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Let C ⊂ P r be a general curve of genus g embedded via a gen-
eral linear series of degree d. The Maximal Rank Conjecture

asserts that the restriction maps H0(OPr (m)) → H0(OC(m))
are of maximal rank; this determines the Hilbert function of C.
In this paper, we prove an analogous statement for the union 
of hyperplane sections of general curves. More specifically, if 
H ⊂ P r is a general hyperplane, and C1, C2, . . . , Cn are gen-
eral curves, we show H0(OH(m) )→H0(O(C1∪C2∪···∪C

n
)∩H(m) )

is of maximal rank, except for some counterexamples when 
m = 2.
As explained in [5], this result plays a key role in the author’s 
proof of the Maximal Rank Conjecture [7].

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let Hd,g,r denote the Hilbert scheme classifying subschemes of P r with Hilbert poly-

nomial P (x) = dx + 1 − g. We have a natural rational map from any component of 

Hd,g,r whose general member is a smooth curve to the moduli space Mg of curves. The 

Brill–Noether theorem asserts that there exists such a component whose general member 

is nondegenerate and that dominates Mg if and only if
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ρ(d, g, r) := (r + 1)d − rg − r(r + 1) ≥ 0.

Moreover, it is known that when ρ(d, g, r) ≥ 0, there exists a unique such component 

that dominates Mg. We shall refer to a curve C ⊂ P
r lying in this component as a 

Brill–Noether Curve (BN-curve).

A natural first step in understanding the extrinsic geometry of general curves is to 

understand their Hilbert function. Here we have the Maximal Rank Conjecture:

Conjecture 1.1 (Maximal Rank Conjecture). If C is a general BN-curve and m is a 

positive integer, then the restriction map

H0(OP r (m)) → H0(OC(m))

is of maximal rank.

Remark 1.2. Since H1(OC(m)) = 0 for m ≥ 2 when C is a general BN-curve, the 

Maximal Rank Conjecture completely determines the Hilbert function of C.

In this paper, we study a related question for hyperplane sections. Namely, we prove 

that the general hyperplane section of a general union of BN-curves imposes the expected 

number of conditions on hypersurfaces of every degree, apart from a few counterexamples 

that occur for quadric hypersurfaces. Both the results and the techniques developed here 

play a critical role in the author’s proof of the Maximal Rank Conjecture [7], as explained 

in [5]. More precisely, we prove:

Theorem 1.3 (Hyperplane Maximal Rank Theorem). If C1, C2, . . . , Cn are independently 

general BN-curves of degrees di and genera gi, and H ⊂ P
r is a general hyperplane, and 

m is a positive integer, then the restriction map

H0(OH(m)) → H0(O(C1∪C2∪···∪Cn)∩H(m))

is of maximal rank, except possibly when m = 2 and di < gi + r for some i.

The conclusion that this restriction map is of maximal rank can be reformulated in 

terms of the cohomology of the twists of the ideal sheaf as follows:

H0(I((C1∪C2∪···∪Cn)∩H)/H(m)) = 0 when
n∑

i=1

di ≥

(
m + r − 1

r − 1

)
,

H1(I((C1∪C2∪···∪Cn)∩H)/H(m)) = 0 when

n∑

i=1

di ≤

(
m + r − 1

r − 1

)
.

In the course of proving Theorem 1.3, we will also prove stronger results for r = 3

and for r = 4. Namely:
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Theorem 1.4. Let X ⊂ H � P
2 ⊂ P

3 be a subscheme, and C ⊂ P
3 be a general BN-

curve.

• If C is a canonical curve and m = 2, suppose that X is nonempty.

• If C is a canonical curve and m �= 2, write Λ ⊂ H for a general line, and suppose 

that the restriction maps

H0(OH(m)) → H0(OX(m))

H0(OH(m − 1)) → H0(OX(m − 1))

H0(OΛ(m)) → H0(OX∩Λ(m))

are of maximal rank, with either the second one an injection, or the third one a 

surjection with kernel of dimension at least 4.

• Otherwise, suppose the map

H0(OH(m)) → H0(OX(m))

is of maximal rank.

Then the map

H0(OH(m)) → H0(OX∪(C∩H)(m))

is of maximal rank.

Theorem 1.5. Let X ⊂ H � P
3 ⊂ P

4 be a subscheme, and C ⊂ P
4 be a general BN-curve 

of degree d and genus g.

• If (d, g) ∈ {(8, 5), (9, 6), (10, 7)} and m = 2, suppose that X is either positive dimen-

sional or of degree at least 11 − d.

• If (d, g) ∈ {(8, 5), (9, 6), (10, 7)} and m �= 2, write Λ ⊂ H for a general plane, and 

suppose that the restriction maps

H0(OH(m)) → H0(OX(m))

H0(OH(m − 1)) → H0(OX(m − 1))

H0(OΛ(m)) → H0(OX∩Λ(m))

are of maximal rank, with either the second one an injection, or the third one a 

surjection with kernel of dimension at least 8.

• Otherwise, suppose the map

H0(OH(m)) → H0(OX(m))
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is of maximal rank.

Then the map

H0(OH(m)) → H0(OX∪(C∩H)(m))

is of maximal rank.

We shall prove Theorem 1.3 using an inductive approach due originally to Hirschowitz 

[3]. In its simplest form, suppose that C = X ∪ Y is a reducible curve such that Y is 

contained in some hyperplane H ′:

H ′

H

X

Y

Then we have the exact sequence of sheaves

0 → I(X∩H)/H(m − 1) → I(C∩H)/H(m) → I(Y ∩H)/(H∩H′)(m) → 0,

which gives rise to a long exact sequence in cohomology

· · · → Hi(I(X∩H)/H(m − 1)) → Hi(I(C∩H)/H(m)) → Hi(I(Y ∩H)/(H∩H′)(m)) → · · · .

Consequently, we can deduce the hyperplane maximal rank theorem for the general 

hyperplane section of C from the hyperplane maximal rank theorem for the general 

hyperplane sections of X and Y .

The structure of this paper is as follows. First, in Section 2, we give several methods 

of constructing reducible BN-curves that will be useful for specialization arguments later 

on. In Sections 3 and 4, we prove the hyperplane maximal rank theorem in the special 

cases r = 3 and m = 2 respectively. We then deduce the general case in Sections 5

and 6 via the above inductive argument, by finding appropriate BN-curves X ⊂ P
r

and Y ⊂ H ′ ⊂ P
r satisfying the hyperplane maximal rank theorem for (m − 1, r) and 

(m, r − 1) respectively.
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Notational Convention: We say a BN-curve X ⊂ P
r is nonspecial if d ≥ g + r, i.e. if 

X is a limit of curves with nonspecial hyperplane section.
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2. Some gluing lemmas

In this section, we will give some lemmas that let us construct examples of BN-curves.

Lemma 2.1. Let X ⊂ P
r be a curve with H1(NX) = 0, and D be a rational normal curve 

of degree d ≤ r that is k-secant to X, where

k ≤

{
d + 1 if d < r;

r + 2 if d = r.

Then X ∪ D is smoothable and H1(NX∪D) = 0. Moreover, if X is a BN-curve, then 

X ∪ D is a BN-curve.

Proof. The vanishing of H1(NX∪D) and smoothability of X ∪ D are consequences of 

Theorem 4.1 of [2] (via the same argument as Corollary 4.2 of [2]), together with the 

fact that

ND = OP 1(d)⊕(r−d) ⊕ OP 1(d + 2)⊕(d−1).

Now assume X is a BN-curve. To show that X ∪ D is a BN-curve, we just need to 

count the dimension of the space of embeddings of X ∪ D into projective space (this 

suffices because there is a unique component of the Hilbert scheme that dominates Mg). 

In order to do this, first note that

ρ(X ∪ D) = ρ(X) + (r + 1)d − r(k − 1).

Consequently, the verification that X ∪ D is a BN-curve boils down to the following two 

assertions, both of which are straight-forward to check:

1. Given a P 1 with k ≤ d + 1 marked points, the family of degree d embeddings of P 1

as a rational normal curve with given values at the marked points has dimension

(r − d)(d − k + 1) + d(d + 2 − k) = (r + 1)d − r(k − 1).
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2. Given a P 1 with r+2 marked points, there is a unique embedding of P 1 as a rational 

normal curve of degree r with given values at all marked points.

This completes the proof. �

Lemma 2.2. Let X ⊂ P
r be a curve with H1(NX) = 0, and R be a rational normal curve 

of degree r − 1 that is (r + 1)-secant to X, and L be a line that is 1-secant to both X and 

R. Then H1(NX∪R∪L) = 0.

Proof. Note that for curves A and B,

H1(NA∪B |A) = 0 and H1(NA∪B |B(−A ∩ B)) = 0 ⇒ H1(NA∪B) = 0;

indeed, this holds for NA∪B replaced by any vector bundle.

In particular, since NA is a subbundle of full rank in NA∪B|A, we can conclude that 

H1(NA∪B) = 0 provided that

H1(NA) = 0 and H1(NA∪B |B(−A ∩ B)) = 0,

or respectively H1(NA∪B |A) = 0 and H1(NB(−A ∩ B)) = 0.

Thus, the vanishing of H1(NX∪R∪L) follows from the following facts:

H1(NX) = 0

H1(NR∪L|R(−X ∩ R)) = H1(O
⊕(r−2)
P 1 ⊕ OP 1(−1)) = 0.

H1(NL(−L ∩ (X ∪ R))) = H1(OP 1(−1)) = 0. �

Lemma 2.3. Let X ⊂ P
r be a curve with H1(NX) = 0, and L be a line 3-secant to X. 

Assume that the tangent lines to X at the three points of intersection do not all lie in a 

plane. Then X ∪ D is smoothable and H1(NX∪D) = 0.

Proof. See Remark 4.2.2 of [2]. �

We end this section with two simple observations, that will be used several times in 

the remainder of the paper and will therefore be useful to spell out.

Lemma 2.4. Let X and Y be irreducible families of curves in P r, sweeping out subvarieties 

X , Y ⊂ P
r of codimension at most one. Let X and Y be specializations of X and Y

respectively, such that X ∪ Y is a BN-curve with H1(NX∪Y ) = 0, and X ∩ Y is quasi-

transverse and general in X ∩ Y.

Then there are simultaneous generalizations X ′ and Y ′ of X and Y respectively such 

that X ′ ∪ Y ′ is a BN-curve with #(X ∩ Y ) = #(X ′ ∩ Y ′). Equivalently, in more precise 

language, write B1 and B2 for the bases of X and Y respectively. Then we are asserting 
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the existence of an irreducible B ⊂ B1 × B2 dominating both B1 and B2, such that any 

fiber (X ′, Y ′) of (X × Y) ×(B1×B2) B satisfies the given conclusion.

Proof. As Y has codimension at most one, the intersection of any generalization X ′ of 

X with X ∩ Y contains a generalization of X ∩ Y . Similarly, the intersection of any 

generalization Y ′ of Y with X ∩ Y contains a generalization of X ∩ Y . The existence 

of simultaneous generalizations X ′ and Y ′ of X and Y respectively with #(X ∩ Y ) =

#(X ′ ∩ Y ′) thus follows from the generality of X ∩ Y in X ∩ Y.

Moreover, since H1(NX∪Y ) = 0, the curve X ∪Y is a smooth point of the correspond-

ing Hilbert scheme; consequently, any generalization X ′ ∪Y ′ of X ∪Y is a BN-curve. �

Lemma 2.5. Let S ⊂ P
r and T ⊂ P

r be sets of points such that the restriction maps

H0(OP r (m)) → H0(OS(m)) and H0(OP r (m)) → H0(OS∪T (m))

are of maximal rank. Then, for every integer 0 ≤ n ≤ #T , there exists a subset T ′ ⊂ T

of cardinality n such that

H0(OP r (m)) → H0(OS∪T ′(m))

is of maximal rank.

In particular, taking T = P
r(C) � S, if H0(OP r (m)) → H0(OS(m)) is of maximal 

rank, then for n general points T ′ ⊂ P
r, the map H0(OP r (m)) → H0(OS∪T ′(m)) is also 

of maximal rank.

Proof. We argue by induction on n. When n = 0, the conclusion holds by assumption. 

When n = 1, we note that the conclusion is obvious if H0(OP r (m)) → H0(OS(m)) is 

injective or if H0(OP r (m)) → H0(OS∪T (m)) is surjective. We may therefore suppose 

that the map H0(OP r (m)) → H0(OS(m)) is surjective but not injective, whose kernel 

contains a nonzero polynomial f ; and that H0(OP r (m)) → H0(OS∪T (m)) is injective. In 

particular, there is a point p ∈ T with f |p �= 0. Taking T ′ = {p}, the map H0(OP r (m)) →

H0(OS∪T ′(m)) is surjective by construction.

For the inductive step, let T ′′ ⊂ T be of size n − 1 such that H0(OP r (m)) →

H0(OS∪T ′′(m)) is of maximal rank. Applying our inductive hypothesis with (S, T ) =

(S ∪ T ′′, T � T ′′) completes the proof. �

3. The case r = 3

In this section, we will prove Theorems 1.4 and 1.5. As a consequence of Theorem 1.4, 

we will deduce that if C1, C2, . . . , Cn ⊂ P
3 are independently general BN-curves, then

H0(OH(m)) → H0(O(C1∪C2∪···∪Cn)∩H(m))
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is of maximal rank, unless n = 1, and C1 is a canonically embedded curve of genus 4, 

and m = 2. (In which case by inspection the above map fails to be of maximal rank.)

Proof of Theorem 1.4. If C is not a canonical curve, Theorem 1.5 of [6] states that C ∩H

is a general set of points, and so Lemma 2.5 yields the desired result.

If C is a canonical curve, Theorem 1.5 of [6] states that C ∩H is a set of 6 points which 

are general subject to the constraint that they lie on a conic. In particular, C∩H imposes 

independent conditions on H0(OH(1)) and on any fixed proper subspace of H0(OH(2)). 

Since X is nonempty by assumption if m = 2, the kernel of H0(OH(m)) → H0(OX(m))

is a proper subspace of H0(OH(m)) if m = 2. If m ≤ 2, we therefore conclude that

H0(OH(m)) → H0(OX∪(C∩H)(m))

is injective (so in particular of maximal rank as desired).

If m ≥ 3, we specialize the conic to the union of two lines, and the points of C ∩ H to 

consist of 2 points on one line (which is just a set of 2 general points), and 4 points on 

the other. Using our assumption that H0(OH(m)) → H0(OX(m)) is of maximal rank 

and applying Lemma 2.5 twice, it suffices to show

H0(OH(m)) → H0(OX∪Y (m))

is of maximal rank, where Y is a set of max(4, dim ker H0(OΛ(m)) → H0(OX∩Λ(m)))

points which are general subject to the condition that they lie on a line Λ. For this, we 

use the exact sequence

0 → IX(m − 1) → IX∪Y (m) → IY/Λ(m) → 0.

Note that H0(IY/Λ(m)) = 0, and if dim ker H0(OΛ(m)) → H0(OX∩Λ(m)) ≥ 4, then 

we have H1(IY/Λ(m)) = 0 too. In particular, the associated long exact sequence in 

cohomology implies H0(IX∪Y (m)) = 0 provided that H0(IX(m − 1)) = 0, and similarly 

for H1 if dim ker H0(OΛ(m)) → H0(OX∩Λ(m)) ≥ 4.

Our assumption that H0(OH(m − 1)) → H0(OX(m − 1)) is of maximal rank and 

injective if dim ker H0(OΛ(m)) → H0(OX∩Λ(m)) < 4 thus implies that H0(OH(m)) →

H0(OX∪Y (m)) is of maximal rank, as desired. �

Proof of Theorem 1.5. If (d, g) /∈ {(8, 5), (9, 6), (10, 7)}, Theorem 1.6 of [6] states that 

C ∩ H is a general set of points, and so Lemma 2.5 yields the desired result.

If (d, g) ∈ {(8, 5), (9, 6), (10, 7)}, then Theorem 1.5 of [6] states that C ∩H is a general 

complete intersection of 3 quadrics, a general set of 9 points on a complete intersection 

of 2 quadrics, or a general set of 10 points on a quadric, respectively. In particular, we 

may specialize C ∩ H to consist of 8 points which are a general complete intersection 

of 3 quadrics, together with d − 8 independently general points. Applying Lemma 2.5, 
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it suffices to show the result when (d, g) = (8, 5) and C ∩ H is a general complete 

intersection of 3 quadrics.

In particular C ∩ H imposes independent conditions on H0(OH(1)) and on any fixed 

subspace of H0(OH(2)) of codimension at least 3. Since any subscheme of P 3 of positive 

dimension or of degree at least 3 imposes at least 3 conditions on quadrics, if m ≤ 2 we 

therefore conclude that

H0(OH(m)) → H0(OX∪(C∩H)(m))

is injective (so in particular of maximal rank as desired).

If m ≥ 3, we claim we may further specialize C ∩ H to 8 general points in a plane. 

To see this, take a general set Γ of 8 points in a plane. Then there is a smooth plane 

cubic curve E containing Γ. Let p ∈ E be a point so that OE(2)(2p) � OE(Γ). Choose 

a basis 〈f1, f2, f3〉 for H0(OE(1)), so that E ⊂ P
2 is embedded via [f1 : f2 : f3], and let 

f0 be an extension to a basis of H0(OE(1)(p)). Then for λ generic, the image of Γ in 

P
3 under [λf0 : f1; f2 : f3] is a set of 8 points on the image of E, with class twice the 

pullback to E under this embedding of the hyperplane class in P 3 — in particular, as 

E is the complete intersection of two quadrics and is projectively normal, is a complete 

intersection of 3 quadrics in P 3. Specializing λ → 0, we obtain the set Γ of 8 general 

points in the plane that we started with.

Using our assumption that H0(OH(m)) → H0(OX(m)) is of maximal rank and ap-

plying Lemma 2.5, it suffices to show

H0(OH(m)) → H0(OX∪Y (m))

is of maximal rank, where Y is a set of max(8, dim ker H0(OΛ(m)) → H0(OX∩Λ(m)))

points which are general subject to the condition that they lie on a plane Λ.

Note that H0(IY/Λ(m)) = 0, and if dim ker H0(OΛ(m)) → H0(OX∩Λ(m)) ≥ 8, then 

we have H1(IY/Λ(m)) = 0 too. In particular, the associated long exact sequence in 

cohomology implies H0(IX∪Y (m)) = 0 provided that H0(IX(m − 1)) = 0, and similarly 

for H1 if dim ker H0(OΛ(m)) → H0(OX∩Λ(m)) ≥ 8.

Our assumption that H0(OH(m − 1)) → H0(OX(m − 1)) is of maximal rank and 

injective if dim ker H0(OΛ(m)) → H0(OX∩Λ(m)) < 8 thus implies that H0(OH(m)) →

H0(OX∪Y (m)) is of maximal rank, as desired. �

Corollary 3.1. If C1, C2, . . . , Cn are independently general space BN-curves, H ⊂ P
3 is 

a general hyperplane, and m is a positive integer, then the restriction map

H0(OH(m)) → H0(O(C1∪C2∪···∪Cn)∩H(m))

is of maximal rank, except if m = 2 and n = 1 and C1 is a canonical curve.
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Proof. Applying Theorem 1.4, we immediately see all cases of this statement by induction 

(starting with n = 0 as our base case), provided we check the case when m = 3 and 

n = 2 and C1 and C2 are both canonical curves. In this case, by Theorem 1.5 of [6]

(C1 ∪ C2) ∩ H is a collection of 12 points which are general subject to the condition that 

6 of them lie on conic Q1 and the other 6 lie on a conic Q2; we want to show such the 

general such subscheme does not lie on any cubics.

For this, we specialize one of the points on Q1 to one of the points of intersection 

Q1 ∩ Q2, and one the points on Q2 to a different point of intersection Q1 ∩ Q2. The 

resulting subscheme of degree 12 meets Q1 in 7 points, but a cubic not containing Q1

can only meet Q1 in 6 points by Bezout’s theorem. Any such cubic must therefore contain 

Q1, and symmetrically Q2. But Q1 ∪ Q2 is of degree 4, so is contained in no cubics, as 

desired. �

4. The case m = 2

In this section, we will prove the hyperplane maximal rank theorem when m = 2, and 

the curves Ci are all nonspecial. We will begin by constructing reducible curves with 

the following lemma, to which we will apply the method of Hirschowitz outlined in the 

introduction.

Lemma 4.1. Let H ′ ⊂ P
r be a hyperplane, and (d, g) be integers with d ≥ g + r and 

g ≥ 0. Assume d1 and d2 are nonnegative integers with d = d1 + d2. Then there exist 

curves X ⊂ P
r and Y ⊂ H ′, of degrees d1 and d2 respectively, both of which are either 

nonspecial BN-curves, rational normal curves, or empty; with X ∩ Y general, such that 

X ∪ Y ⊂ P
r is a nondegenerate BN-curve of genus g with H1(NX∪Y ) = 0.

Proof. We argue by induction on d (which satisfies d ≥ r). For the base case, we take 

d = r, which forces g = 0. We may then let X and Y be rational normal curves of degrees 

d1 and d2 respectively, meeting at one point; this gives a BN-curve with H1(NX∪Y ) = 0

by Lemma 2.1.

For the inductive step, we assume d ≥ r + 1; in particular, if d1 ≤ 1, then d2 ≥ r. 

Define g′ = max(0, g − 1) and

(d′

1, d′

2) =

{
(d1 − 1, d2) if d1 ≥ 2;

(d1, d2 − 1) else.

By our inductive hypothesis, there exists curves X ′ ⊂ P
r and Y ′ ⊂ H ′, of degrees d′

1 and 

d′
2 respectively, both of which are either nonspecial BN-curves, rational normal curves, 

or empty; with X ′ ∩ Y ′ general, such that X ′ ∪ Y ′ ⊂ P
r is a nondegenerate BN-curve of 

genus g′ with H1(NX′∪Y ′) = 0.

If d1 ≥ 2 and g = 0, we take X = X ′ ∪ L for L a general 1-secant line to X ′, and 

Y = Y ′; by Lemma 2.1, both X and X ∪ Y are BN-curves, and H1(NX∪Y ) = 0.
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Similarly if d1 ≤ 1 and g = 0 (respectively g ≥ 1), we take X = X ′, and Y = Y ′ ∪ L

for L a general 1-secant (respectively 2-secant) line to Y ′; by Lemma 2.1, both Y and 

X ∪ Y are BN-curves, and H1(NX∪Y ) = 0.

Finally, we consider the case d1 ≥ 2 and g ≥ 1. If X ′ is nondegenerate, we take 

X = X ′ ∪ L for L a general 2-secant line to X, and Y = Y ′; by Lemma 2.1, both 

X and X ∪ Y are BN-curves, and H1(NX∪Y ) = 0. If X ′ is degenerate, then since 

X ′ ∪Y ′ is nondegenerate by assumption, the general line L meeting X ′ and Y ′ each once 

intersects Y ′ in a point which is independently general from X ′ ∩ Y ′. We then take we 

take X = X ′ ∪ L, and Y = Y ′; again by Lemma 2.1, both X and X ∪ Y are BN-curves, 

and H1(NX∪Y ) = 0. �

Combining this with Lemma 2.4, we obtain:

Corollary 4.2. Let C1, C2, . . . , Cn ⊂ P
r be independently general nonspecial BN-curves, 

and H ′ ⊂ P
r be a hyperplane. Then we may specialize the Ci to curves Xi ∪ Yi such that ∑

deg Xi and 
∑

deg Yi are any two nonnegative integers adding up to 
∑

deg Ci; and 

such that X1, X2, . . . , Xn ⊂ P
r and Y1, Y2, . . . , Yn ⊂ H ′ are each sets of independently

general BN-curves or rational normal curves.

Proposition 4.3. Let C1, C2, . . . , Cn ⊂ P
r be independently general BN-curves, and H ⊂

P
r be a general hyperplane. Assume that Ci is nonspecial for all i. Then

H0(OH(2)) → H0(O(C1∪C2∪···∪Cn)∩H(2))

is of maximal rank.

Proof. We use induction on r; when r = 3, this is a consequence of Corollary 3.1. For 

the inductive step, write d =
∑

deg Ci, and let (d1, d2) be nonnegative integers with 

d = d1 + d2, such that

d1 ≥ r and d2 ≥

(
r

2

)
if d ≥

(
r + 1

2

)
,

d1 ≤ r and d2 ≤

(
r

2

)
if d ≤

(
r + 1

2

)
.

Pick a hyperplane H ′ transverse to H. By Corollary 4.2, we may specialize the Ci to 

curves Xi ∪ Yi such that 
∑

deg Xi = d1 and 
∑

deg Yi = d2; and such that

X := X1 ∪ X2 ∪ · · · ∪ Xn ⊂ P
r and Y := Y1 ∪ Y2 ∪ · · · ∪ Yn ⊂ H ′

are each unions of independently general BN-curves or rational normal curves. Since the 

hyperplane section of a rational normal curve is a general set of points, our inductive 

hypothesis in combination with Lemma 2.5 implies
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H0(OH∩H′(2)) → H0(OY ∩H(2))

is of maximal rank. Define

i =

{
0 if d ≥

(
r+1

2

)
,

1 if d ≤
(

r+1
2

)
;

so we want to show

Hi(I(C1∪C2∪···∪Cn)∩H/H(2)) = 0,

and know by induction that

Hi(IY ∩H/(H∩H′)(2)) = 0

By direct examination, Hi(IX∩H/H(1)) = 0. Consequently, we may use the exact 

sequence of sheaves

0 → IX∩H/H(1) → I(C1∪C2∪···∪Cn)∩H/H(2) → IY ∩H/(H∩H′)(2) → 0,

which gives rise to the long exact sequence in cohomology

· · · → Hi(IX∩H/H(1)) → Hi(I(C1∪C2∪···∪Cn)∩H/H(2)) → Hi(IY ∩H/(H∩H′)(2)) → · · · ,

to conclude that Hi(I(C1∪C2∪···∪Cn)∩H/H(2)) = 0 as desired. �

4.1. The condition d ≥ g + r

The condition d ≥ r is necessary; indeed when d < g + r, the map will sometimes fail 

to be of maximal rank, as shown by the following proposition:

Proposition 4.4. Let C ⊂ P
r be any curve of degree d and genus g, with d < g + r and 

4d − 2g < r(r + 3). Then the restriction map

H0(OH(2)) → H0(OC∩H(2))

fails to be of maximal rank.

Proof. We compute

dim H0(OP r (2)) − dim H0(OC(2)) =

(
r + 2

2

)
− (2d + 1 − g) =

r(r + 3) − (4d − 2g)

2
> 0,

and so C lies on a quadric. Moreover, we have



E. Larson / Journal of Algebra 555 (2020) 223–245 235

dim H0(OP r (2)) − dim H0(OC(2)) =
r(r + 3) − (4d − 2g)

2

=

(
r + 1

2

)
− d + (g + r − d)

= dim H0(OH(2)) − dim H0(OC∩H(2)) + (g + r − d)

> dim H0(OH(2)) − dim H0(OC∩H(2)).

Now every quadric containing C restricts to a quadric in H containing H ∩ C; as 

C is nondegenerate, this restriction has no kernel. Consequently, there is a subspace of 

H0(OH(2)) in the kernel of H0(OH(2)) → H0(OC∩H(2)) which is of positive dimen-

sion that exceeds dim H0(OH(2)) − dim H0(OC∩H(2)). In other words, H0(OH(2)) →

H0(OC∩H(2)) is not of maximal rank. �

When n = 1, the cases in Proposition 4.4 are the only cases in which the restriction 

map H0(OH(2)) → H0(OC∩H(2)) fails to be of maximal rank.

Indeed, if C is a general BN-curve with d < g + r, then C is linearly normal, i.e. 

H1(IC(1)) vanishes. Now consider the exact sequence of sheaves

0 → IC(1) → OP r (1) ⊕ IC(2) → IC∩H(2) → 0;

this induces a long exact sequence of cohomology groups:

· · · → H0(OP r (1)) ⊕ H0(IC(2)) → H0(IC∩H(2)) → H1(IC(1)) → · · ·

It follows that H0(OP r (1)) ⊕ H0(IC(2)) → H0(IC∩H(2)) is surjective, i.e. every quadric 

Q ⊂ H containing C ∩ H is the intersection with H of a quadric Q̃ ⊂ P
r containing C. 

For 4d − 2g ≥ r(r + 3), the maximal rank conjecture for quadrics (see [1] or [4]) implies 

that C is not contained in any quadric, and consequently that C ∩ H is not contained 

in any quadric.

5. Construction of reducible curves

In this section, which is the heart of the proof, we will construct examples of reducible 

BN-curves X ∪ Y where Y ⊂ H ′. These reducible curves will be the essential ingredient 

in applying the inductive method of Hirschowitz in the following section to deduce the 

hyperplane maximal rank theorem.

Lemma 5.1. Let H ′ ⊂ P
r be a hyperplane, and (d, g) be integers with ρ(d, g, r) ≥ 0 and 

d ≥ g + r − 2. Assume d1 and d2 are positive integers with d = d1 + d2, that additionally 

satisfy:

d1 ≥ r + max(0, g + r − d) and d2 ≥ r − 1.
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Then there exist nonspecial BN-curves X ⊂ P
r and Y ⊂ H ′ of degrees d1 and d2

respectively, with X ∩ Y general, such that X ∪ Y ⊂ P
r is a BN-curve of genus g with 

H1(NX∪Y ) = 0.

Proof. We will argue by induction on d and ρ(d, g, r). Notice that our inequalities for d1

and d2 imply d ≥ 2r − 1; for the base case, we consider when d = 2r − 1 or ρ(d, g, r) = 0.

If d = 2r − 1, we take X to be a rational normal curve of degree r, and Y ⊂ H to 

be a rational normal of degree r − 1 that meets X ∩ H in g + 1 points. (Note that as 

ρ(2r − 1, g, r) ≥ 0, we have g + 1 ≤ r.) By inspection, X ∪ Y is of genus g; as Aut H

acts (r + 1)-transitively on points in linear general position, X ∩ Y is general. Moreover, 

X ∪ Y is a BN-curve with H1(NX∪Y ) = 0 by Lemma 2.1.

If ρ(d, g, r) = 0 and d ≥ g+r−2, then either (d, g) = (2r, r+1) or (d, g) = (3r, 2r+2). 

In the case (d, g) = (2r, r + 1), we take X to be the union of a rational normal curve R

of degree r with a 2-secant line L, and Y to be a rational normal curve of degree r − 1

passing through X ∩ H. Again, by inspection X ∪ Y is of genus r + 1; as Aut H acts 

(r + 1)-transitively on points in linear general position, X ∩ Y is general. To see that 

X ∪ Y is a BN-curve with H1(NX∪Y ) = 0, we apply Lemma 2.1 to the decomposition 

X ∪ Y = (Y ∪ L) ∪ R.

Now suppose that (d, g) = (3r, 2r + 2). If d2 = r − 1, then we take X = C ∪ L to be 

the union of a canonical curve C with a general 1-secant line L. We take Y to be the 

rational normal curve of degree r − 1 passing through L ∩ H ′ and through r + 1 points of 

C ∩ H ′. By inspection X ∪ Y is of genus 2r + 2. To see that X ∩ Y is general, first note 

that since Aut H acts (r + 1)-transitively on points in linear general position, C ∩ Y is 

general; moreover, L ∩ H is general with respect to C. To see that X ∪ Y is a BN-curve, 

we apply Lemma 2.1 to the decomposition X ∪Y = C ∪ (L ∪Y ), while noting that L ∪Y

is the specialization of a rational normal curve of degree r. Moreover, by Lemma 2.2, we 

have H1(NX∪Y ) = 0.

Otherwise, we have d2 ≥ r and d1 ≥ r + 2; in this case we take X = R1 ∪ L0 ∪ L1 ∪ N1

and Y = R2 ∪ L2 ∪ N2, where:

1. R1 is a general rational normal curve of degree r.

2. L0 is a general 2-secant line to R1.

3. R2 is a general rational normal curve of degree r − 1 passing through all r + 1 points 

of (R1 ∪ L0) ∩ H.

4. L1 is a general line meeting R1 once and L0 once.

5. L2 is a general 2-secant line to R2, passing through L1 ∩ H.

6. N1 is a general rational normal curve of degree d1 − r − 2 meeting L1 once and R1

in d1 − r − 2 points (we take N1 = ∅ if d1 = r + 2).

7. N2 is a general rational normal curve of degree d2 − r meeting L2 once and R2 in 

d2 − r points (we take N2 = ∅ if d2 = r).
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In order for this to make sense, we need conditions 4 and 5 to be consistent. The 

consistency of 4 and 5, as well as the assertion that X ∩ Y is general, both follow from 

the following two claims:

• L1 ∩ H is general relative to (R1 ∪ L0) ∩ H. This follows from L1 ∩ R1 being general 

relative to L0 and R1 ∩ H, which in turn follows from the existence of a rational 

normal curve of degree r through a general collection of r + 3 points.

• The 2-secant lines to R2 sweep out H as we vary R2 over all rational normal curves 

of degree r − 1 passing through all r + 1 points of (R1 ∪ L0) ∩ H. This follows from 

the observation that R2 sweeps out H, which again follows from the existence of a 

rational normal curve of degree r − 1 through a general collection of r + 2 points in 

H ′.

By inspection, X ∪ Y is a curve of genus g and X and Y are nonspecial. To show that 

X ∪ Y is a BN-curve, we apply Lemma 2.1 to the decomposition

X ∪ Y = (L0 ∪ R2) ∪ R1 ∪ (L1 ∪ L2 ∪ N1 ∪ N2).

Similarly, to show H1(NX∪Y ) = 0, we apply Lemma 2.1 and then Lemma 2.3 to the 

decomposition

X ∪ Y = (L0 ∪ R2) ∪ R1 ∪ L2 ∪ N1 ∪ N2 ∪ L1.

To apply Lemma 2.3, we need to check that the tangent lines to (L0 ∪ R2) ∪ R1 ∪ L2 ∪

N1 ∪N2 at the points of intersection with L1 do not all lie in a plane. Since L1 intersects 

L0, the only possible plane that could contain all 3 tangents is L0L1. But as this plane 

contains the two points of intersection of L0 with R1 and a plane can only intersect a 

rational normal curve at 3 points with multiplicity, the tangent line to R1 at L1 ∩ R1

cannot be contained in this plane. Consequently, we may apply Lemma 2.3 as claimed.

For the inductive step, we have d ≥ 2r and ρ(d, g, r) > 0. We claim that these 

inequalities imply that

r + max(0, g + r − d) + r − 1 < d = d1 + d2. (1)

Of course,

r + max(0, g + r − d) + r − 1 = max(2r − 1, 3r − 1 + g − d);

consequently, as 2r − 1 < 2r ≤ d, it suffices to show 3r − 1 + g − d < d, or equivalently 

g < 2d + 1 − 3r. To see this, note that if g ≥ 2d + 1 − 3r, then we would have

−(r − 1)(d − 2r) = (r + 1)d − r(2d + 1 − 3r) − r(r + 1) ≥ (r + 1)d − rg − r(r + 1) > 0,
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which is a contradiction; thus, g < 2d +1 −3r, and so (1) holds. Consequently, there exists 

(d′
1, d′

2) either equal to (d1 − 1, d2) or to (d1, d2 − 1), such that d′
1 ≥ r + max(0, g + r − d)

and d′
2 ≥ r − 1. (Otherwise d1 − 1 < r + max(0, g + r − d) and d2 − 1 < r − 1, i.e. 

d1 ≤ r + max(0, g + r − d) and d2 ≤ r − 1; adding these contradicts (1).)

If we define g′ = max(0, g − 1), then max(0, g + r − d) = max(0, g′ + r − (d − 1)). 

Thus by the inductive hypothesis, there are BN-curves X ′ ⊂ P
r and Y ′ ⊂ H ′ of degrees 

d′
1 and d′

2 respectively, with X ′ ∩ Y ′ general, such that X ′ ∪ Y ′ ⊂ P
r is a BN-curve of 

genus g′ with H1(NX′∪Y ′) = 0. To complete the inductive step, we take

(X, Y ) =

{
(X ′, Y ′ ∪ L) if d′

1 = d1;

(X ′ ∪ L, Y ′) if d′
2 = d2;

where L =

{
a 1-secant line if g′ = g;

a 2-secant line if g′ �= g.

This satisfies the desired conclusion by Lemma 2.1. �

Lemma 5.2. Let H ′ ⊂ P
r be a hyperplane, and (d, g) be integers with ρ(d, g, r) ≥ 0. 

Assume d1 and d2 are positive integers with d = d1 + d2, that additionally satisfy:

d1 ≥ r + max(0, g + r − d) and d2 ≥ r − 1.

Then there exists BN-curves X ⊂ P
r and Y ⊂ H ′ of degrees d1 and d2 respectively, with 

X ∩ Y general, such that X ∪ Y ⊂ P
r is a BN-curve of genus g with H1(NX∪Y ) = 0. 

Moreover, we can take X to be nonspecial if

d2 ≥ (r − 1) ·

⌈
max(0, g + r − d)

2

⌉
. (2)

Proof. We will argue by induction on d. When d ≥ g +r −2, we are done by Lemma 5.1. 

Thus we may assume that d < g + r − 2. In particular, this implies that d ≥ 4r, and that 

max(0, g + r − d) = g + r − d. We claim that

r + max(0, g + r − d) + r − 1 = 3r − 1 + g − d < d − 2(r − 2) = d1 + d2 − 2(r − 2). (3)

This is equivalent to g < 2d + 5 − 5r; to see this, note that if g ≥ 2d + 5 − 5r, then

−(r − 1)(d − 4r) − 2r = (r + 1)d − r(2d + 5 − 5r) − r(r + 1) ≥ (r + 1)d − rg − r(r + 1) = 0,

which is a contradiction; thus, g < 2d + 5 − 5r, and so (3) holds. Consequently, there 

exists (d′
1, d′

2) either equal to (d1 − 1, d2 − r + 1) or to (d1 − r, d2), such that

d′

1 ≥ r + max(0, g + r − d) − 1 = r + max(0, (g − r − 1) + r − (d − r))

and d′
2 ≥ r − 1. (Otherwise d1 − r < r + max(0, g + r − d) − 1 and d2 − r + 1 < r − 1, i.e. 

d1 − (r − 2) ≤ r + max(0, g + r − d) and d2 − (r − 2) ≤ r − 1; adding these contradicts 

(3).)
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Thus by the inductive hypothesis, there are BN-curves X ′ ⊂ P
r and Y ′ ⊂ H ′ of 

degrees d′
1 and d′

2 respectively, with X ′ ∩ Y ′ general, such that X ′ ∪ Y ′ ⊂ P
r is a BN-

curve of genus g − r − 1 with H1(NX′∪Y ′) = 0. To complete the inductive step, we 

take

(X, Y ) =

{
(X ′ ∪ L, Y ′ ∪ R2) if d′

1 = d1 − 1;

(X ′ ∪ R1, Y ′) if d′
2 = d2.

Here, R1 is a rational normal curve of degree r that is (r + 2)-secant to X ′, and L is a 

1-secant line to X ′, and R2 is a rational normal curve of degree r − 1 intersecting Y ′ in 

r + 1 points and passing through L ∩ H.

Tracing through the proof, we notice then when (2) is satisfied, we add a 1-secant line 

to X at least as many times as we add an (r + 2)-secant rational normal curve of degree 

r. In particular, when (2) holds, the curve X we constructed is nonspecial. �

Lemma 5.3. Let H ′ ⊂ P
r be a hyperplane, and (d, g) be integers with ρ(d, g, r) ≥ 0. Write

d1 = 1 + max(0, g + r − d) and d2 = d − d1.

Then there exists a rational curve X ⊂ P
r, and a BN-curve Y ⊂ H ′, of degrees d1 and 

d2 respectively, with X ∩ Y general, such that X ∪ Y ⊂ P
r is a BN-curve of genus g with 

H1(NX∪Y ) = 0.

Proof. We argue by induction on ρ(d, g, r).

When ρ(d, g, r) = 0, then (d, g, r) = (r(t + 1), (r + 1)t, r) for some nonnegative integer 

t; so for ρ(d, g, r) = 0 we may argue by induction on t. When t = 0, we let X be a line, 

and Y be a rational normal curve of degree r − 1 in H ′, passing through X ∩ H ′; by 

Lemma 2.1, the union X ∪ Y is a BN-curve with H1(NX∪Y ) = 0. For the inductive step, 

we let X ′ ⊂ P
r and Y ′ ⊂ H ′ be of degrees d1 −1 and d2 −r +1 respectively, with X ′ ∩Y ′

general, such that X ′ ∪ Y ′ ⊂ P
r is a BN-curve of degree d − r and genus g − r − 1 with 

H1(NX′∪Y ′) = 0. We then pick a general point p ∈ H ′, and let

X = X ′ ∪ L and Y = Y ′ ∪ R,

where L is a 1-secant line to X ′ through p, and R is a rational normal curve of degree 

r − 1 which is (r + 1)-secant to Y ′ and passes through p. Applying Lemmas 2.1 and 2.2, 

we conclude that the union X ∪ Y is a BN-curve of genus g with H1(NX∪Y ) = 0 as 

desired.

For the inductive step, we let X ′ ⊂ P
r and Y ′ ⊂ H ′ be of degrees d1 and d2 − 1

respectively, with X ′ ∩ Y ′ general, such that X ′ ∪ Y ′ ⊂ P
r is a BN-curve of degree d − 1

and genus g′ := max(0, g − 1) with H1(NX′∪Y ′) = 0. We then take

X = X ′ and Y = Y ′ ∪ L,
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where L is a line which is 1-secant to Y ′ if g = g′ and 2-secant otherwise. Applying 

Lemma 2.1, we conclude that the union X∪Y is a BN-curve of genus g with H1(NX∪Y ) =

0 as desired. �

Lemma 5.4. Let C1, C2, . . . , Cn ⊂ P
r be independently general BN-curves, of degrees di

and genera gi, and H, H ′ ⊂ P
r be transverse hyperplanes. Let d′ and d′′ be nonnegative 

integers with

d′ + d′′ =
∑

di and d′ ≥ r − 1 +
∑

[1 + max(0, gi + r − di)].

Then we may specialize the Ci to curves C◦
i with 

∑
#(C◦

i ∩ H ∩ H ′) = d′′, so that

C◦

1 ∩ H ∩ H ′, C◦

2 ∩ H ∩ H ′, . . . , C◦

n ∩ H ∩ H ′ ⊂ H ∩ H ′ and

C◦

1 ∩ H � H ′, C◦

2 ∩ H � H ′, . . . , C◦

n ∩ H � H ′ ⊂ H

are sets of subsets of hyperplane sections of independently general BN-curves.

Moreover, we can assume the second of these sets is a set of subsets of hyperplane 

sections of independently general nonspecial BN-curves if

d′′ ≥ (r − 1) ·
∑ ⌈

max(0, gi + r − di)

2

⌉
. (4)

Proof. We first note that it suffices to consider the case where all Ci are special. Indeed, 

if C1, C2, . . . , Cm are special, and Cm+1, Cm+2, . . . , Cn are nonspecial, then the result for 

C1, C2, . . . , Cn follows from the result for C1, C2, . . . , Cm combined with Corollary 4.2

for Cm+1, Cm+2, . . . , Cn.

We may thus suppose Ci is special for all i. In particular, for all i,

di ≥ di − [(r + 1)di − rgi − r(r + 1)] = r + r(gi + r − di). (5)

We now argue by induction on n. When n = 1, this follows from Lemmas 5.2 and 2.4

if d′′ ≥ r − 1. If d′′ ≤ r − 2, then by the uniform position principle, the points of C1 ∩ H

are in linear general position. We may therefore apply an automorphism of H so that 

exactly d′′ of these points lie in H ′.

For the inductive step, note that Equation (5) gives, in combination with gn +r−dn ≥

1,

dn − r − max(0, gn + r − dn) ≥ (r − 1) ·

⌈
max(0, gn + r − dn)

2

⌉
≥ r − 1.

In particular, so long as

2r − 2 +
∑

[1 + max(0, gi + r − di)] ≤ d′ ≤ d − r + 1,
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we may combine our inductive hypothesis (for C1, . . . , Cn−1) with Lemmas 5.2 and 2.4

(for Cn) to deduce the result.

If d′ ≥ d − r + 2, the result follows from our inductive hypothesis (for C1, . . . , Cn−1); 

we do not specialize Cn.

Finally, if r − 1 +
∑

[1 + max(0, gi + r − di)] ≤ d′ ≤ 2r − 2 +
∑

[1 + max(0, gi + r − di)], 

then upon rearrangement,

d′ − [1 + max(0, gn + r − dn)] ≤ 2r − 2 +
∑

i<n

[1 + max(0, gn + r − dn)],

so by combining Lemmas 5.3 and 2.4(for Cn) with our inductive hypothesis (for 

C1, . . . , Cn−1), it suffices to show 2r − 2 +
∑

i<n[1 + max(0, gn + r − dn)] ≤
∑

i<n di, 

which follows in turn from

d1 ≥ 2r − 1 + max(0, g1 + r − d1),

which in turn follows from Equation (5) together with gn + r − dn ≥ 1. �

6. The inductive argument

In this section, we combine the results of the previous three sections to inductively 

prove the hyperplane maximal rank theorem. This essentially boils down to manipulating 

inequalities to show that we can choose the integers (d′, d′′) appearing in the previous 

section in the appropriate fashion.

We begin by giving some bounds on the expressions appearing in Lemma 5.2 that are 

easier to manipulate.

Lemma 6.1. Let d, g, and r be integers with ρ(d, g, r) ≥ 0. Then

1 + max(0, g + r − d) ≤
d

r
and (r − 1) ·

⌈
max(0, g + r − d)

2

⌉
≤

r − 1

2r
· d.

Proof. By assumption,

r · (g + r − d) ≤ r · (g + r − d) + (r + 1)d − rg − r(r + 1) = d − r

⇒ max(0, g + r − d) ≤
d − r

r
.

Substituting this in, we find

1 + max(0, g + r − d) ≤ 1 +
d − r

r
=

d

r
⌈

max(0, g + r − d)

2

⌉
≤

d−r
r + 1

2
=

r − 1

2r
· d. �
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Lemma 6.2. Let d, r, and m be integers with

r ≥ 4, m ≥ 3, and d ≥ 2r + 2.

Assume that

d ≥

(
m + r − 1

m

)
, respectively d ≤

(
m + r − 1

m

)
.

Then there are integers d′ and d′′ such that d = d′ + d′′ and

d′ ≥

(
m + r − 2

m − 1

)
and d′′ ≥

(
m + r − 2

m

)
,

respectively d′ ≤

(
m + r − 2

m − 1

)
and d′′ ≤

(
m + r − 2

m

)
,

which moreover satisfy

d′ ≥ r − 1 +
d

r
and d′′ ≥ r − 1.

Additionally, if m = 3, we can replace d′′ ≥ r − 1 by the stronger assumption that

d′′ ≥
r − 1

2r
· d.

Proof. First we consider the case where

d =

(
m + r − 1

m

)
≥

(
r + 2

3

)
≥ 2r + 2.

In this case, we take

d′ =

(
m + r − 2

m − 1

)
and d′′ =

(
m + r − 2

m

)
.

To see that these satisfy the given conditions, first note that

d′′ ≥

(
r + 1

3

)
≥ r − 1.

Next note that

(
m + r − 1

m

)
≥

r − 1
m

m+r−1 − 1
r

;

indeed, the LHS is an increasing function of m, the RHS is a decreasing function of m, 

and the inequality is obvious for m = 3. Rearranging, we get
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d′ =

(
m + r − 2

m − 1

)
=

m

m + r − 1
·

(
m + r − 1

m

)
≥ r − 1 +

1

r
·

(
m + r − 1

m

)
= r − 1 +

d

r
.

If m = 3, then

d′′ =

(
r + 1

3

)
≥

r − 1

2r
·

(
r + 2

3

)
=

r − 1

2r
· d.

In general, we induct upwards on d in the ≥ case and downwards on d in the ≤ case. 

To do this, we want to show that if d′ and d′′ satisfy

d′ ≥ r − 1 +
d

r
and d′′ ≥

r − 1

2r
· d where d = d′ + d′′ ≥ 2r + 2,

then either (d′ − 1, d′′) or (d′, d′′ − 1), as well as either (d′ + 1, d′′) or (d′, d′′ + 1), satisfy 

the above two conditions. We note that

d′ ≥ r − 1 +
d

r
= r − 1 +

d′ + d′′

r
⇔ (r − 1)d′ ≥ r(r − 1) + d′′.

d′′ ≥
r − 1

2r
· d =

r − 1

2r
· (d′ + d′′) ⇔ (r + 1)d′′ ≥ (r − 1)d′.

Assume (to the contrary) that neither (d′−1, d′′) nor (d′, d′′−1) satisfy the conditions, 

respectively that neither (d′ +1, d′′) nor (d′, d′′ +1) satisfy the conditions. Then we must 

have

(r − 1)(d′ − 1) < r(r − 1) + d′′ and (r + 1)(d′′ − 1) < (r − 1)d′,

respectively (r − 1)d′ < r(r − 1) + d′′ + 1 and (r + 1)d′′ < (r − 1)(d′ + 1).

Equivalently, we must have

(r − 1)(d′ − 1) + 1 ≤ r(r − 1) + d′′ and (r + 1)(d′′ − 1) + 1 ≤ (r − 1)d′,

respectively (r − 1)d′ ≤ r(r − 1) + d′′ and (r + 1)d′′ + 1 ≤ (r − 1)(d′ + 1).

Adding twice the first equation to the second, we must have

2(r − 1)(d′ − 1) + 2 + (r + 1)(d′′ − 1) + 1 ≤ 2r(r − 1) + 2d′′ + (r − 1)d′,

respectively 2(r − 1)d′ + (r + 1)d′′ + 1 ≤ 2r(r − 1) + 2d′′ + (r − 1)(d′ + 1).

Simplifying yields

(r − 1)(d′ + d′′) ≤ 2r2 + r − 4, respectively (r − 1)(d′ + d′′) ≤ 2r2 − r − 2.

In particular,
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d = d′ + d′′ ≤
2r2 + r − 4

r − 1
= 2r + 3 −

1

r − 1
⇒ d ≤ 2r + 2.

Consequently, we can reach via upward and downward induction every value of d that 

is at least 2r + 2. �

Proof of the Hyperplane Maximal Rank Theorem. We use induction on m and r. For 

m = 2, this is a consequence of Proposition 4.3; for r = 3, this is a consequence 

of Corollary 3.1. Note that if 
∑

di ≤ 2r − 1, then all the Ci are nonspecial and so 

H0(OH(2)) → H0(OC∩H(2)) is surjective; consequently, H0(OH(m)) → H0(OC∩H(m))

is surjective for all m ≥ 2. Thus, we may suppose 
∑

di ≥ 2r.

For the inductive step, we define integers (d′, d′′) as follows. If 
∑

di ∈ {2r, 2r + 1}, we 

take (d′, d′′) = (r + 1, 
∑

di − r − 1). Otherwise, for 
∑

di ≥ 2r + 2, we let (d′, d′′) be as in 

Lemma 6.2. Fix another hyperplane H ′ transverse to H. By Lemma 5.4, plus Lemma 6.1

when d ≥ 2r + 2, we may specialize the Ci to curves C◦
i with 

∑
#(C◦

i ∩ H ∩ H ′) = d′′, 

so that

X := (C◦

1 ∩ H ∩ H ′) ∪ (C◦

2 ∩ H ∩ H ′) ∪ · · · ∪ (C◦

n ∩ H ∩ H ′) ⊂ H ∩ H ′ and

Y := (C◦

1 ∩ H � H ′) ∪ (C◦

2 ∩ H � H ′) ∪ · · · ∪ (C◦

n ∩ H � H ′) ⊂ H

are unions of subsets of hyperplane sections of independently general BN-curves. More-

over, if m = 3, then we can arrange for X to be a union of subsets of hyperplane sections 

of independently general nonspecial BN-curves. By our inductive hypothesis, Lemma 2.5, 

and the uniform position principle, we know that the restriction maps

H0(OH(m − 1)) → H0(OY (m − 1)) and H0(OH∩H′(m)) → H0(OX(m))

are of maximal rank.

Define

i =

{
0 if

∑
di ≥

(
r+m−1

m

)
,

1 if
∑

di ≤
(

r+m−1
m

)
;

so we want to show Hi(I(X∪Y )∩H(m)) = 0. The exact sequence of sheaves

0 → I(X∩H)/H(m − 1) → I(X∪Y )∩H/H(m) → I(Y ∩H)/(H∩H′)(m) → 0,

gives rise to a long exact sequence in cohomology

· · · → Hi(I(X∩H)/H(m − 1)) → Hi(I(X∪Y )∩H/H(m)) → Hi(I(Y ∩H)/(H∩H′)(m)) → · · · .

By the inductive hypothesis, we have Hi(I(X∩H)/H(m −1)) = Hi(I(Y ∩H)/(H∩H′)(m)) =

0. Consequently, Hi(I(X∪Y )∩H/H(m)) = 0, as desired. �
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