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The generality of a section of a curve

Eric Larson

ABSTRACT

This paper considers the following fundamental problem about intersections in projective space:
When is the intersection of a (varying) curve with a (fixed) hypersurface a general set of points
on the hypersurface?

For example, let Q C P? be a general quadric, C be a general curve of genus ¢, and f: C — P?
be a general map of degree d. Then we show f(C) N Q is a general set of 2d points on @, except
for exactly six cases. We prove a similar theorem for the intersection of a space curve with a
plane, and for the intersection of a curve in P* with a hyperplane; besides the trivial cases of the
intersection of a plane curve with a line or conic, these cases are the only ones for which such a
theorem can hold.

As explained in (Larson, Preprint, 2018, https://arxiv.org/abs/1809.05980), these results play
a key role in the author’s proof of the Maximal Rank Conjecture (Larson, Preprint, 2017, https:
//arxiv.org/abs/1711.04906).

1. Introduction

Let H C P" (r > 2) be a general hypersurface of degree n. Let C be a general curve of genus g,
equipped with a general nondegenerate map f: C' — P" of degree d. The purpose of this paper
is to address the following fundamental question:

QUESTION. When is the intersection f(C) N H a general set of dn points on H?

Although a simple dimension count often prevents f(C) N H from being general, there are
three interesting cases of this question where it does not. Previous work on this question has
focused on one such case, the intersection of a space curve with a quadric: Ellingsrud and
Hirschowitz [4], and later Perrin [12], using the technique of liaison, gave partial results on
the generality of this intersection. However, a complete analysis, even in this case, has so far
remained conjectural. The present paper gives the first complete analysis, not only in this case,
but also in the other two:

THEOREM. Let f: C — IP3 be a general nondegenerate map of degree d from a general curve
of genus g, and @ be a general quadric. Then f(C) N Q is a general collection of 2d points on
Q) unless

(d, g) € {(4,1),(5,2),(6,2),(6,4), (7,5), (8,6)}.

In these cases, f(C) N Q is not general and can be described explicitly, cf. Theorem 1.4.
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THE GENERALITY OF A SECTION OF A CURVE 887

THEOREM. Let f: C — IP3 be a general nondegenerate map of degree d from a general curve
of genus g, and H be a general plane. Then f(C) N H is a general collection of d points on H
unless

(d, g) = (6,4).

In this case, f(C) N H consists of six points on a conic, cf. Theorem 1.5.

THEOREM. Let f: C — P* be a general nondegenerate map of degree d from a general curve
of genus g, and H be a general hyperplane. Then f(C) N H is a general collection of d points
on H unless

(d, g9) €{(8,5),(9,6),(10,7)}.

In these cases, f(C) N H is not general and can be described explicitly, cf. Theorem 1.6.

Aside from the trivial case of plane curves, there are no other theorems of this form. To fix
notation, we make the following definition:

DEFINITION 1.1. We say a stable map f: C' — P" from a curve C to P" (with r > 2) is
a Weak Brill-Noether curve (WBN-curve) if it corresponds to a point in a component of
M ,(P",d) which both dominates M,, and whose generic member is a map from a smooth
curve, which is an immersion if r > 3, and birational onto its image if r = 2; and which is
either nonspecial or nondegenerate. In the latter case, we refer to it as a Brill-Noether curve
(BN-curve).

The celebrated Brill-Noether theorem then asserts that BN-curves of degree d and genus g
to P exist if and only if

p(d,g,r):=(r+1)d—rg—7r(r+1)>0.

Moreover, for p(d, g,r) > 0, the parameter space of BN-curves is irreducible. (In particular, it
makes sense to talk about a ‘general BN-curve’.)
In this language, a more precise formulation of our main question is:

QUESTION. Let H C P" (r > 2) be a general hypersurface of degree n.

e If f: C — P" is a general BN-curve of degree d and genus g, is it true that f(C)NH is a
set of dn general points on H, apart from finitely many exceptional cases (d, g)?
e If so, what are the exceptional cases, and what is the geometry of f(C) N H in these cases?

The answer to the first question is usually no, as can be seen by a basic dimension count:
For r = 2, the divisor f(C) N H on H is linearly equivalent to Oy (d); in particular, it can only
be general if H is rational, that is, if n =1 or n = 2. In general, we note that in order for the
intersection to be general, it is evidently necessary for

(r+1)d—(r—3)g~(r+1)d—(r—3)(g—1)=dimMyP",d)° > (r—1)-dn.

(Here M ,(P",d)° denotes the component of M,(P",d) corresponding to the BN-curves, and
A ~ B denotes that A differs from B by a quantity bounded by a function of r alone.) If the
genus of C' is as large as possible (subject to the constraint that p(d, g,r) > 0), that is, if

r+1
T

~

d,
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888 ERIC LARSON

then the intersection can only be general when

1
(7“—|—1)~d—(7“—3)~<rJr ~d)z(r—1)n~d;
r
or equivalently if
1
) -3l gn e agXH?

r2—r

For r = 3, this implies n =1 or n = 2; for r =4, this implies n = 1; and for r > 5, this
is impossible.

To summarize, there are only five pairs (r,n) where this intersection could be, with the
exception of finitely many (d, g) pairs, a collection of dn general points on H: The intersection
of a plane curve with a line, the intersection of a plane curve with a conic, the intersection of a
space curve with a quadric, the intersection of a space curve with a plane, and the intersection
of a curve to P* with a hyperplane.

Our three main theorems (five counting the first two cases which are trivial) give a complete
description of this intersection in all of these cases. Both the results and the techniques
developed here play a critical role in the author’s proof of the Maximal Rank Conjecture
[10], as explained in [11].

THEOREM 1.2. Let f: C — P2 be a general BN-curve of degree d and genus g. Then the
intersection f(C) N Q, of C' with a general conic @, consists of a general collection of 2d points

on Q.

THEOREM 1.3. Let f: C — P? be a general BN-curve of degree d and genus g. Then the
intersection f(C)N L, of C' with a general line L, consists of a general collection of d points
on L.

THEOREM 1.4. Let f: C — P2 be a general BN-curve of degree d and genus g. Then the
intersection f(C)NQ, of C' with a general quadric @), consists of a general collection of 2d
points on @, unless

(d,g9) € {(4,1),(5,2),(6,2),(6,4),(7,5), (8,6)}.

And conversely, in the above cases, we may describe the intersection f(C)NQ C Q ~ P! x P!
in terms of the intrinsic geometry of Q ~ P' x P! as follows.

o If(d,g) = (4,1), then f(C) N Q is the intersection of two general curves of bidegree (2,2).
o If (d,g) =(5,2), then f(C)NQ is a general collection of ten points on a curve of
bidegree (2,2).
e If(d,g) = (6,2), then f(C)NQ is a general collection of twelve points p1, ..., p12 lying on
a curve D which satisty:
e The curve D is of bidegree (3,3) (and so is in particular of arithmetic genus 4);
e the curve D has two nodes (and so is in particular of geometric genus 2);
e the divisors Op(2,2) and p; + - - - 4+ p12 are linearly equivalent when pulled back to the
normalization of D.
e If(d,g) = (6,4), then f(C) N Q is the intersection of two general curves of bidegrees (2, 2)
and (3,3), respectively.
e If(d,g) = (7,5), then f(C)NQ is a general collection of fourteen points p1,...,p14 lying
on a curve D which satisfy:
e the curve D is of bidegree (3, 3);
e the divisor py + -+ + p1a — Op(2,2) on D is effective.
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THE GENERALITY OF A SECTION OF A CURVE 889

o If (d,g) = (8,6), then f(C)NQ is a general collection of sixteen points on a curve of
bidegree (3,3).

In particular, the above descriptions show f(C) N Q is not a general collection of 2d points

on Q.

THEOREM 1.5. Let f: C — P3 be a general BN-curve of degree d and genus g. Then the
intersection f(C) N H, of C' with a general plane H, consists of a general collection of d points
on H, unless

(dvg) = (674)

And conversely, for (d,g) = (6,4), the intersection f(C) N H is a general collection of six points
on a conic in H ~ P?; in particular, it is not a general collection of d = 6 points.

THEOREM 1.6. Let f: C — P* be a general BN-curve of degree d and genus ¢g. Then the
intersection f(C) N H, of C' with a general hyperplane H, consists of a general collection of d
points on H, unless

(d; g) € {(8,5),(9,6), (10, 7)}-

And conversely, in the above cases, we may describe the intersection f(C)NH C H ~P3 in
terms of the intrinsic geometry of H ~ P3 as follows.

e If(d,g) = (8,5), then f(C) N H is the intersection of three general quadrics.

e If(d,g) = (9,6), then f(C)N H is a general collection of nine points on a curve E C P? of
degree 4 and genus 1.

e If(d,g) = (8,5), then f(C)N H is a general collection of ten points on a quadric.

While the above theorems and discussion have focused on the question of when f(C) N H is
a general set of dn points on H, the reader may also wonder about other natural interpretations
of the basic question ‘when is the intersection of a curve with a hypersurface general?’. These
other interpretations turn out to be either uninteresting or already known.

e We can let both the curve and hypersurface vary, and ask when f(C) N H is a general set

of dn points in P".

e It is a straight-forward exercise (which we leave to the reader) that this happens if and
only if either f is a rational normal curve and H is a hyperplane, or » = 2 and f and H
are both conics, or 7 = 3 and f is a rational curve of degree 3 or 4 and H is a quadric.

e We can fix the curve f, and vary the hypersurface, that is, we can ask when f(C)N H is

a general set of dn points on f(C).

e It is a consequence of the maximal rank conjecture for rational curves (cf. [3]) that this
happens if and only if f is a rational curve and (TZ") >dn+ 1.

Notation and conventions

In this paper, we make use of the following notation and conventions.

e We work over an algebraically closed field of characteristic zero.

e A curve shall refer to a nodal curve, which is assumed to be connected unless otherwise
specified. A reducible curve with two components, X and Y, which meet along a set of
nodes I' = X NY, will be denoted X Ur Y.

o We will use the letters C, D, L, X, and Y to denote curves. Generally:

e (' will refer to the curve appearing in one of the main theorems;
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890 ERIC LARSON

e D will refer to an auxilliary curve, either controlling the intersection of C' with the
hypersurface (as in the statements of our main theorems), or attached to C' for an
inductive argument;

e [ will refer to a line;

e X and Y will refer to curves that appear in other contexts (including general statements
about curves).

e The term immersion will be used in the scheme-theoretic sense (that is, synonymous with
embedding), rather than in the differential-geometric sense. A map which is injective on
tangent spaces will be referred to as an unramified map.

e We say that a map is a rational normal curve if it is an immersion and its image is a
rational normal curve.

e A subbundle of a vector bundle will refer to a subsheaf whose quotient is locally free.

Overview

Our theorems above can be proven by studying the normal bundle of the general BN-curve
f: C — P": For any hypersurface S of degree n, and unramified map f: C' — P" dimensionally
transverse to S, basic deformation theory implies that the map

[ (f(C)NS)
(from the corresponding Kontsevich space of stable maps, to the corresponding symmetric
power of S) is smooth at [f] if and only if

HY(Nj(~n)) = 0.

Here, Nj(—n) = Ny ® f*Opr(—n) denotes the twist of the normal bundle N; of the map
f: C — P, this is the vector bundle on the domain C of f defined via

Nf = ker(f*pr- — Qc)v.

Since a map between reduced irreducible varieties is dominant if and only if it is generically
smooth, the map f — (f(C)NS) is therefore dominant if and only if H*(N¢(—n)) =0 for
[f] general.

This last condition being visibly open, our problem is thus to prove the existence of an
unramified BN-curve f of specified degree and genus, for which H'(N¢(—n)) = 0. For this, we
will use a variety of techniques, most crucially specialization to a map from a reducible curve
CUrD —Pr.

We begin, in Section 2, by giving several tools for studying the normal bundle of a map from
a reducible curve. Then in Section 3, we review results on the closely related interpolation
problem (cf. [2]). In Section 4, we review results about when certain maps from reducible
curves, of the type we shall use, are BN-curves. Using these techniques, we then concentrate
our attention in Section 5 on maps from reducible curves C' Ur D — P where D is a line or
canonical curve. Consideration of these curves enables us to make an inductive argument that
reduces our main theorems to finite casework.

This finite casework is then taken care of in three steps: First, in Sections 6-8, we again
use degeneration to a map from a reducible curve, considering the special case when D — P”
factors through a hyperplane. Second, in Section 9, we specialize to immersions of smooth
curves contained in Del Pezzo surfaces, and study the normal bundle of our curve using the
normal bundle exact sequence for a curve in a surface. Lastly, in Section 10 we use the geometry
of the cubic scroll in P to construct an example of an immersion of a smooth curve f: C' — P3
of degree 5 and genus 1 with H'(N(—2)) = 0.

Finally, in Section 11, we examine each of the cases in our above theorems where the
intersection is not general. In each of these cases, we work out precisely what the intersection
is (and show that it is not general).
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THE GENERALITY OF A SECTION OF A CURVE 891

2. Normal bundles of maps from reducible curves

In order to describe the normal bundle of a map from a reducible curve, it will be helpful to
introduce some notions concerning modifications of vector bundles. The interested reader is
encouraged to consult [2] (Sections 2, 3, and 5), where these notions are developed in full; we
include here only a brief summary, which will suffice for our purposes.

DEeFINITION 2.1. If f: X — P" is a map from a curve X to P, and p € X is a point, we
write [T,X] C P" for the projective realization of the tangent space — that is, for the linear
subspace L C P" containing f(p) and satisfying Ty, L = f.(T,X).

DEFINITION 2.2. Let A C P" be a linear subspace, and f: X — P" be an unramified map
from a curve. Write Uy n C X for the open subset of points p € X so that the projective
realization of the tangent space [T, X] does not meet A. Suppose that Uy s is nonempty, and
contains the singular locus of X. Define

Nf"A|Uf,A C Nf'Uf,A

as the kernel of the differential of the projection from A (which is regular on a neighborhood
of f(Uf,a)). We then let Ny, 5 be the unique extension of Ny |y, , to a subbundle of Ny on
X. For a more thorough discussion of this construction (written for f an immersion but which
readily generalizes), see [2, Section 5].

DEFINITION 2.3. Given a subbundle F C £ of a vector bundle on a scheme X, and a Cartier
divisor A on X, we define

E[A = F]
as the kernel of the natural map
E— (E/F)|a.

Note that E[A — F] is naturally isomorphic to £ on X \ A. Additionally, note that E[A — F]
depends only on F|a. For a more thorough discussion of this construction, see [2, Sections 2
and 3].

DEFINITION 2.4. Given a subspace A C P", an unramified map f: X — P" from a curve,
and a Cartier divisor A on X, we define

Nf[A — A] = Nf[A — Nf_>A].

We note that these constructions can be iterated on a smooth curve: Given subbundles
F1,Fe C &€ of avector bundle on a smooth curve, there is a unique subbundle 75 C £[A; — Fi]
which agrees with F» away from A; (cf. [2, Proposition 3.1]). We may then define:

g[Al — fl][Ag — ]:2] = g[Al — ]:1][A2 — ]:é]

Basic properties of this construction (as well as precise conditions when such iterated modifi-
cations make sense for higher dimensional varieties) are investigated in [2] (Sections 2 and 3).
For example, we have natural isomorphisms E[A; — F1][Ag — Fo| = E[Ag — Fo][A1 — Fi]
in several cases, including when F; C Fs.

Using these constructions, we may give a partial characterization of the normal bundle Ny
of an unramified map from a reducible curve f: X Up Y — P":
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892 ERIC LARSON

PROPOSITION 2.5 (Hartshorne-Hirschowitz). Let f: X Ur Y — P" be an unramified map
from a reducible curve. Write T = {p1,pa,...,pn}, and for each i let q; # f(p;) be a point on
the projective realization [T, Y] of the tangent space to Y at p;. Then we have

Nilx = Ny, (D)p1 = a1llp2 = @2 -+ [P0 = qul-

Proof. This is [5, Corollary 3.2], re-expressed in the above language. (Hartshorne and
Hirschowitz states this only for » = 3 and f an immersion; but the argument they give works
for r arbitrary.) O

Our basic inductive strategy to study the normal bundle of an unramified map from a
reducible curve f: CUpr D — P" is given by the following lemma:

LEMMA 2.6. Let f: C'Upr D — P" be an unramified map from a reducible curve, with C' and
D smooth, and let E and F be divisors supported on C \ T and D \ T, respectively. Suppose
that the natural map

a: H'(Nyp, (- HGB(f* CUF )))

pel’

is surjective (respectively, injective), and that
HY(Ny|p(=F)) =0 (respectively, H*(N¢|p(—F)) = H(Ny, (—F)))
H' (N (—E)) =0 (respectively, H'(Ny,(—E)) = 0).
Then we have
HY(Ny(—E —F))=0 (respectively, H(N;(—E — F)) = 0).

Proof. Write K for the sheaf supported along I" whose stalk at p € I' is the quotient of
tangent spaces:

T,(P)
f(T,(C Ur D))

Additionally, write A for the (not locally free) subsheaf of Ny ‘corresponding to deformations
which do not smooth the nodes I'’; or in symbols, as the kernel of the natural map

Ny — Ty,

Ky =

where T} is the Lichtenbaum—Schlessinger T*-functor (which is supported on T'). We have the
following exact sequences of sheaves:

0 —— N —— Ny T} 0
0 —— Ny, ——  Nylp T} 0
0 —— N —— Ny, @ Ny, K 0.

The first of sequence above is just the definition of . Restriction of the first sequence to D
yields the second sequence (we have N'|p ~ Ny|,,); the map between them being of course the
restriction map. The final sequence expresses A as the gluing of N'|c ~ Ny, to N|p ~ Ny,
along N|r ~ K.
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THE GENERALITY OF A SECTION OF A CURVE 893

Twisting everything in sight by —F — F', we obtain new sequences:

0 — > N(-E—F) —— Ni(—E - F) T} 0
0 —— Nf|D(—F) E— Nf‘])(—F) T} 0
0 —— N(*E*F) E— Nf‘c(fE)EBNﬂD(*F) K 0.

The commutativity of the rightmost square in the first diagram implies that the image
of H'(Ny(—=E — F)) — H°(T}) is contained in the image of H°(N¢|p(—F))— H°(T}).
Consequently, we have

dim H*(Ny(—E = F)) = dim H*(N(—E — F)) + dimIm (H*(N;(—E = F)) — H°(1}))
<dim H'(N(—E — F)) + dimIm (H°(Ny|p(-F)) = H(T}))

= dim H*(N(—E — F)) + dim H*(N¢|p(—F)) — dim HO(NfD(—F)()l.)

Next, our assumption that H°(Ny , (—F)) — H°(K) is surjective (respectively, our assump-
tions that H°(Ny|.(—E)) =0 and H°(Ny,(—F)) — H°(K) is injective) implies in particular
that H(Ny,(—FE) & Ny, (—F)) — H°(K) is surjective (respectively, injective).

In the ‘respectively’ case, this yields HY(N'(—E — F)) = 0, which combined with (1) and our
assumption that H°(Ny|p(—F)) = H°(Ny|,(—F)) implies H*(N;(—E — F)) = 0 as desired.
In the other case, we have a bit more work to do; the surjectivity of H(Ny, (—=F)) — H(K)
yields

dim H*(N(—E — F)) = dim H*(Ny |, (—E) ® Ny, (—F)) — dim H°(K);
or upon rearrangement,

dim H*(N'(—E — F)) — dim H’(Ny,, (= F)) = dim H’(Ny, (—E)) — dim H(K)

= X(Nyjo(=E)) = x(K).

(For  the last equality, dimH°(Ny . (—E))= x(Ny(—E))+dim H (N (-E)) =
X(Nyo(—E)) because H'(Ny,(—FE)) =0 by assumption. Additionally, dim H%(K) = x(K)
because K is punctual.)

Substituting this into (1), and noting that dim H°(N|p(—F)) = x(N¢|p(—F)) because
H'(N¢|p(—F)) = 0 by assumption, we obtain:

dim H*(Ny(—E — F)) < dim H*(Ny|p(—F)) + dim H*(N(—E — F)) — dim H(N;, (= F))
X(N¢lp(=F)) + x(Ny o (=E)) = x(K)

X(N¢lp(=F)) + x(N¢lo(=E = T))

X(Ny(—E = F)). (2)

For the final two equalities, we have used the exact sequences of sheaves

0= Nylg(—E —=T) = Ny (-E) = K =0

0—)Nf|c(—E—F) —>Nf(—E—F)—>Nf|D(—F) —>0;
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894 ERIC LARSON

which are just twists by —F — F of the exact sequences:

0 — Nyle(-T) — Ny =K =0

0 — N¢lc(-T') = Ny — Ng|p — 0.
To finish, we note that, by (2),
dim H' (N (~E — F)) = dim H'(Ny(—E — F)) = x(Ny(~E — F)) <0,
and so H'(N¢(—E — F)) = 0 as desired. O

In the case where f|p factors through a hyperplane, the hypotheses of Lemma 2.6 become
easier to check:

LEmMA 2.7. Let f: CUr D — P" be an unramified map from a reducible curve, such that
flp factors as a composition of fp: D — H with the inclusion of a hyperplane v: H C P",
while f|c is transverse to H along I'. Let E and F be divisors supported on C \T' and D\ T,
respectively. Suppose that, for some i € {0,1},

H'(Ny, (- = F)) = H'(Op(1)(T = F)) = H'(Ny|.(~E)) = 0.
Then we have

HY(Ny(—E - F))=0.

Proof. If i =0, we note that H°(Op(1)(I' — F)) =0 implies H°(Op(1)(=F))=0. In
particular, using the exact sequences

0 —— Ny,(—F) —— Ny, (=F) —— Op(1)(-F) —— 0

H l

0 —— Ny, (-F) —— Ny|p(-F) —— Op(1)(I'=F) —— 0,

we conclude from the first sequence that H(Ny, (—F)) — H°(Ny), (—F)) is an isomorphism,
and from the 5-lemma applied to the corresponding map between long exact sequences that
HO(Ny),(—=F)) = HO(Ny | p(~F)).

Similarly, when i = 1, we note that H'(Ny,(-I' — F)) = 0 implies H(N,(—F)) = 0; we
thus conclude from the second sequence that H'(N¢|p(—F)) = 0.

It thus remains to check that the map a in Lemma 2.6 is injective if ¢ = 0 and surjective if
i = 1. For this, we use the commutative diagram

8 T,H
BN () 2 Nyl = D (f(TD))

| |-

a TP(PT)
HO(Nyj, (—F)) —— EB (f(T(CuD))) '

Since f|¢ is transverse to H along I', the map ¢, above is an isomorphism. In particular, since
g is an isomorphism when ¢ = 0, it suffices to check that £ is injective if i = 0 and surjective if
1 = 1. But using the exact sequence

0— Ny, (-I' = F) = Ny, (—F) = Ny, |r — 0,
this follows from our assumption that H* (N, (-I' — F)) = 0. O
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THE GENERALITY OF A SECTION OF A CURVE 895

3. Interpolation

If we generalize Ny(—n) to Ny(—A), where A is a general effective divisor, we get the problem
of ‘interpolation’. Geometrically, this corresponds to asking if there is a curve of degree d and
genus g which passes through a collection of points which are general in P" (as opposed to
general in a hypersurface S). This condition is analogous in some sense to the conditions of
semistability and section-semistability (see [1, Section 3]), as well as to the Raynaud condition
([13, property |); although we shall not make use of these analogies here.

DEFINITION 3.1. We say a vector bundle £ on a curve C satisfies interpolation if it is
nonspecial, and for a general effective divisor A of any degree,

HY(E(-A) =0 or HY(E(-A))=0.

We have the following results on interpolation from [2]. To rephrase them in our current
language, note that if f: C'— P" is a general BN-curve for r» > 3, then f is an immersion, so
Ny coincides with the normal bundle N¢ ¢y /p- of the image. Note also that, from Brill-Noether
theory, a general BN-curve f: C'— P" of degree d and genus ¢ is nonspecial (that is, satisfies
H'(f*Opr(1)) = 0) if and only if d > g + 7.

PROPOSITION 3.2 [2, Theorem 1.3]. Let f: C — P" (for r > 3) be a general BN-curve of
degree d and genus g, where

d=g+r.
Then Ny satisfies interpolation, unless

(d,g,r) € {(5,2,3),(6,2,4),(7,2,5)}.

PROPOSITION 3.3 [2, Proposition 4.12]. Let £ be a vector bundle on a curve C, and A be a
divisor on C. If £ satisfies interpolation and

VE(-A)) > (KE) - (gonus C),
then £(—A) satisfies interpolation. In particular,

HY(E(-A)) = 0.

LEMMA 3.4. Let f: C — P" (for r € {3,4,5}) be a general BN-curve of degree r + 2 and
genus 2. Then H'(Ny(—1)) = 0.

Proof. We will show that there exists an immersion C' — P", which is a BN-curve of degree
r + 2 and genus 2, and whose image meets a hyperplane H transversely in a general collection
of r 4+ 2 points. For this, we first find a rational normal curve R C H passing through r + 2
general points, which is possible by [2, Corollary 1.4]. This rational normal curve is then
the hyperplane section of some rational surface scroll S C P" (and we can freely choose the
projective equivalence class of \5).

It thus suffices to prove that there exists a smooth curve C C S, for which C € S CP" is a
BN-curve of degree r 4+ 2 and genus 2, such that C'N (H NS) a set of r 4+ 2 general points on
H N S; or alternatively such that the map

Cs (CN(HNS)),

from the Hilbert scheme of curves on S, to the Hilbert scheme of points on H N S, is smooth
at [C]; this in turn would follow from H'(N¢,g(—1)) = 0.
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896 ERIC LARSON

But by [2, Corollary 13.3], the general BN-curve C' C P" (which is an immersion since
r > 3) of degree r 4+ 2 and genus 2 in P” is contained in some rational surface scroll S/, and
satisfies x(N¢v/g/) = 11. Since we can choose S projectively equivalent to .S’, we may thus find
a BN-curve C' C S of degree 7 + 2 and genus 2 with x(N¢/s) = 11. But then,

X(Neys(=1)) =11—d > g = H'(N¢/s(—1)) = 0. -
Combining these results, we obtain:
LEMMA 3.5. Let f: C — P" (for r > 3) be a general BN-curve of degree d and genus g.
Suppose d > g + r.

e Ifr=3and g =0, then H'(N¢(—2)) = 0. In fact, Ny(—2) satisfies interpolation.

o Ifr =3, then H'(N;(—1)) = 0. In fact, N;(—1) satisfies interpolation except when (d, g) =
(5,2).

o Ifr =4 and d > 2g, then H'(N;(—1)) = 0. In fact, N¢(—1) satisfies interpolation except
when (d, g) = (6,2).

Proof. When (d,g,7) € {(5,2,3),(6,2,4)}, the desired result follows from Lemma 3.4.
Otherwise, from Proposition 3.2, we know that N satisfies interpolation. Hence, the desired
conclusion follows by applying Proposition 3.3: If » = 3, then

X(Np(=1)) =2d>2g = (r —1)g
X(N(=2)) = 0= (r —1)g;
and if »r =4 and d > 2g, then
X(Nj(=1)) =2d —g+12>3g = (r— 1)g. H

LEMMA 3.6. Suppose f: C U, L — P? is an unramified map from a reducible curve, with
L ~ P!, and u a single point, and f|;, of degree 1. Write v # f(u) for some other point on f(L).
If

H'(Njie (=2)(uw)[2u — ]) = 0,
then we have
H'(Ny(~2)) = 0.
Proof. We apply [2, Lemma 8.5] (which is stated for f an immersion, in which case Ny =
Ncur and Ny, = N¢, but the same proof works whenever f is unramified); we take N¢ =

Ny (—=2) and A; = Ay = (). This implies N;(—2) satisfies interpolation (c.f. Definition 3.1)
provided that Ny (—2)(u)[u — v][u — v] satisfies interpolation. But we have

X(N7(=2)) = x(Ny) (=2)(u)[u — v][u — v]) = 0;

so both of these interpolation statements are equivalent to the vanishing of H'. That is, we
have H'(Ny(—2)) = 0, provided that

HY Ny (=2)(w)[u = vlu — v]) = H (N (=2)(w)[2u — v]) = 0,
as desired. 0

We finish this section with the following proposition, which immediately implies Theorems 1.2
and 1.3:
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THE GENERALITY OF A SECTION OF A CURVE 897

PROPOSITION 3.7. Let f: C —P? be a map from a curve. Then Ny(—2) satisfies
interpolation. In particular, Hl(Nf(—Z)) = Hl(Nf(—l)) =0.

Proof. By adjunction,
Ny~ Ke® f*Kp' ~Kp(3) = Ny(—2)~Kc(1).
By Serre duality,
H'(Kc(1)) ~ H(Oc(-1))" =0;

which since K¢(1) is a line bundle implies it satisfies interpolation. ]

4. Reducible BN-curves

DEFINITION 4.1. Let I' C P” be a finite set of n points. A pair (f: C — P", A C Cyn), where C
is a curve, f is map from C to P, and A is a subset of n points on the smooth locus Cyy,, shall
be called a marked curve (respectively, marked BN-curve, respectively, marked WBN-curve)
passing through I' if f: C'— P" is a map from a curve (respectively, a BN-curve, respectively,
a WBN-curve) and f(A) =T.

Given a marked curve (f: X — P", A) passing through T', we realize T" as a subset of X via
'~AcCX.

For p € ', we then define the tangent line T,,(f,I') at p to be the unique line £ C P" through
p with T,¢ = f.T,C.

Let T' CP" be a finite set of n general points, and (f;: X; — P",T;) be marked WBN-
curves passing through I'. By gluing I'y to I's via the isomorphism I'y ~ " ~ I's, we obtain the
reducible curve Xy Ur X5. Moreover, the maps f; give rise to a map f: X1 Ur Xo — P". In this
context, we have the following result:

PROPOSITION 4.2 [9, Theorem 1.6]. Suppose that, for at least one i € {1,2}, we have
(r+1)d; —rgi +r>rn.
Then f: X; Ur Xo — P" is a WBN-curve.

PROPOSITION 4.3. In Proposition 4.2, suppose that [f1,T'1] is general in some component of
the space of marked WBN-curves passing through T, and that H*(Ny,) = 0. Then H'(Ny) = 0.

Proof. This follows from combining [9, Lemmas 3.2 and 3.4]. d

The following lemmas give information about the spaces of marked BN-curves passing
through small numbers of points.

LEMMA 4.4. Let I' C P be a general set of n < r + 2 points, and d and g be integers with
p(d,g,7) =2 0. Then the space of marked BN-curves of degree d and genus g to P" passing
through T is irreducible.

Proof. First note that, since n < r + 2, any n points in linear general position are related
by an automorphism of P". Fix some ordering on T

The space of BN-curves of degree d and genus g is irreducible, and the source of the
generic BN-curve is irreducible; consequently the space of such BN-curves with an ordered
collection of n marked points, and the open subset thereof where the images of the marked
points are in linear general position, is irreducible. It follows that the space of such marked
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898 ERIC LARSON

curves endowed with an automorphism bringing the images of the ordered marked points to I'
(respecting our fixed ordering on I') is also irreducible. But by applying the automorphism to
the curve and forgetting the order of the marked points, this latter space dominates the space
of such BN-curves passing through I'; the space of such BN-curves passing through I' is thus
irreducible. O

LEMMA 4.5. Let I' C P" be a general set of n < r+ 2 points, and {{, : p € I'} be a set of
lines with p € £,,.

Then the general marked rational normal curve passing through I' has tangent lines at each
point p € I' distinct from £,,.

Proof. Since the intersection of dense opens is a dense open, it suffices to show the general
marked rational normal curve (f: X — P", A) passing through I" has tangent line at p distinct
from ¢, for any one p € T'.

For this we consider the map, from the space of such marked rational normal curves,
to the space of lines through p, which associates to the curve its tangent line at p. Basic
deformation theory implies this map is smooth (and thus nonconstant) at (f,A) so long
as H'(Ny(—A)(—gq)) =0, where ¢ € A is the point sent to p under f, which follows from
combining Propositions 3.2 and 3.3. (I

LEMMA 4.6. A general BN-curve can be specialized to an unramified map from a reducible
curve f°: X UrY — P", where f°|x is a rational normal curve and T' is a set of n <r+
2 points.

Proof. Write d and g for the degree and genus of f. We first note it suffices to produce
a marked WBN-curve (fs:Y — P",T'5) of degree d —r and genus ¢’ > g —r — 1, passing
through a set T of g + 1 — ¢’ general points. Indeed, g+1—¢ < g+1—(g—r—1)=r+2
by assumption; by Lemma 4.5, there is a marked rational normal curve (f;: X — P" T')
passing through I', whose tangent lines at I" are distinct from the tangent lines of (f5,I'2) at T".
Then f°: X Ur Y — P" is unramified (as promised by our conventions) and gives the required
specialization by Proposition 4.2.

It remains to construct (fs:Y — P",T'5). If g < r, then we note that since d and g are
integers,

p(d,g,r) g
d>d-5"22 7 — -— = d>= & 1< (d- 1.
1 9t g+r gHi<(d—r)+
Consequently, by inspection, there is a marked rational curve (fg: Y — P" T's) of degree d — r
passing through a set I" of g + 1 general points.
On the other hand, if g > r + 1, then we note that

pld 1.9~ —1r) = (r+ Dd—r) ~ (g~ —1) ~r(r+ 1)
=r+0)d—rg—r(r+1)=p(d,g,r)>=0.

We may therefore let (f5: Y — P",T'5) be a marked BN-curve of degree d — r and genus g —
r — 1 passing through a set I' of » 4+ 2 general points. (Il

LEMMA 4.7. Let I' C P" be a general set of n < r+ 2 points, {{, : p € I'} be a set of lines
with p € £,,, and d and g be integers with p(d, g,r) > 0.

Then the general marked BN-curve (f: C — P", A) of degree d and genus g passing through
I' has tangent lines at every p € I' which are distinct from £,,.
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THE GENERALITY OF A SECTION OF A CURVE 899

Proof. By Lemma 4.6, we may specialize f: C — P" to f°: X Ur Y — P" where f°|x is a
rational normal curve. Specializing the marked points A to lie on X (which can be done since
a marked rational normal curve can pass through n < r 4+ 2 general points by Proposition 3.2),
it suffices to consider the case when f is a rational normal curve. But this case was already
considered in Lemma 4.5. O

LEMMA 4.8. Lemma 4.6 remains true even if we instead ask f°|x to be an arbitrary
nondegenerate specialization of a rational normal curve.

Proof. We employ the construction used in the proof of Lemma 4.6, but flipping the order
in which we construct X and Y: First we fix (fY: X — P",T'1); then we construct (f5: Y —
P". T'5) passing through I', whose tangent lines at I' are distinct from the tangent lines of
(f2,T1) at T’ due to Lemma 4.7. O

5. Inductive arguments

Let f: C U, L — P" be an unramified map from a reducible curve, with L ~ P!, and u a single
point, and f|;, of degree 1. Suppose that C' is smooth, and f|c is a nondegenerate BN-curve.
By Proposition 4.2, such maps f are BN-curves.

LeMMA 5.1. Ifr =3 and H'(Ny,(~1)) = 0, then H'(N;(~1)) = 0.
Proof. This is immediate from Lemma 2.6 (taking D = L). O

LEMMA 5.2. If H'(Ny|,(—2)) =0, and f is a general map of the above type extending f|c,
then H'(N¢(—2)) = 0.

Proof. By Lemma 3.6, it suffices to prove that for (u,v) € C' x P? general,
H' Ny (=2)(uw)[2u = v]) = 0.

Since H'(Ny|,(—2)) =0, we also have H'(Ny.(—2)(u)) = 0; in particular, Riemann-Roch
implies

dimHO(Nf|c(_2)(u)) = X(Nf|c(_2)(u)) =2
dim H(Ny,(—2)) = x(Ny|.(—2)) = 0.

The above dimension estimates imply there is a unique section s € PH(Ny(—2)(u)) with
5|y € Nfjo—vlu; it remains to show that for (u,v) general, (s|oy) # Ny|,—u|2u. For this, it
suffices to verify that if v; and vy are points with {vq,vs, f(2u)} coplanar — but neither
{v1,v2, f(u)}, nor {vy, f(2u)}, nor {ve, f(2u)} collinear; and {v,vs, f(3u)} not coplanar —

then Nf|c—>v1 |2u 7£ Nf|c—>v2 |2u~
To show this, we choose a local coordinate ¢t on C, and coordinates on an appropriate affine

open A% C P3| so that
f(t) = (¢, + O(t*),0(t*))
v = (]-7 07 1)
vy = (—1,0,1).
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900 ERIC LARSON

It remains to check that the vectors f(t) — vy, f(t) — v2, and % f(t) are linearly independent
to first order in ¢. That is, we want to check that the determinant

t—1 2+0@) o@F) -1
t+1 24+0@) O(t*)—1|#0 mod t*
1 2t+0@#*)  O(t?)

Or, reducing the entries of the left-hand side modulo 2, that

t—1 0 -1
—4t=1{t+1 0 —1/#0 mod ¢
1 2t 0
which is clear. O

LEMMA 5.3. Let ' C P be a set of five general points, (f1: C — P3,T'1) be a general marked
BN-curve passing through T, and (fo: D — P3,T'5) be a general marked canonical curve passing
through T. If H'(Ny, (—2)) = 0, then f: C'Ur D — P" satisfies H'(N;(—2)) = 0.

REMARK 5.4. By Lemma 4.4, it makes sense to speak of a ‘general marked BN-curve
(respectively, general marked canonical curve) passing through I'’; by Lemma 4.7, the resulting
curve f is unramified.

Proof. By Lemma 2.6, our problem reduces to showing that the natural map

H N (= %@<f* Cup ))>

is surjective, and that

H'(Ny|p(—2)) =0.

These conditions both being open, we may invoke Lemma 4.6 to specialize (f;: C — P3,T)
to a marked BN-curve with reducible source (f{: C; Ua Cy — P2 T'9), with f7|c, a rational
normal curve and I'Y C (. It thus suffices to prove the above statements in the case when
f1 = ft is a rational normal curve.

For this, we first observe that f(C) N f(D)=T" Since there is a unique rational normal
curve through any six points, and a 1-dimensional family of possible sixth points on D once D
and I are fixed — but there is a 2-dimensional family of rational normal curves through five
points in linear general position — dimension counting shows fi(C) and f2(D) cannot meet
at a sixth point for ([f1,T1], [f2,2]) general. In particular, f is an immersion.

Next, we observe that f(D) is contained in a 5-dimensional space of cubics. Since it is one
linear condition, for a cubic that vanishes on f(D), to be tangent to f(C') at a point of I', there
is necessarily a cubic surface S containing f(D) which is tangent to f(C) at four points of T'.

If S were a multiple of @, say @ - H where H is a hyperplane, then since f(C) is transverse
to @, it would follow that H contains four points of I'. But any four points on f(C) are in
linear general position. Consequently, S is not a multiple of Q. Or equivalently, f(D) =Q NS
gives a presentation of f(D) as a complete intersection.

If S were tangent to f(C) at all five points of T', then restricting the equation of S to f(C)
would give a section of O (3) ~ Op1(9) which vanished with multiplicity two at five points.
Since the only such section is the zero section, we would conclude that f(C) C S. But then
f(C) would meet f(D) at all six points of f(C) N Q, which we already ruled out above. Thus,
S is tangent to f(C') at precisely four points of T'.
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THE GENERALITY OF A SECTION OF A CURVE 901

Write A for the divisor on D defined by these four points, and p for the fifth point. Note
that for ¢ # p in the tangent line to (f1, A U {p}) at p,

N¢lp ~ (Nypyss(A+p) ® Nypyop)lp — q
~ (Op(2)(A +p) & Op(3)(p))lp — d

(

(

1

= N¢|p(—2) =~ (Op(A+p)® Op(1)(p))lp — 4

~ (Op(A+p)® Kpp))lp — 4.

By Riemann-Roch, dim H°(Kp(p)) = 4 = dim H°(Kp); so every section of Kp(p) vanishes
at p. Consequently, the fiber of every section of Op(A + p) ® Kp(p) at p lies in the fiber of
the first factor. Since the fiber Ny, 4|, does not lie in the fiber of the first factor, we have an
isomorphism

HO(N;|p(~2)) ~ H(On(A +p) & Kn(p))(—p)) ~ HY(Op(A)) & HO(Kp).
Consequently,
dim H(N|p(—2)) = dim H(Op(A)) +dim H*(Kp) = 1 + 4 =5 = x(Nf|p(—2)),
which implies
H'(Ny|p(-2)) = 0.

Next, we prove the surjectivity of the evaluation map

ev: H'(Ny,(-2)) = B <f(]u)))>

zel’ F

For this, we use the isomorphism

Nf2(72) ~ Nf(D)/p3(72) ~ Nf(D)/S(72) D Nf(D)/Q(fz) ~0Op® Kp.

The restriction of ev to H°(Ny(py/s(—2) ~ Op) maps trivially into the quotient %

for x € A, since S is tangent to f(C) along A. Because S is not tangent to f(C) at p,
the restriction of ev to H°(Ny(py/s(—2) ~ Op) thus maps isomorphically onto the factor
% It is therefore sufficient to show that the evaluation map
T.(P")
HO(N>D (-2)~ Kp) — ()

foy/Q g% 7.(T,(C'Ur D))
is surjective. Or equivalently, since @ is not tangent to f(C) at any z € A, that the evaluation
map

H°(Kp) = Kpl|a

is surjective. But this is clear since dim H(Kp) = 4 = #A and A is a general effective divisor
of degree 4 on D. O

LEMMA 5.5. Let f: C — P* be a general BN-curve in P, of arbitrary degree and genus.
Then we can specialize f to an unramified map from a reducible curve f°: C' ULy U Ly U Ly —
P*, so that each L; is rational, f°|r. is of degree 1, and the images of the L; under f° are in
linear general position.

Proof. By Lemma 4.8, our problem reduces to the case f: C' — P* is a rational normal curve.
In this case, we begin by taking three general lines in P*. The locus of lines meeting each
of our lines has class o5 in the Chow ring of the Grassmannian G(1,4) of lines in P*. By the
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902 ERIC LARSON

standard calculus of Schubert cycles, we have o = 02,5 # 0 in the Chow ring of G(1,4). Thus,
there exists a line meeting each of our three given lines. The (immersion of the) union of these
four lines is then a specialization of a rational normal curve. (I

LEMMA 5.6. Let I' C P* be a set of six points in linear general position; (fy: C — P4 T)
be either a general marked immersion of three disjoint lines, or a general marked BN-curve

in P4, passing through T'; and (fo: D — P*,T'3) be a general marked canonical curve passing
through T. If H'(Ny,(—1)) =0, then f: C Up D — P* satisfies H' (N(—1)) = 0.

Proof. By Lemma 2.6, it suffices to prove that the natural map

H N (= %@<f* cuiD)))

pel

is surjective, and that

H'(Ny|p(—1)) =0.

These conditions both being open, we may apply Lemma 5.5 to specialize (f1,I'1) to a marked
curve with reducible source (fy: Cy UCy — P",T'9), with C; = L1 U Ly U L3 a union of three
disjoint lines, and I'? C C; with two points on each line. It thus suffices to prove the above
statements in the case when C' = Cy = L1 U Ly U L3 is the union of three general lines. Write
I'= Fl @] FQ Urg, where Fl C Lz

It is well known that every canonical curve in P is the complete intersection of three quadrics;
write V for the vector space of quadrics vanishing along f (D). For any 2-secant line L to f(D),
it is evident that it is one linear condition on quadrics in V' to contain L; and moreover, that
general lines impose independent conditions unless there is a quadric which contains all 2-
secant lines. Now the projection from a general line in P* of f(D) yields a nodal plane curve
of degree 8 and geometric genus 5, which, in particular, must have

81
~5=16
()

nodes. Consequently, the secant variety to f(D) is a hypersurface of degree 16; and is thus
not contained in a quadric. Thus, vanishing on general lines impose independent conditions
on V. As f(L1), f(L2), and f(L3) are general, we may thus choose a basis V = (Q1,Q2,Q3)
so that @; contains L; if an only if ¢ # j (where the @); are uniquely defined up to scaling). By
construction, f(D) is the complete intersection @1 N Q2 N Qs.
We now consider the direct sum decomposition
Ny, = Nyp)/ps = Np(0)/(Qun@z) ® Np(D)/(Qan@s) ® Np(D)/(@snau)

which induces a direct sum decomposition

Nylp = Ny0)/@in@2) (I'3) © Nf(D)/(@2n04) (T1) © Ni(D)/(@sn@u) (T'2)-
To show that H'(N¢|p(—1)) = 0, it is sufficient by symmetry to show that

H'(N¢(D)/(@in@s) (T3)(—1)) = 0.

But we have

Nt0)/(@in,) (T's)(—=1) = Op(2)(I's)(—1) ~ Op(1)(I's) = Kp(I's);
so by Serre duality,

H'(Ny(D)/(0:nqs) (T3)(—1)) ~ H*(Op(-T3))" = 0.
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THE GENERALITY OF A SECTION OF A CURVE 903

Next, we examine the evaluation map

H N (= H@(f* Cui )))'

pel’

For this, we use the direct sum decomposition

Nz = Npp)/ps = Nip)/(@in@a) (—1) @ Ni(D)/(@2n@s) (—1) @ Ny(0)/(@sn@u) (—1);
together with the decomposition (for p € T';):
T,(P7)

~ D Nr0)/@in)) -
f(T,(C Ur, Ly)) @ F(D)/(QiNQy)

This reduces our problem to showing (by symmetry) the surjectivity of

H(Nypy@inaa) (D)) = B Neoy/@ines -

pel Ul

But for this, it is sufficient to note that I'; U T's is a general collection of four points on D, and
Nf(D)/(QlﬂQZ)(_l) ~ 0[)(2)(—1) = OD(I) ~ Kp.
It thus remains to show
H°(Kp) — Kplr,ur,

is surjective, where I'y U T'; is a general collection of four points on D. But this is clear because
Kp is a line bundle and dim H(Kp) =5 > 4. O

COROLLARY 5.7. To prove the main theorems (excluding the ‘conversely. .. part), it suffices
to verify them in the following special cases.

(1) For Theorem 1.4, it suffices to consider the cases where (d,g) is one of:
5,1), (7,2), (6,3), (7,4), (8,5), (9,6), (9,7),
(10,9), (11,10), (12,12), (13,13) (14,14).
(2) For Theorem 1.5, it suffices to consider the cases where (d, g) is one of:
(7,5), (8,6).
(3) For Theorem 1.6, it suffices to consider the cases where (d, g) is one of:
9,5), (10,6), (11,7), (12,9), (16,15), (17.16), (18,17).

In proving the theorems in each of these cases, we may suppose the corresponding theorem
holds for curves of smaller genus.

Proof. For Theorem 1.4, note that by Lemma 5.2 and Proposition 4.2, it suffices to show
Theorem 1.4 for each pair (d, g), where d is minimal (that is, where p(d, g) = p(d,g,7 =3) >0
and (d, ¢) is not in our list of counterexamples; but either p(d — 1,g9) < 0, or (d — 1, g) is in our
list of counterexamples).

If p(d,g) = 0 and g > 15, then (d — 6,g — 8) is not in our list of counterexamples, and p(d —
6,9 —8) = p(d,g) = 0. By induction, we know H'(N¢(—2)) =0 for f a BN-general curve of
degree d — 6 and genus g — 8. Applying Lemma 5.3 (and Proposition 4.2), we conclude the
desired result. If p(d,g) > 0 and g < 14, and d is minimal as above, then either (d, g) is in our
above list, or (d, g) € {(3,0),(9,8),(12,11)}. The case of (d, g) = (3,0) follows from Lemma 3.5.
But in these last two cases, Lemma 5.3 again implies the desired result (using Theorem 1.4 for
(d',¢') = (d — 6,9 — 8) as our inductive hypotheses).
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904 ERIC LARSON

For Theorem 1.5, we note that if H'(N;(—2)) = 0, then it follows that H'(N;(—1)) = 0. It
therefore suffices to check the list of counterexamples appearing in Theorem 1.4 besides the
counterexample (d,g) = (6,4) listed in Theorem 1.5. The cases (d,g) € {(4,1),(5,2),(6,2)}
follow from Lemma 3.5, so we only have to consider the remaining cases (which form the given
list).

Finally, for Theorem 1.6, Lemma 5.1 implies it suffices to show Theorem 1.6 for each pair
(d,g) with d minimal. If p(d,g) >0 and ¢ > 18, then (d — 8,9 —10) is not in our list of
counterexamples, and p(d — 8, g — 10) = p(d, g) > 0. By induction, we know H'(N;(—1)) =0
for C' is a general curve of degree d — 8 and genus g — 10. Applying Lemma 5.6, we conclude
the desired result. If p(d,g) > 0 and g < 17, and d is minimal as above, then either (d, g) is in
our above list, or

(d,9) € {(4,0),(5,1),(6,2),(7,3), (8,4)},
(d,g) € {(11,8), (12,10), (13,11), (14,12), (15,13), (16, 14) },

In the first set of cases above, Lemma 3.5 implies the desired result. But in the last set of
cases, Lemma 5.6 again implies the desired result. Here, for (d,g) = (11,8), our inductive
hypothesis is that H'(Ny(—1)) =0 for f: Ly ULy U L3s — P? an immersion of three skew
lines. In the remaining cases, we use Theorem 1.4 for (d’,¢') = (d — 8, g — 10) as our inductive
hypothesis. O

6. Adding curves in a hyperplane

In this section, we explain an inductive strategy involving adding curves contained in
hyperplanes, which will help resolve many of our remaining cases.

LEMMA 6.1. Let H C P" (forr > 3) be a hyperplane, and let (f1: C — P",T'y) and (fo: D —
H,T5) be marked curves, both passing through a set ' C H C P" of n > 1 points.

Assume that fy is a general BN-curve of degree d and genus g to H, that T'y is a general
collection of n points on D, and that f is transverse to H along I'. If

H'(Ny(-T))=0 and n>g—d+r,

then f: CUr D — P" satisfies H'(Ny) =0 and is a limit of unramified maps from
smooth curves.

If in addition f, is an immersion, f(C)N f(D) is exactly equal to T, and Op(1)(T) is very
ample away from T' — that is, if dim H°(Op(1)(T')(—A)) = dim H*(Op(1)(T")) — 2 for any
effective divisor A of degree 2 supported on D\T' — then f is a limit of immersions of
smooth curves.

REMARK 6.2. The condition that Op(1)(T") is very ample away from T is immediate when
Op(1) is very ample (which, in particular, happens for r > 4). It is also immediate when n > g,
in which case Op(1)(T') is a general line bundle of degree d+mn > g+ r > g+ 3 and is thus
very ample.

Proof. Note that Ny, is a subsheaf of N;|c with punctual quotient (supported at I').
Twisting down by I', we obtain a short exact sequence
0— Nfl(fl“) — Nf|c(7r) — % =0,

where * denotes a punctual sheaf, which in particular has vanishing H'. Since H'(Ny, (-I')) =0
by assumption, we conclude that H'(N¢|c(—TI')) =0 too. Since fo is a general BN-curve,
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THE GENERALITY OF A SECTION OF A CURVE 905

H'(Ny,) = 0. The exact sequences
0— Nf|c(—r) — Nf — Nf|D —0
0— Nf2 — Nf|D — NH|D(F) ~ OD(l)(F) —0

then imply that, to check H'(Ny) = 0, it suffices to check H'(Op(1)(I')) = 0. They moreover
imply that every section of Ny |p(I') ~ Op(1)(T) lifts to a section of N, which, as H'(Ny) = 0,
lifts to a global deformation of f.

To check f is a limit of unramified maps from smooth curves, it remains to see that the generic
section of Ng|p(T') =~ Op(1)(T") corresponds to a first-order deformation which smoothes the
nodes I' — or equivalently does not vanish at I'.

Since by assumption f; is an immersion and there are no other nodes where f(C) and f(D)
meet besides I, to see that f is a limit of immersions of smooth curves, it remains to note in
addition that the generic section of Ny |p(T') ~ Op(1)(T) separates the points of D identified
under f, — which is true by assumption that Op(1)(T") is very ample away from T

To finish the proof, it thus suffices to check H'(Op(1)(T')) =0, and that the generic
section of Op(1)(I') does not vanish at any point p € I'. Equivalently, it suffices to check
HY(Op(1)(T)(=p)) = 0 for p € T'. Since f, is a general BN-curve, we obtain

dim H (Op(1)) = max(0,g —d + (r — 1)) < n — 1.
Twisting by '\ {p}, which is a set of n — 1 general points, we therefore obtain
HY (Op(1)(T\ {p})) =0,
as desired. O

LEMMA 6.3. Let k > 1 be an integer, t: H < P" (r > 3) be a hyperplane, and (f;: C —
P Ty) and (f2: D — H,T'3) be marked curves, both passing through a set T C H C P" of
n > 1 points.

Assume that fs is a general BN-curve of degree d and genus g to H, that 'y is a general
collection of n points on D, and that f; is transverse to H along I'. Suppose moreover that:

(1) the bundle Ny,(—k) satisfies interpolation;
(2) we have H'(Ny, (—k)) = 0;
(3) we have

(r—=2ln<rd—(r—4)(¢g—1)—k-(r—2)d;
(4) we have

g iftk=1;
nz
g—14+(k—1)d ifk>1.
Then f: C Ur D — P satisfies
H(N;(~k)) = 0.

Proof. Since Ny, (—k) satisfies interpolation by assumption and
(r=2)n < X(Np,(=k)) =rd = (r =4)(g = 1) = k- (r = 2)d,

we conclude that H'(Ny,(—k)(—I")) =0. Since H'(Ny,(—k)) =0 by assumption, to apply
Lemma 2.7, it remains to check

H'(Op(1 - k)(T)) = 0.
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906 ERIC LARSON

It is therefore sufficient for

it k=1;
= #T > dim H (Op(1 — k) =7 : 7
n=4# im H* (Op( ) {g—l-i—(k—l)d it k> 1.

But this is precisely our final assumption. ([

7. Large genus special cases

In this section, we will deal with a number of our special cases, of larger genus. Taking care
of these cases separately is helpful — since in the remaining cases, we will not have to worry
about whether our curve is a BN-curve, due to results of [6] and [7] on the irreducibility of the
Hilbert scheme of curves.

LEMMA 7.1. Let H C P? bea plane, ' C H C P3 a set of six general points, (fi: C — P3,T;)
a general marked BN-curve passing through I' of degree and genus one of

(d’ g) € {(6’ 1)’ (7’ 2)’ (874)’ (97 5)7 (1076>}?

and (fy: D — H,T'3) a general marked canonical curve passing through T'. Then f: C Ur D —
P? is a BN-curve which satisfies H'(Ny) = 0.

Proof. Note that the conclusion is an open condition; we may therefore freely specialize
(f1,T1). We first claim that it suffices to consider the cases (d,g) = (6,1) and (d, g) = (8,4).
Indeed, suppose (f1,I'1) is a marked BN-curve of degree d and genus g passing through T
Then f{: C' Uy, g1 L — P? (where f{|L is a line joined to C at two points) is a BN-curve
by Proposition 4.2, of degree d + 1 and genus g+ 1. If f: C Upr D — P? is a BN-curve with
Hl(Nf) = 0, then invoking Propositions 4.2 and 4.3,

I (C Uip,q} LYyUr D= (CUr D) Uip,q} L—P3

is a BN-curve, which satisfies H!(N/) = 0.

Now write T' = {s, t,u, v, w, x}.

In the case (d,g) = (6,1), we specialize (f1,I'1) to (f{: C° =C1 U, CaUgq,y C3 — P2 T9),
where f?|c, is a conic, f|c, is a line with Cy joined to C; at one point p, and f7|c, is a
rational normal curve with C5 joined to C; at two points {q,r}; note that f{ is a BN-curve
by (iterative application of) Proposition 4.2. We suppose that (f{|c,, 'S N C}) passes through
{s,t}, while (f7|c,, T N Cs) passes through u, and (f7|c,, 'S N C3) passes through {v,w,x};
it is clear this can be done so {s,t,u,v,w,z} are general. Writing

f°:C°Ur D =Cs Uipu} Cs Uig,rwvw,z} (Cl Ugs,td D) — Pg,

it suffices by Propositions 4.2 and 4.3 to show that f°|c,up is a BN-curve which satisfies
Hl(NfolcluD) =0.

For (d,g) = (8,4), we specialize (f1,I'1) to (ff: C° = Cy Ugp g CoUgyay C3 — P3T9),
where f7|c, is a conic, and f7|c, and f7|c, are rational normal curves, with both Cy and Cj
joined to C; at three points (at {p, ¢, 7} and {y, z, a}, respectively); note that f7 is a BN-curve
by (iterative application of) Proposition 4.2. We suppose that (f7|c,, ') N C) passes through
{s,t}, while (f7|c,,T's N Cq) passes through {u, v}, and (f}|c,, 'S N C3) passes through {w, = };
it is clear this can be done so {s,t,u,v,w,z} are general. Writing

f2:C°0r D =CoUppgruny Cs U y.za) (Cr Ugey D) = P,
it again suffices by Propositions 4.2 and 4.3 to show that f°|c,up is a BN-curve which satisfies

Hl(Nfo :O

|01UD)
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THE GENERALITY OF A SECTION OF A CURVE 907

For this, we first note that f°|c,up is a curve of degree 6 and genus 4, and that the
moduli space of smooth curves of degree 6 and genus 4 in P? is irreducible (they are all
canonical curves). Moreover, by Lemma 6.1 (cf. Remark 6.2 and note that Op(1) ~ Kp is very
ample), f°|c,up is a limit of immersions of smooth curves, and satisfies Hl(Nf"\clup) = 0;
this completes the proof.

LEMMA 7.2. Let H CP* be a hyperplane, ' C H C P* a set of seven general points,
(fi: C — P4 T) a general marked BN-curve passing through T' of degree and genus one of

(d,g) € {(7,3),(8,4),(9,5)},

and (fo: D — H,T'5) a general marked BN-curve of degree 9 and genus 6 passing through T'.
Then f: C Ur D — P* is a BN-curve which satisfies H'(Ny) = 0.

Proof. Again, we note that the conclusion is an open statement; we may therefore freely
specialize (fi,T'1). Write I' = {t,u,v,w, z,y, 2}

As in the proof of Lemma 7.1, it suffices to consider the case (d,g) = (7,3). In this case,
we begin by specializing (f1,T'1) to (f{: C°=C"Uyg, g L — P* T'9), where f|c/ is a general
BN-curve of degree 6 and genus 2, and f7|r, is a line with L joined to C’ at two points
{p,q}. We suppose that (f|,T'{ N L) passes through ¢, while (f7|c/,T's N C’) passes through
{u,v,w, x,y, z}; we must check this can be done so {¢,u,v, w,z,y, z} are general. To see this, it
suffices to show that the intersection f7(C’) N H and the points {f;(p), f7(q)} independently
general. In other words, we are claiming that the map

{(fPlor: C"=Ppq) :p,q € C'Y = (fYlo (C) N H, [Tl (p), 10 (q))

is dominant; equivalently, that it is smooth at a generic point (f{|cr, p, ¢). But the obstruction
to smoothness lies in H'(Nys), (—=1)(—p — ¢)) = 0, which vanishes because Oc:(1)(p + ¢) is a
general line bundle of degree 8, and the twist of Nyo| , down by up to nine general points has
vanishing H! by [2, Corollary 1.4].

We next specialize (f2,T2) to (f$: D° = D' Ux D1 — H,T'5), where f3|p/ is a general BN-
curve of degree 6 and genus 3, and f5|p, is a rational normal curve with D; joined to D’
at a set A of four points; note that f5 is a BN-curve by Proposition 4.2. We suppose that
(fS1p,, TS N Dy) passes through ¢, while (f$|p/,T'S N D) passes through {u,v,w,x,y, z}; this
can be done so {t,u,v,w,z,y, 2} are still general, since f5|p, can pass through six general
points, while f5|p, can pass through five general points, both by [2, Corollary 1.4].

In addition, (f$|p,,(t =TSN D;)UA) has a general tangent line at ¢; to see this, note
that we are asserting that the map sending (f§|p,,fUA) to its tangent line at ¢ is
dominant; equivalently, that it is smooth at a generic point of the source. But the obstruction
to smoothness lies in H'(Nyg), (—A — 2t)), which vanishes because Non‘Dl(—2f) satisfies
interpolation by combining Propositions 3.2 and 3.3.

As {p,q} C O’ is general, we thus know that the tangent lines to (f5|p,,tUA) at ¢, and to
(f2lers {p,q}) at f2(p) and f(q), together span all of P4; write £, p, and g for points on each
of these tangent lines distinct from ¢, f7(p), and f7(q), respectively. We then use the exact
sequences

0—>Nfo|L(—f—p—q) —)Nfo —)Nfo|clupo — 0

O—>Nfo —)Nfolc/uDo—>*—>O,

IC’UDO

where * is a punctual sheaf (which in particular has vanishing H'). Write H, for the hyperplane
spanned by f7(L), P, and g; and H, for the hyperplane spanned by f7(L), ¢, and g; and
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908 ERIC LARSON

H, for the hyperplane spanned by f7(L), ¢, and p. Then f{(L) is the complete intersection
H,N H,N H,, and so we get a decomposition

Nye|r, > Nyery/m,(£) & Nyony/m, (p) ® Nyo(ry/m, (),

which upon twisting becomes
Nyelp(=t —=p—¢q) = Nye(ry/m, (=P — @) ® Nyo(ry/m, (=t — @) © Nye(ry/m, (=t = p).

Note that fo(L)/Ht(—p —q) ~ Or(—1) has vanishing H!, and similarly for the other factors;
consequently, H'(Nyo|r(—t —p—q)) =0. We conclude that H'(Ns.)=0 provided that
H'(Nyo|_, ,.) = 0. Moreover, writing C" Uy w2} D° = D1 Ua (D' Upyp,w,0,y,23 C') and
applying Proposition 4.3, we know that Hl(Nf“\c/UDo) = 0 provided that Hl(Nf"\c/up/) =0.
And if f°|crupr is a BN-curve, then f©: (C" Ugy p w.2,y,23 D') Uauip,qy (D1 Ui L) = P* is a BN-
curve too by Proposition 4.2. Putting this all together, it is sufficient to show that f°|cup: is
a BN-curve which satisfies H'(Nyo|_, ) =0.

Our next step is to specialize (ff]c/,I's NC”) to (ff°: C°° = C” Uy, oy L' — P4, T5°), where
f°|cr is a general BN-curve of degree 5 and genus 1, and f7°|;/ is a line with L’ joined to C”
at two points {r, s}. We suppose that (f7°|c,['T° N C") passes through wu, while (f7°]|c, T N
C") passes through {v,w,x,y, z}; as before this can be done so {u,v,w,x,y, 2} are general.
We also specialize (fs5|p/,I'SND’) to (fs°: D" Ua Dy — P4, T5°), where f5°|pr and f5°|p,
are both rational normal curves with D” and D, joined at a set A of four general points.
We suppose that (f5°|p,,'5° N D2) passes through u, while (f5°|p~,T'5° N D") passes through
{v,w, z,y, z}; as before this can be done so {u, v, w,z,y, z} are general. The same argument as
above, mutatis mutandis, then implies it is sufficient to show that f°°|crupr: C" Ugy i z.y.2}
D" — P* is a BN-curve which satisfies H' (Nyeo|_, ., ) = 0.

For this, we first note that f°°|crup~ is a curve of degree 8 and genus 5, and that the
moduli space of smooth curves of degree 8 and genus 5 in P* is irreducible (they are all
canonical curves). To finish the proof, it suffices to note by Lemma 6.1 that f°°|crypr is a
limit of immersions of smooth curves and satisfies Hl(Nfoo|C”UD”) =0. (]

COROLLARY 7.3. To prove the main theorems (excluding the ‘conversely. ..’ part), it suffices
to produce the following 13 (nondegenerate immersions of) smooth curves.

(1) For Theorem 1.4, it suffices to produce smooth curves, with H*(Ny(—2)) = 0, whose
degree and genus are:

(5,1), (7,2), (6,3), (7,4), (85), (9,6), (9,7).

(2) For Theorem 1.5, it suffices to produce smooth curves, with H*(N¢(—1)) = 0, whose
degree and genus are:

(7,5), (8,6).

(3) For Theorem 1.6, it suffices to produce smooth curves, with H*(N¢(—1)) = 0, whose
degree and genus are:

(9,5), (10,6), (11,7), (12,9).
(And in constructing the above smooth curves, we may suppose the corresponding theorem
holds for curves of smaller genus.)
Proof. By Lemmas 7.1 and 6.3, and Proposition 3.7, we know that Theorem 1.4 holds for
(d,g) one of

(10,9), (11,10), (12,12), (13,13), (14,14).

A ‘T 120T ‘0SLL69YT

1//:sdny woxy p

:sdy) suonipuo) pue swId [, A 39S *[720z/T1/#¢] uo Areiqiy autuQ Ao[iA ‘Areiqr ANSIOAIUN umolg AQ 1S 1 SWl/Z 11°01/10p/woo Kafia,

KoM,

ASUAOIT SuOWIWO)) d2ANeAI)) d[qeorjdde oy Aq pausaA0d aie sa[onIe YO s JO Sa[nI J0j AIRIqIT AUIUQ A3[IA\ UO (SUOnIp



THE GENERALITY OF A SECTION OF A CURVE 909

Similarly, by Lemmas 7.2, 6.3, and 3.5, we know that Theorem 1.6 holds for (d, g) one of
(16,15), (17,16), (18,17).

Eliminating these cases from the lists in Corollary 5.7, we obtain the given lists of pairs (d, g).

Moreover — in each of the cases appearing in the statement of this corollary — results of [7]
(for » = 3) and [6] (for = 4) state that the Hilbert scheme of curves of degree d and genus g in
P" has a unique component whose points represent smooth irreducible nondegenerate curves.
The condition that our curve be a BN-curve may thus be replaced with the condition that our
curve be smooth irreducible nondegenerate. O

8. More curves in a hyperplane

In this section, we give several more applications of the technique developed in the previous
two sections. Note that from Corollary 7.3, it suffices to show the existence of curves satisfying
the desired conclusions which are limits of immersions of smooth curves; it is not necessary to
check that these curves are BN-curves.

LEMMA 8.1. Suppose Nj(—2) satisfies interpolation, where f: C — P? is a general BN-
curve of degree d and genus g to P3. Then the same is true for some smooth curve of degree
and genus.

(1) (d+3,9+3) (provided d > 3).
(2) (d+4,9+2) (provided d > 3).
(3) (d+4,9+6) (provided d > 5).

Proof. We apply Lemma 6.3 for f5 a curve of degree up to 4 (and note that Ny, (—2) satisfies
interpolation by Proposition 3.7), namely:

(1) (d2,92) =(3,1) and n = 3;
(2) (d2,92) = (4,0) and n = 3;
(3) (d2,92) = (4,2) and n = 5.

Finally, we note that C'Upr D — P" as above is a limit of immersions of smooth curves by
Lemma 6.1. ]

COROLLARY 8.2. Suppose that Theorem 1.4 holds for (d,g) = (5,1). Then Theorem 1.4
holds for (d, g) one of:

(7,2), (6,3), (9,6), (9,7).

Proof. For (d,g) = (7,2), we apply Lemma 8.1, part 2 (taking as our inductive hypothesis
the truth of Theorem 1.4 for (d’,¢’) = (3,0)).

Similarly, for (d,g) = (6,3) and (d,g) = (9,6), we apply Lemma 8.1, part 2 (taking as our
inductive hypothesis the truth of Theorem 1.4 for (d’,g’) = (3,0), and the just-established
(d,g") = (6,3), respectively).

Finally, for (d,g) = (9,7), we apply Lemma 8.1, part 3 (taking as our inductive hypothesis
the yet-to-be-established truth of Theorem 1.4 for (d',¢’) = (5,1)). O

LEMMA 8.3. Suppose that Theorem 1.5 holds for (d,g) = (7,5). Then Theorem 1.5 holds
for (d, g) = (8,6).

A ‘T 120T ‘0SLL69YT

1//:sdny woxy p

:sdy) suonipuo) pue swId [, A 39S *[720z/T1/#¢] uo Areiqiy autuQ Ao[iA ‘Areiqr ANSIOAIUN umolg AQ 1S 1 SWl/Z 11°01/10p/woo Kafia,

113)/W0d" K 1M

P!

ASUAOIT SuOWIWO)) d2ANeAI)) d[qeorjdde oy Aq pausaA0d aie sa[onIe YO s JO Sa[nI J0j AIRIqIT AUIUQ A3[IA\ UO (SUOnIp



910 ERIC LARSON

Proof. We simply apply Lemma 2.6 with f: C Ur D — P? such that f|c is a general BN-
curve of degree 7 and genus 5, and f|p is a line, with C joined to D at a set I of two
points. [l

LEMMA 8.4. Suppose N(—1) satisfies interpolation, where f is a general BN-curve of degree
d and genus g in P*. Then the same is true for some smooth curve of degree d + 6 and genus
g+ 6, provided d > 4.

Proof. We apply Lemmas 6.3 and 6.1 for f, a curve of degree 6 and genus 3 to P, with
n = 4. Note that Ny, (—1) satisfies interpolation by Propositions 3.2 and 3.3. g

LEMMA 8.5. Theorem 1.6 holds for (d, g) one of:
(10,6), (11,7), (12,9).

Proof. We simply apply Lemma 8.4 (taking as our inductive hypothesis the truth of
Theorem 1.6 for (d',¢") = (d — 6,9 — 6)). O

To prove the main theorems (excluding the ‘conversely. ..’ part), it thus remains to produce
five smooth curves.

(1) For Theorem 1.4, it suffices to find smooth curves, satisfying the conclusions, of degrees
and genera (5,1), (7,4), and (8,5).

(2) For Theorem 1.5, it suffices to find a smooth curve, satisfying the conclusions, of degree
7 and genus 5.

(3) For Theorem 1.6, it suffices to find a smooth curve, satisfying the conclusions, of degree
9 and genus 5.

9. Curves in Del Pezzo surfaces

In this section, we analyze the normal bundles of certain curves by specializing to immersions
f: C <= P" of smooth curves whose images are contained in (smooth) Del Pezzo surfaces S C P"
(where the Del Pezzo surface is embedded by its complete anticanonical series). Since f will
be an immersion, we shall identify C' = f(C) with its image, in which case the normal bundle
Ny becomes the normal bundle N¢ of the image. Our basic method in this section will be to
use the normal bundle exact sequence associated to C' C S C P":

0—>NC/S—>N0—>NS|C—>0. (3)
Since S is a Del Pezzo surface, we have by adjunction an isomorphism

DEFINITION 9.1. Let S C P” be a Del Pezzo surface, k be an integer with H'(Ns(—k)) = 0,
and 6 € Pic S be any divisor class.

Let F be a general hypersurface of degree k. Consider the moduli space M of pairs (57, 6"),
with S’ a Del Pezzo surface containing S N F, such that H'(Ng/(—k)) =0, and 6’ € PicS’.
Define Vy  C Pic(SN F) to be the subvariety obtained by restricting 6’ to SNF C S’, as
(5',0") varies over the component of M containing (.5, ).

Note that there is a unique such component, since M is smooth due to our assumption that
H' (N (=) = 0.

Our essential tool is given by the following lemma, which uses (4) together with the varieties
Vo 1 to analyze N¢.
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THE GENERALITY OF A SECTION OF A CURVE 911

LEMMA 9.2. Let C C S CP" be a general curve (of any fixed class) in a general Del Pezzo
surface S C P, and k be a natural number with H'(Ng(—k)) = 0. Suppose that (for F a
general hypersurface of degree k):

dim Vi, = dim H*(Oc(k — 1)) and H'(Ns|c(—k)) =0,
and that the natural map
H°(Ns(~k)) = H°(Ns|c(~k))
is an isomorphism. Then,

H'(Nc(~k)) = 0.

Proof. Twisting (3), and using the isomorphism (4), we obtain the exact sequence:
0— Kc(l — k?) — Nc(—k) — Ns|c(—k> — 0.

This gives rise to a long exact sequence in cohomology:

-+ = H(No(=k)) = H°(Ns|c (k) = H' (Ko(1 — k) = H' (No(=k)) = H' (Ns|c(=k)) = --- .

Since H!(Ng|c(—k)) = 0 by assumption, it suffices to show that the image of the natural map
H°(Nc(—k)) — H°(Ns|c(—k)) has codimension

dim H' (K¢ (1 — k)) = dim H°(Oc¢ (k — 1)) = dim Vicy ..

Because the natural map HY(Ng(—k)) — H°(Ns|c(—k)) is an isomorphism, we may
interpret sections of Ng|c(—k) as first-order deformations of the Del Pezzo surface S fixing
SN F. So it remains to show that the space of such deformations coming from a deformation
of C fixing C'N F' has codimension dim V| .

The key point here is that deforming C' on S does not change its class [C] € Pic(S), and
every deformation of S comes naturally with a deformation of the element [C] € Pic(S). It
thus suffices to prove that the space of first-order deformations of S which leave invariant the
restriction [C]|snr € Pic(S N F) has codimension dim Vi¢y .

But since the map M — V¢, is smooth at (S, [C]), the vertical tangent space (that is, the
subspace of T{g,c))M killed by ¢.) has codimension in the full tangent space T(s(c]) M equal
to the dimension of the image. O

The following lemma will be used to check various cohomological vanishing statements that
arise in the application of Lemma 9.2.

LEMMA 9.3. Let S C P" be a complete intersection surface, C C S be a curve, and k be an
integer so that H°(Opr(k)) — H°(Oc(k)) is surjective. Then H*(Og(k)(—C)) = 0.

Proof. First, for any complete intersection S C P" and integer ¢ with 0 < ¢ < dim .S, we claim
that H'(Os(k)) = 0 for all k. This can be seen by downwards induction on dimS; the base
case S = P is just the usual vanishing of cohomology of line bundles on projective spaces. For
the inductive step, we suppose that S’ = S N F is a complete intersection of smaller dimension,
with F' a hypersurface of degree m. The result then follows from the long exact sequence in
cohomology attached to the short exact sequence

0— Os(k — m) — Os(k) — OS/(k) — 0.

In particular, the lemma holds for C = {), that is, if S C P" is a complete intersection surface,
then H'(Og(k)) = 0. We then use the exact sequence

0— Og(k)(—-C) = Og(k) = Oc(k) — 0.
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912 ERIC LARSON

Since H'(Og(k)) = 0 and the composition H°(Opr(k)) — H°(Os(k)) — H°(Oc(k)) is surjec-
tive, the corresponding long exact sequence implies H'(Og(k)(—C)) = 0 as desired. |

In applying Lemma 9.2, we will first consider the case where S C P2 is a general cubic surface,
which is isomorphic to the blowup Bl P? of P? along a set

F:{pl,...7p6}CP2

of six general points. Recall that this a Del Pezzo surface, which is to say that the embedding
Bl P2 ~ § < P? as a cubic surface is via the complete linear system for the inverse of the
canonical bundle:

—Kpjp2 =3L — Ey —--- — Eg,

where L is the class of a line in P? and E; is the exceptional divisor in the blowup over p;.
Note that by construction,

Ng ~ 05(3).
In particular, H'(Ng(—1)) = H'(Ns(—2)) = 0 by Lemma 9.3.

LEMMA 9.4. Let C C BlrP?2 ~ S C P3 be a general curve of class either:
(1) 5L—2E1—2E2—E3—E4—E5—E6,'

(2) 5L —2E, — Ey — B3 — B, — E5 — Eg;

(3) 6L — E1 - E2 - 2E3 - 2E4 — 2E5 — 2E6,

(4) 6L — E1 - 2E2 - 2E3 - 2E4 — 2E5 — 2E(,,

then C' is smooth and irreducible. In the first two cases, H'(Oc(1)) = 0.

Proof. We first show the above linear series are basepoint-free. To do this, we write each as
a sum of terms which are evidently basepoint-free:

BL—2F, — 2B, — By — Ey — By — Eg = (3L — By — Ey — Ey — Ey — By — Eg)
+ (L - Ey) + (L - E2)
5L —2E, — Ey—Ey— By~ Es — Eg= (3L — By — s — Ey — Ey — Es — Eg) + (L — Ey)
6L — By — By — 2Fy — 2E4 — 25 — 2F¢ = (3L — By — By — By — Ey — Es — Ey)
+ L+ (2L — By — Ey — Es — Ey)
6L — By — 2E — 254 — 2By — 2F5 — 2E — (3L — Ey — Ey — By — E4 — B — Ey)
4 (L~ Es) + (2L — Ey — Ey — E5 — Eg).

Since all our linear series are basepoint-free, the Bertini theorem implies that C is smooth.
Moreover, by basepoint-freeness, we know that C' does not contain any of our exceptional
divisors. We conclude that C' is the proper transform in the blowup of a curve Cy C P?. This
curve satisfies:

e in case 1, () has exactly two nodes, at p; and ps, and is otherwise smooth. In particular,
Cy (and thus C') must be irreducible, since otherwise (by Bézout’s theorem) it would have
at least four nodes (where the components meet);

e in case 2, Cy has exactly one node, at pi, and is otherwise smooth. As above, Cy (and
thus C') must be irreducible;

e in case 3, Cy has exactly four nodes, at {ps, p4, ps, ps}, and is otherwise smooth. As above,
Cy (and thus C') must be irreducible;
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THE GENERALITY OF A SECTION OF A CURVE 913

e in case 4, Cy has exactly five nodes, at {p2,ps, ps,ps, D06}, and is otherwise smooth. As
above, Cp must either be irreducible, or the union of a line and a quintic. (Otherwise, it
would have at least eight nodes.) But in the second case, all five nodes must be collinear,
contradicting our assumption that {ps, ps, ps, ps,ps} are general. Consequently, Cy (and
thus C) must be irreducible.

We now turn to showing H*(O¢(1)) = 0 in the first two cases. In the first case, we note
that T' contains 4 = genus(C) general points {ps,ps,ps,ps} on C; consequently, E5+ E4 +
E5 + Eg — and therefore O¢ (1) = (3L — Ey — Es) — (E5 + E4 + E5 + Eg) — is a general line
bundle of degree 7, which implies H*(O¢(1)) = 0. Similarly, in the second case, we note that I’
contains 5 = genus(C) general points {ps, ps, p4, s, s} on C. As in the first case, this implies
HY(Oc(1)) =0, as desired. O

LEMMA 9.5. Let C C P? be a general BN-curve of degree and genus (7,4) or (8,5). Then
we have H'(N¢(—2)) = 0.

Proof. We take C' C S, as constructed in Lemma 9.4, parts 1 and 2, respectively. These
curves have degrees and genera (7,4) and (8, 5), respectively, which can be seen by calculating
the intersection product with the hyperplane class and using adjunction. For example, for the
curve in part 1 of class 5L — 2F, — 2Ey — E3 — E4 — E5 — Fg, we calculate

degC:(5L72E172E27E37E47E57E6)'(3L7E17E27E37E47E57E6):7,
and

2 2
: - - 1
Ks-C+C 1 degC +C 1 7+ 13

genusC =1+ 5 — 5 4.

Because Ng ~ Og(3), we have
H'(Ns|c(=2)) = H'(Oc(1)) = 0.

Moreover, Og(1)(—C) is either —2L + Fy + FE5 or —2L + Fjy, respectively; in either case, we
have H%(Og(1)(—C)) = 0. Consequently, the restriction map

H°(0s(1)) = H(Oc(1))
is injective. Since
dim H%(Og(1)) = 4 = dim H°(Oc(1)),

the above restriction map is therefore an isomorphism. Applying Lemma 9.2, it thus suffices
to show that

dim Vi) » = dim H*(Oc¢(1)) = 4.

To do this, we first observe that [C] is always a linear combination aH + bL; + cLy of the
hyperplane class H, and two nonintersecting lines L; and Ls, such that both b and c are
nonvanishing. Indeed:

5L —2E, —2F, — B3 — By — Es — Eg = 3(3L — Ey — Ey — B3 — Ey — E5 — E)
— (2L — Ey — B3 — B4 — Es — Eq)
— (2L — By — B3 — B4 — Es — Eq)

5L —2F, — Fy — B3 — By — Es — Eg =3(3L — B, — By — BE5 — Ey — Es — Eg) + By
—2(2L — Ey — B3 — By — Es — Eq).
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914 ERIC LARSON

Writing F' for a general quadric hypersurface, and D = F NS, we observe that Pic(D) is
4-dimensional. Tt is therefore sufficient to prove that for a general class 6 € Pic%™272¢(D)
there exists a smooth cubic surface S containing D and a pair (L1, Ls) of disjoint lines on S,
such that the restriction (aH + bLy + cLs2)|p = 6. Since H|p = Op(1) is independent of S and
the choice of (L1, Ls), we may replace 8 by 8(—a) and set a = 0.

We thus seek to show that for b, ¢ # 0 and 6 € Pic®*™?°(D) general, there exists a smooth
cubic surface S containing D, and a pair (L, L) of disjoint lines on S, with (bLy + cLz2)|p = 6.
Equivalently, we want to show the map

)

{(S, El,EQ) : El,EQ cSDO D} —> {(El,EQ)},

from the space of smooth cubic surfaces S containing D with a choice of pair of disjoint lines
(E1, Es), to the space of pairs of 2-secant lines to D, is dominant. For this, it suffices to
check the vanishing of H'(Ng(—D — E; — Es)), for any smooth cubic S containing D and
disjoint lines (E7, F3) on S, in which lies the obstruction to smoothness of this map. But
Ns(=D — E; — E3) = O5(1)(—(E; + Es)) has vanishing H' by Lemma 9.3. |

LEMMA 9.6. Let C C P3 be a general BN-curve of degree 7 and genus 5. Then we have
HY(N¢(-1)) =0.

Proof. We take C' C S, as constructed in Lemma 9.4, part 4. Because Ng ~ Og(3), we have
H'(Ns|c(-1)) = H'(0c(2)) = 0.
Moreover, Og(2)(—C) ~ Og(—E1) has no sections. Consequently, the restriction map
H"(05(2)) = H(0c(2))
is injective. Since
dim H°(05(2)) = 10 = dim H(O¢(2)),

the above restriction map is therefore an isomorphism. Applying Lemma 9.2, it thus suffices
to show that

dim Vi) = dim H°(O¢) = 1.

Writing F for a general hyperplane, and D = F' NS, we observe that Pic(D) is 1-dimensional.
Since [C] = 2H + E), it is therefore sufficient to prove that for a general class 6 € Pic’ (D),
there exists a cubic surface S containing D and a line L on S, such that the restriction
(2H + L)|p = 6. Since H|p = Op(1) is independent of S and the choice of L, we may replace
0 by 6(—1) and look instead for L|p = 6 € Pic'(D). Equivalently, we want to show the map

{(S, El) : E1 cS> D} — {(El,Eg)},

from the space of smooth cubic surfaces S containing D with a choice of line Fy, to the space
of 1-secant lines to D, is dominant; it suffices to check the vanishing of H!(Ng(—D — Ey)), for
any smooth cubic S containing D and line E; on S, in which lies the obstruction to smoothness
of this map. But Ng(—D — E;) = Og(2)(—FE1) has vanishing H' by Lemma 9.3. O

Next, we consider the case where S C P* is the intersection of two quadrics, which is
isomorphic to the blowup Bl P? of P? along a set

F:{plv"'7p5}
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THE GENERALITY OF A SECTION OF A CURVE 915

of five general points. Recall that this is a Del Pezzo surface, which is to say that the embedding
Bl P2 ~ S < P* as the intersection of two quadrics is via the complete linear system for the
inverse of the canonical bundle:

—Kpyp2 =3L — Ey — -+ — Ej,

where L is the class of a line in P? and E; is the exceptional divisor in the blowup over p;.
Note that by construction,

Ng ~ Og(2) ® Os(2).
In particular, H'(Ng(—1)) = 0 by Lemma 9.3.

LEMMA 9.7. Let C C BIpP? ~ S C P* be a general curve of class either:

(1) 5L72E17E27E37E47E5,‘
(2) 6L — By — 2By — 2E5 — 2B, — 2E5.

Then C is smooth and irreducible. In the first case, H'(O¢(1)) = 0.

Proof. We first show the above linear series are basepoint-free. To do this, we write them
as a sum of terms which are evidently basepoint-free:

5L—2F1 —FEy—FE3s—E,—FE;=B3L—F1—FEy;—FE3s—E,—FE5)+(L—E;)+L
6L — Fy —2Ey —2F5 —2E, —2FE5 = (3L — Ey — E5 — E5 — By — Es)
+(Q2L—-FEy—E3s—FE4—E5)+ L
As in Lemma 9.4, we conclude that C' is smooth and irreducible. In the first case, we have

deg Oc(1) =9 > 8 = 2g — 2, which implies H' (O (1)) = 0 as desired. O

LEMMA 9.8. Let C' C P* be a general BN-curve of degree 9 and genus 5. Then we have
HY(Nc(-1)) = 0.

Proof. We take C C S, as constructed in Lemma 9.7. Because Ng ~ Og(2) ® Og(2), we
have
H'(Ns|c(-1)) = H'(Oc(1) ® Oc(1)) = 0.
Moreover, Og(1)(—C) ~ Os(—2L + E4) has no sections. Consequently, the restriction map
H°(0s(1) ® Os(1)) = H*(Oc(1) ® Oc (1))
is injective. Since
dim H%(Os(1) @ Os(1)) = 10 = dim H*(Oc(1) @ Oc(1)),

the above restriction map is therefore an isomorphism. Applying Lemma 9.2, it thus suffices
to show that

dim Vi) = dim H°(O¢) = 1.

Writing F for a general hyperplane, and D = F'N S, we observe that Pic(D) is 1-dimensional.
Since [C} 23(3L—E1 —EQ—Eg—E4—E5)—2(2L—E1 _E2_E3_E4_E5)_E17 it is
therefore sufficient to prove that for a general class 6 € PicQ(D)7 there exists a quartic Del
Pezzo surface S containing D, and a pair {L1, Lo} of intersecting lines on S, such that the
restriction (3H — 2Ly — Lo)|p = 6. Since H|p = Op(1) is independent of S and the choice of
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916 ERIC LARSON

L, we may replace 6 by ~'(3) and look instead for (2L; 4 Ls)|p = 6 € Pic*(D). For this, it
suffices to show the map

{(S,Ll,LQ) : Ll,Lg cSDO D} — {(Ll,LQ)},

from the space of smooth quartic Del Pezzo surfaces S containing D with a choice of pair
of intersecting lines (Lj, Ls), to the space of pairs of intersecting 1-secant lines to D, is
dominant. Taking [L1] = E; and [Ls] = L — Ey — E», it suffices to check the vanishing of the
first cohomology of the vector bundle Ng(—D — Ey — (L — Ey — E5)) — which is isomorphic
to a direct sum of two copies of the line bundle 2L — F; — F3 — B4, — E5 — for any smooth
quartic Del Pezzo surface S containing D, in which lies the obstruction to smoothness of this
map. But 2L — E; — E3 — B4 — E5 = Og(1)(—(L — E»)) has vanishing H! by Lemma 9.3. O

To prove the main theorems (excluding the ‘conversely. ..’ part), it thus remains to produce
a smooth curve C' C P? of degree 5 and genus 1, with H'(N¢(—2)) = 0.

10. Elliptic curves of degree 5 in P3

In this section, we construct an immersion f: C' < P3 of degree 5 from a smooth elliptic curve,
with H'(N¢(—2)) = 0. As in the previous section, we shall identify C' = f(C) with its image,
in which case the normal bundle N; becomes the normal bundle N¢ of the image.

Our basic method in this section will be to use the geometry of the cubic scroll S C P*.
Recall that the cubic scroll can be constructed in two different ways.

(1) Let @ CP* and M C P* be a plane conic, and a line disjoint from the span of Q,
respectively. As abstract varieties, Q ~ P' ~ M. Then S is the ruled surface swept out by lines
joining pairs of points identified under some choice of above isomorphism.

(2) Let z € P? be a point, and consider the blowup Bl, P? of P? at the point {z}. Then, S
is the image of f: Bl, P2 — P under the complete linear series attached to the line bundle

2L — E,

where L is the class of a line in P?, and E is the exceptional divisor in the blowup.

To relate these two constructions, we fix a line L C P? not meeting x in the second
construction, and consider the isomorphism L ~ P!~ E defined by sending p € L to the
intersection with E of the proper transform of the line joining p and x. Then the f(L) and
f(E) are Q and M, respectively, in the second construction; the proper transforms of lines
through x are the lines of the ruling.

Now take two points p,q € L. Since f(L) is a plane conic, the tangent lines to f(L) at p and
q intersect; we let y be their point of intersection.

From the first description of S, it is clear that any line through y intersects S quasi-
transversely — except for the lines joining y to p and ¢, each of which meets S in a degree 2
subscheme of f(L). Write S for the image of S under projection from y; by construction, the
projection 7: S — S C P? is unramified away from {p, ¢}, an immersion away from f(L), and
when restricted to f(L) is a double cover of its image with ramification exactly at {p,q}. At
{p,q}, the differential drops rank transversely, with kernel the tangent space to f(L). (By
‘drops rank transversely’, we mean that the section dm of Hom(Ts, 7*Tps) is transverse to the
subvariety of Hom(Ts, 7*Tps) of maps with less-than-maximal rank.)

If C € Bl,P? ~ S is a curve passing through p and ¢, but transverse to L at each of these
points, then any line through y intersects C' quasi-transversely. In particular, if C' meets L
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THE GENERALITY OF A SECTION OF A CURVE 917

in at most one point outside of {p, ¢}, the image C of C' under projection from y is smooth.
Moreover, the above analysis of dm on S implies that the natural map

Nc/s — Né/IP"‘

induced by = is fiberwise injective away from {p, ¢}, and has a simple zero at both p and gq.
That is, we have an exact sequence

0—>NC/S(p+q)—>N5/P3—>Q—>O7 (5)
with Q a vector bundle.

We now specialize to the case where C' is the proper transform of a plane cubic, passing
through {z,p, ¢}, and transverse to L at {p, ¢}. By inspection, C' is an elliptic curve of degree
5 in P3; it thus suffices to show Hl(Na/PS(—Q)) =0.

LEMMA 10.1. In this case,

Neys(p+4q) = Oc(3L — E+p+q)

Q~0Oc(5L—3E —p—q).

Proof. We first note that
Neoys = Neyp2(—E) =~ Oc(3L)(-E) = Ncs(p+q) =20c(BL—-E+p+q).
Next, the Euler exact sequence
0— Oz = Oz(1)" = Tps|z — 0
implies
N}(Tps ) = O (4).
Combined with the normal bundle exact sequence
0= T = Tps|g = Ngjps — 0,
and the fact that C is of genus 1, so T¢ ~ O¢, we conclude that
N2 (Ng ) = Oc(4) @ T = Oc(4) = Oc(4(2L — E)) = Oc(SL — 4E).
The exact sequence (5) then implies
Q= A*(Ng/ps) @ (Neys(p+q))Y = Oc(8L —4E)(=3L+ E —p — q) = Oc(5L = 3E —p — q),
as desired. d

Twisting by Oc(—2) ~ Oc(—4L + 2E), we obtain isomorphisms:
Neoys(p+q) 2 Oc(-L+E+p+q)
Q~0c(L-E-p—q).
We thus have an exact sequence
0—>O0c(—L+E+p+q) = Ngps(—2) > Oc(L—E—-p—q) = 0.

Since Oc(—L+ E 4+ p+ q) and Oc(L — E — p — q) are both general line bundles of degree zero
on a curve of genus 1, we have

H'(Oc(~L+E+p+q))=H (Oc(L—-E—-p-q) =0,
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918 ERIC LARSON

which implies
Hl(Nﬁ/lPﬂ(_z)) =0.

This completes the proof the main theorems, except for the ‘conversely...’ parts.

11. The converses

In this section, we show that the intersections appearing in our main theorems fail to be general
in all listed exceptional cases. We actually go further, describing precisely the intersection of a
general BN-curve f: C' — P" in terms of the intrinsic geometry of Q ~ P! x P!, H ~ P2, and
H ~ P3, respectively.

Since the general BN-curve f: C'— P is an immersion, we can identify C' = f(C) with its
image as in the previous two sections, in which case the normal bundle Ny becomes the normal
bundle N¢ of its image.

There are two basic phenomenon which explain the majority of our exceptional cases:
cases where C' is a complete intersection, and cases where C' lies on a surface of low degree.
The first two subsections will be devoted to the exceptional cases that arise for these two
reasons, respectively. In the final subsection, we will consider the two remaining exceptional
cases.

11.1. Complete intersections

We begin by dealing with those exceptional cases which are complete intersections.

PROPOSITION 11.1. Let C' C P? be a general BN-curve of degree 4 and genus 1. Then the
intersection C' N Q is the intersection of two general curves of bidegree (2,2) on Q ~ P! x P!
In particular, it is not a collection of eight general points.

Proof. 1t is easy to see that C' is the complete intersection of two general quadrics. Restricting
these quadrics to Q ~ P! x P!, we see that C' N Q is the intersection of two general curves of
bidegree (2,2).

Since general points impose independent conditions on the 9-dimensional space of curves of
bidegree (2,2), a general collection of eight points will lie only on one curve of bidegree (2, 2).
The intersections of two general curves of bidegree (2,2) is therefore not a collection of eight
general points. (I

PROPOSITION 11.2. Let C C P? be a general BN-curve of degree 6 and genus 4. Then
the intersection C'NQ Is the intersection of two general curves of bidegrees (2,2) and
(3,3), respectively, on Q ~P! x PL. In particular, it is not a collection of twelve general
points.

Proof. It is easy to see that C is the complete intersection of a general quadric and cubic.
Restricting these to Q ~ P! x P!, we see that C' N Q is the intersection of two general curves
of bidegrees (2,2) and (3,3), respectively.

Since general points impose independent conditions on the 9-dimensional space of curves of
bidegree (2,2), a general collection of twelve points will not lie any curve of bidegree (2,2), and
in particular will not be such an intersection. O

PROPOSITION 11.3. Let C C P be a general BN-curve of degree 6 and genus 4. Then the
intersection C'N H is a general collection of six points lying on a conic. In particular, it is not
a collection of six general points.
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THE GENERALITY OF A SECTION OF A CURVE 919

Proof. As in Proposition 11.2; we see that C'N H is the intersection of general conic and
cubic curves.

In particular, C'N H lies on a conic. Conversely, any six points lying on a conic are the
complete intersection of a conic and a cubic by Theorem 1.2 (with (d, g) = (3,1)).

Since general points impose independent conditions on the 6-dimensional space of plane
conics, a general collection of six points will not lie on a conic. We thus see our intersection is
not a collection of six general points. O

PROPOSITION 11.4. Let C C P* be a general BN-curve of degree 8 and genus 5. Then the
intersection C'N H is the intersection of three general quadrics in H ~ P3. In particular, it is
not a collection of eight general points.

Proof. Tt is easy to see that C is the complete intersection of three general quadrics.
Restricting these quadrics to H ~P3 we see that C N H is the intersection of three
general quadrics.

Since general points impose independent conditions on the 10-dimensional space of quadrics,
a general collection of eight points will lie only on only two quadrics. The intersection of three
general quadrics is therefore not a collection of eight general points. O

11.2. Curves on surfaces

Next, we analyze those cases which are exceptional because C' lies on a surface S of small
degree. To show the intersection is general subject to the constraint imposed by C' C S, it will
be useful to have the following lemma;:

LEMMA 11.5. Let D be an irreducible curve of genus g on a surface S, and py,po, . ..,pn, be
a collection of n distinct points on D. Suppose that n > g, and that pi,pa,...,p, are general.
Let 0 € Pic(S), with |p ~ p1 +pa + -+ + pn. Suppose

dim H°(9) — dim H°(§(—D)) = n — g + 1.

Then some curve C C S of class 0 meets D transversely at p1,pa,...,Pn.

Proof. Since p1,p2,...,p, are general, and 0|p = p; +p2+ -+ py, it suffices to show
there is a curve of class 6 meeting D dimensionally transversely and passing through
Dg+1,Pg+2, - - -, Pn; the remaining g points of intersection are then forced to be pi,pa, ..., py.

For this, we note there is a dim H°(#) — (n — g) > dim H°(6(—D)) dimensional space of
sections of 6 which vanish at pgy1,...,p,. In particular, there is some section which does
not vanish along D. Its zero locus then gives the required curve C. (The curve C' meets D
dimensionally transversely, because C' does not contain D and D is irreducible.) O

PROPOSITION 11.6. Let C' C P? be a general BN-curve of degree 5 and genus 2. Then the
intersection C N Q) is a collection of ten general points lying on a curve of bidegree (2,2) on
Q ~ P! x P'. In particular, it is not a collection of ten general points.

Proof. Since dim H°(O¢(2)) =9 and dim H°(Ops(2)) = 10, we conclude that C' lies on a
quadric. Restricting to @), we see that C'N @ lies on a curve of bidegree (2,2).

Conversely, given ten points p1,pa, ..., pio lying on a curve D of bidegree (2, 2), we may first
find a pair of points {z,y} C D so that x +y+ 2H ~ p; + - -+ + p19. We then claim there is a
smooth quadric containing D and the general 2-secant line Ty to D. Equivalently, we want to
show the map

{(S,L): L c SD> D} {L},
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920 ERIC LARSON

from the space of smooth quadric surfaces .S containing D with a choice of line L, to the space of
2-secant lines to D, is dominant; it suffices to check the vanishing of H'(Ng(—D — L)), for any
smooth quadric S containing D and line L on S, in which lies the obstruction to smoothness
of this map. But Ng(—D — L) = Og(—L) has vanishing H! by Lemma 9.3.

Writing L € Pic(S) for the class of the line Ty, we see that (L + 2H)|p ~p1 + -+ p1o
as divisor classes. Applying Lemma 11.5, and noting that dim H°(Og(2H + L)) = 12 while
dim H°(Og(L)) = 2, there is a curve C of class 2H + L meeting D transversely at pi, ..., pio.
Since Og(2H + L) is very ample by inspection, C' is smooth (for py, ..., p1o general). By results
of [7], this implies C' is a BN-curve.

Since general points impose independent conditions on the 9-dimensional space of curves of
bidegree (2,2), a general collection of ten points does not lie on a curve of bidegree (2,2). A
collection of ten general points on a general curve of bidegree (2,2) is therefore not a collection
of ten general points. O

PROPOSITION 11.7. Let C C P? be a general BN-curve of degree 7 and genus 5. Then the
intersection C' N Q is a collection of fourteen points lying on a curve D C Q ~ P! x P!, which
is general subject to the following conditions.

(1) The curve D is of bidegree (3, 3).
(2) The divisor CNQ —2H on D (where H is the hyperplane class) is effective.

In particular, it is not a collection of fourteen general points.

Proof. First we claim the general such curve C lies on a smooth cubic surface S with class
2H+ FE1 =6L — Ey —2F, —2F3 — 2E; — 2F5 — 2F4. Indeed, by Lemma 9.4 part 4, a general
curve of this class is smooth and irreducible; such a curve has degree 7 and genus 5, and in
particular is a BN-curve by results of [7]. It remains to see there are no obstructions to lifting
a deformation of C' to a deformation of the pair (S,C), that is, that H'(Ng(—C)) = 0. But
Ng(—C) = Os(1)(—FE) has vanishing H' by Lemma 9.3.

Thus, C N Q — 2H is the restriction to D of the class of a line on S; in particular, C N Q — 2H
is an effective divisor on D.

Conversely, suppose that p1,ps,...,p14 are a general collection of fourteen points lying on
a curve D of bidegree (3,3) with p; + - -+ 4+ p14a — 2H ~ x + y effective. We then claim there is
a smooth cubic containing D and the general 2-secant line xy to D. Equivalently, we want to
show the map

{(S,L): L cS>D}w— {L},

from the space of smooth cubic surfaces S containing D with a choice of line L, to the space of
2-secant lines to D, is dominant; for this it suffices to check the vanishing of H'(Ng(—D — L)).
But Ng(—D — L) = Og(1)(—E1) has vanishing H! by Lemma 9.3.

Choosing an isomorphism S ~ Bl P? where I' = {q1,q2, ..., qs}, so that the line 7y = F is
the exceptional divisor over ¢, we now look for a curve C' C S of class

[C] = 6L — Ey — 2E, — 2E5 — 2E, — 2E5 — 2.

Again by Lemma 9.4, the general such curve is smooth and irreducible; such a curve has
degree 7 and genus 5, and in particular is a BN-curve by results of [7]. Note that

dim H*(Os(6L — By — 2E5 — 2F3 — 2E, — 2E5 — 2Fg)) =12 and  dim H*(Os(E;)) = 1.

Applying Lemma 11.5, we conclude that some curve of our given class meets D transversely
at p1,p2,...,P14, as desired.

It remains to see from this description that C'N@Q is not a general collection of fourteen
points. For this, first note that there is a 15-dimensional space of such curves D (as
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THE GENERALITY OF A SECTION OF A CURVE 921

dim H°(0g(3,3)) = 16). On each curve, there is a 2-dimensional family of effective divisors
A; and for fixed A, a 10-dimensional family of divisors linearly equivalent to 2H + A (because
dim H°(Op(2H + A)) = 11 by Riemann-Roch). Putting this together, there is an (at most)
154 2 + 10 = 27-dimensional family of such collections of points. But Sym14(Q) has dimension
28. In particular, collections of such points cannot be general. O

PROPOSITION 11.8. Let C C P? be a general BN-curve of degree 8 and genus 6. Then the
intersection C' N Q is a general collection of sixteen points on a curve of bidegree (3,3) on
Q ~ P! x P'. In particular, it is not a collection of sixteen general points.

Proof. Since dim H°(O¢(3)) = 19 and dim H®(Ops(3)) = 20, we conclude that C lies a cubic
surface. Restricting this cubic to @, we see that C' N @ lies on a curve of bidegree (3,3).

Conversely, take a general collection p1,...,p1s of sixteen points on a curve D of bidegree
(3,3). The divisor p; + -+ + p1g — 2H is of degree 4 on a curve D of genus 4; it is therefore
effective, say

pr+-+pg—2H~z+y+z+w.

We then claim there is a smooth cubic containing D and the general 2-secant lines Ty and zZw
to D. Equivalently, we want to show the map

{(S, El,Eg) : El,EQ cS> D} — {(El,EQ)},

from the space of smooth cubic surfaces S containing D with a choice of pair of disjoint lines
(E1, E5), to the space of pairs of 2-secant lines to D, is dominant; for this, it suffices to check
the vanishing of H'(Ng(—D — E; — E»)). But Ns(=D — E; — Ey) = Og(1)(—(E; + E2)) has
vanishing H! by Lemma 9.3.

We now look for a curve C' C S of class

[C] = 6L — Ey — Ey — 2E5 — 2E; — 2E5 — 2,

which is of degree 8 and genus 6. By Lemma 9.4, we conclude that C' is smooth and irreducible;
by results of [7], this implies the general curve of this class is a BN-curve. Note that

dim H°(Os(6L — Ey — By — 2E3 — 2F, — 2F5 — 2F6)) = 14 and  dim H°(Og(E; + E»)) = 1.

Applying Lemma 11.5, we conclude that some curve of our given class meets D transversely
at p1,p2,...,p16, as desired.

Since general points impose independent conditions on the 16-dimensional space of curves
of bidegree (3,3), a general collection of sixteen points will not lie any curve of bidegree (3,3).
Our collection of points is therefore not general. O

PROPOSITION 11.9. Let C C P* be a general BN-curve of degree 9 and genus 6. Then the
intersection C' N H is a general collection of nine points on an elliptic normal curve in H ~ P3.
In particular, it is not a collection of nine general points.

Proof. Since dim H°(O¢(2)) = 13 and dim H°(Op:(2)) = 15, we conclude that C lies on the
intersection of two quadrics. Restricting these quadrics to H ~ P3, we see that C'N H lies on
the intersection of two quadrics, which is an elliptic normal curve.

Conversely, let p1,po,...,pg be a collection of nine points lying on an elliptic normal curve
D C P3. Since D is an elliptic curve, there exists (a unique) z € D with

Op(p1 + -+ +po)(—2) = Op(x).
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922 ERIC LARSON

Let M be a general line through . We then claim there is a quartic Del Pezzo surface containing
D and the general 1-secant line M. Equivalently, we want to show the map

{(S,El) By CcSD D} — {El},

from the space of smooth Del Pezzo surfaces S containing D with a choice of line E1, to the space
of 1-secant lines to D, is dominant; for this it suffices to check the vanishing of H*(Ng(—D —
Ey)). But Ng(—D — E) is a direct sum of two copies of the line bundle Og(1)(—FE; ), which
has vanishing H' by Lemma 9.3.

We now consider curves C' C S of class

[C] = 6L — Ey — 2F, — 2F5 — 2E, — 2F;,

which are of degree 9 and genus 6. By Lemma 9.7, we conclude that C' is smooth and irreducible;
by results of [6], this implies the general curve of this class is a BN-curve. Note that

dim H*(Os(6L — By — 2E, — 2F3 — 2E, — 2E5)) = 15 and
dim H*(Os(3L — Ey — B3 — E;, — E5)) = 6.

Applying Lemma 11.5, we conclude that some curve of our given class meets D transversely
at p1,p2, ..., P9, as desired.

By [2, Corollary 1.4], there does not exist an elliptic normal curve in P? passing through
nine general points. (]

11.3. The final two exceptional cases

We have exactly two remaining exceptional cases: The intersection of a general BN-curve of
degree 6 and genus 2 in P? with a quadric, and the intersection of a general BN-curve of degree
10 and genus 7 in P* with a hyperplane. We will show i in the first case that the intersection
fails to be general since C' is the projection of a curve Cc P*, where C lies on a surface of
small degree (a cubic scroll). In the second case, the intersection fails to be general since C is
contained in a quadric hypersurface.

PROPOSITION 11.10. Let C' C P? be a general BN-curve of degree 6 and genus 2. Then the
intersection C' N Q is a collection of twelve points lying on a curve D C Q ~ P! x P!, which is
general subject to the following conditions.

(1) The curve D is of bidegree (3,3) (and so is in particular of arithmetic genus 4).

(2) The curve D has two nodes (and so is in particular of geometric genus 2).

(3) The divisors Op(2,2) and CND are linearly equivalent when pulled back to the
normalization of D.

In particular, it is not a collection of twelve general points.

Proof. We first observe that dim H°(O¢(1)) = 5, so C is the projection from a point p € P*
of a curve C' C P* of degree 6 and genus 2. Write 7: P* ——» P3 for the map of projection from
p, and define the quadric hypersurface Q = 7~ 1(Q).

Let S C P* be the surface swept out by joining pairs of points on C conjugate under the
hyperelliptic involution. By [2, Corollary 13.3], S is a cubic surface; in particular, since S has
a ruling, S is a cubic scroll. Write H for the hyperplane section on S, and F for the class of a
line of the ruling.

Th curve D = Q N .S (which for C general is smooth by Kleiman transversahty) is of degree
6 and genus 2. By construction, the intersection C'N @ lies on D = 7(D). Since D = n(S) N Q,
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THE GENERALITY OF A SECTION OF A CURVE 923

it is evidently a curve of bidegree (3,3) on @ ~ P! x PL. Moreover, since D has genus 2, the
geometric genus of D is 2. In particular, D has two nodes.

Next, we note that on S, the curve C has class 2H. Indeed, if [C] =a-H+b-F, then a =
C F=2and3a+0b= C-H= 6; solving for a and b, we obtain a = 2 and b = 0. Consequently,
CN D has class 2H on D. Or equivalently, C N D = 7(C' N D) has class equal to Op(2) =
Op(2,2) when pulled back to the normalization.

Conversely, take 12 points on D satisfying our assumptions. Write D for the normalization
of D, and pi,p2,...,p12 for the preimages of our points in D. We begin by noting that
dim H°(O3(1)) =5, so D is the projection from a point p € P* of D C P* of degree 6 and
genus 2. As before, write 7: P* --» P3 for the map of projection from p, and define the quadric
hypersurface Q = 7~ 1(Q).

Again, we let S C P* be the surface swept out by joining pairs of points on D conjugate
under the hyperelliptic involution. As before, S is a cubic scroll; write H for the hyperplane
section on S, and F' for the class of a line of the ruling. Note that DC Q N .S; and since both
sides are curves of degree 6, we have D= Q ns.

It now suffices to find a curve C' C S of class 2H, meeting D transversely in pq,...,p12. For
this, note that

dim H°(Og(2H)) =12 and dim H°(Og) =1

Applying Lemma 11.5 yields the desired conclusion.

It remains to see from this description that C' N @ is not a general collection of 12 points. For
this, we first note that such a curve D C P! x P! is the same as specifying an abstract curve
of genus 2, two lines bundles of degree 3 (corresponding to the pullbacks of Op:(1) from each
factor), and a basis-up-to-scaling for their space of sections (giving us two maps D — P'). Since
there is a 3-dimensional moduli space of abstract curves D of genus 2, and dim Pic? (D) =2,
and there is a 3-dimensional family of bases-up-to-scaling of a 2-dimensional vector space, the
dimension of the space of such curves D is 3+ 2+ 2+ 3+ 3 = 13. Our condition p; +--- +
p12 ~ 2H then implies collections of such points on a fixed D are in bijection with elements of
POp(2H) ~ P9, Putting this together, there is an (at most) 13 + 10 = 23 dimensional family
of such collections of points. But Sym'? (Q) has dimension 24. In particular, collections of such
points cannot be general. O

PROPOSITION 11.11. Let C C P* be a general BN-curve of degree 10 and genus 7. Then the
intersection C' N H is a general collection of ten points on a quadric in H ~ P3. In particular,
it is not a collection of ten general points.

Proof. Since dim H°(O¢(2)) = 14 and dim H°(Op+(2)) = 15, we conclude that C' lies on a
quadric. Restricting this quadric to H ~ P?, we see that C' N H lies on a quadric.

For the converse, we take general points pi,...,p10 lying on a general (thus smooth)
quadric Q. Since dim H°(0g(3,3)) = 16, we may find a curve D C Q of type (3,3) passing
through p1,...,p1o. As divisor classes on D, suppose that

prtpet+-+po—H~r+y+2z+w.

We now pick a general (quartic) rational normal curve R C P* whose hyperplane section is
{z,y, z,w}.

We then claim there is a smooth sextic K3 surface S C P* containing D and the general
2-secant lines Ty and zw to D. Equivalently, we want to show the map

{(S,R): RC S} — {(R,D)},

from the space of smooth sextic K3 surfaces S, to the space of pairs (R, D) where R is a
rational normal curve meeting the canonical curve D = .S N H in four points, is dominant; for
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924 ERIC LARSON

this it suffices to check the vanishing of H'(Ng(—H — R)) at any smooth sextic K3 containing
a rational normal curve R (where H = [D] is the hyperplane class on S). We first note that a
sextic K3 surface S containing a rational normal curve R exists, by [8, Theorem 1.1]. On this
K3 surface, our vector bundle Ng(—H — R) is the direct sum of the line bundles H — R and
2H — R; consequently, it suffices to observe that H!'(Og(n)(—R)) = 0 for n > 1 by Lemma 9.3.
This shows the existence of the desired K3 surface S containing D and the general 4-secant
rational normal curve R.

Next, we claim that the linear series H + R on S is basepoint-free. To see this, we first note
that H is basepoint free, so any basepoints must lie on the curve R. Now the short exact
sequence of sheaves

0— Os(H) = Os(H + R) = Os(H + R)|r — 0
gives a long exact sequence in cohomology
<+ = HY(Os(H + R)) = H*(Os(H + R)|g) — H (Os(H)) — - -~

Since the complete linear series attached to Og(H + R)|r =~ Op1(2) is basepoint-free, it
suffices to show that H°(Og(H + R)) — H°(Os(H + R)|g) is surjective. For this, it suffices
to note that H'(Os(H)) = 0 by Lemma 9.3.

Thus, H 4+ R is basepoint-free. In particular, the Bertini theorem implies the general curve
of class H + R is smooth. Such a curve is of degree 10 and genus 7; in particular, it is a
BN-curve by results of [6]. So it suffices to find a curve of class H + R on S passing through
P1,P2,---,P10- By construction, as divisors on D, we have

p1+p2+---+po~H+ R

By Lemma 11.5, it suffices to show dim H°(Og(H + R)) = 8 and dim H°(Os(R)) = 1.
More generally, for any smooth curve X C S of genus g, we claim dim H°(Og(X)) =1+ g.
To see this, we use the exact sequence

0— 05— 0s(X) = Os(X)|x — 0,
which gives rise to a long exact sequence in cohomology
0 — H°(Og) = H*(0Os(X)) = H(Os(X)|x) = H(Og) — --- .
Because H'(Og) = 0, we thus have
dim H(O5(X)) = dim H*(Os(X)|x) + dim H(Os)
=dim H°(Ks(X)|x) +1
=dimH(Kx)+1
=g+1

In particular, dim H°(Og(H + R)) = 8 and dim H(Og(R)) = 1, as desired.

Since general points impose independent conditions on the 10-dimensional space of quadrics,
a general collection of ten points will not lie on a quadric. In particular, our hyperplane section
here is not a general collection of ten points. (I
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