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a b s t r a c t

Dispersive shock waves (DSWs), which connect states of different amplitude via a modulated wave
train, form generically in nonlinear dispersive media subjected to abrupt changes in state. The primary
tool for the analytical study of DSWs is Whitham’s modulation theory. While this framework has been
successfully employed in many space-continuous settings to describe DSWs, the Whitham modulation
equations are cumbersome in most spatially discrete systems. In this article, we illustrate the relevance
of the reduction of the DSW dynamics to a planar ODE in a broad class of lattice examples. Solutions of
this low-dimensional ODE accurately describe the orbits of the DSW in self-similar coordinates and the
local averages in a manner consistent with the modulation equations. We use data-driven and quasi-
continuum approaches within the context of a discrete system of conservation laws to demonstrate
how the underlying low dimensional structure of DSWs can be identified and analyzed. The connection
of these results to Whitham modulation theory is also discussed.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Understanding how systems respond to sudden changes in
he medium is critical in a number of applications. Classic exam-
les include explosions in shock tubes [1], when gases or fluids
re compressed in a piston chamber [2] or when water dams
reak [3]. From a modeling perspective, a sudden change in a
edium is often represented by step initial data (the so-called
iemann problem). In mathematical models describing fluid or
as dynamics based on space and time continuous conserva-
ion laws, states of different amplitude that are connected via
discontinuity (i.e., fronts involving jumps, e.g., in density or

oncentration) are predicted to travel through the medium at
onstant speed and are called Lax shock waves [4], or just shocks.
ince solutions with infinite derivatives are nonphysical, modi-
ied (e.g., regularized) models are often used as an alternative.
n some settings, such as stratified environments of the ocean
nd atmosphere, dispersive shocks (and their regularizations) are
ore relevant [5,6]. In this case, the states of different amplitude
re connected via an expanding modulated wave train. This struc-
ure is called a dispersive shock wave (DSW). The primary tool
o analytically describe DSWs is Whitham’s modulation theory
7–9]. In this framework, one derives equations describing slow
odulations of the underlying parameters of a periodic wave
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E-mail address: cchong@bowdoin.edu (C. Chong).
ttps://doi.org/10.1016/j.physd.2022.133533
167-2789/© 2022 Elsevier B.V. All rights reserved.
by, for example, averaging the Lagrangian action integral over a
family of periodic wave trains [10,11].

The study of DSWs in spatially continuous media has been
ongoing since Whitham’s seminal work [7] over 50 years ago,
but there has been renewed excitement for this theme. This
excitement has largely been inspired by recent groundbreaking
experimental observations of DSWs most notably in ultracold
gases and superfluids [12,13], nonlinear optics [14,15], and fluid
conduits [5,16], among others. Dispersive shock waves in one-
dimensional (1D) nonlinear lattices (to be called lattice DSWs)
have been explored numerically, and even experimentally in sev-
eral works [17–23]. Although much of the above motivation in
discrete systems stems from the material science of granular
crystals, it is of broad physical interest, as similar structures
have been experimentally observed, e.g., in nonlinear optics of
waveguide arrays [24]. The existence of periodic waves has been
proved [25–27] and corresponding modulation equations have
been derived [28,29]. Explicit forms of the periodic waves are
typically not available, resulting in modulation equations that
are rather cumbersome (and, plausibly for this reason, have not
been much studied to date). Even in the integrable paradigm
of the Toda lattice, the modulation equations are quite cum-
bersome [30–32]. This is one reason the mathematical theory
of lattice DSWs is not as mature when compared to the study
of DSWs in continuous settings, which has seen many recent
experimental and theoretical advancements, as summarized in

the reviews [10,11,33].

https://doi.org/10.1016/j.physd.2022.133533
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A first goal of this paper is to provide a complementary ap-
proach to modulation theory for the description of lattice DSWs
in a broad class of nonlinear lattice dynamical models. Subse-
quently, we aim to unveil the crucial observation that lattice DSW
dynamics can be reduced to a planar ODE which can be han-
dled analytically. After detailing the problem set-up in Section 2,
we explore two approaches towards identifying the underlying
ODE dynamics: a data driven one in Section 3 and one based
on a quasi-continuum approximation in Section 4. The obtained
results are discussed within the context of the modulation equa-
tions in Section 5. Section 6 concludes the paper. We believe that
the method presented herein offers a key insight of relevance to
a wide class of lattice models bearing DSWs and the method of
analysis offers a quantitative perspective on the DSW dynamics
that is found to be in good agreement with the numerical ob-
servations in suitable regimes of the wave speed c. A discussion
of the modulation equations in terms of the wave parameters is
discussed in further detail in Appendix A.

2. Model equations and problem statement

In order to explore lattice DSWs and the dimensionality reduc-
tion approach, the following wide class of nonlinear dynamical
lattices is considered [34]

2
dun

dt
+ Φ ′(un+1) − Φ ′(un−1) = 0, (1)

where n ∈ Z, t ∈ R, u = un(t) ∈ R and the potential Φ(u) is
assumed to be convex. Eq. (1) possesses a Lagrangian and Hamil-
tonian structure [35], yet it is first order only, making its analysis
slightly more convenient when compared to classical nonlin-
ear oscillators, such as those of the Fermi–Pasta–Ulam–Tsingou
(FPUT) type [36]. We expect that the reduction approach that is
presented here will be applicable to a large class of lattice sys-
tems, such as FPUT models [37], discrete Nonlinear Schrödinger
models [38], and discrete Klein Gordon models [39]. Besides
serving as a prototype model for lattice DSWs, Eq. (1) is also
irectly relevant for applications, such as in the description of
raffic flow [40]; for a discussion of relevant models and their
ontinuum limits see also Ref. [34]. Eq. (1) is a centered difference
cheme for the space and time continuous conservation law

TU + ∂XΦ ′(U) = 0, (2)

here X, T ∈ R, U = U(X, T ) ∈ R, and the discrete and
ontinuous variable are related through un(t) = U(εn, εt) =

(X, T ) with 0 < ε ≪ 1. It is well known that Lax shocks
an form in Eq. (2) subjected to Riemann initial data for a large
lass of flux functions Φ ′ [4]. Eq. (1) can be thought of as a
ispersive regularization of Eq. (2) [41], and hence, it is expected
hat dispersive shock waves will form when subjected to Riemann
nitial data instead of Lax shocks [34].

For demonstration purposes, we will primarily consider the
olynomial potential

(u) =
u2

2
+

u4

4
, (3)

although, we also present results for the Kac-van-Moerbeke
(KvM) potential, Φ(u) = exp(u), to demonstrate the generality of
the presented approach. Note that Eq. (1) with the KvM potential
s completely integrable [40,42] although this fact will play no
ole in the analysis, as the methods presented below are of
nterest more broadly to dispersive nonlinear lattice systems
rather than more restrictively integrable ones).

Throughout the manuscript we consider Riemann (i.e. step)
nitial data,

n(0) =

{
1, n ≤ 0

(4)

0, n > 0

2

Fig. 1. (a) Example of lattice DSW. Result obtained via numerical simulation
of Eq. (1) with N = 8000 and the polynomial potential, Eq. (3), starting from
Riemann initial data, Eq. (4). The solution at t = 960 is shown. The box labeled
‘‘linear wave’’ vanishes in the large lattice limit. (b) Zoom of panel (a) at near
n = −1000 (top) and n = 200 (bottom). The solid lines are the interpolating
splines, shown for visual clarity. The profiles resemble periodic waves, albeit
with different parameters, in each zoom.

to generate DSWs. Letting N (even) represent the number of
spatial points, we define ε = 1/N . The corresponding spatial
domain is −N/2 + 1 < n ≤ N/2 and the temporal domain
is [0, Tf /ε], where Tf is a fixed constant independent of ε. One
example of a DSW that has formed starting with (4) is shown in
Fig. 1(a). For every finite lattice, there is a linear wave centered
at unity (see boxed area in Fig. 1(a)), which vanishes according
to the decay law ∼ N−1/3 [43]. The trailing edge of the DSW can
be described in the zero amplitude, harmonic wave limit. In this
limit it is found that the trailing edge speed is consistent with the
local linear group velocity. At the leading edge of the DSW (e.g. in
the zero-wavenumber limit) the profile is close to a solitary wave
solution. The leading and trailing edges of the DSW are discussed
in greater detail in Appendix B. The structure of the DSW away
from these two limiting cases is less apparent. To better under-
stand the interior of the DSW, notice that the trajectory of the
DSW in each small window of space and time appears to be a
traveling periodic wave, see Fig. 1(b). The existence of traveling
periodic waves of Eq. (1) was established in Ref. [35]. They have
the form

un(t) = V + V(ζ ), ζ = Kn − Ωt, (5)

where the parameters V (mean), K (wave vector) and Ω (fre-
quency) are real and the wave profile V is assumed, w.l.o.g, to be
2π periodic with mean zero. By substituting Eq. (5) into Eq. (1),
ne finds that V must satisfy the advance-delay equation,

ΩV ′(ζ ) = Φ ′(V + V(ζ + K )) − Φ ′(V + V(ζ − K )). (6)

ithin the ‘‘core’’ of the DSW (i.e., the modulated wave con-
ecting the two constant states), the wave parameters, V , K and
appear to be different in each small spatiotemporal window

compare the top and bottom panels of Fig. 1(b)). This suggests
hat a DSW can be viewed as a traveling periodic wave with
lowly varying parameters that connect the left state u− = 1 to
he right state u+ = 0. The set of equations that describe how the
ave parameters, V , K and Ω vary within the core of the DSW

s referred to as the system of modulation equations (relevant
etails are given in Section 5 and Appendix A). There is no explicit

form for the traveling wave profile V for general potentials Φ(u),
which satisfies the above advance-delay differential Eq. (6). This
results in modulation equations that are fairly cumbersome in
the discrete setting. Thus, in order to obtain a useful analytical
description of a lattice DSW, an approach that is complementary
to the modulation theory seems necessary. We now discuss such
an approach.
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Fig. 2. (a) Intensity plot of a lattice DSW (same parameters as in Fig. 1) with axes corresponding to the slow variables X = εn and T = εt . Color intensity corresponds
o amplitude (see colorbar). Each solid line corresponds to a fixed value of the self-similar speed c = X/T . The dashed lines marked c̃+ and c̃− are estimates of the
eading and trailing edge of the DSW, respectively. The dashed line marked clin is the edge of the linear wave (see boxed area of Fig. 1(a)). The vertical slice at the
inal time shown (T = 0.12) corresponds to the profile in Fig. 1(a). (b) Phase plane of the data extracted along the lines c = X/T of the lattice DSW shown in panel
a) (markers), where v = u̇. The solid lines are the planar ODE prediction of Eq. (9). (c) Plot of the roots (markers) of P(c). The roots are ordered by size: λ1 (purple)

λ2 (yellow) ≤ λ3 (red) ≤ λ4 (blue). Solid lines are the result of fitting the roots to a trial function of c; see relevant details in the text.
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. A planar ODE description of a lattice DSW

Fig. 2(a) shows an intensity plot of a numerical solution of
q. (1) with initial data given by Eq. (4) and Φ(u) =

u2
2 +

u4
4

nd N = 8000. A symplectic integrator is used for the direct
imulation of Eq. (1), see [35]. Viewing the solution along slices of
ixed t yields the usual DSW spatial profile, see Fig. 1(a). However,
f one observes data along the DSW with n/t = X/T = c fixed, a
ested, non-intersecting set of closed loops in the phase plane
u, u̇) is formed, with each value of c representing a different
loop, see Fig. 2(b). The fact that closed loops form is unsurprising,
since it is expected that the DSW has a self similar structure, and
hence, with X/T = c fixed, the modulation parameters should
be fixed. What is surprising is that the set of loops is nested
and non-intersecting when projecting the dynamics onto a two-
dimensional phase space. This motivates the proposal to identify
a planar ODE that can approximate the lattice DSW dynamics.

To identify such an ODE, we first take a data-driven approach.
For each fixed value of c , we extract position and velocity data
from the DSW. We define this data as u = uct (t; c), where uct (t; c)
s the position data at lattice location n = ct and time t , which
nsures that c = n/t . This necessitates that the time increment
s chosen such that ct is an integer. Similarly, we define v =

ct (t; c), where vn = u̇n. We assume there is a simple energy
elationship between the position u and velocity v as follows

v2

2
=

M∑
j=0

νjuj(t; c) =: P(u; c). (7)

Treating u and v as independent and dependent variables, respec-
tively, we determine the parameters νj via a linear regression.
This relationship will describe the periodic orbit making up the
DSW at a particular value of the speed c. In order to extract the
underlying structure of the entire DSW, we repeat the process
for several c values that lie within the core of the DSW. For each
value of c , we express the polynomial P in terms of its roots
P(u; c) = Λ(c)(u−λ1(c))(u−λ2(c))(u−λ3(c))(u−λ4(c)) where the
oots are ordered λ1 ≤ λ2 ≤ λ3 ≤ λ4. The roots plotted against
he speed c are the markers shown in Fig. 2(c). Once the roots
nd constant (i.e., u-independent) factor Λ are obtained, they are
itted to a simple trial function of c. How exactly the roots depend
n c is critical in identifying the character of the DSW. This step
f the process is similar to solving the modulation equations with
oundary and initial data consistent with a DSW [8]. In particular,
t is only though a very specific dependence of the roots on the
arameter c that a DSW will arise. For the purpose of simplicity,

olynomial trial functions are assumed, which capture the data w

3

well (e.g., compare the lines and markers of the top three curves
of Fig. 2(c)). The only exception to this choice of trial function
was for the first root, λ1, in the case of the polynomial potential.
his root is bell-shaped (see bottom curve Fig. 2(c)), and thus, the
olynomial trial function led to a poor fit. Thus, a trial function
n the form of a hyperbolic secant is used in this case. All other
ases led to good agreement between the roots and a polynomial
rial function. Note that the choice of trial function has no direct
onsequence on the forthcoming analysis. Upon performing the
itting, the resulting formulas are λ1(c) = −5.79sech(−1.16(c +

.67))+0.20, λ2(c) = −0.01c2−0.20c+0.52, λ3(c) = −0.01c2+

.10c + 1.35, λ4(c) = 0.02c3 − 0.19c2 + 0.05c + 3.08 and
(c) = 0.40c2 + 0.42c + 0.62. Repeating the entire procedure

or the KvM potential Φ(u) = exp(u) leads to the formulas
1(c) = 0.03c3 − 0.42c2 + 1.74c − 2.08 (notice that in this
ase, a polynomial was used instead), λ2(c) = 0.01c3 − 0.01c2 −

.38c + 0.72, λ3(c) = −0.01c3 − 0.02c2 + 0.29c + 1.24, λ4(c) =

.04c3 −0.23c2 +0.06c+3.43 and Λ(c) = 0.13c2 +0.25c+0.49.
Eq. (7) implies the following planar ODE is satisfied

d2u
dτ 2 = P ′(u; c), u(0) = λ2(c),

du
dτ

⏐⏐⏐⏐
τ=0

= 0, (8)

with τ ∈ [0, τp] where τp is the period of oscillation and τ is
related to the lattice time variable through the scaling τ = αt .
While the time scaling factor is not needed for the forthcoming
analysis, it can be approximated through the relation α = τp/(Tp),
where Tp is the period of oscillation of the DSW trajectory with
c fixed. Note that both τp and Tp (and hence α) depend on c.
Clearly, periodic waves of Eq. (8) will correspond to oscillations
of u between roots of P(u; c) when P > 0, such as λ2(c) and λ3(c).
With the choice of initial values these extreme values occur for
t = 0 and t = τp/2 such that u(0) = λ2 is the minimum value and
u(τp/2) = λ3 is the maximum. The period of oscillation is given
by τp = 2

∫ τp/2
0 dτ = 2

∫ λ3
λ2

1/
√
2P(u) du. For the choice of the

nergy relationship given by Eq. (7), Eq. (8) can be solved using
quadrature [44]. The exact solution is

u(τ ) =
λ2(λ3 − λ1) + λ1(λ2 − λ3)sn2(θτ ;m)

λ3 − λ1 + (λ2 − λ3)sn2(θτ ;m)
, (9)

here sn is a Jacobi elliptic function with parameter 0 < m < 1
nd,

=

√
Λ(λ3 − λ1)(λ4 − λ2)

2
, m =

(λ3 − λ2)(λ4 − λ1)
(λ3 − λ1)(λ4 − λ2)

.

he periodic wave given by Eq. (9) has the period τp = 2K (m)/θ ,
here K (m) is the complete elliptic integral of the first kind.
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Fig. 3. (a) Local averages measured from the lattice DSW (markers) and the ODE prediction from Eq. (9) (solid curves) for the polynomial potential Φ(u) = u2/2+u4/4.
b): Same as panel (a) for the KvM potential Φ(u) = exp(u).
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q. (9) yields good agreement with the trajectories of the full
attice DSW dynamics, despite the simple choice of a polynomial
or the energy relationship given by Eq. (7), (compare the lines
nd markers of Fig. 2(b)). Notice for λ1 → λ2 we have m → 1,
nd thus, the period tends to infinity and the solution tends to a
omoclinic connection. This limit corresponds to the leading edge
f the DSW. For the polynomial potential, the ODE prediction is

˜+ = 2.66, which overestimates the observed value of c+ = 2.45.
or λ3 → λ2 we have m → 0, in which case the solution tends to
constant. This is the trailing edge of the DSW, which is predicted
y the ODE to occur for c̃− = −2.48, which is quite close to the
alue extracted from the full lattice DSW c− = −2.50. See the
ed boxes of Fig. 2(c) showing where the roots coalesce and the
ray dashed lines of Fig. 2(a) for a comparison of the predicted
nd actual DSW edges. For the KvM potential, the trailing and
eading edge extracted from the lattice DSW are c− = −0.71
nd c+ = 1.98, and the ODE predictions are c̃− = −0.73 and

˜+ = 2.10.

.1. ODE prediction of local averages

There are various quantities that can be used to identify the
haracter of a DSW. One is the spatial profile, as shown in Fig. 1.
or larger lattice sizes, however, the structure can be difficult to
nalyze when viewing the DSW in this way. Another possibility
s to inspect local averages, which can be computed directly from
he lattice DSW data and from our ODE prediction. The local
verages we consider are ⟨un⟩, ⟨pn⟩, ⟨Φ(un)⟩, ⟨pnpn+1/2⟩, ⟨u2

n/2⟩
nd ⟨Ψ (p)⟩ where the angle brackets denote the local average
ith respect to the traveling wave coordinate, the dual variable

s p = Φ ′(u) and Ψ (p) = pu − Φ(u) is the Legendre transform
f Φ(u). The reason we investigate these specific choices of local
verages is their connection to the modulation equations (see
iscussion in Section 5). Thus, we can bridge results based on
he standard modulation theory approach and our proposed ODE
eduction approach.

Note that the local averages are, in principle, expressible in
erms of the traveling wave parameters V , K and Ω . For example,

u⟩ :=
1
2π

∫ 2π

0
V + V(ζ ) dζ = V ,

where ζ is the traveling wave coordinate. The other local averages
cannot be evaluated explicitly in general, however, since the
periodic wave profile V is defined implicitly by an advance-delay
equation, in which there is no closed-form solution. We estimate
 b

4

the local averages numerically from the DSW data as a function
of c = n/t as follows

u⟩ ≈
1
Tp

∫ n/c+Tp

n/c

1
2N

n+N∑
m=n−N

um(t) dt. (10)

here the sum appearing in the integrand is a mesoscopic aver-
ge where N is chosen to be larger than the spatial wavelength
ut much smaller than the lattice size. We chose N = 300.
he use of the mesoscopic spatial average leads to smoother
ata (e.g. the oscillations are effectively averaged out), but the
ata close to the boundaries will not have estimates for the
verages. Similar computations are made for the remaining five
ocal averages (see the markers of Fig. 3).

We will now compute local averages directly from the planar
DE solution of Eq. (9). For example,

u⟩ = λ1 +
λ2 − λ1

4K (m)
Π

(
λ3 − λ1

λ3 − λ2
,m

)
, (11)

here Π(C;m) is the complete integral of the third kind with
lliptic characteristic C , and parameter m. The remaining five
ocal averages can also be expressed in terms of elliptic integrals
see the solid lines of Fig. 3).

The analytical predictions for the local averages based on the
lanar ODE are very close to the local averages computed directly
rom the lattice DSW for the polynomial potential and the KvM
otential (compare the lines and markers of Fig. 3). The analytical
ocal averages provide a layer of insight that is not available
sing the numerically obtained averages. We were able to obtain
he formulas leveraging our data-driven approach, and without
he need to derive or solve a set of cumbersome modulation
quations.

. Quasi-continuum approximation

.1. A straightforward continuum limit

Having demonstrated that there is an underlying
ow-dimensional ODE structure to a lattice DSW, it is reasonable
o ask where this ODE structure comes from. While there are
ossibly many ways in which this structure could manifest, a
atural one to consider is the large lattice nature of the problem
in this article N = 8000). We now investigate this possibility by
aking a suitable continuum limit of the lattice dynamics (bearing
leading order lattice-induced correction). This approach has

een used to study DSWs in FPUT type lattices [45,46] and will
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Fig. 4. (a) Phase plane of the data extracted along the lines c = X/T of a lattice DSW for the polynomial potential (markers), see also Fig. 2(b). The solid lines are
the planar ODE prediction of Eq. (8) using the energy relationship given by Eq. (14) (i.e., the quasi-continuum approximation). (b) Local averages measured from the
lattice DSW (markers) and the ODE prediction based on the quasi-continuum approximation. (c,d) Same as panel (a) and (b), respectively, for the KvM potential.
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be useful here as well. Using the hyperbolic scaling un(t) =

U(εn, εt) = U(X, T ) the discrete conservation law Eq. (1) can be
approximated by the following quasi-continuum model

∂TU = −

(
∂X +

ε2

6
∂3
X

)
Φ ′(U), (12)

hich is the same as Eq. (2) with the next order term in the
expansion kept. Indeed, Eq. (12) can be thought of as a disper-
sive regularization of Eq. (2). Notice that the small parameter ε
appears explicitly in the model equation, making the error hard
to control. This is why Eq. (12) is called a quasi-continuum model
rather than a continuum model. Uncontrollable errors are typical
in quasi-continuum models, see the discussion in [47], which is
in contrast to continuum models derived from other scalings,
such as the Korteweg–de Vries or Nonlinear Schrödinger scal-
ings, which have controllable errors [48]. Indeed, similar quasi-
continuum models derived, for example, in the context of FPUT
lattices have both failed and succeeded in representing the actual
lattice dynamics (see the discussion in [49,50]). Thus, it is impor-
tant to check directly the validity of a PDE such as Eq. (12). Here,
we will do so at the (reduced) level of the effective planar ODE
description. To that effect, we first move into the co-traveling
frame via the traveling wave ansatz U(X, T ) = φ(KX − ΩT ) =

(ζ ). Substitution of this expression into Eq. (12) and integrating
nce leads to

Ωφ +

(
K +

ε2K 3

6
d2

dζ 2

)
Φ ′(φ) + A = 0, (13)

here A is an arbitrary integration constant. This equation has
he following conserved quantity

(φ, v) =
K 3ε2

6
(Φ ′′(φ)v)2

2
+

∫
(KΦ ′(φ) − Ωφ + A)Φ ′′(φ) dφ.

f the planar structure identified in Fig. 2(b) was a direct result of
he large lattice size, the trial form of the energy should be,

v2

2
=

6
ε2K 3

E −
∫
(KΦ ′(φ) − Ωφ + A)Φ ′′(φ) dφ

Φ ′′(φ)2
. (14)

Using the functional form of Eq. (14), we find best-fit values of the
parameters E, K , Ω, A as functions of c. The reduced ODE once
again has the form given by Eq. (8), but with P being replaced
by the right-hand-side of Eq. (14). Solutions of this reduced ODE
(computed numerically in this case) compare somewhat reason-
ably to the full lattice dynamics, see Fig. 4(a,c). In this case, the
deviation between the actual lattice DSW and the ODE solution
becomes larger as the leading edge of the DSW is approached
(see the outermost orbit of Fig. 4(a), for example). The difference
between the ODE prediction and lattice DSW becomes even more
apparent when inspecting the local averages, where the deviation
can become significant for models with the polynomial potential
and the KvM potential, see Fig. 4(b,d). In the case of the KvM
5

potential, one notable difference when using Eq. (14) instead
of Eq. (7) is that the leading edge is predicted to occur for a
smaller value of c. In particular the predicted leading edge is
c̃+ ≈ 1.5 where the observed leading edge is c+ ≈ 1.98. This
explains the steep decay of the local averages for c ≈ 1.5 in
Fig. 4(d). In both cases, it is clear that the ODE prediction based
on the quasi-continuum energy relationship yields poorer results
than those using the data-driven polynomial energy relationship.
Nevertheless, the relevant prediction is quite adequate for suffi-
ciently small values of c and provides a good qualitatively and
even reasonable semi-quantatively representation of the corre-
sponding phase portrait in Fig. 4 (see panels (a) and (c)), with
a theoretical foundation stemming from the underlying lattice
dynamics. Before moving on, we briefly investigate an alternative
quasi-continuum model.

4.2. The Rosenau regularization

Quasi-continuummodels derived in the fashion detailed above
often have the unfortunate side affect of being ill-posed due to
large wavenumber instabilities in the associated dispersion rela-
tion [51–53]. In [54,55] (see also the discussion in [18]). Rosenau
proposed a regularization of such models to avoid the issue of ill-
posedness. We will use the same regularization in order to obtain
an alternate quasi-continuum model. The regularized model is
obtained by inverting the operator (1 +

ε2

6 ∂2
X ) in Eq. (12) and

Taylor expanding it (on the left-hand side of the equation), which
leads to

∂TU = −∂XΦ ′(U) +
ε2

6
∂2
X∂TU .

Going into the co-traveling frame U(X, T ) = φ(KX − ΩT ) = φ(ζ )
nd integrating once, this PDE becomes the second order ODE

d2φ
dζ 2 = B + Cφ − DΦ ′(φ),

here B is an arbitrary integration constant and C = 6/(K 2ε2)
nd D = 6/(ΩKε2). This suggests the trial function for the energy
hould be
v2

2
= A + Bu + C

u2

2
− DΦ(u), (15)

hich has the advantage of being much simpler than Eq. (14).
n the case that the potential is a polynomial, namely Φ(u) =
u2
2 +

u4
4 , this trial energy is almost the same as the trial energy

onsidered in Section 3, see Eq. (7). The only difference is the
missing cubic term in Eq. (15). Thus, this trial function is more
restrictive, but is ‘‘derivable’’, and gives a physical meaning of the
parameters of the fitting function in terms of wave parameters
K , Ω . This is in contrast to the fit function used in Section 3,
which was chosen out of the sake of simplicity. Despite the
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lightly more restrictive nature of the trial energy, the results
re reasonable when comparing the ODE prediction to the full
attice DSW dynamics, see Fig. 5. In both the polynomial and
KvM potential, the Rosenau-type prediction is better than the
non-regularized prediction (compare Figs. 5 and 4). However, the
Rosenau-type prediction is worse than the prediction based on
the general 4th order polynomial energy (compare Figs. 5 and 3).

The results of the non-regularized and regularized quasi-
continuum predictions suggest that the inherent underlying pla-
nar ODE structure is not due solely to the large lattice size of
the problem, since the prediction based on the more generic
4th order polynomial energy leads to the best results. While
further investigation of the origin and structure of the planar
ODE structure of the lattice DSW lies beyond the scope of the
present article, it appears to us to certainly be an issue worthy of
additional attention.

5. Modulation theory

We will now briefly describe the modulation equations from
the perspective of local conservation laws, and discuss the com-
parison thereof with the results obtained using the planar ODE
reduction. For the sake of completeness, the derivation of the
modulation equations in terms of the wave parameters using
Whitham’s method of the averaged Lagrangian is included in
Appendix A.

One can derive modulation equations by averaging local con-
servation laws of the system [7,11]. Upon evaluation of the lo-
cal averages, one can express the equations in terms of the
original wave parameters, such as mean amplitude, modulation
wavenumber, etc. If the equations are tractable, one solves the
modulation equations in a self-similar frame subject to boundary
data that are consistent with the DSW (namely that the states
u− and u+ are connected via the modulated wave train). For a
detailed discussion of this procedure see [44,56].

The equation of motion (1) implies the discrete energy law

d
dt

Φ(un) +
( 1
2 Φ ′(un)Φ ′(un+1)

)
−

( 1
2 Φ ′(un−1)Φ ′(un)

)
= 0,

and we observe that both equations are discrete counterparts of
conservation laws since the time derivative of a microscopic ob-
servable equals a discrete spatial derivative of another quantity.
Using the concept of weak convergence, we can pass to a contin-
uum limit and obtain the weak formulation of the macroscopic
PDE

∂T ⟨un⟩ +∂X ⟨pn⟩ = 0,

∂T ⟨Φ(un)⟩ +∂X
⟨ 1
2pnpn+1

⟩
= 0,

(16)

here pn = Φ ′(un) and the angle-brackets denote macroscopic
ields that depend on X and T . More precisely, denoting by ϕ a
6

smooth and compactly supported test function we have∑
n

∫
d
dt

un(t)ϕ(εn, εt) → −

∫∫
⟨un⟩(X, T ) ∂Tϕ(X, T )dXdT ,

s ε → 0 thanks to the scaling relations T = εt , X = εn and
ntegration by parts with respect to time. The field ⟨un⟩ represents
he weak limit of un and its value at any point (X, T ) can be
iewed as the mean value of un(t) in a mesoscopic space–time
indow centered around that point. Similar arguments apply to
iscrete spatial derivatives and to other observables, so (16) is
n immediate consequence of the lattice dynamics. For a space–
ime continuous conservation law system, translation invariance
ields another conservation law (momentum) via Noether’s the-
rem. Following this naively for the lattice system, one finds the
quation

T

⟨
1
2
u2

⟩
+ ∂X ⟨Ψ (p)⟩ = 0,

here Ψ (p) = pu − Φ(u) is the Legendre transform of Φ(u).
n the lattice setting, however, there is no translation invariance,
nd hence, no corresponding conserved quantity. For this reason,
ne cannot expect this third modulation equation to be valid
n the lattice setting and, thus, the set of modulation equations
s incomplete. A complete set of three modulation equations is
iscussed in Appendix A. Since our goal is not to use modulation
quations to obtain a description of the DSWs (although we
ecognize that the latter is the standard approach towards their
escription to which we offer an alternative herein), the missing
odulation equation is not critical to our discussion. Indeed,

he proposed ODE reduction approach allows us to avoid the
odulation equations entirely, and they are presented here only

o demonstrate that our ODE reduction is consistent with the
odulation theory.
We claimed the modulation Eqs. (16) are valid in the lat-

ice setting, a feature that we now further discuss. A DSW will
ave a self-similar structure and thus, it is useful to define the
elf-similar coordinate c = X/T in which case the modulation
quations become

d
dc

⟨pn⟩ = c
d
dc

⟨un⟩, (17)

d
dc

⟨
1
2
pnpn+1

⟩
= c

d
dc

⟨Φ(un)⟩. (18)

he first modulation equation is inspected by plotting the quan-
ities d

dc ⟨pn⟩ and c d
dc ⟨un⟩ as functions of c , see the blue lines

nd markers of Fig. 6(a), where overlapping curves correspond to
he modulation equation being valid. The validity of the second
odulation equation is demonstrated in Fig. 6(b), where the
uantities d

dc ⟨pnpn+1/2⟩ and c d
dc ⟨Φ(un)⟩ are shown as functions of

c , see the blue lines and markers of Fig. 6(b). The ODE predictions
of these quantities are consistent with the modulation equations
for regions sufficiently far from the leading edge of the DSW,
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Fig. 6. Top row: Comparison of ODE predictions and full lattice DSW dynamics for the polynomial potential Φ(u) = u2/2 + u4/4. (a) Plot of the quantity d
dc ⟨pn⟩ for

the lattice DSW (blue solid line) and the ODE prediction (red dashed line). Plot of the quantity c d
dc ⟨un⟩ for the lattice DSW (blue points) and the ODE prediction

red squares). (b) Plot of the quantity d
dc ⟨pnpn+1/2⟩ for the lattice DSW (blue solid line) and the ODE prediction (red dashed line). Plot of the quantity c d

dc ⟨Φ(un)⟩
for the lattice DSW (blue points) and the ODE prediction (red squares). Bottom row: Same as the top row with the KvM potential Φ(u) = exp(u).
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ee the red dashed lines and squares of Fig. 6(a,b). There is
oticeable deviation of the ODE prediction corresponding to the
econd modulation equation for c ≈ 1.1, and it is found to
e larger in the case of the polynomial potential. In particular,
he ODE prediction (red dashed line) becomes positive while in
he full lattice dynamics the relevant quantity is negative. This
arge deviation stems from small deviations of ⟨pnpn+1/2⟩ due
to changes in slope. In particular, in Fig. 3(a) note how the ODE
prediction (green line) is increasing, whereas, the actual lattice
DSW quantity (green markers) is decreasing. This observation
is consistent with general deviations of the ODE orbits and full
lattice DSW orbits at the edges of the DSW discussed previously,
with the deviations in terms of derivatives of the local averages
being more noticeable. Overall, however, Fig. 6 demonstrates that
he ODE reduction is consistent with the modulation equations
or regions of the DSW sufficiently far from the leading and trail-
ng edges. The results for the KvM potential are similar and even
lightly better, see Fig. 6(c,d). Note that the second modulation
quation is also consistent with the ODE prediction, even for
ave speeds close to the leading edge, as shown in Fig. 6(d).

. Conclusions & future challenges

In the present work, we have demonstrated that there is
n underlying low-dimensional structure within the core of a
attice DSW. The standard approach based on Whitham modu-
ation theory is for most purposes impractical in the context of
attice DSWs. For this reason, we have argued about the relevance
f elucidating and identifying either via a data-driven or in an
pproximate (quasi-continuum) analytical way the form of this
ffective planar ODE description of the lattice DSWs. We have
rgued that this approach can yield the kind of information
ypically inferred from the modulation equations, but it is much

impler in its implementation, given that it only requires the –

7

nalysis of a planar ODE. Indeed, in principle, our data-driven
pproach, which has proved most efficient in the numerical ex-
mples considered herein, only needs a suitable manipulation
f the data set stemming from a (e.g., potentially black-box)
ntegrator in order to be set up. We believe that the present
indings may help lay the groundwork for further studies that
dopt such a low-dimensional approach towards the study of
attice DSWs as an alternative to modulation theory, including
n a variety of different models (such as, e.g., in discrete models
f the nonlinear Schrödinger variety [38,57,58]). For example,
e showed that the most natural candidate for the underlying
DE based on the quasi-continuum approach did not perform as
ell as the simple polynomial approximation. We also considered
n alternative variant via the Rosenau regularization which was
eemed to be more effective than the former but less so than
he latter (yet was also systematically possible to obtain from the
icroscopic model). The different approaches suggest there may
e other derivable ODEs waiting to be discovered and exploited in
manner similar to that presented here. Other techniques, such
s the DSW fitting method detailed in [11], could also be applied
o this lattice (since the dispersion relation is known explicitly)
nd would be of particular interest to consider. On a broader
and more challenging) scale, a potential self-consistent, general
ormulation of the Whitham modulation equations for nonlinear
ynamical lattices remains an important, but highly challenging
ask as was highlighted herein. Arguably, this is, to a nontrivial
egree, due to the lack of some symmetries (most notably of
ranslation invariance) in the lattice setting. Studies along these
irections are currently underway and will be reported in future
ublications.
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ppendix A. Modulation equations in terms of wave parame-
ers

For the sake of completeness, we present the modulation
quations in terms of the wave parameters using Whitham’s
ethod of the averaged Lagrangian. For the lattice, this procedure
ields a complete set of three modulation equations, but, as the
erivation will demonstrate, working with them is cumbersome.
The formal procedure to obtain Whitham modulation equa-

ions in the lattice setting is well-known [28,29]. Although rig-
rous error estimates in lattice or continuous settings are rare
see [29,59] for special examples), numerical simulations do sug-
est they are valid [60]. Before writing the modulation equations,
e must re-write the traveling wave equation – and actually also
he lattice – using an integral formulation. We start by recalling
hat traveling periodic waves of Eq. (1) have the form un(t) =

+ V(ζ ), ζ = Kn − Ωt , where the parameters V (mean), K
wavevector) and Ω (frequency) are real and the wave profile
is assumed, w.l.o.g, to be 2π periodic with mean zero. The

raveling wave equation has a variational structure, which will be
xploited to derive modulation equations. To see this, we define
he centered difference operator ∇K (which is skew-symmetric)
y

∇KF) (ζ ) = F(ζ + K ) − F(ζ − K ),

nd define W via

= ∇KW . (A.1)

ote that the traveling wave Eq. (6) is just the Euler–Lagrange
equation

∂WL (W, V , K , Ω) = 0,

to the Lagrangian functional

L (W, V , K , Ω) = ΩS(W, K ) − E(W, V , K ), (A.2)

where

S(W, K ) =
1
2π

∫ 2π

0
(∇KW) (ζ ) · W ′(ζ )dζ , (A.3)

nd

(W, V , K ) =
1
2π

∫ 2π

0
Φ (V + (∇KW) (ζ )) dζ . (A.4)

he traveling wave equation can then be written as

∂WS (W, K ) = ∂WE (W, V , K ) , (A.5)

here Ω plays the role of a Lagrange multiplier. For the linear
odel, Ω is related to K through the dispersion relationship, but

or nonlinear functions Φ ′, we expect that V , K and Ω are inde-
pendent parameters. The existence of a three-parameter family
of traveling wave solutions to Eq. (1) was demonstrated in [35],
8

albeit with different parameters and using a certain reformulation
of (6).

The DSW can be thought of as a traveling wave, as just de-
scribed, but now the wave parameters V , K and Ω vary in
time and space. This motivates an ansatz for an approximate
modulated wave solution,

wn(t) ≈
1
2 ε

A(X, T ) + W
(
X, T ;

1
ε
Z(X, T )

)
, (A.6)

here the modulated traveling waves parameters are given by

= ∂XA , Ω = −∂TZ , K = ∂XZ .

If one substitutes ansatz (A.6) into the total action integral for
Eq. (1), that is

total action = −

∫ ∑
n

ẇn(t)
(
wn+1(t) − wn−1(t)

)
dt

−

∫ ∑
n

Φ
(
wn+1(t) − wn−1(t)

)
dt ,

and replaces summation by integrals, one arrives at the expres-
sion:

total action = −
1
2

∫ Tf

0

∫ Xf

X0

∂TA ∂XA dTdX

+

∫ Tf

0

∫ Xf

X0

LTW(∂XA, ∂XZ, −∂TZ) dTdX ,

here

TW(V , K , Ω) = L
(
W∗(V , K , Ω), V , K , Ω

)
, (A.7)

is the action function for lattice traveling waves andW∗ stands for
a solution to (A.5). The variations with respect to A and Z provide
the two equations

∂TV − ∂X∂V LTW = 0,

∂T∂ΩLTW − ∂X∂K LTW = 0,
(A.8)

which provide in combination with the integrability (the so-
called ‘‘conservation of waves’’) condition

∂TK + ∂XΩ = 0, (A.9)

the three modulation equations with respect to the variational
parameter set V , K , and Ω . Setting S = ∂ΩLTW and regarding the
Legendre transform

ETW = S Ω − LTW, (A.10)

s a function in V , S, and Ω , the macroscopic parameter dynamics
an equivalently be written as

∂TV + ∂X∂VE = 0,

∂TK + ∂X∂SE = 0,

∂T S + ∂X∂KE = 0 .

(A.11)

This is a system of three nonlinear conservation laws in which
the densities completely determine the fluxes. The corresponding
constitutive relations are all encoded in the equation of state
(A.10), which depends via

ETW(V , K , S) = E
(
W∗(V , K , S), V , K

)
, (A.12)

on the three-dimensional family of lattice waves, where W∗ now
denotes a traveling wave with parameters V , K , and S, that is a
critical point of the energy functional (A.4) subject to the con-
straint S(W , K ) = S as in (A.3). By means of the reformulation
∗
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Fig. 7. Time series data for fixed X = 0.15 for the lattice sizes (a) N = 1000, (b) N = 8000 and (c) N = 32 000. The black dot is taken as the reference point to
easure the amplitude of the linear wave (first local maximum of the linear wave). (d) Plot of the amplitude of the linear wave (i.e. the black points) against the

attice size N . The red curve is the best-fit curve of the form aNb , where a = 0.51 and b = −0.3484, which is consistent with the linear theoretical prediction that
he decay law is ∼ N−1/3 .
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Fig. 8. (a) Spatial profile of the DSW shown in Fig. 1(a) near the trailing edge
markers). The solid curves are the interpolating cubic-splines. The inset shows
he magnitude of the Fourier transform, which is spectrally concentrated near
he wavenumber k ≈ 2.2. (b) Numerical solitary wave solution of Eq. (6) (solid
urve) and leading edge of the lattice DSW shown in Fig. 1(a) (markers).

A.11), one readily verifies that the modulation Eqs. (A.11) are
f Hamiltonian type and imply (at least for smooth solutions) a
ourth conservation law, namely

TETW + ∂X
( 1
2

(
∂VETW

)2
+ ∂KETW ∂SETW

)
= 0 . (A.13)

he Whitham approach, therefore, predicts four macroscopic con-
ervation laws to be valid within each DSW with only three of
hem being independent. The first equation in (A.11) and the
xtension PDE (A.13) correspond to the two equations in (16) and,
herefore, possess an immediate microscopic interpretation. The
econd equation in (A.11) is just the consistency relation (A.9)
etween the wave number K and the frequency Ω = ∂SETW, but
ue to the nonlinear nature of the underlying lattice waves, it is
9

ery hard to relate these quantities to local space–time averages
f microscopic observables. For the conservation law with density
, we likewise miss an interpretation on the particle scale. For
DE models, this equation links to the conserved quantity that
tems from the shift invariance according to the Noether theorem,
ut its microscopic meaning remains unclear in the context of
attices and other particle systems. This is arguably even more so
n light of our earlier discussion about the absence of translational
nvariance in the latter context.

Despite the elegance of Whitham’s variational approach to
odulation theory, very little is known about the analytical prop-
rties of ETW and its derivatives. Except for integrable or very
egenerate cases, it is not even clear whether (A.11) is really
hyperbolic PDE and how to characterize or compute the self-
imilar rarefaction waves that correspond to the DSW. This lack of
ualitative (and even more so, quantitative) information was one
f the main motivations for following the alternative data-driven
pproach described in the main text.
A particular difficulty in the nonintegrable lattice setting is the

ependence of the wave profile on an advance-delay differen-
ial equation. Even the numerical simulation of the modulation
quations can be quite cumbersome, as discussed in [60]. While
he analysis of the modulation equations from this perspective
s certainly interesting and important, it is, as discussed above,
eyond the scope of the present article.

ppendix B. Inspection of trailing and leading edge

In the main text, we showed the ODE reduction was reason-
ble within the core of the DSW. In this appendix, we briefly
nspect the trailing and leading edge of the DSW.

According to the linear theory, the amplitude of the linear
ave at the trailing edge of the DSW can be shown to follow the
ecay law ∼ N−1/3 with the use of Fourier analysis [43]. In Fig. 7,
ime series plots are shown for three lattice sizes, N = 1000,

= 8000 and N = 32 000 where it is seen that the amplitude
f linear waves is decreasing. In particular, the time series for the
= 0.15 node is shown, where X = εn and ε = 1/N . In these

raphs, the slow variable is defined as T = εt . The last panel
hows a plot the amplitude of the linear wave against the lattice
ize N where it is seen that the observed decay is consistent with
he theoretical decay law ∼ N−1/3.

We expect that the local behavior of the tail can be de-
cribed by small amplitude waves. They should comply with the
ispersion relation

= Φ ′′ (V∗) sin (K ) ,

here V∗ represents the constant state behind the wave and
an be regarded as independent of c (at least to leading order).
odulation Eq. (A.9) implies

d
Ω (c) = c

d
K (c) for c ⪆ c−,
dc dc
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here c− denotes the speed of the trailing edge. We thus obtain
the simplified law

c =
dΩ

dK
= Φ ′′ (V∗) cos (K (c)) for c ⪆ c− , (B.1)

his formula allows one, in principle, to predict the wave speed
ia knowledge of the wavenumber. We estimate the wave num-
er near the trailing edge of the DSW shown in Fig. 1(a) by
omputing the Fourier transform û(k) of the spatial profile in a
mall window near n = −2000 after subtracting the constant
background state. The spectral peak provides an estimate for the
wavenumber, see Fig. 8(a). We found that k ≈ 2.2, which accord-
ng to Eq. (B.1) corresponds to c ≈ −2.35. This is reasonably close
to the numerically estimated trailing edge speed of c− = −2.5
reported earlier in the text.

The local behavior at the leading edge of the DSW should be
described by a solitary wave, since the wavenumber approaches
zero as the leading edge is approached. To verify this, we compute
a solitary wave in the lattice by solving Eq. (6) using the fixed-
oint iteration routine described in [35] subject to a fixed wave
peed of c = c+ = 2.45 (the leading edge speed). The initial guess
s given by the profile of the leading edge. The resulting numerical
olitary wave solution of Eq. (6) is shown as the continuous curve
n Fig. 8(b), which compares favorably to the leading edge of the
attice DSW, shown as markers.
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