geodesic segment of length n common to [x, y], [x, y ′], [x ′, y] and

1The detailed proof uses uniform 3-mixing of the measures mr , for 1 ≤ r ≤ R.
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[x ′, y ′]. Under our hypotheses, there exist constants C > 0 and ρ > 0 such that, if
the pairs of pairs of points {(x, x ′), (y, y ′)} are n-apart, then, for any 1 ≤ r ≤ R,∣∣∣∣ Gr (x−1 y)/Gr (x ′−1 y)

Gr (x−1 y ′)/Gr (x ′−1 y ′)
−1

∣∣∣∣ ≤ Ce−ρn .

Step (c) presents another challenge: a priori, there is no mixing Markov cod-
ing of the boundary or of the group. If one wants to imitate what was done
for the free group, the Markov codings one can use are not even transitive. The
computation of Step c) hold for each transitive component of the Markov coding
(with a possible complication due to non-mixing). Special care has to be taken
in putting together these estimates for proving the analog of Proposition 1.4.

Step (d) is the same.
Steps (e) and (f ) follow the same scheme as in the free group case. Again, the

limits in the proof of Proposition 1.8 are taken on each transitive component of
the Markov coding and have to be compared.

2. SUBADDITIVE AND MULTIPLICATIVE THEOREMS

The celebrated Oseledets theorem can be extended to saying that the com-
position of random isometries of a symmetric space with nonpositive curvature
sublinearly follow a geodesic (see [19]). The question arises of a similar result
for the composition of random contractions of a metric space. An extension
has been proven by A. Karlsson and G. Margulis ([22]). A further extension, the
most general statement today, is the topic of the paper [13]. Remarkably, these
extensions rest on refinements of Kingman subadditive ergodic theorem. In this
section, we review these three pairs of results. In all the section, (Ω,A,m,T ) is
an ergodic measurable dynamical system; an integrable real subadditive cocycle
is a family of measurable functions a(n,ω)n∈N such that

a(n +n′,ω) ≤ a(n,ω)+a(T nω,n′) and
∫

a+(1, .)dm <+∞.

2.1. Oseledets and Kingman ergodic theorems.

THEOREM 2.1 (Kingman Subadditive Ergodic Theorem [21]). Let a(n,ω)n∈N be
an integrable real subadditive cocycle. Then, for m-a.e. ω, as n →∞,

1

n
a(n,ω) → inf

n

1

n

∫
a(n,ω)dm.

Let A be a measurable mapping A : Ω→GL(d ,R) such that∫
log+ ‖A(ω)‖dm(ω) <+∞

and form
A(n,ω) := A(ω)◦ A(Tω)◦ . . .◦ A(T n−1ω).

Let GL(d ,R) act on the space X of symmetric matrices by A(S) = A∗S A. Then,
for d the natural invariant metric, a(n,ω) := d(I, A(n,ω)(I)) is an integrable real
subadditive cocycle and set α := lim

n→∞
1
n d(I, A(n,ω)(I)). Then,
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PROPOSITION 2.2 ([19]). Assume α > 0. Then, for a.e. ω, any y ∈ X , there is a
unique geodesic γω in X such that

γω(0) = y and lim
n→∞

1

n
d(A(n,ω)(y),γω(nα)) = 0.

The proof in [19] examines what it means for a sequence of symmetric matri-
ces Sn ,n ∈ N that limn

1
n d(Sn ,γ(nα)) = 0 for some geodesic γ and that if α> 0

and γ(0) is given, this geodesic is unique. Then, Kingman subadditive ergodic
theorem applied to the integrable real subadditive cocycles log‖∧p A(n,ω)‖, p =
1, . . . ,d implies that for all y ∈ S, almost all ω ∈Ω, the sequence A(n,ω)∗y A(n,ω)
follows a geodesic.

THEOREM 2.3 (Oseledets Multiplicative Ergodic Theorem [25]). Let A be a mea-
surable mapping A : Ω → GL(d ,R) such that

∫
log+ ‖A(ω)‖dm(ω) < +∞. With

the above notations, for a.e. ω ∈ Ω, there exists a symmetric matrix Λ(ω) such
that

lim
n→∞

1

n
log‖ (A(n,ω))Λ(ω)−n‖ = 0.

Indeed, a geodesic in the space of symmetric matrices is of the form
γω(t ) = exp(t Hω), where Hω is a nonzero symmetric matrix. We can set Λ(ω) =
exp(αHω). The Lyapunov exponents λ1 ≥ ·· · ≥ λd are the eigenvalues (with
multiplicities) of the matrix Λ(ω), the Oseledets spaces V1(ω) ⊃ ·· · ⊃ Vk (ω) the
spaces generated by the eigenspaces of Λ(ω) with decreasing maximum eigen-
value.

2.2. Karlsson-Margulis.

THEOREM 2.4 ([22]). Let a(n,ω) be an integrable subadditive cocycle and assume
that

α := inf
n

1

n

∫
a(n,ω)dm >−∞.

Then, for a.e. ω, every ε> 0, there exist K (ω,ε) and infinitely many n such that
for all k,K ≤ k ≤ n,

a(n,ω)−a(n −k,T kω) ≥ (α−ε)k.

Observe that Theorem 2.4 implies Kingman Theorem 2.1: firstly, by subaddi-
tivity, for all J ∈N,

a(n J ,ω) ≤ 1

J

(
J∑

j=1
a+( j ,ω)+

n−1∑
k=0

a(J ,T k J+ j ω)+
J∑

j=1
a+(J − j ,T j+(N−1)Jω)

)
.

By the ergodic theorem applied to T J , it follows that, for a.e. ω,

limsup
n

1

n
a(n,ω) ≤ 1

J

∫
a(J ,ω)dm(ω)

and so limsupn
1
n a(n,ω) ≤α m-a.e.. This proves Theorem 2.1 if α=−∞.

In the case when α > −∞, Theorem 2.4 and subaddivity imply that for all
ε> 0, almost all ω, there is K (ω,ε) such that, for all k ≥ K (ω,ε), a(k,ω) ≥ (α−ε)k.
Theorem 2.1 follows by letting ε→ 0.
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Observe that the difference between the two Theorems lies exactly in this last
statement: not only a(k,ω) ≥ (α−ε)k for k large enough, but this is also true for
all k large enough for the corresponding increments a(n,ω)−a(n −k,T kω) at
special times n, similar to the hyperbolic times of the additive ergodic theorem
(see, e.g., [1]).

Theorem 2.4 allows A. Karlsson and G. Margulis to prove a generalization of
Proposition 2.2 to random products of contractions of spaces satisfying some
geometric conditions, namely uniformly convex, complete metric spaces satis-
fying the Busemann non-positive curvature condition (see [22] for the precise
definitions); C AT (0) spaces, uniformly convex Banach spaces such as Lp ,1 <
p < +∞ satisfy these conditions. Let (Y ,d) be a uniformly convex, complete
metric space satisfying the Busemann non-positive curvature condition. A non-
expanding mapping A : Y → Y is a mapping satisfying d(Ay, Ay ′) ≤ d(y, y ′) for
all y, y ′ ∈ Y . The set of non-expanding mappings is equipped with the Borel
structure associated to the compact-open topology. For A(ω) a random non-
expanding mapping, set

A(n,ω) := A(ω)◦ A(Tω)◦ · · · ◦ A(T n−1ω).

THEOREM 2.5 ([22]). Let A(ω) a random non-expanding mapping of a uniformly
convex, complete metric space satisfying the Busemann non-positive curvature
condition. Assume for some y ∈ Y ,

∫
d(y, A(ω)y)dm(ω) <+∞ and

α := lim
n→∞

1

n
d(y, A(n,ω)y)

is positive. Then, for a.e. ω, there exists a unique geodesic ray γω in Y starting at
y and such that

lim
n→∞

1

n
d(A(n,ω)(y),γω(nα)) = 0.

2.3. Gouëzel-Karlsson.

THEOREM 2.6 ([13]). Let a(n,ω) be an integrable subadditive cocycle and assume
that

α := inf
n

1

n

∫
a(n,ω)dm >−∞.

Then, for a.e. ω, there exist ni := ni (ω) → ∞ and positive real numbers δ` :=
δ`(ω) → 0 such that for all i and all `≤ ni ,

|a(ni ,ω)−a(ni −`,T `ω)−`α| ≤ `δ`(ω).

Moreover, on a set of large measure, one can take δ` uniform and have a large
density of good times ni .

Saying that a(ni ,ω)− a(ni −`,T `ω) ≤ α`+`δ′
`

(ω), with δ′
`
→ 0, is a direct

consequence of Theorem 2.1, since a(ni ,ω)−a(ni −`,T `ω) ≤ a(`,ω). The other
inequality yields that the cocycle is almost additive in the sense that there are
(many) good times ni (ω) →∞ such that, for all `≤ ni ,

a(ni −`,T `ω)+a(`,ω)−a(ni ,ω) ≤ `(δ`+δ′
`).
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The information from Theorem 2.6 is more precise than the one from Theo-
rem 2.4. Indeed, let ω be such that Theorems 2.6 holds, with the associated
δ`(ω) and ni (ω). Given ε > 0, choose K (ω,ε) large enough that δ`(ω) ≤ ε for
`≥ K (ω,ε). Then, for all `,K (ω,ε) ≤ `≤ ni (ω),

a(ni ,ω)−a(ni −`,T `ω)−`α ≥ −`δ`(ω) ≥−`ε.

For the proof of Theorem 2.6, we may assume that T is invertible. One then
sets

b(n,ω) := a(n,T −nω).

The family {b(n,ω)} is an integrable real cocycle for the transformation τ := T −1,
with the same a.e. limit α. One key lemma is the following

LEMMA 2.7. Let b(n,ω) be an integrable subadditive cocycle with

α := inf
n

1

n

∫
b(n,ω)dm

finite. Let ε > 0,δ > 0. There exists k ≥ 1 such that, for a.e. ω, the set V has
superior density in N at most δ, where

V := {n ∈N;b(n,ω)−b(n − l ,ω) ≤ (α−ε)` for some ` ∈ [k,n]}.

Fix δ> 0. There exists c > 0 such that the set V ′ has superior density in N at most
δ, where

V ′ := {n ∈N;b(n,ω)−b(n − l ,ω) ≤ (α− c)` for some ` ∈ [1,n]}.

The proofs of both Lemma 2.7 and Theorem 2.6 use subtle combinatorics
along the orbits.2

The extension of Theorem 2.5 concerns random non-expanding mappings
of a general metric space (X ,d). The result will be weaker, following a geodesic
being replaced by having the right growth rate along a metric functional. Fix
x0 ∈ X and for x ∈ X , define a function hx on X by

hx (y) := d(x, y)−d(x, x0).

DEFINITION 2.8. A metric functional is a pointwise limit of functions hx .

Limits exist since the set of 1-Lipschitz functions is compact in RX endowed
with the product topology. Moreover, metric functionals are 1-Lipschitz as well.
Metric functionals are called horofunctions if X is proper and the convergence
is uniform on compact sets, Busemann functions if X is a geodesic space and x
goes to infinity along a geodesic.

THEOREM 2.9 ([13]). Let A(ω) a random non-expanding mapping of a metric
space (X ,d). Assume for some x ∈ X ,

∫
d(x, A(ω)x)dm(ω) < +∞ and set α :=

lim
n→∞

1
n d(x, A(n,ω)x). Then, for a.e. ω, there exists a metric functional hω such

that, for all x ∈ X ,

lim
n→∞

1

n
hω(A(n,ω)(x)) = −α.

2 One could mention that these proofs have been formalized and verified by a computer. S.
Gouëzel is promoting these formal validations, see the discussion in the introduction of [15].
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Proof. By Theorem 2.6, there is, for a.e. ω, ni := ni (ω) → ∞ and positive real
numbers δ` := δ`(ω) → 0 such that for all i and all `≤ ni ,

d(A(ni ,ω)x0, x0)−d(A(ni −`,T `ω)x0, x0) ≥ `(α−δ`(ω)).

Consider such an ω. Write hi for hi (y) := d(A(ni ,ω)x0, y)−d(A(ni ,ω)x0, x0). So,
for all i and all `≤ ni ,

hi (A(`,ω)x0)) = d(A(ni ,ω)x0, A(`,ω)x0))−d(A(ni ,ω)x0, x0)

≤ d(A(ni −`,T `ω)x0, x0))−d(A(ni ,ω)x0, x0) ≤ −(α−δ`)`.

By compactness, there is a metric functional hω such that, for all `,

hω(A(`,ω)x0)) ≤−(α−δ`)`

and therefore

limsup
n→∞

1

n
hω(A(n,ω)(x0)) ≤ −α.

By the 1-Lipschitz property of hω, liminfn→∞ 1
n hω(A(n,ω)(x0)) ≥ −α and thus

lim
n→∞

1

n
hω(A(n,ω)(x0)) = −α.

The property follows for all x ∈ X by the 1-Lipschitz property of hω.

In the case of Banach spaces, this gives

COROLLARY 2.10. Let A(ω) a random non-expanding mapping of a Banach
space X . Assume for some y ∈ X ,

∫‖A(ω)y‖dm(ω) < +∞. Then, for a.e. ω,
there exists a linear functional fω of norm 1 such that, for all x,

lim
n→∞

1

n
fω(A(n,ω)(x)) = lim

n→∞
1

n
‖(A(n,ω)(x))‖.

3. EIGENVALUES OF THE LAPLACIAN

3.1. Statement and background. Let S be a surface of genus g , Σ= {σ1, . . . ,σ j }
a set of punctures with multiplicities K := {κ1, . . . ,κ j } such that

∑
(κi −1) = 2g −2,

Teich(S,Σ,K ) (resp. Teich1(S,Σ,K )) the corresponding space of abelian differ-
entials (resp. of area 1), Γ the mapping class group, X the quotient space
Teich1(S,Σ,K )/Γ. The Teichmüller spaces are endowed with a natural affine
structure given by the periods of the abelian differentials. There is a natural ac-
tion of SL(2,R) on X and it defines a foliation of X into orbits. On the quotient
by SO(2,R), this action defines a foliation of SO(2,R)\X into (possibly quotients
of) hyperbolic planes. Let µ be a probability measure on X that is invariant
ergodic under the action of SL(2,R). The foliated Laplacian ∆ defines an essen-
tially self adjoint operator on L2

0(SO(2,R)\X ,µ). The result of [2] concerns the
spectrum Σµ of this operator.

THEOREM 3.1 ([2]). With the above notations, for any δ > 0, Σµ∩ (0,1/4−δ) is
made of finitely many eigenvalues of finite multiplicities.
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In other words, Theorem 3.1 says that the essential spectrum of ∆ on
L2

0(SO(2,R)\X ,µ) is contained in [1/4,+∞). For the Masur-Veech Lebesgue mea-
sure on SO(2,R)\X , it was known that 0 is isolated in the spectrum ([3]).3 In
[2], Theorem 3.1 was shown under the hypothesis that µ is related to the affine
structure of X . A famous result of A. Eskin and M. Mirzakhani ([9]) shows that
all SL(2,R)-invariant ergodic probability measures on X satisfy these algebraic
conditions. In particular:

• µ is invariant by the diagonal Teichmüller flow ϕt , t ∈R,
• µ is locally the product of the Lebesgue measure on the orbits of the Teich-

müller flow and the Lebesgue measures on affine subspaces of its stable
and unstable manifolds,

• the derivative of the restriction of the Teichmüller flow to (un)stable mani-
folds is locally constant.

One can distinguish three steps in the proof:

- Control the essential spectrum of some resolvant of the Teichmüller flow
on some space of distributions (à la Gouëzel-Liverani, see D. Dolgopyat’s
review [7]).

- Relate the eigenvalues of that resolvant to the poles of a meromorphic
extension of the Laplace transforms of the correlation functions.

- Do a reverse Ratner argument: describe the representations of SL(2,R)
compatible with these properties of the correlation functions and read
the eigenvalues on the corresponding representations.

3.2. Spectral gap; exponential mixing of the Teichmüller flow. Let D be the
space of C∞ functions on X with compact support and, for δ> 0, let L be the
operator

L f :=
∫∞

0
e−4δt f ◦ϕt d t .

THEOREM 3.2 ([2]). There exists two norms ‖.‖,‖.‖′ on D such that

• there is C s. t., for f ∈ D, t ≥ 0, ‖ f ◦ϕt‖ ≤C‖ f ‖,
• the unit ball in the ‖.‖ completion is relatively compact in the ‖.‖′ norm

and
• there is a Doeblin-Fortet inequality: there exists n such that

‖Ln f ‖ ≤ (1+δ)n‖ f ‖+‖ f ‖′.
It follows from Theorem 3.2 that the essential spectral radius of L on the ‖.‖

closure of D is smaller than (1+δ) ([17]). Observe that L1 = 1/4δ, so the spectral
gap between the spectral radius and the essential spectral radius is huge.

The proof of Theorem 3.2 is the more involved part of the paper. It follows
the scheme of the proof of exponential mixing for contact Anosov flows ([24]).
The affine structure brings some simplifications, since the stable and unstable
foliations are smooth, flat and the expansion is locally constant, but one has
to control excursions of the flow outside of compact regions. This was already

3[3] was part of the citation of A. Avila for the 2011 Brin prize; see [10] for details.
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done to get a spectral gap in [3] by using a quantitative recurrence estimate of
Eskin-Masur ([8]) and introducing a special Finsler metric. To get a big spectral
gap, one knows from [24] that the special norms to be constructed have to
take into account a finite large number of derivatives of functions in D. Putting
everything together is quite convoluted.

By Theorem 3.2, we know that the operator L has a finite number λi , i =
1, . . . ,λ`, of eigenvalues of modulus larger than (1+δ) and that they all have
finite multiplicity. We set Π j , j = 1. . .`, for the finite dimensional associated
projectors.

3.3. End of the proof: correlation functions and reverse Ratner argument. Let
f1, f2 ∈ D and µ a SL(2,R)-invariant ergodic probability measure on X . The
Laplace transform of the correlation function

F (z) :=
∫∞

0
e−zt

(∫
X

f1. f2 ◦ϕt dµ

)
d t

is holomorphic on Rez > 0.

PROPOSITION 3.3. The function F (z) has a meromorphic extension to the union
of Rez > 0 and a neighborhood of size δ of the segment [−1+8δ,0]. Its poles are
at 4δ−1/λi , i = 1, . . . ,`. Moreover, the residue at the pole 4δ−1/λi is

∫
X f1Πi f2 dµ.

Sketch of proof. Set G(z) =∫
X f1S(z) f2 dµ, where

S(z)( f ) := 1

4δ− z
L

(
1

4δ− z
−L

)−1

( f ).

Since µ is a SL(2,R)-invariant ergodic probability measure, Theorem 3.2 applies
and G(z) has the properties we want. Formally, G(z) = F (z).

Consider now the decomposition
∫⊕

Hξ dm(ξ) into irreducible representa-
tions of the action of SL(2,R) on the Hilbert space L2

0(X ,µ). We are interested in
the part of the spectrum of the operator ∆ on SO(2,R)-invariant function that
intersects (0,1/4). By direct examination, it can only comes from the comple-
mentary series elements of the decomposition and correspond to Dirac com-
ponents of the measure m supported by these complementary series represen-
tations. On the other hand, poles of the Laplace transform of the correlation
function also come from the complementary series part of the decomposition,
and any eigenvalue (with multiplicity mi ) of ∆ in (0,1/4) corresponds to a pole
of F (with order at least mi ). This correspondence was established in the other
direction by M. Ratner in order to study the speed of mixing of the geodesic
flow on finite volume hyperbolic surfaces ([28]).

Acknowledgments. The author thanks Sébastien Gouëzel for many remarks,
corrections and explanations.
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