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ABSTRACT

Dispersive shock waves (DSWs), which connect states of different amplitude via a modulated wave
train, form generically in nonlinear dispersive media subjected to abrupt changes in state. The primary
tool for the analytical study of DSWs is Whitham’s modulation theory. While this framework has been
successfully employed in many space-continuous settings to describe DSWs, the Whitham modulation
equations are cumbersome in most spatially discrete systems. In this article, we illustrate the relevance
of the reduction of the DSW dynamics to a planar ODE in a broad class of lattice examples. Solutions of
this low-dimensional ODE accurately describe the orbits of the DSW in self-similar coordinates and the
local averages in a manner consistent with the modulation equations. We use data-driven and quasi-
continuum approaches within the context of a discrete system of conservation laws to demonstrate
how the underlying low dimensional structure of DSWs can be identified and analyzed. The connection

of these results to Whitham modulation theory is also discussed.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Understanding how systems respond to sudden changes in
the medium is critical in a number of applications. Classic exam-
ples include explosions in shock tubes [1], when gases or fluids
are compressed in a piston chamber [2] or when water dams
break [3]. From a modeling perspective, a sudden change in a
medium is often represented by step initial data (the so-called
Riemann problem). In mathematical models describing fluid or
gas dynamics based on space and time continuous conserva-
tion laws, states of different amplitude that are connected via
a discontinuity (i.e., fronts involving jumps, e.g., in density or
concentration) are predicted to travel through the medium at
constant speed and are called Lax shock waves [4], or just shocks.
Since solutions with infinite derivatives are nonphysical, modi-
fied (e.g., regularized) models are often used as an alternative.
In some settings, such as stratified environments of the ocean
and atmosphere, dispersive shocks (and their regularizations) are
more relevant [5,6]. In this case, the states of different amplitude
are connected via an expanding modulated wave train. This struc-
ture is called a dispersive shock wave (DSW). The primary tool
to analytically describe DSWs is Whitham’s modulation theory
[7-9]. In this framework, one derives equations describing slow
modulations of the underlying parameters of a periodic wave
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by, for example, averaging the Lagrangian action integral over a
family of periodic wave trains [10,11].

The study of DSWs in spatially continuous media has been
ongoing since Whitham’s seminal work [7] over 50 years ago,
but there has been renewed excitement for this theme. This
excitement has largely been inspired by recent groundbreaking
experimental observations of DSWs most notably in ultracold
gases and superfluids [12,13], nonlinear optics [14,15], and fluid
conduits [5,16], among others. Dispersive shock waves in one-
dimensional (1D) nonlinear lattices (to be called lattice DSWs)
have been explored numerically, and even experimentally in sev-
eral works [17-23]. Although much of the above motivation in
discrete systems stems from the material science of granular
crystals, it is of broad physical interest, as similar structures
have been experimentally observed, e.g., in nonlinear optics of
waveguide arrays [24]. The existence of periodic waves has been
proved [25-27] and corresponding modulation equations have
been derived [28,29]. Explicit forms of the periodic waves are
typically not available, resulting in modulation equations that
are rather cumbersome (and, plausibly for this reason, have not
been much studied to date). Even in the integrable paradigm
of the Toda lattice, the modulation equations are quite cum-
bersome [30-32]. This is one reason the mathematical theory
of lattice DSWs is not as mature when compared to the study
of DSWs in continuous settings, which has seen many recent
experimental and theoretical advancements, as summarized in
the reviews [10,11,33].
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A first goal of this paper is to provide a complementary ap-
proach to modulation theory for the description of lattice DSWs
in a broad class of nonlinear lattice dynamical models. Subse-
quently, we aim to unveil the crucial observation that lattice DSW
dynamics can be reduced to a planar ODE which can be han-
dled analytically. After detailing the problem set-up in Section 2,
we explore two approaches towards identifying the underlying
ODE dynamics: a data driven one in Section 3 and one based
on a quasi-continuum approximation in Section 4. The obtained
results are discussed within the context of the modulation equa-
tions in Section 5. Section 6 concludes the paper. We believe that
the method presented herein offers a key insight of relevance to
a wide class of lattice models bearing DSWs and the method of
analysis offers a quantitative perspective on the DSW dynamics
that is found to be in good agreement with the numerical ob-
servations in suitable regimes of the wave speed c. A discussion
of the modulation equations in terms of the wave parameters is
discussed in further detail in Appendix A.

2. Model equations and problem statement

In order to explore lattice DSWs and the dimensionality reduc-
tion approach, the following wide class of nonlinear dynamical
lattices is considered [34]

du

2-5 + @ (una) = @'(ur1) =0, (1)
where n € Z,t € R,u = uy(t) € R and the potential ®@(u) is
assumed to be convex. Eq. (1) possesses a Lagrangian and Hamil-
tonian structure [35], yet it is first order only, making its analysis
slightly more convenient when compared to classical nonlin-
ear oscillators, such as those of the Fermi-Pasta-Ulam-Tsingou
(FPUT) type [36]. We expect that the reduction approach that is
presented here will be applicable to a large class of lattice sys-
tems, such as FPUT models [37], discrete Nonlinear Schrodinger
models [38], and discrete Klein Gordon models [39]. Besides
serving as a prototype model for lattice DSWs, Eq. (1) is also
directly relevant for applications, such as in the description of
traffic flow [40]; for a discussion of relevant models and their
continuum limits see also Ref. [34]. Eq. (1) is a centered difference
scheme for the space and time continuous conservation law

orU + 9x@'(U) =0, (2)
where X, T € R, U = U(X,T) € R, and the discrete and
continuous variable are related through u,(t) = U(en,et) =

UX,T) with 0 < & « 1. It is well known that Lax shocks
can form in Eq. (2) subjected to Riemann initial data for a large
class of flux functions @’ [4]. Eq. (1) can be thought of as a
dispersive regularization of Eq. (2) [41], and hence, it is expected
that dispersive shock waves will form when subjected to Riemann
initial data instead of Lax shocks [34].

For demonstration purposes, we will primarily consider the
polynomial potential

u?  ut

D(u) = st 3)
although, we also present results for the Kac-van-Moerbeke
(KvM) potential, @(u) = exp(u), to demonstrate the generality of
the presented approach. Note that Eq. (1) with the KvM potential
is completely integrable [40,42] although this fact will play no
role in the analysis, as the methods presented below are of
interest more broadly to dispersive nonlinear lattice systems
(rather than more restrictively integrable ones).

Throughout the manuscript we consider Riemann (i.e. step)
initial data,

1, n<o0

s (0) = {0 o (4)

Physica D 442 (2022) 133533

(a) (b)
A T i - ‘?\./W
/ _

-1000 -998 -996 -994 -992

trailing edge

[
200 202 204 206 208 210 212
n

o %
-4000 -2000 2000 4000

S o

Fig. 1. (a) Example of lattice DSW. Result obtained via numerical simulation
of Eq. (1) with N = 8000 and the polynomial potential, Eq. (3), starting from
Riemann initial data, Eq. (4). The solution at t = 960 is shown. The box labeled
“linear wave” vanishes in the large lattice limit. (b) Zoom of panel (a) at near
n = —1000 (top) and n = 200 (bottom). The solid lines are the interpolating
splines, shown for visual clarity. The profiles resemble periodic waves, albeit
with different parameters, in each zoom.

to generate DSWs. Letting N (even) represent the number of
spatial points, we define ¢ = 1/N. The corresponding spatial
domain is —=N/2 + 1 < n < N/2 and the temporal domain
is [0, Ty /e], where Ty is a fixed constant independent of . One
example of a DSW that has formed starting with (4) is shown in
Fig. 1(a). For every finite lattice, there is a linear wave centered
at unity (see boxed area in Fig. 1(a)), which vanishes according
to the decay law ~ N~1/3 [43]. The trailing edge of the DSW can
be described in the zero amplitude, harmonic wave limit. In this
limit it is found that the trailing edge speed is consistent with the
local linear group velocity. At the leading edge of the DSW (e.g. in
the zero-wavenumber limit) the profile is close to a solitary wave
solution. The leading and trailing edges of the DSW are discussed
in greater detail in Appendix B. The structure of the DSW away
from these two limiting cases is less apparent. To better under-
stand the interior of the DSW, notice that the trajectory of the
DSW in each small window of space and time appears to be a
traveling periodic wave, see Fig. 1(b). The existence of traveling
periodic waves of Eq. (1) was established in Ref. [35]. They have
the form

u(t) =V +V(¢), ¢ =Kn— Q2t, (5)

where the parameters V (mean), K (wave vector) and 2 (fre-
quency) are real and the wave profile V is assumed, w.l.o.g, to be
27 periodic with mean zero. By substituting Eq. (5) into Eq. (1),
one finds that vV must satisfy the advance-delay equation,

22V'(0) = @' (V + V(¢ +K)) — @'(V + V(¢ — K)). (6)

Within the “core” of the DSW (i.e., the modulated wave con-
necting the two constant states), the wave parameters, V, K and
£2 appear to be different in each small spatiotemporal window
(compare the top and bottom panels of Fig. 1(b)). This suggests
that a DSW can be viewed as a traveling periodic wave with
slowly varying parameters that connect the left state u_ = 1 to
the right state u, = 0. The set of equations that describe how the
wave parameters, V, K and §2 vary within the core of the DSW
is referred to as the system of modulation equations (relevant
details are given in Section 5 and Appendix A). There is no explicit
form for the traveling wave profile V for general potentials @(u),
which satisfies the above advance-delay differential Eq. (6). This
results in modulation equations that are fairly cumbersome in
the discrete setting. Thus, in order to obtain a useful analytical
description of a lattice DSW, an approach that is complementary
to the modulation theory seems necessary. We now discuss such
an approach.
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Fig. 2. (a) Intensity plot of a lattice DSW (same parameters as in Fig. 1) with axes corresponding to the slow variables X = ¢n and T = et. Color intensity corresponds
to amplitude (see colorbar). Each solid line corresponds to a fixed value of the self-similar speed ¢ = X/T. The dashed lines marked ¢, and ¢_ are estimates of the
leading and trailing edge of the DSW, respectively. The dashed line marked cj;, is the edge of the linear wave (see boxed area of Fig. 1(a)). The vertical slice at the
final time shown (T = 0.12) corresponds to the profile in Fig. 1(a). (b) Phase plane of the data extracted along the lines ¢ = X /T of the lattice DSW shown in panel
(a) (markers), where v = 1. The solid lines are the planar ODE prediction of Eq. (9). (c) Plot of the roots (markers) of P(c). The roots are ordered by size: 1, (purple)
< Xy (yellow) < A3 (red) < A4 (blue). Solid lines are the result of fitting the roots to a trial function of c; see relevant details in the text.

3. A planar ODE description of a lattice DSW

Fig. 2(a) shows an intensity plot of a numerical solution of
R . 2 4
Eq. (1) with initial data given by Eq. (4) and @(u) = 5 + 7
and N = 8000. A symplectic integrator is used for the direct
simulation of Eq. (1), see [35]. Viewing the solution along slices of
fixed t yields the usual DSW spatial profile, see Fig. 1(a). However,
if one observes data along the DSW with n/t = X/T = c fixed, a
nested, non-intersecting set of closed loops in the phase plane
(u, 1) is formed, with each value of ¢ representing a different
loop, see Fig. 2(b). The fact that closed loops form is unsurprising,
since it is expected that the DSW has a self similar structure, and
hence, with X/T = c fixed, the modulation parameters should
be fixed. What is surprising is that the set of loops is nested
and non-intersecting when projecting the dynamics onto a two-
dimensional phase space. This motivates the proposal to identify
a planar ODE that can approximate the lattice DSW dynamics.
To identify such an ODE, we first take a data-driven approach.
For each fixed value of c, we extract position and velocity data
from the DSW. We define this data as u = uq(t; c), where u(t; c)
is the position data at lattice location n = ct and time t, which
ensures that ¢ = n/t. This necessitates that the time increment
is chosen such that ct is an integer. Similarly, we define v =
vee(t; ¢), where v, = 11,. We assume there is a simple energy
relationship between the position u and velocity v as follows

v? M ;
5 = > (e ) =: P(u; c). (7)
j=0

Treating u and v as independent and dependent variables, respec-
tively, we determine the parameters v; via a linear regression.
This relationship will describe the periodic orbit making up the
DSW at a particular value of the speed c. In order to extract the
underlying structure of the entire DSW, we repeat the process
for several ¢ values that lie within the core of the DSW. For each
value of c, we express the polynomial P in terms of its roots
P(u; c) = A(c)u—nq(c))(u—Az(c))u—As(c))u—~4(c)) where the
roots are ordered A1 < A; < A3 < A4. The roots plotted against
the speed c are the markers shown in Fig. 2(c). Once the roots
and constant (i.e., u-independent) factor A are obtained, they are
fitted to a simple trial function of c. How exactly the roots depend
on c is critical in identifying the character of the DSW. This step
of the process is similar to solving the modulation equations with
boundary and initial data consistent with a DSW [8]. In particular,
it is only though a very specific dependence of the roots on the
parameter ¢ that a DSW will arise. For the purpose of simplicity,
polynomial trial functions are assumed, which capture the data

well (e.g., compare the lines and markers of the top three curves
of Fig. 2(c)). The only exception to this choice of trial function
was for the first root, A1, in the case of the polynomial potential.
This root is bell-shaped (see bottom curve Fig. 2(c)), and thus, the
polynomial trial function led to a poor fit. Thus, a trial function
in the form of a hyperbolic secant is used in this case. All other
cases led to good agreement between the roots and a polynomial
trial function. Note that the choice of trial function has no direct
consequence on the forthcoming analysis. Upon performing the
fitting, the resulting formulas are A{(c) = —5.79sech(—1.16(c +
0.67))+0.20, A5(c) = —0.01c?> —0.20c +0.52, A3(c) = —0.01c% +
0.10c + 1.35, A4(c) = 0.02¢®> — 0.19¢? + 0.05¢ + 3.08 and
A(c) = 0.40c? + 0.42c + 0.62. Repeating the entire procedure
for the KvM potential @(u) = exp(u) leads to the formulas
Ar1(c) = 0.03¢® — 0.42¢? + 1.74c — 2.08 (notice that in this
case, a polynomial was used instead), A5(c) = 0.01c3 — 0.01¢? —
0.38¢ + 0.72, A3(c) = —0.01c® — 0.02¢? 4 0.29¢ + 1.24, A4(c) =
0.04c3 —0.23¢c? 4 0.06¢ +3.43 and A(c) = 0.13c? +0.25¢ +0.49.
Eq. (7) implies the following planar ODE is satisfied

2
di = P/(Ll; C), U(O) = )\z(C), du = 0, (8)
dr?

dr|._,

with = € [0, 7,] where 7, is the period of oscillation and 7 is
related to the lattice time variable through the scaling t = at.
While the time scaling factor is not needed for the forthcoming
analysis, it can be approximated through the relation o = 7, /(T}),
where T, is the period of oscillation of the DSW trajectory with
c fixed. Note that both 7, and T, (and hence «) depend on c.
Clearly, periodic waves of Eq. (8) will correspond to oscillations
of u between roots of P(u; c) when P > 0, such as A(c) and As(c).
With the choice of initial values these extreme values occur for
t =0andt = 1,/2 such that u(0) = A, is the minimum value and
u(tp/2) = A3 is the maximum. The period of oscillation is given
by 7, = ZfOT"/Z dr = 2f;23 1/+/2P(u) du. For the choice of the
energy relationship given by Eq. (7), Eq. (8) can be solved using
quadrature [44]. The exact solution is

u(f) — )"2()"3 - )\]) + )L]()\Z — )\‘3)5[12(9'[; m)
A3 — A1+ (A2 — A3)sn3(0T; m)

where sn is a Jacobi elliptic function with parameter 0 < m < 1
and,

o \/A(Ag — M)(ha — h2)
2 ’ (A3 = 2)(ha — 22)’

The periodic wave given by Eq. (9) has the period 7, = 2K(m)/6,
where K(m) is the complete elliptic integral of the first kind.

; (9)

(A3 = A2)(Aa — A4)
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Fig. 3. (a) Local averages measured from the lattice DSW (markers) and the ODE
(b): Same as panel (a) for the KvM potential ®@(u) = exp(u).

Eq. (9) yields good agreement with the trajectories of the full
lattice DSW dynamics, despite the simple choice of a polynomial
for the energy relationship given by Eq. (7), (compare the lines
and markers of Fig. 2(b)). Notice for Ay — A, we have m — 1,
and thus, the period tends to infinity and the solution tends to a
homoclinic connection. This limit corresponds to the leading edge
of the DSW. For the polynomial potential, the ODE prediction is
€+ = 2.66, which overestimates the observed value of ¢, = 2.45.
For A3 — A, we have m — 0, in which case the solution tends to
a constant. This is the trailing edge of the DSW, which is predicted
by the ODE to occur for ¢_ = —2.48, which is quite close to the
value extracted from the full lattice DSW c_ = —2.50. See the
red boxes of Fig. 2(c) showing where the roots coalesce and the
gray dashed lines of Fig. 2(a) for a comparison of the predicted
and actual DSW edges. For the KvM potential, the trailing and

leading edge extracted from the lattice DSW are c. = —0.71
and ¢, = 1.98, and the ODE predictions are ¢ = —0.73 and
¢, = 2.10.

3.1. ODE prediction of local averages

There are various quantities that can be used to identify the
character of a DSW. One is the spatial profile, as shown in Fig. 1.
For larger lattice sizes, however, the structure can be difficult to
analyze when viewing the DSW in this way. Another possibility
is to inspect local averages, which can be computed directly from
the lattice DSW data and from our ODE prediction. The local
averages we consider are (u,), (pn), (@(Un)), {(PnPn+1/2), (u%/z)
and (¥(p)) where the angle brackets denote the local average
with respect to the traveling wave coordinate, the dual variable
is p = ®'(u) and ¥(p) = pu — ®(u) is the Legendre transform
of @(u). The reason we investigate these specific choices of local
averages is their connection to the modulation equations (see
discussion in Section 5). Thus, we can bridge results based on
the standard modulation theory approach and our proposed ODE
reduction approach.

Note that the local averages are, in principle, expressible in
terms of the traveling wave parameters V, K and £2. For example,

27

(u) :== i/ V+y()de =V,
27 0

where ¢ is the traveling wave coordinate. The other local averages

cannot be evaluated explicitly in general, however, since the

periodic wave profile V is defined implicitly by an advance-delay

equation, in which there is no closed-form solution. We estimate
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prediction from Eq. (9) (solid curves) for the polynomial potential ®(u) = u?/2+u*/4.

the local averages numerically from the DSW data as a function
of c = n/t as follows

1 n/e+Tp 1 '%f
(uy ~ —/ — um(t)dt. (10)
T Jue 2N 2=

where the sum appearing in the integrand is a mesoscopic aver-
age where N is chosen to be larger than the spatial wavelength
but much smaller than the lattice size. We chose N/ = 300.
The use of the mesoscopic spatial average leads to smoother
data (e.g. the oscillations are effectively averaged out), but the
data close to the boundaries will not have estimates for the
averages. Similar computations are made for the remaining five
local averages (see the markers of Fig. 3).

We will now compute local averages directly from the planar
ODE solution of Eq. (9). For example,

Ay — A A3 — A
W =rm+— g (2= m), (11)
4K(m) Az — Ay

where I1(C; m) is the complete integral of the third kind with
elliptic characteristic C, and parameter m. The remaining five
local averages can also be expressed in terms of elliptic integrals
(see the solid lines of Fig. 3).

The analytical predictions for the local averages based on the
planar ODE are very close to the local averages computed directly
from the lattice DSW for the polynomial potential and the KvM
potential (compare the lines and markers of Fig. 3). The analytical
local averages provide a layer of insight that is not available
using the numerically obtained averages. We were able to obtain
the formulas leveraging our data-driven approach, and without
the need to derive or solve a set of cumbersome modulation
equations.

4. Quasi-continuum approximation
4.1. A straightforward continuum limit

Having demonstrated that there is an underlying
low-dimensional ODE structure to a lattice DSW, it is reasonable
to ask where this ODE structure comes from. While there are
possibly many ways in which this structure could manifest, a
natural one to consider is the large lattice nature of the problem
(in this article N = 8000). We now investigate this possibility by
taking a suitable continuum limit of the lattice dynamics (bearing
a leading order lattice-induced correction). This approach has
been used to study DSWs in FPUT type lattices [45,46] and will
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Fig. 4. (a) Phase plane of the data extracted along the lines ¢ = X /T of a lattice DSW for the polynomial potential (markers), see also Fig. 2(b). The solid lines are
the planar ODE prediction of Eq. (8) using the energy relationship given by Eq. (14) (i.e., the quasi-continuum approximation). (b) Local averages measured from the
lattice DSW (markers) and the ODE prediction based on the quasi-continuum approximation. (c¢,d) Same as panel (a) and (b), respectively, for the KvM potential.

be useful here as well. Using the hyperbolic scaling u,(t) =
U(en, et) = U(X, T) the discrete conservation law Eq. (1) can be
approximated by the following quasi-continuum model

6

which is the same as Eq. (2) with the next order term in the
expansion kept. Indeed, Eq. (12) can be thought of as a disper-
sive regularization of Eq. (2). Notice that the small parameter ¢
appears explicitly in the model equation, making the error hard
to control. This is why Eq. (12) is called a quasi-continuum model
rather than a continuum model. Uncontrollable errors are typical
in quasi-continuum models, see the discussion in [47], which is
in contrast to continuum models derived from other scalings,
such as the Korteweg-de Vries or Nonlinear Schrédinger scal-
ings, which have controllable errors [48]. Indeed, similar quasi-
continuum models derived, for example, in the context of FPUT
lattices have both failed and succeeded in representing the actual
lattice dynamics (see the discussion in [49,50]). Thus, it is impor-
tant to check directly the validity of a PDE such as Eq. (12). Here,
we will do so at the (reduced) level of the effective planar ODE
description. To that effect, we first move into the co-traveling
frame via the traveling wave ansatz U(X,T) = ¢(KX — 2T) =
¢(¢). Substitution of this expression into Eq. (12) and integrating
once leads to

82
ol =— (ax + 7a§> @'(U), (12)

e?K3 d?
— |’ A=0, 13
c d§2> (@) + (13)
where A is an arbitrary integration constant. This equation has
the following conserved quantity

K22 (@ (o))
T 6 2

If the planar structure identified in Fig. 2(b) was a direct result of
the large lattice size, the trial form of the energy should be,
v 6 E— [(KO'(¢)— 2¢ +A)P"($)dp

2 T g2K3 q)//(¢)2 .

Using the functional form of Eq. (14), we find best-fit values of the
parameters E, K, £2, A as functions of c. The reduced ODE once
again has the form given by Eq. (8), but with P being replaced
by the right-hand-side of Eq. (14). Solutions of this reduced ODE
(computed numerically in this case) compare somewhat reason-
ably to the full lattice dynamics, see Fig. 4(a,c). In this case, the
deviation between the actual lattice DSW and the ODE solution
becomes larger as the leading edge of the DSW is approached
(see the outermost orbit of Fig. 4(a), for example). The difference
between the ODE prediction and lattice DSW becomes even more
apparent when inspecting the local averages, where the deviation
can become significant for models with the polynomial potential
and the KvM potential, see Fig. 4(b,d). In the case of the KvM

Q¢ + (K+

E(¢,v)

+ /(K@’(q&) — ¢ +A)D"(¢)de.

(14)

potential, one notable difference when using Eq. (14) instead
of Eq. (7) is that the leading edge is predicted to occur for a
smaller value of c. In particular the predicted leading edge is
¢, ~ 1.5 where the observed leading edge is c, ~ 1.98. This
explains the steep decay of the local averages for ¢ ~ 1.5 in
Fig. 4(d). In both cases, it is clear that the ODE prediction based
on the quasi-continuum energy relationship yields poorer results
than those using the data-driven polynomial energy relationship.
Nevertheless, the relevant prediction is quite adequate for suffi-
ciently small values of ¢ and provides a good qualitatively and
even reasonable semi-quantatively representation of the corre-
sponding phase portrait in Fig. 4 (see panels (a) and (c)), with
a theoretical foundation stemming from the underlying lattice
dynamics. Before moving on, we briefly investigate an alternative
quasi-continuum model.

4.2. The Rosenau regularization

Quasi-continuum models derived in the fashion detailed above
often have the unfortunate side affect of being ill-posed due to
large wavenumber instabilities in the associated dispersion rela-
tion [51-53]. In [54,55] (see also the discussion in [18]). Rosenau
proposed a regularization of such models to avoid the issue of ill-
posedness. We will use the same regularization in order to obtain
an alternate quasi-continuum model. The regularized model is
obtained by inverting the operator (1 + %8)%) in Eq. (12) and
Taylor expanding it (on the left-hand side of the equation), which
leads to

2
U = —axd'(U) + %a};aru.

Going into the co-traveling frame U(X, T) = ¢(KX — 2T) = ¢(¢)
and integrating once, this PDE becomes the second order ODE
d*¢ ,

q2 =B+ Co - D@

where B is an arbitrary integration constant and C = 6/(K?&?)
and D = 6/(£2K?). This suggests the trial function for the energy
should be
v? u?
?:A—l—Bu—l—C?—ch(u), (15)
which has the advantage of being much simpler than Eq. (14).
In the case that the potential is a polynomial, namely @(u) =
“7 + %, this trial energy is almost the same as the trial energy
considered in Section 3, see Eq. (7). The only difference is the
missing cubic term in Eq. (15). Thus, this trial function is more
restrictive, but is “derivable”, and gives a physical meaning of the
parameters of the fitting function in terms of wave parameters
K, 2. This is in contrast to the fit function used in Section 3,
which was chosen out of the sake of simplicity. Despite the
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Fig. 5. (a) Same as Fig. 4, but using the regularized quasi-continuum reduction.

slightly more restrictive nature of the trial energy, the results
are reasonable when comparing the ODE prediction to the full
lattice DSW dynamics, see Fig. 5. In both the polynomial and
KvM potential, the Rosenau-type prediction is better than the
non-regularized prediction (compare Figs. 5 and 4). However, the
Rosenau-type prediction is worse than the prediction based on
the general 4th order polynomial energy (compare Figs. 5 and 3).

The results of the non-regularized and regularized quasi-
continuum predictions suggest that the inherent underlying pla-
nar ODE structure is not due solely to the large lattice size of
the problem, since the prediction based on the more generic
4th order polynomial energy leads to the best results. While
further investigation of the origin and structure of the planar
ODE structure of the lattice DSW lies beyond the scope of the
present article, it appears to us to certainly be an issue worthy of
additional attention.

5. Modulation theory

We will now briefly describe the modulation equations from
the perspective of local conservation laws, and discuss the com-
parison thereof with the results obtained using the planar ODE
reduction. For the sake of completeness, the derivation of the
modulation equations in terms of the wave parameters using
Whitham’s method of the averaged Lagrangian is included in
Appendix A.

One can derive modulation equations by averaging local con-
servation laws of the system [7,11]. Upon evaluation of the lo-
cal averages, one can express the equations in terms of the
original wave parameters, such as mean amplitude, modulation
wavenumber, etc. If the equations are tractable, one solves the
modulation equations in a self-similar frame subject to boundary
data that are consistent with the DSW (namely that the states
u_ and u, are connected via the modulated wave train). For a
detailed discussion of this procedure see [44,56].

The equation of motion (1) implies the discrete energy law

d
rradChs (3 @'(un) @' (tnr1)) — (3 ' (un—1) @'(un)) =0,

and we observe that both equations are discrete counterparts of
conservation laws since the time derivative of a microscopic ob-
servable equals a discrete spatial derivative of another quantity.
Using the concept of weak convergence, we can pass to a contin-
uum limit and obtain the weak formulation of the macroscopic
PDE

or (Un) +0x (pn) = 0,
or(®(uq))  +ox (%pnpn+l> =0,

where p, = @’'(u,) and the angle-brackets denote macroscopic
fields that depend on X and T. More precisely, denoting by ¢ a

(16)

smooth and compactly supported test function we have

Z/%un(t)w(e?n, et) > — //(un)(x, T) dr(X, T)dXdT,

as ¢ — 0 thanks to the scaling relations T = &t, X = en and
integration by parts with respect to time. The field (u,) represents
the weak limit of u, and its value at any point (X, T) can be
viewed as the mean value of u,(t) in a mesoscopic space-time
window centered around that point. Similar arguments apply to
discrete spatial derivatives and to other observables, so (16) is
an immediate consequence of the lattice dynamics. For a space-
time continuous conservation law system, translation invariance
yields another conservation law (momentum) via Noether’s the-
orem. Following this naively for the lattice system, one finds the
equation

1
or <2U2> + dx (¥(p)) =0,

where ¥(p) = pu — ®(u) is the Legendre transform of &(u).
In the lattice setting, however, there is no translation invariance,
and hence, no corresponding conserved quantity. For this reason,
one cannot expect this third modulation equation to be valid
in the lattice setting and, thus, the set of modulation equations
is incomplete. A complete set of three modulation equations is
discussed in Appendix A. Since our goal is not to use modulation
equations to obtain a description of the DSWs (although we
recognize that the latter is the standard approach towards their
description to which we offer an alternative herein), the missing
modulation equation is not critical to our discussion. Indeed,
the proposed ODE reduction approach allows us to avoid the
modulation equations entirely, and they are presented here only
to demonstrate that our ODE reduction is consistent with the
modulation theory.

We claimed the modulation Egs. (16) are valid in the lat-
tice setting, a feature that we now further discuss. A DSW will
have a self-similar structure and thus, it is useful to define the
self-similar coordinate ¢ = X/T in which case the modulation
equations become

d d
*(un%

3¢ () = (17)
d |1 d
E <5pnpn+l> = Ca<d)(un))~ (18)

The first modulation equation is inspected by plotting the quan-
tities %(pn) and c%(un) as functions of c, see the blue lines
and markers of Fig. 6(a), where overlapping curves correspond to
the modulation equation being valid. The validity of the second
modulation equation is demonstrated in Fig. 6(b), where the
quantities cf‘—c (DnDn+1/2) and c% (®(uy)) are shown as functions of
c, see the blue lines and markers of Fig. 6(b). The ODE predictions
of these quantities are consistent with the modulation equations
for regions sufficiently far from the leading edge of the DSW,
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Fig. 6. Top row: Comparison of ODE predictions and full lattice DSW dynamics for the polynomial potential @(u) = u?/2 + u*/4. (a) Plot of the quantity %(p,& for
the lattice DSW (blue solid line) and the ODE prediction (red dashed line). Plot of the quantity c%(un) for the lattice DSW (blue points) and the ODE prediction

(red squares). (b) Plot of the quantity %(p,,pn+1/2) for the lattice DSW (blue solid line) and the ODE prediction (red dashed line). Plot of the quantity c%(fb(un))
for the lattice DSW (blue points) and the ODE prediction (red squares). Bottom row: Same as the top row with the KvM potential ®(u) = exp(u).

see the red dashed lines and squares of Fig. 6(a,b). There is
noticeable deviation of the ODE prediction corresponding to the
second modulation equation for ¢ ~ 1.1, and it is found to
be larger in the case of the polynomial potential. In particular,
the ODE prediction (red dashed line) becomes positive while in
the full lattice dynamics the relevant quantity is negative. This
large deviation stems from small deviations of (p,p,.+1/2) due
to changes in slope. In particular, in Fig. 3(a) note how the ODE
prediction (green line) is increasing, whereas, the actual lattice
DSW quantity (green markers) is decreasing. This observation
is consistent with general deviations of the ODE orbits and full
lattice DSW orbits at the edges of the DSW discussed previously,
with the deviations in terms of derivatives of the local averages
being more noticeable. Overall, however, Fig. 6 demonstrates that
the ODE reduction is consistent with the modulation equations
for regions of the DSW sulfficiently far from the leading and trail-
ing edges. The results for the KvM potential are similar and even
slightly better, see Fig. 6(c,d). Note that the second modulation
equation is also consistent with the ODE prediction, even for
wave speeds close to the leading edge, as shown in Fig. 6(d).

6. Conclusions & future challenges

In the present work, we have demonstrated that there is
an underlying low-dimensional structure within the core of a
lattice DSW. The standard approach based on Whitham modu-
lation theory is for most purposes impractical in the context of
lattice DSWs. For this reason, we have argued about the relevance
of elucidating and identifying either via a data-driven or in an
approximate (quasi-continuum) analytical way the form of this
effective planar ODE description of the lattice DSWs. We have
argued that this approach can yield the kind of information
typically inferred from the modulation equations, but it is much
simpler in its implementation, given that it only requires the

analysis of a planar ODE. Indeed, in principle, our data-driven
approach, which has proved most efficient in the numerical ex-
amples considered herein, only needs a suitable manipulation
of the data set stemming from a (e.g., potentially black-box)
integrator in order to be set up. We believe that the present
findings may help lay the groundwork for further studies that
adopt such a low-dimensional approach towards the study of
lattice DSWs as an alternative to modulation theory, including
in a variety of different models (such as, e.g., in discrete models
of the nonlinear Schrédinger variety [38,57,58]). For example,
we showed that the most natural candidate for the underlying
ODE based on the quasi-continuum approach did not perform as
well as the simple polynomial approximation. We also considered
an alternative variant via the Rosenau regularization which was
deemed to be more effective than the former but less so than
the latter (yet was also systematically possible to obtain from the
microscopic model). The different approaches suggest there may
be other derivable ODEs waiting to be discovered and exploited in
a manner similar to that presented here. Other techniques, such
as the DSW fitting method detailed in [11], could also be applied
to this lattice (since the dispersion relation is known explicitly)
and would be of particular interest to consider. On a broader
(and more challenging) scale, a potential self-consistent, general
formulation of the Whitham modulation equations for nonlinear
dynamical lattices remains an important, but highly challenging
task as was highlighted herein. Arguably, this is, to a nontrivial
degree, due to the lack of some symmetries (most notably of
translation invariance) in the lattice setting. Studies along these
directions are currently underway and will be reported in future
publications.
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Appendix A. Modulation equations in terms of wave parame-
ters

For the sake of completeness, we present the modulation
equations in terms of the wave parameters using Whitham'’s
method of the averaged Lagrangian. For the lattice, this procedure
yields a complete set of three modulation equations, but, as the
derivation will demonstrate, working with them is cumbersome.

The formal procedure to obtain Whitham modulation equa-
tions in the lattice setting is well-known [28,29]. Although rig-
orous error estimates in lattice or continuous settings are rare
(see [29,59] for special examples), numerical simulations do sug-
gest they are valid [60]. Before writing the modulation equations,
we must re-write the traveling wave equation - and actually also
the lattice - using an integral formulation. We start by recalling
that traveling periodic waves of Eq. (1) have the form u,(t) =
V 4+ V(¢), ¢ = Kn — 2t, where the parameters V (mean), K
(wavevector) and £2 (frequency) are real and the wave profile
V is assumed, w.l.o.g, to be 2w periodic with mean zero. The
traveling wave equation has a variational structure, which will be
exploited to derive modulation equations. To see this, we define
the centered difference operator Vi (which is skew-symmetric)
by

(VkF) (&) = F(& +K) - F(¢ — K),
and define W via
V= Viw. (A.1)

Note that the traveling wave Eq. (6) is just the Euler-Lagrange
equation

owLW,V,K,2) =0,

to the Lagrangian functional

LW,V K, 2)=28W,K)— W, V,K), (A.2)
where
1 2
SO, K) = 5= / (VW) (£) - W, (A3)
T Jo
and
2
EW,V,K)= i / DV + (VW) (¢)) de. (A.4)
27T 0

The traveling wave equation can then be written as
2 7hwS W, K) = owE W, V., K) , (A5)

where 2 plays the role of a Lagrange multiplier. For the linear
model, §2 is related to K through the dispersion relationship, but
for nonlinear functions @', we expect that V, K and 2 are inde-
pendent parameters. The existence of a three-parameter family
of traveling wave solutions to Eq. (1) was demonstrated in [35],
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albeit with different parameters and using a certain reformulation
of (6).

The DSW can be thought of as a traveling wave, as just de-
scribed, but now the wave parameters V, K and £ vary in
time and space. This motivates an ansatz for an approximate
modulated wave solution,

1 1
wy(t) ~ Z—A(X, T)+w (X, T; -Z(X, T)) , (A.6)
e e
where the modulated traveling waves parameters are given by
V = 0xA, 2 =-0Z, K = oxZ .

If one substitutes ansatz (A.6) into the total action integral for
Eq. (1), that is

total action = — / D o (6)(wnya(£) — woa(6))dt

_/Z(p(wnJrl(t)_wnﬂ(t))dt,

and replaces summation by integrals, one arrives at the expres-
sion:

T rXr
total action = —3 f / drA OxA dTdX
0 X0

Ty X
+ f / Ltw(0xA, 0xZ, —0orZ)dTdX ,
0 Jxo

where
Lw(V, K, 2) = L(Wi(V, K, 2),V,K, 2), (A7)

is the action function for lattice traveling waves and W, stands for
a solution to (A.5). The variations with respect to A and Z provide
the two equations

BTV — ax a\/LTW = 07

oxdxlrw = 0,

(A.8)
oroplrw  —

which provide in combination with the integrability (the so-
called “conservation of waves”) condition

K + dx2 =0, (A.9)

the three modulation equations with respect to the variational
parameter set V, K, and £2. Setting S = doLtw and regarding the

Legendre transform
Erw =S 2 — Lyw, (A.10)

as a function in V, S, and 2, the macroscopic parameter dynamics
can equivalently be written as

oV 4+ oxovE = 0,
oK 4+ 0xdsE = 0, (A11)
S + dIxdkE = 0.

This is a system of three nonlinear conservation laws in which
the densities completely determine the fluxes. The corresponding
constitutive relations are all encoded in the equation of state
(A.10), which depends via

Erw(V, K, S) = £(Wi(V.K,S), V,K), (A.12)

on the three-dimensional family of lattice waves, where W, now
denotes a traveling wave with parameters V, K, and S, that is a
critical point of the energy functional (A.4) subject to the con-
straint S(W,, K) = S as in (A.3). By means of the reformulation
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Fig. 7. Time series data for fixed X = 0.15 for the lattice sizes (a) N = 1000, (b) N = 8000 and (c¢) N = 32000. The black dot is taken as the reference point to
measure the amplitude of the linear wave (first local maximum of the linear wave). (d) Plot of the amplitude of the linear wave (i.e. the black points) against the
lattice size N. The red curve is the best-fit curve of the form aN’, where a = 0.51 and b = —0.3484, which is consistent with the linear theoretical prediction that

the decay law is ~ N~1/3,
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Fig. 8. (a) Spatial profile of the DSW shown in Fig. 1(a) near the trailing edge
(markers). The solid curves are the interpolating cubic-splines. The inset shows
the magnitude of the Fourier transform, which is spectrally concentrated near
the wavenumber k =~ 2.2. (b) Numerical solitary wave solution of Eq. (6) (solid
curve) and leading edge of the lattice DSW shown in Fig. 1(a) (markers).

(A.11), one readily verifies that the modulation Egs. (A.11) are
of Hamiltonian type and imply (at least for smooth solutions) a
fourth conservation law, namely

drErw + x (3 (3vErw)” + dkErw dsErw) = 0. (A.13)

The Whitham approach, therefore, predicts four macroscopic con-
servation laws to be valid within each DSW with only three of
them being independent. The first equation in (A.11) and the
extension PDE (A.13) correspond to the two equations in (16) and,
therefore, possess an immediate microscopic interpretation. The
second equation in (A.11) is just the consistency relation (A.9)
between the wave number K and the frequency 2 = dsEmw, but
due to the nonlinear nature of the underlying lattice waves, it is

very hard to relate these quantities to local space-time averages
of microscopic observables. For the conservation law with density
S, we likewise miss an interpretation on the particle scale. For
PDE models, this equation links to the conserved quantity that
stems from the shift invariance according to the Noether theorem,
but its microscopic meaning remains unclear in the context of
lattices and other particle systems. This is arguably even more so
in light of our earlier discussion about the absence of translational
invariance in the latter context.

Despite the elegance of Whitham’s variational approach to
modulation theory, very little is known about the analytical prop-
erties of Emw and its derivatives. Except for integrable or very
degenerate cases, it is not even clear whether (A.11) is really
a hyperbolic PDE and how to characterize or compute the self-
similar rarefaction waves that correspond to the DSW. This lack of
qualitative (and even more so, quantitative) information was one
of the main motivations for following the alternative data-driven
approach described in the main text.

A particular difficulty in the nonintegrable lattice setting is the
dependence of the wave profile on an advance-delay differen-
tial equation. Even the numerical simulation of the modulation
equations can be quite cumbersome, as discussed in [60]. While
the analysis of the modulation equations from this perspective
is certainly interesting and important, it is, as discussed above,
beyond the scope of the present article.

Appendix B. Inspection of trailing and leading edge

In the main text, we showed the ODE reduction was reason-
able within the core of the DSW. In this appendix, we briefly
inspect the trailing and leading edge of the DSW.

According to the linear theory, the amplitude of the linear
wave at the trailing edge of the DSW can be shown to follow the
decay law ~ N~1/3 with the use of Fourier analysis [43]. In Fig. 7,
time series plots are shown for three lattice sizes, N = 1000,
N = 8000 and N = 32000 where it is seen that the amplitude
of linear waves is decreasing. In particular, the time series for the
X = 0.15 node is shown, where X = e¢n and ¢ = 1/N. In these
graphs, the slow variable is defined as T = e¢t. The last panel
shows a plot the amplitude of the linear wave against the lattice
size N where it is seen that the observed decay is consistent with
the theoretical decay law ~ N~1/3,

We expect that the local behavior of the tail can be de-
scribed by small amplitude waves. They should comply with the
dispersion relation

Q=" (V,) sin(K),

where V, represents the constant state behind the wave and
can be regarded as independent of c¢ (at least to leading order).
Modulation Eq. (A.9) implies

d

()= dK
— c)_c& (©)

for czc_,
dc ~
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where c_ denotes the speed of the trailing edge. We thus obtain
the simplified law

ds2
C [ —

dK
This formula allows one, in principle, to predict the wave speed
via knowledge of the wavenumber. We estimate the wave num-
ber near the trailing edge of the DSW shown in Fig. 1(a) by
computing the Fourier transform #i(k) of the spatial profile in a
small window near n = —2000 after subtracting the constant
background state. The spectral peak provides an estimate for the
wavenumber, see Fig. 8(a). We found that k ~ 2.2, which accord-
ing to Eq. (B.1) corresponds to ¢ &~ —2.35. This is reasonably close
to the numerically estimated trailing edge speed of c. = —2.5
reported earlier in the text.

The local behavior at the leading edge of the DSW should be
described by a solitary wave, since the wavenumber approaches
zero as the leading edge is approached. To verify this, we compute
a solitary wave in the lattice by solving Eq. (6) using the fixed-
point iteration routine described in [35] subject to a fixed wave
speed of c = c; = 2.45 (the leading edge speed). The initial guess
is given by the profile of the leading edge. The resulting numerical
solitary wave solution of Eq. (6) is shown as the continuous curve
in Fig. 8(b), which compares favorably to the leading edge of the
lattice DSW, shown as markers.

= @" (V,) cos (K (c)) for czc_, (B.1)
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