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Abstract—Cyber attackers have long abused web domains
and URLs to carry out various attacks such as Phishing, web
scamming, and malware attacks. In order to defend against
these attacks, URL blacklisting has been widely used. However,
this approach has significant weaknesses, especially from a law-
enforcement point of view. In particular, the law-enforcement does
not know what to do with a blacklist because it is unclear what
needs to be done (e.g., shutting down a host or domain) due to the
subtleties associated with the problem. In order to help the law-
enforcement in dealing with blacklisted URLs, we propose a novel
framework based on Machine Learning (ML) while providing the
law-enforcement with probabilistic classification and interpretabil-
ity of the predictions made by the interpretable model. Our
probabilistic classification and interpretability measures provide
a basis for law-enforcement trustworthy decision-making and
remove the black-box nature of traditional ML-based approaches.
Experimental results show that the framework is practical and has
further potential to tackle website maliciousness.

I. INTRODUCTION

Websites have been widely abused as a medium for propa-
gating cyberattacks [1]–[3]. One simple defense against these
threats is to use URL and domain blacklists, which are client-
side interventions and often provided by third-party vendors
(e.g., Phishtank, Google Safe Browsing, URLhaus). However,
this does not completely eliminate the threat because some
users may not use such services and the malicious or com-
promised domains or hosts are still on the loose. Moreover,
these blacklists are far from perfect [4] because they are neither
complete, meaning that they do not contain all of the malicious
websites [5]–[7], nor accurate, meaning that they contain many
false-positive websites (including the compromise ones that
were malicious in the past but have already been cleaned up)
[2]. Another defense is to use Machine Learning (ML) models
to proactively detect malicious websites (see, e.g., [1], [2],
[8]). Moreover, there are also some third-party vendors (e.g.,
Netcraft [9]) providing takedown services on user requests
for protecting against cybercrimes (e.g., cybersquatting). of
abusing domains that are imitating a user’s brand to provide
user protection against cybercrimes.

However, there is one important perspective that has not
been investigated in the literature, namely law-enforcement. We
envision that law-enforcement will be, if not already, authorized
to take actions against malicious websites much alike they do
in case of botnets [10]. This introduces a new dimension of
the problem because the law-enforcement must treat detected
malicious websites carefully. For example, the law-enforcement

can be authorized to shut down a malicious website owned or
operated by a malicious party, but may only be authorized to
notify the owner or the operator of a website which itself is
compromised and then abused by an attacker to wage further
attacks. Moreover, oftentimes we observe that attackers reuse
the same domains and hosts for new URL based attacks causing
the same domain or hostname to appear in a URL blacklist [11].
This phenomena further encourages us to consider the law-
enforcement perspective, as more higher level such as domain
or host level intervention is more effective than client-side inter-
ventions. This call for studies on helping the law enforcement
in distinguishing between malicious (i.e., attacker-owned) and
compromised (i.e., legitimate party-owned) websites to take
actions.

Our Contributions. In this paper, we make three contributions.
First, we initiate the study of the law-enforcement perspective
when coping with malicious websites. This turns out to be
a challenge because of the dynamic nature of web domains
and complexity of web hosting infrastructures. This prompts
us to introduce a novel framework to help the law-enforcement
to cope with malicious websites. The framework highlights
the importance of using interpretable (i.e., explainable) ML,
while considering the probabilistic uncertainty associated with
the prediction outcomes. The framework integrates a ML
intepretability system, such as InterpretML [12], to provide ex-
planations and probabilistic predictions to the law-enforcement
(e.g., why is a website predicted as malicious, and what is the
likelihood it is indeed malicious?).

Second, we investigate how to choose the entity for taking
action: domain vs. hostname. To our knowledge, this is the first
time to propose a principle method for making such decisions.

Third, we conduct a case study on evaluating an instance of
the framework with a real-world URL blacklist. Experimental
results show that we achieve a 86% accuracy with a 0.92 F-1
score, while providing local explainability (i.e., interpretation)
for the individual prediction outcomes for each input blacklisted
website.

Paper Outline. Section II presents the problem statement.
Section III describes our framework. Section IV presents our
case study and results. Section V discusses limitations of this
study. Section VI discusses related prior studies. Section VII
concludes the paper.
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II. PROBLEM STATEMENT

Suppose the law-enforcement is authorized to take actions
against malicious websites. The problem is: Given a URL that
is blacklisted (i.e., deemed malicious), what should the law-
enforcement do? While intuitive, there are technical subtleties.

A. Technical Subtleties Encountered by Law-Enforcement

Subtlety 1: URL structure is complicated. Figure 1 illustrates
the URL structure, including: a protocol name (https in
this example), a hostname (mail.example.com), and a
URL path (mail/u/0) possibly along with some queries
within the URL path. A hostname consists of a domain name
(example.com, also refereed to as a 2LD) and possibly a
subdomain name (mail, referred to as a 3LD). A hostname
is sometimes referred to as a Fully Qualified Domain Name
(FQDN) [13] and mapped to one or multiple IP addresses by the
DNS server, while noting that one IP address may be mapped to
multiple hostnames (i.e., shared hosting [14]). A domain name
must contain a Top-Level Domain (TLD) (e.g., .com) within
it. A higher level subdomain, say Fourth-Level-Domain (4LD)
(e.g., z.x.example.com), could be resolved to the same IP
address as 3LD x.example.com or 2LD example.com. In
this paper, we refer to the 3LD or higher level (if present) of a
URL as hostname and the 2LD as domain name, while noting
that these two become the same in the absence of a subdomain
name within the website URL in question.

https://mail.example.com/mail/u/0

protocol subdomain

Domain name

URL Path

Host name

URL

TLD

Fig. 1: Illustration of the structure of URLs

The complexity of URL structure makes it unclear what the
law-enforcement should do to a malicious website or URL. To
see this, consider a URL with a path name. In this case,

• shutting down the specific URL (including the path name),
for example by filtering web traffic corresponding to the
URL, may not be effective because the attacker can easily
create other URL paths with the same hostname;

• shutting down the corresponding port is no good idea
because the host (i.e., web server) corresponding to the
URL may be malicious (i.e., the host can continue to wage
attacks via other ports);

• shutting down the entire domain (e.g., example.com in
this case) or the entire hostname (e.g., mail.example.com)
corresponding to the URL without considering its owner-
ship is no good idea because there might be many benign
subdomains and URLs blueassociated with the domain or
the hostname, which will be affected and deemed as false
positives.

To further illustrate the problem, let us look at the structure
of a website using web-hosting vs. domain-hosting as shown in

Figure 2. In this example, the host sites.example.com is
not malicious and should not be shutdown even though some
URL(s) with the hostname are malicious. In the case of domain-
hosting shown in Figure 2(B), multiple hostnames are created
under the benign domain example.com. If one hostname,
say site1.example.com, is created by an attacker to
publish malicious contents by abusing the hosting service,
then site1.example.com should be shut down but the
other subdomains. However, if domain example.com is not
associated with any hosting service, then we can safely assume
that example.com is owned and/or operated by an attacker
and therefore should be shut down.

example.com

sites.example.com

/~site1 /~site2 /~site3 /~siteN
. . .

. . .

example.com

site1.example.com site2.example.com siteN.example.com
. . .

(A)

(B)

hostname
URL

  ...     /pages1       ...   ...     /pages2     ...   ...     /pagesN     ...

. . .

Fig. 2: The structural difference between (A) web-hosting
and (B) domain-hosting within an example domain named
example.com (adapted from [15])

Subtlety 2: Trustworthiness of given malicious websites.
Blacklists may contain false-positives [2], meaning that the
law-enforcement cannot blindly trust or shut down blacklisted
websites. Instead, the law-enforcement must leverage other
means to examine whether a blacklisted entity (i.e., host or
domain) is indeed malicious before taking any actions.
Subtlety 3: IP Address-based blacklisting is no good idea.
Nowadays sharing IP addresses and hosting is very popu-
lar. With shared IP addresses, many domains may resolve
to the same IP address. If one of the hostnames is ma-
licious, it does not mean the other hostnames that resolve
to the same IP address are malicious. This makes it harder
to use IP address-based blocking [14], [16]. In order to
further highlight the ambiguity, we randomly pick a host-
name mail[.]weddingstaffcompanies[.]com1 from
the publicly available PhishTank blacklist; the hostname is
labeled as suspicious by McAffe PC security when accessed
from Google Chrome browser. The hostname is resolved to
IP address is 207.38.88.153. Then, we do reverse DNS lookup
to get a FQDN usloft5543[.]serverprofi24[.]com,
which is different from the input hostname. In order to see
what other domains or hostnames are mapped to IP address
207.38.88.153, we query Robtex.com and find that at least 44
domains or hostnames are associated with it. However, we do
not find any other domains or hostnames associated with this
IP address in the blacklist. In this case, if the law-enforcement

1[.] is used to safeguard reader from clicking possibly malicious website
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blocks IP address 207.38.88.153, then the other 43 hostnames
will be affected, which is not justified. Therefore, IP address-
based blocking is no feasible solution.

Host compromise 
(Case-3)

Legend Benign URLs

Malicious URLs

Benign hostname

Malicious hostname

Benign domain

Malicious domain

Benign Domain Malicious 
Domain

(Case-1)

Domain compromise 
(Case-2)

Fig. 3: Structure of websites including domain, hostname, and
URL(s)

Subtlety 4: Complications encountered when taking actions
against malicious domains or hostnames. Figure 3 highlights
the mapping of hostnames and URLs in a domain name. It
shows multiple cases: (case-1) The law-enforcement encounters
a malicious domain and associated malicious hostnames and
URL paths. The law-enforcement can justifiably shut down the
domain. (case-2) The law-enforcement encounters a benign do-
main that has been compromised to create malicious hostname.
The law-enforcement needs shut-down the malicious hostname
and notify the legitimate domain owners to let them clean up
the compromises. (case-3) The law-enforcement encounters a
benign hostname associated with a benign domain which is
compromised and abused to create malicious URLs. The law-
enforcement should notify the hostname owner to clean up and
put the URL in blocklist without shutting down the domain
or hostname. In summary, it is essential to support the law-
enforcement with various kinds of details.

B. Research Questions (RQs)

The preceding subtleties prompts to revise the research
problem as as follows: This leads to the following research
questions (RQs) regarding a blacklisted URL:

• RQ1 (URL characterization): At what entity level(s), such
as domain and/or host, should the law-enforcement take
actions?

• RQ2 (quantitative classification): What is the likelihood
that the entity (e.g., domain or hostname) corresponding
to a blacklisted URL is malicious or victim (i.e., compro-
mised and abused to wage attacks)?

• RQ3 (prediction interpretability): Why an entity associ-
ated with a blacklisted URL is predicted as malicious or
compromised?

• RQ4 (law-enforcement actions): What should the law-
enforcement do when the answers to RQ2 and RQ3 are
not satisfactory or convincing?

III. THE FRAMEWORK

To address the RQs mentioned above, we propose a frame-
work, which is highlighted in Figure 4. The framework has the
following modules: characterizing, labeling, feature analysis
& extraction, training interpretable ML models, probabilistic
classification, and decision-making. At a high level, these
modules work together to address the aforementioned RQ1-
RQ4 as follows. To address RQ1, we propose extracting the
hostname and domain namefrom a given blacklisted URL,
while finding out if the domain or hostname is associated
with any known hosting service. In practice, one of the two
following scenarios happen often: (i) the law-enforcement is
often given blacklisted URLs without being told why and
how the URLs are blacklisted; (ii) the law-enforcement is
told how the URLs are blacklisted but without being given
any explanation on why they are deemed malicious and/or the
confidence that the URLs are indeed malicious. This prompts
us to propose that the law-enforcement should build their
own systems to analyze blacklisted URLs to address RQ2-
RQ4. In particular, addressing RQ2 requires to quantifying
the probabilistic uncertainty associated with ML models and
addressing RQ3 requires to using interpretable ML models.
Lastly, addressing RQ4 helps the law-enforcement in dealing
with truly malicious or attacker-owned entities.

URL 
Blacklist

Data

Feature Extraction 
& Analytics 

Module

Training Interpretable 
ML Models

(yi%)  Non-Malicious 
(100-yi)%   Malicious 

Decision-Making Module

f1
f2   
...  
fj

Trustworthy Classification
Module

wi

malicious?
Why?

Satisfactory?

Prediction Probability

m1

m2

mk

...

Evaluate
Models 

m1 mk...

Labeling Module
'C'
'M'
'U'

notify

analysis

takedown

Characterizing 
Module

domain

host
URL

hosting 
service?

Fig. 4: The Framework with six modules.

Notations. A URL blacklist L contains n URLs, denoted by
L = {u1, . . . , un}. For URL ui ∈ L, we denote the associated
hostname by hi and domain name by di, a corresponding entity
for i-th URL is denoted as eni. Table I summarizes the main
notations used in the paper.

A. Characterizing Module

This module characterizes the URLs on a blacklist to select
the appropriate entity eni based on their domain structure. It
should first extract the hostname hi and the domain name di
from the input blacklisted URL ui. Then, we check if the
hostname hi (3LD or higher level subdomain) is associated
with any known hosting services, if yes then we notify the
hostname for cleaning up and no quantification is necessary;
otherwise, we check if the domain name di is associated with
any known hosting services, if not then the selected entity
eni = di; otherwise then we further check if di = hi (meaning
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TABLE I: Summary of notations used in the paper

Notation Meaning
ui,L i-th URL on blacklist L
di, hi, eni Domain, host, and entity for the URL ui, respectively
CL = {C,M} Class label compromised (C) vs. malicious (M)
yi Predicted probability for maliciousness of entity eni

M Any supervised machine learning model
Fi Feature vector for i-th entity
Ei Explanation set for i-th entity
φij Impact of the j-th feature on classification of i-th entity
φij,k Impact of the j-th and k-th features together on classifi-

cation of i-th entity
Dentity Total unique entities (websites) without association to any

public/private hosting services
Dlabeled Labeled ground-truth entities

hostname same as domain or no subdomain in URL), if yes,
then we notify the domain and no quantification is required
(because domain is legitimate, URL is created with malicious
path); otherwise, when hi 6= di, we select entity eni = hi
for quantification. The flow chart is presented in Figure 5. The
URLs that are characterized as to quantify hostname or quantify
domain names are the ones compiled as the Dunlabeled, and
going as an input to the next module.

ui Extract hi and di from ui

Is hi=di?

Is hi 
hosting 
service?

Yes

Notify 
hostname

Quantify 
host 

Is di 
hosting 
service?

Notify 
domain 

No

Yes

Quantify 
domain 

No
Yes

No

Fig. 5: Flowchart for Characterizing Module.

B. Labeling Module

This module produces a labeled dataset for training ML
models, ideally automated. This module takes a hostname or
domain name as input, depending on the entity chosen to
quantify by the characterizing module. It labels the entity via
a third-party threat engine such as the VirusTotal [17]. There
may be four possible labels: malicious (M); compromised (C)
meaning that the entity is itself a victim, namely compromised
and then abused to wage attacks; unknown (U); and not
available (N). It may be necessary to preprocess the input from
such third-party services, and the preprocessing method may be
specific to the third-party services. In any case, we propose only
considering the malicious (M) and the compromised (C) labels
for analyzing the law-enforcement perspective.

C. Feature Extraction & Analytics Module

1) Feature Extraction: This module extracts feature rep-
resentations of URLs, including but are not limited to what
have been extracted by the characterizing module. Denote the

resulting feature representation of URL ui by Fi = {f i1 . . . f ik},
where k is the total number of features. We propose using the
following features:

1) Brand-name in hostname and domain name (f1 ∈ {0, 1}):
This feature indicates whether a hostname and domain
name string contains popular brand names according to
some list(s) of reputable domains, such as Alexa [18] or
Tranco [19]. Any domain or hostname involved in the a
blacklist should have f1 = 0.

2) Twisted brand-name in hostname (f2 ∈ {0, 1}): This
feature indicates if the domain name or hostname con-
tains any twisted string of the top 5k brand names, such
as typo-squatting, combo squatting, or homographing.
For example, amaz0n-pay.example.com contains
a twisted version of a top-brand name amazon and
therefore has been assigned value 1, otherwise 0.

3) Number of dots in a hostname (f3): This is the number
of dot characters (i.e., ‘.’) in a hostname. For example,
hostname ab.c-d.df.com has 3 dots.

4) Number of hyphens in hostname (f4): This is the number
of hyphen characters (i.e., ‘-’) in the hostname. For
example, hostname ab.c-d.df.com has 1 hyphen.

5) Digit ratio in hostname (f5): This is the ratio of the num-
ber of digits in a hostname to the length of a hostname.
For example, hostname a12.c34-d1.df.com has 5
digits, meaning a digit ratio of 5/17.

6) Number of unique alphabetic-numeric characters in host-
name (f6): This is the number of unique alphabetic
characters or digits in a hostname except the TLD part,
which is excluded because it often consists of letters.
For example, hostname ab12.c34-d1.df.com has 9
unique alphabetic-numeric characters (i.e., a, b, c,
d, f, 1, 2, 3, 4) other than the TLD (.com).

7) Hostname length (f7): This is the length of a hostname.
8) Number of tokens in hostname (f8): This is the number

of tokens in a hostname after tokenizing with hyphen
‘-’ and dot ‘.’, except the TLD part which is excluded
because it is typically one token. For example, hostname
ab12.c34-d1.df.com has 4 different tokens (i.e.,
ab12, c34, d1, and df). This feature highlight the
hostnames that contain many ’-’ and/or ’.’ characters.

9) Length of the longest token (f9): This is the length of
the longest token in a hostname. For example, the longest
token ab12.c34-d1.df.com is 4 (i.e., ab12).

10) Number of redirects (f10): Attackers often use redirects
to deceive victims. This feature reports the number of
redirects associated with a hostname.

11) Number of passive DNS queries (f11-f12): These features
describe the number of records found for individual
DNS record types, such as DNS ‘A’ and ‘NS’ records
in the global passive DNS database from CIR.CL [20],
respectively. For a passive DNS query, an ‘A’ record and a
‘NS’ record indicates the corresponding IP addresses and
name server. These features report the record counts for
each record type. A high number in these records possibly
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indicate the website has more historical presence in the
Internet, thus deemed more reputable.

12) Presence of self-resolving name servers (f13 ∈
{0, 1}): It indicates if the associated domain has
any self-resolving name server or not. For exam-
ple, if domain ‘example.com’ has name server
ns1.example.com, the domain is self-resolving and
this feature value is 1; otherwise, its value is 0.

13) Domain ranking (f14):This numeric feature measures the
reputability of a domain name with respect to some list of
reputable websites (e.g., Tranco [19]). In our case study
we will present an example.

14) Hostname ranking (f15): This numeric feature measures
the reputability of a hostname with respect to some list
of reputable hosts (e.g., Tranco [19]). It can be assigned
in the same fashion as f14. In our case study we will
present an example.

15) Number of subdomains (f16): This is the number of
subdomains associated with a domain name corre-
sponding to a URL. For example, given domain name
d =“wixsite.com”, one can query all active subdo-
mains of the form of sub.wixsite.com and then count
the number of such subdomains.

After extracting these features, it is worth mentioning that a
preprocess may be needed to eliminate the correlated features
(if applicable) before training ML models, because it is well-
known that highly correlated features affect model predictions.
Removing unnecessary features may also improve ML models’
performance. Moreover, other blacklist dataset specific features
can be added to complement the existing generic features for
extending the framework.

D. Training Interpretable ML Model Module

This module trains for a ML model Mx to predict any
given URL for law-enforcement purposes. Here, x denotes the
corresponding interpretable ML model. It takes feature vectors
as input to train a ML classifier with uncertainty quantification
through probability, while providing interpretability of predic-
tions. We reiterate that one should use the ML methods that (i)
are interpretable, so that the law-enforcement can understand
why a URL is deemed malicious, and (ii) can quantify the
confidence or uncertainty associated with a prediction. Both
are important for justifying law-enforcement actions against a
blakclisted website.

E. Probabilistic Classification with Interpretation Module

A trained ML model makes probabilistic predictions on
URLs, while interpreting its predictions. The probabilistic clas-
sification can be evaluated using the standard metrics, such as
accuracy, AUC score, precision, recall, and F-1 scores [21].
For a given feature vector representing an entity, the law-
enforcement uses the classifier to predict the probability that
the corresponding entity (i.e., host or domain) as malicious
(M) or compromised (C). Moreover, there will be a explanation
set Ei = {φij}j ∪ {φij,k}(j,k) corresponding to the i-th entity.

Both the probabilistic predictions and interpretations will be
leveraged by the Decision-Making module.

F. Decision-Making Module

This module leverages the output of the probabilistic classi-
fication and interpretation module to help the law-enforcement
make decisions. At a high level, if an entity associated with
a URL, is predicted as malicious (M) with a high probability
and a satisfactory interpretation, the law-enforcement should
shut down the entity. If it is predicted as compromise (C) with
high probability and a satisfactory interpretation, then the law-
enforcement should notify the corresponding host or domain
owners to clean up. Otherwise, if the probability is not high
(e.g., < 70%) or the interpretation is not satisfactory enough
then the law enforcement should send the URL to human
analysts for further analysis.

Notify Further 
Analysis

probability >0.70 in 
prediction and 

satisfactory 
interpretation?

Shut-down

Domain/hostname 
Compromise

Domain/hostname 
Malicious

Yes

No

Output of the 
Quantitative 

classification 
for ui

Fig. 6: Flowchart of the decision-making Module.

Figure 6 highlights the flowchart, which can be understood
via the following example. If the length of an entity’s name
string is the main contributor to the maliciousness prediction
and the length is less than 10 characters, then it is not
conclusive to shut down the entity. If the number of unique
alphanumeric characters contained in the entity’s name string
is an indicator and this number is large, while there are other
indicators (e.g., a large digit ratio, a large number of tokens
in the entity’s name, a large number of redirects, or a large
number of passive DNS queries), then it becomes satisfactory
that the website is malicious and should be shutdown.

IV. CASE STUDY

Now we present a case study on instantiating the framework.
We use a publicly available blacklist, PhishTank, because it
is open-sourced and widely-used in literature. Even though
PhishTank adds new URLs on a regular basis and a community
verifies the URLs, the verification does not occur instantly.
As a consequence, PhishTank may still past compromised
websites that have already been cleaned up. However, Phish-
Tank does not provide any categorization for either malicious
or compromised websites, thus making it suitable for the
proposed law-enforcement perspective. We collect the verified
blacklisted URLs for 5/4/2021-5/10/2021, leading to a total of
|L| = 12, 843 URLs as input to the characterizing module.
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A. Characterizing Module

This module answers RQ1 by characterizing the URLs to de-
termine the appropriate entities on which the law-enforcement
should act upon based on the associated hosting services. In this
study, we curate a list of 61 publicly known reputable hosting
services. We extract hostnames and domain names from the
12,863 URLs, leading to a total of 7,482 unique hostnames.
This means that many URLs have the same hostname but
different paths. Among the 7,482 hostnames, there are 8
hostnames that are directly related to some known hosting
services and they are notified of the URLs if encountered. For
the rest 7,474 (= 7,482-8) hostnames, 2,707 are only domain
name (i.e., meaning hi = di); among the rest 4,767 hostnames
(where hi 6= di), 1,590 have their domains associated with
hosting services, meaning that the law-enforcement should
select entity eni = hi to take actions; for the rest 3,177
(=4,767-1,590) hostnames, their domains are not related to
any hosting services, meaning that the law-enforcement should
select entity eni = di to take actions. In total, we get 6,195
unique entities, where 4,605 are unique domains (derived from
the 5,884 = 3,177+2,707 hostnames) and 1,590 are unique
hostnames to quantify through the framework.

B. Labeling Module

In our case study we leverage VirusTotal to infer the labels
of the selected entities corresponding to the URL in PhishTank
blacklist because not all entities are bad. We use the following
heuristics to approximate the ground-truth dataset of the URLs
on L. For a given URL, we use its entity (i.e., hostname or
domain name), which is the output of the characterizing mod-
ule, to query VirusTotal. An entity is deemed malicious (M)
if 3 or more VirusTotal detectors say it is malicious; an entity
is deemed compromised (C) if no VirusTotal detectors deem it
as malicious; otherwise, an entity is disregarded because we
consider binary classification. In our experiment, the initial
blacklist size is |L| = 12,863, from which we obtain a total of
6,195 unique entities, which (equivalently, their corresponding
URLs in L) are denoted by Dentity . Among the 6,195 entities,
968 are labeled as compromised (C) denoted by Dcom and
4,017 are labeled as malicious (M) denoted by Dmal, leading
to a total of 4,985 entities, denoted by Dlabeled = Dcom∪Dmal;
while noting that the other 1,210 entities are disregarded.

C. Feature Extraction & Analytics Module

Extracting Feature Values. For the feature of brand name
in hostname (f1), we curate a list of top 5,000 domains from
Tranco [19] on the day of blacklisting and extracted the domain
part (e.g., “example” from example.com) as the brand
name. We only consider the brand names with string length
greater or equal to 4 because shorter ones can include a lot
of noises (e.g., ‘fb’ is a brandname of Facebook but other
benign legitimate domains / hostnames such as ‘fbox’ could
also include ‘fb’ as a sub-string, which causes ambiguity). If
any brand name is present in the hostname or (sub)domain
name, we set feature f1 = 1, and f1 = 0 otherwise. For feature
f2, we use dnsTwist [22] to generate typo-squatted domain

names based on the top 5,000 brand names mentioned above.
This leads to 24,213,971 twisted domains. Among these twisted
names, we keep the ones with length greater than or equal to
4 for the same reason as mentioned above and assign f2 = 1
if twisted brand name is present, and f2 = 0 otherwise.

For deriving the values of features f3 to f9, we use the host-
name and domain name contained in Dlabeled. For feature f10,
we use the python requests module with an entity eni as
input. If entity is unreachable, then we set f10 = 0. For features
f11 and f12, we query the CIR.CL passive DNS database [20]
for the ‘A’ record and ‘NS’ record corresponding to the entity in
Dlabeled, which. gives us a hint on the corresponding host’s or
domain’s past activities. We sum up all the ‘A’ and ‘NS’ record
counts for f11 and f12, respectively. For feature f13, we use the
python module dns.resolver to resolve the name servers
corresponding to the domain name and cross-check if the self-
resolving name server is present (f13 = 1) or not (f13 = 0).

For feature f14, we extract the Tranco rank list corresponding
to the dataset time-frame. We set f14 to be the rank of the
domain name if it is on the list of Tranco; otherwise, we set is
to be the lowest rank or 6,000,000 because it is the size of the
Tranco list. For feature f15, we also use the Tranco list and the
hostname for determining the value of f15.

For feature f16, we rely on a third-party open-source pene-
tration testing tool sublist3r, which uses OSINT [23] to query
from search engines (e.g., Yahoo, Bing, Baidu, and Ask) and
other threat intelligence feeds (e.g., Netcraft, ThreatCrowd,
DNSDumpster, and ReverseDNS).
Feature Values Analysis. We first analyze the correlations
between features. By analyzing the Pearson correlation [24]
among the numeric features, we find no significant correlations
between the numeric features since their correlation coefficient
is less than 0.5 between all pair of features.

D. Training Interpretible ML Model Module

We use the labelled data, Dlabeled, for training and testing
interpretible ML classification models. We randomly select
80% of data, Dtrain ∈ Dlabeled, for training and the remaining
20% of data, Dtest = Dlabeled − Dtrain, for testing. The
training set (|Dtrain|=3988) contains 3,219 malicious entities
and 769 compromised entities, while the test set (|Dtest|=997)
contains 798 malicious entities and 199 compromised entities.

In our experiments, we consider the following ML models:
Explainable Boosting Machine (EBM) [25], [26], Decision Tree
(DT) and Random Forest (RF). Since the last two models
are well-known, we only briefly review EBM. EBM a tree-
based cyclic gradient boosting model [26], which improves the
generative additive mode (GAM) [27]. In a GAM, the model
outcome is f(E [yi]) = β0 +

∑
φij , meaning that summation

of individual feature’s contribution is added to the model
along with a co-efficient β0; in EBM, the model outcome is
f(E [yi]) = β0+

∑
φij+

∑
φij,k, which contains another summa-

tion of the pair-wise interactive feature contributions φj,k where
j 6= k. These feature contributions can be deemed as the ex-
planation set, denoted as Ei = {φ1, . . . , φ16, φ1,2, . . . , φ15,16}
where 16 is the total number of actual features for this case
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study, which quantifies the contributions of individual features
as well as pairs of features for the predicted label of entity eni.
Here, EBM is chosen because EBM provides the probabilistic
quantitative classification along with the interpretability at the
individual prediction outcome both of which are required in
the proposed framework. Moreover, explainability provides
transparency and trust in classification of highly imbalanced
datasets.

E. Probabilistic Classification With Interpretation Module

This module answers both RQ2 and RQ3 through the use
of probabilistic label prediction for a given entity, and the
corresponding visualization of an explanation set, respectively.
In our experiments, we use the InterpretML platform’s visual-
ization to particularly answer the RQ3. Table II presents the
EBM model and the other ML models’ (i.e., accuracy, AUC
score, weighted precision, weighted recall, and weighted F -1
score). We observe that EBM performs better than the two other
models. Moreover, EBM offers interpretations for individual
predictions, which is important to the law-enforcement for
effective decision-making on certain entities. Therefore, we
will focus on EBM in the rest of the paper. The following
Decision-Making module provide examples for use cases of
the framework.
TABLE II: Performance Metrics of the ML Models on Dtest

Models Acc AUC Precision Recall F-1 Score
EBM 85± 1% 0.87 0.86 0.98 0.92
RF 84± 1% 0.83 0.88 0.93 0.86
DT 82± 1 0.72 0.88 0.88 0.88

F. Decision-Making Module

This module answers the RQ4 by aiding the law-enforcement
with the appropriate decision support based on the satisfaction
with the quantitative predictive classification and the visualized
explanation set (i.e., interpretation). For blacklisted entity eni,
in this module the law-enforcement receives a prediction proba-
bility yi for the entity to be malicious or compromised, together
with an explanation set Ei as visualized through InterpretML
platform shows top contributing features for that prediction. In
what follows, we use examples to show how the system can
indeed support the law-enforcement decision-making process.
Example 1 (Malicious → Takedown). There are mali-
ciously registered websites abusing hosting services such as
the inmotionhosting.com. Figure 8 shows one example.
In this example, the EBM classifier predicts the hostname
in question as malicious (M), with the explanation that sev-
eral indicators—such as the number of name server records
(22272), digits ratio (0.10), entity length (29.00), unique al-
phanumeric characters (15.00) —make significant contribution
to the malicious prediction; whereas, a few other features—
such as the number of A records, number of dots, domain rank,
number of tokens, self-resolving NS, max token length, and
number of hyphen—contribute to indicate that the hostname
is compromised (C). However, we observe that the prediction
by the interpretable EBM classifier is made as malicious
(label value 1) with a high probability 0.868. As a result

of both the high prediction probability and the strong expla-
nations, the law-enforcement should takedown this hostname
secure285[.]inmotionhosting.com and possibly no-
tify the domain owner inmotionhosting.com for clean up
because it is a hosting service provider.

Fig. 7: Example 1: malicous → takedown.

Example 2 (Compromise → Notify). Oftentimes there are
many legitimate business website that gets compromised by
attackers and abused to wage cyberattacks, which place them
into blacklists. But it is very important that law enforcement
identify this legitimate entities and try to notify them asap
for cleaning up. Figure 8 shows one example of a com-
promise case where the framework is predicting the input
entity 123formbuilder.com. In this example, the EBM
classifier predicts domain name in question as compromised (C)
with explanations that indicators—such as hostname ranking
(7070), number of A records (96), number of tokens (2.00),
number of dots (1.00) —make significant contribution towards
the compromise prediction. There are few indicators—such as
digit ratio and (domain rank × entity length) —make some
contributions towards the malicious (M) prediction. In this
particular case, the prediction probability for class C is 0.916
which is very high and trustworthy along with the strong host
rank features. Hence, it is quite trustworthy that the domain
name is compromised in this case and thus be notified by law-
enforcement.
Example 3 (Compromise→ Further Analysis). In this exam-
ple, the domain name whyymedia[.]com.aucorresponds
to available domain under the hosting domain
h2osupportservices.com.au. It is definitely not
a malicious website for now, but we do not know for sure it
it is a safe site in the future. It is blacklisted by PhishTank.

123formbuilder.com

Fig. 8: Example 2: Compromised → Notify.
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Fig. 9: Example 3: Compromised → Further Analysis.

As highlighted in Figure 9, the EBM classifier predicts it as
compromised (C) rather than malicious (M), while only 3
features contribute to supporting the prediction that the domain
is M rather than C. However, the probability of class C
prediction is 0.611, which infers there is uncertainty associated
with this prediction. Thus based on the decision-making
module recommendations as shown in the flowchart described
in Figure 6, the law-enforcement should not take actions (e.g.,
notify or takedown) without conducting a further analysis.
Our manual verification on a later date, which is more than
10 days after the URL is blacklisted by PhishTank, confirms
that the associated domain name is indeed legitimate but may
be taken by attackers in future. Hence, further analysis will
justify the corresponding action.
Example 4 (Malicious → Further Analysis). Figure 10
shows an example, where sctrlgin[.]com is blacklisted
by PhishTank. The EBM classifier predicts it as malicious (M)
with a probability of 0.675. Moreover, the classifier does not
give a convincing interpretation on the prediction. Specifically,
only few features—such as the domain rank (6000000) and
number of redirects (0.00)—contribute to predicting it as M,
which is not convincing enough. This would give the law-
enforcement a low confidence in the prediction, suggesting that
the law-enforcement should conduct a further analysis on the
domain name in question.

Fig. 10: Example 4: malicious → further analysis.

V. DISCUSSION AND LIMITATIONS

The case study is presented with EBM model [12] for
interpretable ML because we want to provide explanation for
individual prediction outcome, which EBM is well capable
of. Again, existing literature states that EBM is often more
intelligible and high performing than traditional Random Forest

model that often successfully used in malicious website detec-
tion [28]. However, the present study has several limitations.
First, in the current framework we rely on VirusTotal (VT)
for labeling websites, but VT is not perfect [29], meaning that
the resulting labels are not the try ground truth. Second, we
do not use any WHOIS features because of potential concerns
in relation to the GDPR [30]. Third, we do not analyze or
leverage website contents for this study. Fourth, the quality
of explanations and further evaluation need to be quantified
in future studies. Fifth, there are still expert decision to make
based on the framework outcome, which needs to be addressed
in future studies with more automated Decision Support System
(DSS) for the law-enforcement.

VI. RELATED WORKS

Although the law-enforcement perspective is a new dimen-
sion in dealing with blacklisted websites, the problem of
malicious websites has been extensively investigated (see, e.g.,
[2], [31]–[33]). While the literature studies are loosely related
to ours, it’s worth discussion by divided them into the following
categories. First, few recent studies mention the notion of
compromised websites in the same sense as ours (i.e., they are
owned by legitimate users) [34]–[36]. However, these studies
do not consider the notion of compromised hostname and com-
promised domains separately. Second, from an interpretability
point of view, most studies deal with the detection of malicious
website or phishing URLs via black-box ML models, which
often provide highly accurate models but lack interpretability
and cannot be used for law-enforcement (e.g., takedown, notify)
purposes. Recently, Silva et al. [36] use the LIME explanation
method on the random forest model to provide global feature
explanations but not individual predictions. In our case study,
we use the EBM model for individual prediction interpretations,
which the EBM model is also used to detect phishing URLs
[37]. Third, there are studies focusing on the detection of
phishing webspages or URLs [38], [39]. Fourth, there are
studies on leveraging new kinds of information to detect mali-
cious domains. For example, Bilge et al. present EXPOSURE
[40], which leverages passive DNS analysis to detect malicious
domains; their study inspires us to use the CIR.CL passive DNS
dataset and incorporate ‘A’ records and ‘NS’ records as features
in this study. Another proactive defense tool, PREDATOR [8],
aims to detect domain abuses at the time of registration, which
is effective against bulk registration events. Fifth, there are
studies on sophisticated attacks and defenses. For example, at-
tackers may re-register expired benign domains to exploit their
residual trust and evade reputation based detection (i.e., domain
drop-catch). studies [5]–[7] investigate how impersonation and
combo-squatting can evade detection by blacklists for a long
time, further justifying the incompleteness of blacklists. Lastly,
the notion of adversarial malicious website detection has been
studied in [41]. VII. CONCLUSION

We presented a framework to help the law-enforcement deal
with blacklisted websites, namely taking the appropriate data-
driven decisions in terms of (i) whether a domain or host
should be treated as the entity for action and (ii) whether the
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entity should be shut down or notified to the stakeholder. The
framework leverages interpretable ML techniques and quantita-
tive classification, which is essential in website maliciousness
where datasets are highly imbalanced. Our case study shows
that the framework is useful, the results are accurate, but there
are rooms for improvement. In the future, the framework can
be enhanced to incorporate ways to analyze quality of the
interpretations of ML models and to understand why mis-
classification happens with a more complete law-enforcement
decision-support system framework to cope with blacklisted
websites.
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