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Abstract

We consider the existence and spectral stability of multi-breather structures
in the discrete Klein—Gordon equation, both for soft and hard symmetric
potentials. To obtain analytical results, we project the system onto a finite-
dimensional Hilbert space consisting of the first M Fourier modes, for arbitrary
M. On this approximate system, we then take a spatial dynamics approach
and use Lin’s method to construct multi-breathers from a sequence of well-
separated copies of the primary, single-site breather. We then locate the
eigenmodes in the Floquet spectrum associated with the interaction between
the individual breathers of such multi-breather states by reducing the spectral
problem to a matrix equation. Expressions for these eigenmodes for the approx-
imate, finite-dimensional system are obtained in terms of the primary breather
and its kernel eigenfunctions, and these are found to be in very good agree-
ment with the numerical Floquet spectrum results. This is supplemented with
results from numerical timestepping experiments, which are interpreted using
the spectral computations.
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1. Introduction

Dynamical models on a one-dimensional lattice have been a topic of interest for well over 50
years. Perhaps the most famous example is the Fermi—Pasta—Ulam-Tsingou (FPUT) model
[1, 2], which was one of the first problems to be studied using numerical simulations. In this
work, we will examine the discrete Klein—Gordon (DKG) equation [3-6]

ity = d(Dou), — f(uy), QY

which describes the dynamics of an infinitely long, one-dimensional lattice of particles. The
quantity u, represents the displacement of the nth particle in the integer lattice as a function of
the time 7. Each particle is harmonically coupled to its two nearest neighbors via the discrete
second difference operator A,, and the strength of this coupling is quantified by the parameter
d. The particles are subject to an external, nonlinear, on-site potential V(u), such that f(u) =
V'(u), which can be of different type depending on the model [7, 8]. Common nonlinearities
are shown in table 1. (See subsection 2.1 for the definition of hard and soft potentials.)

The DKG equation is the discrete analogue of the nonlinear Klein—Gordon partial differen-
tial equation

Uy = Uxx — f(u)a

which is a prototypical model in the study of nonlinear waves and solitons. One of the most
well-studied forms of this equation is the sine-Gordon equation [3—6], which has periodic non-
linearity f(u) = sin(u), and is completely integrable. The transition between the continuous
and discrete models in the sine-Gordon case has been extensively discussed in [9]. The dis-
crete sine-Gordon model, also known as the Frenkel-Kontorova model, was originally devised
as a model for describing the dynamics of a crystal lattice near a dislocation core [3, 10],
and has been used since its inception in numerous additional applications (see, for example
[3, chapter 2]), including a mechanical model for a chain of pendula [11, 12], arrays of
Josephson junctions [13, 14], and DNA dynamics [15-17].

Two major classes of coherent structures in the nonlinear Klein—Gordon equation (both
discrete and continuous) are of particular interest: kinks, which are heteroclinic structures
resembling ‘wave fronts’ that connect two adjacent minima of the potential V(u), and breathers,
which are structures that are spatially localised and oscillatory in time. For the continuum
sine-Gordon equation, exact, analytical solutions for both of these structures have been found
[18]. For discrete systems, the existence and stability of static kinks have been well-studied
(see [9, 19, 20], as well as [21] for results on multi-kink solutions), and there has also been
interest in moving kinks [22-25]. We will concern ourselves herein with discrete breather
solutions.

Discrete breathers have been studied in Hamiltonian [26] and dissipative systems [27], and
have applications in areas such as laser scanning microscopy and coupled optical waveguides
[28, 29]. Existence and stability of discrete breather solutions in Klein—Gordon lattices were
first studied by MacKay and Aubry [30, 31] by considering the system near the anti-continuum
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Table 1. Common nonlinearities for the DKG equation.

Equation V(u) f(w)
Sine-Gordon 1 —cosu sin u

¢* (soft) T — u(l — u?)
¢* (hard) 1P+ Lut u(l + u?)
Morse (1 —e? e (1l —e™™)

(AC) limit (d = 0), in which the individual sites in the lattice are uncoupled. The advantage
of this approach is that the solution for a single site is known at the AC limit, and this can be
continued to small 4 > 0 using the implicit function theorem. Some results about asymptotic
stability of these breathers can be found in [32]. A similar approach has been used for multi-site
solitons in the discrete nonlinear Schrédinger equation (DNLS) [33, 34], which demonstrated
that the only potentially stable multi-solitons are those in which adjacent peaks are excited out-
of-phase. Analysis of multi-breathers in DKG, in which a finite number of sites in the integer
lattice are excited at the AC limit, was done in [35, 36], but this was restricted to the case where
the excited sites are adjacent, so that a concrete result could be deduced for the dynamics of
the relative phases between oscillators at adjacent sites. Indeed, the two methods (the Aubry
band method [31] and the MacKay effective Hamiltonian method [37]) explored in the above
two publications were shown to yield the same results near this limit in [38]. In this situation,
for small d > 0, out-of-phase multi-breathers are stable for soft potentials, and in-phase multi-
breathers are stable for hard potentials [35, theorem 6]. Results on the existence and spectral
stability of multi-breathers were extended in [39] to multi-site breathers where any arbitrary,
finite set of lattice points is excited at the AC limit; in particular, this allows the excited sites
to be separated in the lattice, i.e. there can be ‘holes’ in the lattice. However, spectral stability
of multi-breathers does not necessarily imply nonlinear stability; even if the multi-breather is
spectrally stable, nonlinear instabilities can result from resonance between internal eigenmodes
and the continuous spectrum band, as long as the two have opposite Krein signatures [40]
(see also the simpler example of the discrete nonlinear Schrodinger model in [41]). A recent
result uses the Schauder fixed point theorem to prove the existence of DKG breathers in the
setting of a convex on-site potential [42]. Other related work concerns breather solutions in
infinite FPUT lattices, in which the nonlinear potential involves inter-site terms (see [43] and
the references therein). Results on the existence of time periodic solutions in FPUT lattices can
be found in [43, chapter 2], as well as the more recent work in [44, 45].

In this paper, we take a different approach to multi-breathers. We start with a single-site
breather, which we call the primary breather. We take the existence of such a breather for a par-
ticular d > 0 as a hypothesis. We then construct a multi-breather by joining together multiple,
well-separated copies of this primary breather. Consecutive copies of the primary breather can
be either in-phase or out-of-phase. In effect, we replace the condition that the coupling param-
eter d > 0 is small with the condition that the individual copies of the primary breather are well
separated. The construction of complex coherent structures from simple building blocks has a
rich mathematical history (see [46], and the references therein). The mathematical technique
that we will use to accomplish this is an implementation of the Lyapunov—Schmidt reduc-
tion known as Lin’s method. This method has been successfully employed in many systems,
including semilinear parabolic PDEs [46, 47] and discrete dynamical systems [48]. We used a
similar method to construct multi-solitons in DNLS [49] and multi-kinks in DKG [21].

Heuristically, we use Lin’s method to construct a double breather from the primary breather
as follows (see [49, section 1] for a similar construction of double pulses in DNLS). Let g,,(?)
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(a) (b)

Uy (t) T (1)

Unp

(©)

QrH—N(O) -N N %sz(O)

Figure 1. Top panel plots i, (f) vs u,(f) at each lattice site n for a primary breather
(a) and an in-phase double breather (b) for discrete sine-Gordon. Lattice site n = 0
is located where the axes meet. Period T = 9.8944, coupling parameter d = 0.25.
(c) is a schematic showing the piecewise construction of a double breather (2) with
Lin’s method, illustrated at t = 0. The piecewise double breather u, comprises three
pieces u,ll, uﬁ, and uz (red stars, blue filled circles, and yellow squares, from left to right).
Two copies of the primary breather ¢, are placed at n = —N and n = N, respectively
(black open circles and purple open circles, from left to right). This is a genuine double
breather if and only if the two jumps at n = £N are zero for all # € [0, T'].

be the primary breather solution to (1) with period 7, i.e. g,(t + T') = ¢, (?) for all integers n.
Then a T-periodic solution u,(?) is a double breather if there is an integer N > 1 such that

sup  [un(6) = guan(®)| +  sup  [un(6) = gun(2)|
n<0, 1€[0,7] 120, 1€[0,7]

is small, i.e. u,(f) resembles (to leading order) the sum of two copies of the primary breather
q,(t) translated by N units to the left and to the right, respectively. We note that u,(f) must be
close to the sum of the two translates of the primary breather for all # € [0, T']. See the top panel
of figure 1 for an illustration. The double breather (figure 1(b)) resembles two sequential copies
of the primary breather (figure 1(a)). Importantly, however, it is not identical to two adjoined
translates of the primary breather; compare the center node (n = 0) of the double breather in
figure 1(b) to the corresponding node (n = 2) of the primary breather in figure 1(a). For each
N > 1, Lin’s method yields a piecewise double breather that comprises three pieces

u,l,(t) n € (—oo, —N]
uX(ty n€[-N,N] 2
(1) n €[N, o0),
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as shown in figure 1. This piecewise function will be a genuine double breather if and
only if these pieces coincide at n = +N, i.e. ul y(t) = u? \ (1) and u3(1) = uy(¢) for t € [0, T]
(see schematic in figure 1(c)). This approach reduces the existence problem for double
breathers to solving these two jump conditions.

Lin’s method can also be used to determine spectral stability. For a multi-pulse, multi-kink,
or multi-breather, there are specific elements in the point spectrum, which we will here-
after term interaction eigenmodes, that result from nonlinear interactions between neighboring
copies of the primary coherent structure. For breathers, which are periodic in time, these inter-
action eigenmodes assume the form of Floquet multipliers or Floquet exponents. (We note
that these are called internal modes in [40]; since we find from numerical simulations that
other internal modes split off from the continuous spectrum bands as the coupling parameter d
is increased, we use the term interaction eigenmodes to refer to this specific set of inter-
nal modes.) In a similar fashion to how we constructed the multi-breather, we can use Lin’s
method to find these interaction eigenmodes by constructing the corresponding eigenfunction.
To leading order, this eigenfunction is a piecewise linear combination of translates of the ker-
nel eigenfunction associated with the primary breather. This reduces the spectral problem to
a finite-dimensional matrix eigenvalue problem, which can then be solved. While the matrix
obtained this way has the same form as that in [39, 40], its elements are computed using the
primary breather solution for a specific d rather than at the AC limit, thus the interaction eigen-
modes can be computed more accurately for a greater range of d, i.e. further from the AC
limit.

For the DKG equation, we follow a similar approach to that which we used in [49]. We
reformulate the equation using a spatial dynamics approach by recasting it as a lattice dynam-
ical system on an appropriate function space, and then we use Lin’s method to both construct
multi-breathers and determine the interaction eigenmodes associated with these solutions. The
major limitation with this method, however, is that for a periodic breather on [0, 7], the most
appropriate function space is Cpe, ([0, T]), which is not a closed subspace of Lger([O, T1).Itis not
straightforward to adapt the necessary mathematical tools, such as the stable manifold theorem
and exponential dichotomies, to this space. As an alternative, since we are interested in smooth
solutions, we project the system onto the finite-dimensional subspace X, of Lger([O, T]) con-
sisting of the first M Fourier modes of the standard orthonormal basis, and consider the problem
restricted to this finite-dimensional Hilbert space.

Although this means that the results we obtain are only approximate, we believe this is a
reasonable approximation, since the Fourier coefficients for smooth functions decay exponen-
tially, and this method is valid for arbitrary, finite M (see figure 4 below). That being said, it is
not easy to quantify how good this approximation actually is. For example, as in many other
instances, if resonances in the system occur, they may be affected by this truncation. Since
numerical discretisation of periodic solutions is often done using a Fourier spectral method, this
approximation applies directly to this discretisation. Finally, the results from this method are in
very good agreement with the results obtained by directly computing the Floquet spectrum of
the corresponding multi-breather, both for the soft sine-Gordon and the hard ¢* potentials.
In addition, the spectral pattern agrees qualitatively with that found using the approach in
[39, 40] for small d, and the matrix reduction found by using Lin’s method and a spatial dynam-
ics approach has the same form as that in those references. For both soft and hard potentials, the
eigenvalue pattern is determined by the phase differences (in-phase vs out-of-phase) between
adjacent copies of the primary breather. For the hard potential, it also depends on whether the
distances between copies of the primary breather are an even or odd number of lattice points.
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This paper is organised as follows. In section 2, we present the mathematical background
for the DKG equation, including breather solutions, the continuous spectrum, and the refor-
mulation using spatial dynamics. In section 3, we formulate our finite-dimensional approx-
imation, which we then use in section 4 to prove results about the existence and spectrum
of multi-breathers in the approximate system. The proof of the spectral results is deferred to
appendix A. Numerical results are presented in section 5, which are in very good agreement
with the predictions from the main theorems. Results are presented for both the soft sine-
Gordon potential and the hard ¢ potential. In addition, we present results from timestepping
simulations to illustrate the effect of the spectrum on the dynamical evolution of the system.
We end with a brief concluding section, which suggests avenues for future research.

2. Mathematical background

We will consider the DKG equation with on-site nonlinearity f (1)
iy = d(AZM)n - f(un)’ (3

on the integer lattice Z, where ¢ € R is the evolution time, u,(f) € R is the displacement of
the nth particle in the lattice, (Ayu), = u,4+1 — 2u, + u,—; is the discrete second difference
operator, and f(u) = V'(u) for a smooth, on-site potential function V(«). We use the following
assumptions for the potential V:

(a) Vis an even function, and V(0) = 0. This implies V'(0) = 0.
(b) V"(0) > 0.

We note that the Morse potential, which is considered in [40], does not satisfy the first
assumption, since it is not an even function. For any time 7, we take the displacements
{u, ()} nez € X(Z), and we denote this sequence by u(z). Existence and uniqueness of solu-
tions to (3) is discussed in [40]. Since f(u) is an odd function, if u(z) is a solution to (3),
then —u(7) is as well. Equation (3) is Hamiltonian [20, 40], and can be written as

d(u,\ (0 1\[0H/Ou, 4
dt\v,) — \—=1 0)\oH/0v,)’ @)

where v, = 1, is the velocity of the nth particle in the lattice, and H is the conserved energy

o0

1 d
Hmﬁ:§:<5ﬁ+¢wﬂ—ﬁf+w%0. (5)

n——0o0

2.1. Breathers

We are interested in breather solutions to (3), which are periodic in time and exponentially
localised in their spatial profile over the lattice. Specifically, a breather solution is a function
u € (*(Z,H,,[0, T1]), where Hy, [0, T] is the Hilbert—Sobolev space of periodic, real-valued
functions on [0, 7). The fundamental period T is the smallest positive real number for which
u(t + T) = u(z) for all 7. At the AC limit (d = 0), the individual sites in the lattice are decou-

pled. At each site, u,(f) is a T-periodic solution to the nonlinear oscillator equation
$+V'(¢) =0, (6)

which has conserved energy E = %qﬁz + V(¢). For fixed energy E, equation (6) has a unique,
even solution ¢(t), which we will call the fundamental AC breather [39]. This solution satisfies
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the initial conditions ¢(0) = a and (;3(0) = 0, where a is the smallest, positive root of V(a) = E.
The fundamental period T of ¢(7) is a function of the energy E, and is given by

T(E) =2 / ’ (7

du
VE—=V@)
The potential V(u) is a hard potential if the period T decreases as the energy E increases, and
a soft potential if 7 increases as E increases [39, 40]. Pelinovsky and Sakovich prove the exis-
tence of multi-site breathers close to the AC limit, i.e. for d small, which are even functions of
t [39]. Specifically, for a finite set of lattice sites S = {ki,...,ky}, with k; < ki1, they start
with a solution

N
u®(0 =3 oide ®)

i=1

at the AC limit, where ¢(7) is the fundamental AC breather, ey, is the unit vector for site k; in
the integer lattice, and o; = *1 is the phase factor for the oscillator at site k;. Adjacent oscil-
lators are in-phase if 0;0;4; = 1, and out-of-phase if 0,04, = —1. They then use the implicit
function theorem to prove the existence of a multi-site breather u‘”(¢) to (3) for sufficiently
small d [39, theorem 1]. The fact that in-phase and out-of-phase structures are the only ones
available in DKG lattices with nearest-neighbor interactions has been shown in [50]. In that
light, we will restrict our considerations to such configurations in what follows. Nevertheless, it
is relevant to mention in passing that the examination of so-called phase-shift multi-breathers
(with relative phases different than O or 7) in lattices with interactions beyond nearest-neighbor
ones remains an active topic of investigation in Klein—Gordon (and DNLS) settings [51].

2.2. Linearisation

For a specific coupling constant d and fundamental period 7, let u(¢) be a breather solution to
(3). To study the spectral stability of u(z), we linearise equation (3) about u(z) by substituting the
perturbation ansatz u(#) 4 ev(f) and keeping terms of order € to obtain the linearised equation

Uy = d(Agv), — ()0, 9

which can be written as the first order linear system

d/v,\ Wy,
ar (w) = (d(sz)n - f’(un)vn> 19)

by letting w, = v,. Since u(¢) has period 7, it follows from Floquet theory that its spec-
tral stability depends on the Floquet multipliers, which are the spectrum of the monodromy
operator M = ®(0,T), where ®(s,1) is the evolution operator for (10). If p is a Floquet
multiplier, then the corresponding Floquet exponent A (which is unique modulo 27i/T) is
related to p by u = e*. For every Floquet exponent ), there is a corresponding solution
v(#) = eMw(t) to the linearised equation (9), where w(¢) is periodic with period T (see, for
example [52, lemma 2.1.29]). Substituting this ansatz into (9), we obtain the Floquet eigenvalue
problem

d(Asw), — f(up)w, — Wy = 2XW, + Nw,, (11)

where w € (2(Z,H?,[0,T]) C ¢*(Z,L2,[0, T]), and we use the inner product

per per

5720



Nonlinearity 35 (2022) 5714 R Parker et al

o0 T
<“’V>12(Z,L§erIO,TJ): Z / 1, ($)v,(s)ds (12)
0

n=-—oo

on (*(Z, L7, [0, T]). We can write equation (11) as

LW = 2\, + \D)w, (13)

where the linear operator L£(u) is defined by the left-hand side of (11). Since (3) is Hamilto-
nian, the Floquet exponents must come in quartets A = +« + fSi. It follows that the Floquet
multipliers z can only occur in one of three patterns: a pair {y, 7z} on the unit circle; a pair
{1, '} on the real line; or a quartet {y, 7z, u~ ', 7z '} off of the unit circle. Therefore, the
breather solution u(?) is spectrally unstable unless all of its Floquet multipliers lie on the unit
circle.

There is always a Floquet exponent at O (corresponding to the Floquet multiplier i = 1),
since u is a solution to (11), i.e. L(w)iu = 0, which can be verified by differentiating (3) with
respect to ¢. Furthermore, there exists a solution 'y € (*(Z, ngr[O, T1]) which solves

L(w)y = 2u, (14)

and can be chosen to be perpendicular to u with respect to the inner product (12)
(see [39, section 3], noting that the corresponding linear operator to £(u) in [39] has the oppo-
site sign). In fact, we can actually compute y(7). Letting w = 27 /T be the frequency of the
breather, and normalising the period of the breather to 27 by rescaling the time variable to
7 = wT, as in [53], equation (3) becomes

w?O2u, = d(Dou), — f(uy). (15)
Differentiating with respect to w, we obtain

d(Dr0,u), — f () Otty — w? 0> (Outy) = 200, (16)
Changing variables back to ¢, this becomes L(u)d,u = %ii, thus y = wd,u.
2.3. Continuous spectrum
The continuous spectrum of L£(u) is the set of all A for which the limiting problem

d(Dqw), — f(O)w, — 1, = 2\, + N w, 7)

has a bounded solution in n. Following the procedure in [40, section 2.1], the continuous
spectrum consists of the bands

A:i(iw(a)—z%ﬂ me7

(18)

w(0) = \/f/(o) +4dsin2<z> 0c[—m, 7]

on the imaginary axis. The corresponding Floquet multipliers comprise two bands on the unit
circle, which are symmetric about the real axis, and are given by

L= exp (j:i\/f’(O) + 4d sin2 (g) T> 9 € [0, 7. (19)
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d 6190 d
6101 positive Krein e*iao negative Krein —ib;
signature signature
negative Krein positive Krein .
e—i91 signature e’ieo signature i1
- 671’00 —_—
d d

Figure 2. Schematic showing continuous spectrum bands on the unit circle for
T € (nm,(n+ 1)m) with n even (a) and n odd (b). Krein signature of bands is indicated,
and bands grow in the direction of the arrow with increasing d.

Let mg be the largest nonnegative integer such that 7 — 27my > 0. At the AC limit, the bands
consist of the two points 11 = exp(=£ify), where 6y = T — 27my. For d > 0, the bands stretch
from p = exp(£ify) to p = exp(+ify), where 6, = /f'(0) + 4d T — 2wmy. Following the
analysis in [40, section 2.2], if T € (nm, (n + 1)) for n even, the upper band has positive
Krein signature, and the lower band has negative Krein signature. As d is increased, the bands
grow towards (—1,0) (see figure 2, left). The ends of the bands meet when #; = 7w, which
%((1+27r{120)27r2

occurs when d = — 1), at which point they merge into a single band. They meet

2.2
again when #; = 0, which occurs when d = %(w — 1), at which point they comprise

the entire unit circle. Conversely, if T € (nm, (n + 1)7) for n odd, the upper band has nega-
tive Krein signature, the lower band has positive Krein signature, and the bands grow towards
(1, 0) as d is increased (see figure 2, right).

2.4. Spatial dynamics

We now reformulate both the DKG equation (3) and the eigenvalue problem (11) using a spa-
tial dynamics approach, as in [21, 49]. Let u(¢) be a breather solution to (3) with period 7,
and define U(n) = (u(n), u(n)) = (u,, u,—1). Then equation (3) can be written as the lattice
dynamical system

Un+ 1) = F(U(n)), (20)
where
1 182 5
F<Z>:<2u+gf(u)+g 2 — ) on
u

We note that since f is a odd function, if U(n) is a solution to (20), then —U(n) is as well. The
Floquet eigenvalue problem (11) can similarly be written as

W(n+ 1) = [DF(U(n)) + (20, + \*)B]W(n), (22)
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where

2 f'(u(n))

1 2
DF(U(n) = A B ] =
1 0

The zero function is an equilibrium solution to (20). At this point, the standard procedure (see,
for example [21, 46, 49]), is to consider U(n) as a homoclinic orbit of the equilibrium at 0.
The complication here is that for the difference equation (20) to be well-posed, we require
U(n) € C([0,T1,R?) for all n, rather than just U(n) € HZ, ([0, T], R?), since each applica-
tion of F involves differentiating twice with respect to ¢, and equation (20) involves applying F
an arbitrary number of times. In essence, the spatial dynamics formulation in equation (20)
is more restrictive than the original system. Since Cg.([0,T]) is not a closed subspace of
L([0, T)), it is not straightforward to adapt the stable manifold theorem and results on expo-
nential dichotomies to this problem, even if DF(0) has the desired spectral properties. As an
alternative, we will consider a finite-dimensional approximation, where we project the problem
onto a finite-dimensional subspace of Lf)er([O, T1). Roughly, this subspace consists of the first
M Fourier modes of the standard Hilbert basis for Lger([O, T1). Although this is a limited result,
we note that since we require U(n) to be smooth, its Fourier coefficients will decay exponen-
tially. Since we can take M as large as we like, this should be a very good approximation.
In addition, since many of the numerical simulations are performed using Fourier spectral
methods, this theory applies directly to such numerical discretisation. Before we formulate our
approximation, we prove some important results about the spectrum of DF(0).

2.5. Spectrum of DF(0)

The linearisation of (20) about the equilibrium at 0 is the constant coefficient linear operator

1., fl0)
DF(0) = 38f+ g 2 , (24)

1 0

which is invertible with inverse

—1
dat i d

0 1
-1 _ /
DF(0) —( 1., fO +2>- (25)

First, we determine the eigenvalues and eigenfunctions of DF(0).

Lemma 1. The set of eigenvalues of DF(0) is given by |, ., {\, A}, where

1 4k’ f(0)
)\k:2<rk+\/rlz_4>, rk:_dTZ + d +2. (26)

For k # 0, these have algebraic multiplicity 2, since Ay = \. For each k € Z, { )\, )\k_l} is
either real, or a complex conjugate pair on the unit circle. The eigenfunctions corresponding
to {)\k, )\,:1} are {Uk(t), U,:l(t)}, which are defined, up to constant multiple, by

Y AaR0) e () 1 2kt
Ui(t) = ()\klvk(t)>’ U: (= ()\kvk(t)>’ u(t) = 7 exp<1T>. (27)
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Proof. Consider the eigenvalue problem DF(0)U(r) = AU(1) on Hy,.([0,T],R?), where
U(1) = (v(#), w(?))". We note that A = 0 is not an eigenvalue, since that implies v = w = 0.
The eigenvalue problem then reduces to the system of equations

1., f10) - 1 _1
<ga, + +2>v(t) = <A+ A)v(z), w(t) = )\v(t). (28)

Lettingr = A + % and using the periodic boundary conditions v(7T') = v(0), the set of solutions
to (28) is given by

2,2 /
.27rkt>’ - _4k s £(0) ) keZ. (29)

1
we(t) = T XP <1—T a7 + p
where the functions wvi(f) have been normalised. The corresponding eigenvalues of
DF(0) are then given by {)\k,)\;1}, where \; is defined by (26), and the corresponding
eigenfunctions are given by (27). The pair {)\k, )\k_l} is real if |ry| > 2, and is complex with
modulus 1 if || < 2. O

We note that the spectrum of DF(0) depends on both the coupling parameter d and the
period T. It follows from lemma 1 that the spectrum of DF(0) is bounded away from the unit
circle provided |ri| > 2 for all k. The following lemma gives some conditions on T and d to
guarantee that this is the case.

Lemma 2. The spectrum of DF(0) is bounded away from the unit circle if, for a specific
nonnegative integer k, T and d are chosen so that

2km 2k + DHm (k+ 1D*x>  f(0)
\/m< <W, 0<d< T2 — 4 (30)

Proof. Since f/(0) > 0, it follows that ry =2+ % f(0) > 2. In addition, r; is strictly
decreasing in k, with ry — —o0 as k — oo. Thus |ry| > 2 forall kif both ry > 2 and ry < —2
for some nonnegative integer k, from which the conditions (30) follow. (]

We take the following assumption on the spectrum of DF(0), which is the analogue to
hyperbolicity in the finite-dimensional case.

Hypothesis 1. The coupling constant d and period T are chosen so that the spectrum of
DF(0) is bounded away from the unit circle.

3. Finite dimensional approximation

In this section, we define our finite dimensional approximation for (20). For M > 1, let

M 1 2kt
Xy = span{ U vk(t)}, u(t) = T exp(iT> (31)

k=—M

be the (2M + 1)-dimensional subspace of Lf)er([O, T]) spanned by the Fourier basis functions
with wavenumber |k| < M, and let Py, : Lger([O, T]) — Xy, defined by

M M

T
Pyu(t) =Y (v 2gomue® = ( /0 u(s)?(s)ds)vk(t) (32)

k=—M k=—M
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be the corresponding projection operator. In addition, let Xj;. be the (M + 1)-dimensional
subspace of Xj; comprising functions which are even in ¢, i.e.

Xye ={f €Xu:f(—t)= f(r) forall r € R}. (33)
For M > 1, define the approximation of the DKG equation (3) on £*(Z, X;) by
ity = d(Dou), — g(uy) — uy € Xu, (34)
where g : Xy — Xj is given by
gu) = Py f(u). (35)

When u = 0, g(0) = Py £(0) = 0,and g’(0) = Py, £'(0) = £(0), since f'(0) is a constant func-
tion, which is in X, for all M. Furthermore, since f is an odd function, g is as well. In general, it
not the case that Py, f(u) = f(Pyu), thus we cannot simply obtain a solution to (34) by project-
ing a solution of (3) onto Xj;. However, since the Fourier coefficients of a smooth, T-periodic
function u(#) decay exponentially, equation (34) should be a reasonable approximation to (3)
for large M. Linearisation of (34) about a solution u € ¢*(Z, X),) yields the eigenvalue problem

d(AZw)n - gl(un)wn - wn - 2>\wn + Azwn, (36)
which we write as
Ly(ww = 210, + \)w, (37)

where Ly/(u) is the linear operator on ¢*(Z, Xy;) defined by the left-hand side of (37). As in
subsection 2.2, Ly(w)a = 0, and there exists a solution y to £y;(w)y = 2u, where y = wd,,u
and w = 27/T.

Reformulating (34) from a spatial dynamics perspective yields the discrete dynamical sys-
tem on X3,

Un+ 1) = Fy(U(n)) Un) € Xz, (38)

1 1 -
FM( bf) _ (214 + Eg(u) + E@fu - u) (39)

u u

where

Since Fy(—U) = —Fy(U), it follows that if U(n) is a solution to (38), so is —U(n). Similarly,
the eigenvalue problem (36) can be reformulated as

W(n+ 1) = [DFy(U(n)) + (2A0; + X)B] W(n), (40)

where B is defined in (23). Since g'(0) = £'(0), the linear operator DFy;(0) on X3 is also given
by (24).

Finally, let {7(s) : s € R} be the one-parameter group of unitary translation operators on
X,%,,, defined by [7(s)]U(-) = U(- — s), which has infinitesimal generator 7/(0) = 9,. We note
that this group is well-defined on X3,, since

1 27k(t — 5) 2mks\ 1 2wkt
T(s)vk(t)zfexp 1# =exp| —i T Texp IT

=exX _127rks v (1)
= eXp T K\1),
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i.e. the group action multiplies a basis element by a constant. In fact, the eigenvalue of (36) at 0
is a result of this translational symmetry. The function F; from (38) (as well as F from the full
system (20)) commutes with this one-parameter group, i.e. F(7(s)U) = 7(s)F(U). It is crucial
to note that this symmetry is lost if we consider the problem (38) on XI%/I,e’ since the space of
even functions is not translation invariant.

4. Multi-breathers

Our strategy will be to first prove that multi-breathers exist on the subspace X,%,,’e of even func-
tions. Since there is no translational symmetry, the stable and unstable manifolds of the origin
will intersect transversely, which greatly simplifies the analysis. This parallels the restriction in
[39] to breathers which are even in ¢, and is consistent with the odd symmetry of the nonlinear-
ity f. Once that is accomplished, we will return to the full space X3 for the eigenvalue problem,
and use Lin’s method as in [21, 46, 49] to construct the interaction eigenfunctions as piece-
wise linear combinations of the eigenfunction corresponding to translation symmetry. This
technique is similar to the one we employed in [49] for DNLS, where, to prove the existence
of multi-pulses, we removed the gauge symmetry by restricting the problem to real-valued
solutions.

4.1. Primary breather

As noted above, we will take the existence of a primary, single-site breather as a hypothesis. Fix
d and T such that hypothesis 1 holds. First, we consider the system (38) on X3, .. By lemma 1,
the 2M + 2 eigenvalues of DF,(0) on X,%,,ﬂe are given by Sy, = Uf:o{)\k, )\;1 }, where these are
defined in the statement of lemma 1. By hypothesis 1, the spectrum of DF,(0) is real and does
not intersect the unit circle, thus 0 is a hyperbolic equilibrium point of (38). Define the stable
and unstable subsets of the spectrum of DF);(0) by

Sy={AeSu: |\ <1}, Sy ={NeSu: A >1}
By symmetry, |S5,| = [S};| = M + 1. Define

ry = min{[A] : X € S, [A| > 1}. (41)
Since X,%,,ﬂe is finite-dimensional, the stable manifold theorem holds. For each M > 1, let
Wi.(0) and Wy, .(0) be the (M + 1)-dimensional stable and unstable manifolds of the equi-
librium at 0, which are subsets of X,%,, .- A breather solution to (38) is a homoclinic orbit which

lies in the intersection of the stable and unstable manifolds. We take the existence of such a
solution as a hypothesis.

Hypothesis 2. Let d and T be chosen according to hypothesis 1. There exists a positive
integer My such that for all M > M,, the stable and unstable manifolds Wj, .(0) and Wy, .(0)
intersect transversely in X3, . in a homoclinic orbit Qy(n) = (g(n), g(n)" = (gu, gu—1)"-

The first component g, is a breather solution to (34). As a consequence of the stable manifold
theorem, we have the estimate

|Om(n) HLger([o,T]) < Cr}l_/l‘n‘ . (42)

We now consider (38) on the larger space X3,. The spectrum of DF;(0) on X3, is exactly the
same as that on XI%/I,e’ except the eigenvalues correspondingto k = 1, ..., M have multiplicity of
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2. It follows that 0 is also a hyperbolic equilibrium of (38) on X,%,, Let W;,(0) and Wy,(0) be the
(2M + 1)-dimensional stable and unstable manifolds of the equilibrium at 0, which this time
are subsets of X3,. For M > My, Qy,(n) is also a homoclinic orbit connecting these stable and
unstable manifolds. This intersection, however, will not be transverse. Due to translational sym-
metry, these manifolds will have an intersection which is at least one-dimensional. In the next
hypothesis, we assume that this intersection is non-degenerate, i.e. this intersection is exactly
one-dimensional. (We note that systems with higher dimensional intersections do exist; one
example is the Ablowitz—Ladik discretisation of the nonlinear Schrédinger equation, where it
stems from the existence of exact single soliton solutions [54-56].)

Hypothesis 3. Let d and T be chosen according to hypothesis 1, and let My and Q,,(n) be
as in hypothesis 2. Then for all M > M,, the stable and unstable manifolds Wj},(0) and Wj;(0)
have an intersection in Q,,(n) which is exactly one-dimensional.

The variational equation is the linearisation of (38) on X1%4 about the homoclinic orbit
solution Q,,(n), which is given by

Wn + 1) = DFy(Qu(n))W(n) W(n) € X (43)

Since the tangent spaces of W},(0) and Wj,(0) have a one-dimensional intersection by hypoth-
esis 3, it follows that QM(n) = (gn> qu—1) 1s the unique, bounded solution to (43), up to scalar
multiples. (QM(n) is not a solution to (43) on X,%,,ﬂe, since it is an odd function). We can thus
decompose the tangent spaces to W}, (0) and W3,(0) at Qp(0) as

TouWi(0) = ROu(O0) B Yy, Tg0) Wi (0) = ROu(0) & Yy, (44)
where dim ¥, = dim Y,; = 2M. In addition, the adjoint variational equation

Z(n) = DFu(Qu(n))" Z(n + 1) (45)
has a unique bounded solution, given by

Zy(n) = (—Gu-1. )" (46)
and Zy(0) L RQy(0) © Y, @ Y, by [49, lemma 1]. We can thus decompose X, as

X3 = ROu(0) & Yy, & Y, & RZy(0). (47)

4.2. Existence

We construct a multi-breather on X,%,,ﬂe by splicing together multiple copies of the primary
breather Q,,(n) in a chain. We characterise a multi-breather in the following way. Let m > 1
be the total number of copies of the primary breather in the chain. LetN; i = 1,...,m — 1) be
the distances (in lattice points) between the center point of each breather. We seek to construct
a solution U(n) which can be written piecewise in the form

U (n) = 0:Qu(n) + U; (n) ne[-N_,,0] i=1,....m
. (48)
U (n) = 0:0u(n) + U (n) ne€[0,N] i=1,...,m,

where o; € {1, —1} represents the orientation of each copy of the primary breather, NiJr = L%J ,
N; =N; — N;",and N, = N, = co. Adjacent copies of the primary breather are in-phase if

5727



Nonlinearity 35 (2022) 5714 R Parker et al

oioiy1 = 1, or out-of-phase if 0;0,4; = —1. (As in [39], other phase relations are not consid-
ered here; see also [50].) The functions U ,i in (48) are remainder terms, which will be small, so
that the multi-breather resembles a sequence of well-separated copies of the primary breather,
to leading order. We also define the characteristic distance

N = % min{N;}, (49)

which will be used in the estimates of the remainder terms U. The individual pieces U:"(n)
are joined together end-to-end as in [21, 46, 48, 49] to create the multi-breather U(n), which
can be written in piecewise form as

i—1

i—1 i—1
Ui |n=)Y_N; >N =N +1<n<) N,
j=1 j=1 j=1
Un) = i=1,...,m, (50)
i—1 i—1 i—1
Ut {n=>_N, D ONj+1<n< ) Nj+N'
j=1 j=1 j=1

where we define Z?ZIN 7 = 0. We have the following theorem concerning the existence of

multi-breathers on X,%,,,e. We note that this is a solution to the finite dimensional approximation
(38) on X3, for arbitrary, fixed M.

Theorem 1. Assume hypotheses 1 and 2, and let M > My, where My is defined in
hypothesis 2. Let Q,,(n) be the primary breather solution to the discrete dynamical system (38)
on X3, from hypothesis 2. Then there exists a positive integer N* with the following property. For
allm > 1 and distances N; > N*, there exists a unique solution U(n) to the discrete dynamical
system (38) on X3, where U(n) € XI%/I,C' This solution comprises, to leading order, m sequential
copies of the primary breather Q,,(n), and can be written piecewise in the form (48). For the
remainder terms U li (n), we have the estimates

UL (N') = 0i41Qu(=N;) + O(ry™)
Ui (=N;7) = 0:0u(N;) + Oy 2

~ —N. —(N.”
1T7 My < Cryg g n=2...m
51
P B AR A ") 1)
U7 Mlxy < Cry ' 1y ! n=1,....m—1
1T )|x, < Crif™riy
1T Ixy < Crafrif"s

which hold as well for derivatives of Dii(n).

Proof. The proof is a straightforward adaptation of the proofs of theorems 1 and 3 in [49],
and is very similar to the proof of [21, theorem 1]. Since the stable and unstable manifolds

we(0) and Wy .(0) intersect transversely in Xy, the implementation of Lin’s method does
not involve jump conditions. (]
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4.3. Spectral stability

For a multi-breather consisting of m components, as long as the individual copies of the primary
breather are sufficiently well separated, there will be 2(m — 1) eigenvalues in spectrum of (36),
i.e. one pair per additional copy of the primary breather, which will be located near the origin.
We call these interaction eigenmodes, since they result from nonlinear interactions between the
tails of adjacent copies of the primary breather. As in [46, 49], we locate these eigenmodes by
using Lin’s method to construct the corresponding eigenfunctions (see appendix A for details).
We note that this theorem gives the Floquet exponents A, which are the eigenvalues of (36).
The Floquet multipliers 4 are related to these by i = e*”. We also note that the eigenvalues
found this way are for the finite dimensional approximation (38) on X3, for arbitrary, fixed M.
The proof is given in appendix A.

Theorem 2. Assume hypotheses 1-3, and let M > M, where My is defined in hypothesis 2.
Let Qy(n) = (g, q,_,) be the primary breather solution to the discrete dynamical system (38)
on Xz, from hypothesis 2, and let Y(n) = (3,,y,_1) = w0.,Qy(n). Let U(n) be an m-component
multi-breather constructed as in theorem 1 with distances N; and orientation parameters o,.
Then there exists § > 0 with the following property. There exists a bounded, nonzero solution
W(n) of the eigenvalue problem (40) on X3, for |\| < & if and only if E(\) = 0, where

E(\) = det (A + éK)\zl + R(A)) . (52)

A is the tri-diagonal m x m matrix

—a aj
—a; ay—a ap
A= —ay  ar —as a3 (53)

with

T
a; = 0i0i+l/ (“IN_Jr"LNT—l - "IN.*—quN-’)dt
0 i l i i

. (54)
a; = O’iO'i+1/0 (C.I_N;qu-&-,l - C.]_N;_lé]Nlﬁ-)dt,
00 T
K=Y / (42 + 29udn ) dt, (55)
n=-—o00 0
and the remainder term has uniform bound
[R)©)]x2, < C(ry” + |AD*. (56)
Remark 1. Substituting y, = wd,q,,, we can write (55) as
00 T
K=Y / (200 + ), (57)
0

n——0o0
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which is the solvability condition from [53]. Integrating by parts, we can also write (55) as

00 T - ,

n——0o0 n=—0o0

In the AC limit, since the primary breather comprises a single excited site ¢(¢) at one of the
lattice points, equation (58) becomes

T*(E)

RC) =

K= /0 ' (¢}2 - 2w(aw¢)gz§) dr =

by the proof of [39, lemma 2], where T(E) is defined in (7), noting that —w3,,¢ corresponds to
v in that reference.

Corollary 1. If the primary breather Q) = (q,,q,_,) has the even spatial symmetry
q_, = q,, the matrix A in theorem 2 simplifies to

—a aq
ap —a; — ap a
A— a —a; —az  as , (60)
apm—1  —Aam—1
with a; = O','O',;Hb,’ and
T
/ q% (q%+1 — q%fl)dt N;even
_JJo
b; = T
/ (qN,-—IQNH—fi — C.]N,--HQN,-—fi)dt N; odd.
0 i T
The matrix A has one eigenvalue at 0, and the remaining (m — 1) eigenvalues {1, . .., [, }

are real and distinct. As long as the continuous spectrum does not interfere, there are (m — 1)
pairs of interaction eigenmodes, which are given by

Aj:i,/—%JrO(HN) =1, m—1. 61)

These are either real or imaginary by Hamiltonian symmetry.

Proof. This follows from theorem 2 using same argument as in [49, theorem 5]. (]

Two special cases to consider are the double breather (m = 2), and the multi-breather
where all copies of the primary breather are equally spaced. For a double breather, the pair
of interaction eigenmodes is given by

A= /Ll?b L ogMy. (62)

If b; and K have the same sign, the in-phase double breather is spectrally unstable and the
out-of-phase double breather is spectrally neutrally stable. The reverse is true if »; and K have
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opposite signs. For an m-site multi-breather, if N; = N, for all 7, i.e. the excited sites are equally
spaced, then b; = b, for all b. The matrix A from (60) reduces to A = b, S, where

—01072 01072
oroy  —0oa(oy + 03) 0203
S = 0203 —03(0y +04) 0304 . (63)

Om—10m —Om—10m

The eigenvalues of S depend only on the phase differences 0,0, between consecutive excited
sites, and not on the individual phases ;. We note that the matrix reduction of the eigenvalue
problem has the same form as that in equation (35) of [39, lemma 2]. In particular, the matrix
S in (63) and the matrix in that lemma are similar (with similarity transformation given by
P = diag(oy,...,0,)), and thus have the same eigenvalues. The quantity b; corresponds to
Ky in that lemma. For i =1,...,m — 1, let p; = 00,4, be the phase differences between
consecutive copies of the primary breather, where p; = 1 indicates in-phase, and p; = —1 indi-
cates out-of-phase. Let n_ be the number of negative p;, and n the number of positive p;. By
[46, lemma 4] (see also the proof of [39, lemma 3]), S has a single eigenvalue at 0, n. positive
eigenvalues, and n_ negative eigenvalues. If b; and K have the same sign, there are ny pairs
of unstable interaction eigenmodes, and n_ pairs of neutrally stable interaction eigenmodes.
Thus, the only neutrally stable multi-breather is one in which each pair of consecutive copies
of the primary breather is out-of-phase. The reverse is true if b; and K have opposite signs. For
multi-breathers in which the excited sites are not equally spaced, the stability pattern depends
on the relative signs of each b; and K, following [46, lemma 4].

5. Numerical results

We construct both the primary breather and multi-breathers by numerical parameter continua-
tion from the AC limit using the software package AUTO [57]. To do this, we first choose an
energy level E, from which we compute the period 7 using (7), and then we determine the AC
breather solution ¢(f) by solving (6) with the initial conditions given in subsection 2.1. For the
starting solution for the parameter continuation at d = 0, we take uy(f) = £¢(7) at a finite set
of lattice points, and u () = 0 everywhere else. In general, we will take the initial excited sites
to be well separated in the lattice, since the results above only hold for well-separated copies
of the primary breather. That being said, this numerical method is effective for any starting
configuration at the AC limit (see figure 7, for example, for a double breather comprising two
adjacent excited sites). For the parameter continuation with AUTO, we use the equation

d (u, 0 1\ /OH/Ou, oM /ou,

i (1}) - (—1 o) (aﬂéavg e <8’H§8vn> : ©4)
where H is the Hamiltonian defined by (5), and € is a small parameter used to break the Hamil-
tonian structure. The parameter € is necessary since homoclinic orbits and periodic orbits in
Hamiltonian systems are generally codimension zero phenomena, i.e. they persist as a system
parameter (the coupling parameter d in this case) is varied; the additional parameter e converts
the problem into a codimension one problem (see [58, 59] for more details on this technique).

As the coupling parameter d is varied in equation (64) by numerical parameter continuation,
the Hamiltonian-breaking parameter ¢ is approximately of order 10~ !, thus is negligible. To
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Figure 3. (a) Initial condition u,(0), and (b) Floquet spectrum, for primary breather for
d = 0.25 for discrete sine-Gordon. (c) Semilog plot of L? norm of solution u,(f) over
one period [0, 7] vs the lattice index n for varying coupling parameter d. (d) Relative
error of exponential decay rate seen in (c) versus that predicted by equation (42).

avoid continuing in the direction of translation symmetry, we add the phase condition

T
<l:tzld, u — uzld> _ / v,‘:ld(uk _ uzld)dt — O,
0

where ul!d refers to the function at the previous continuation step. The index k is chosen to be

one of the lattice points at which the initial condition is ¢(z). We approximate the integer lattice
with a finite lattice of length 2L + 1, numbered from —L to L, and we take Dirichlet boundary
conditions at the ends of the lattice, i.e. u;+; = u_;—; = 0. Thus equation (4) becomes an ODE
in 4L + 2 dimensions, with periodic boundary conditions imposed on each variable. Once a
breather solution has been found, its Floquet spectrum is found numerically by using Matlab’s
eigenvalue solver eig to compute the eigenvalues of the monodromy operator associated with
the linearised system (10). Since (10) results from writing a second order linear ODE in 2L + 1
dimensions as first order linear system in 4L + 2 dimensions, the corresponding eigenvectors
are of the form (v,, w,), where v, and w, are (2L + 1)-dimensional.

5.1. Discrete sine-Gordon equation

We first consider the discrete sine-Gordon equation, where the nonlinearity is given by
f(u) = sinu. For all of the plots in the section, unless otherwise noted, we use a lattice
size L = 15, and the energy at the AC limit is £ = 0.25, which corresponds to a period of
T =7.91. We note that 27 < T < 3, thus the upper continuous spectrum band has posi-
tive Krein signature, and the lower band has negative Krein signature (see figure 2, left).
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Figure 4. (a) Semilog plot showing the decay of the coefficients of the Fourier series
expansion for a single-site breather at the center site uy(f) and neighboring site u;(f) for
discrete sine-Gordon. The vertical axis is rescaled so that the fundamental frequency has
amplitude of 1. (b) Semilog plot showing the L norm difference between the solution Q,,
truncated after M Fourier nodes and the solution Qs;, with 512 Fourier nodes. Coupling
parameter d = 0.25 in both cases.

Figure 3(a) shows the primary breather solution for d = 0.25 at + = 0, which is symmet-
ric on the spatial lattice. The corresponding Floquet spectrum is shown in figure 3(b).
There is a single Floquet multiplier (with multiplicity 2) at 1, which comes from trans-
lation symmetry in . The continuous spectrum bands are a discrete set of points, which
is a result of the finiteness of the lattice and of the spatial discretisation, and have effec-
tively merged into a single band by this value of d. Figure 3(c) shows the exponential decay
of the L? norm on [0, 7] of the primary breather solution u,(¢) at lattice site n, as n is
increased. Figure 3(d) plots the relative error of this decay rate compared to ry, which is
defined in (41). The exponential decay of the coefficients of the Fourier series expansion
(in 7) of the primary breather is shown in figure 4(a). As expected, since the breather is even
in t, only even frequencies are represented in the frequency spectrum. Furthermore, the scaled
amplitudes for all frequencies k > 20 are below 10~!°, suggesting that the finite dimensional
approximation is reasonable. Figure 4(b) shows the exponential decay of the L? norm difference
|0m(n) — Qs12(m)| 2z, 12107 between the solution Q,,(n) truncated after M Fourier nodes and
the solution Qs;,(n) with 512 Fourier nodes, suggesting that an approximation with 32 Fourier
nodes is more than adequate for this set of parameters.

Figure 5 shows the initial conditions (solution at + = 0) for the out-of-phase (left) and
in-phase (right) double breather for Ny = 6 at d = 0.25, together with their Floquet spectra
and the eigenfunction corresponding to the interaction eigenmode. The out-of-phase double
breather has a pair of interaction eigenmodes on the unit circle, thus is spectrally neutrally
stable, while the in-phase double breather has a pair of real interaction eigenmodes off of the
unit circle and on the positive real axis, thus is spectrally unstable. This same pattern holds for
all N, both even and odd. We note that for the solvability condition, we have K < 0 for the
sine-Gordon potential, and that the quantity b; < 0 in (62) for both even and odd N;. Since
K and b; have the same sign for all Ny, this agrees with the stability predictions following
equation (62).

Figure 6(a) shows the exponential decay of the Floquet exponents A (as computed from the
monodromy matrix) for in-phase double breathers as the separation distance N, is increased.
(Recall that the Floquet exponents A and Floquet multipliers  are related by p = e*”). This is
similar for out-of-phase double breathers (not shown). The remaining panels in figure 6 show
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Figure 5. Initial condition u,(0) with Floquet spectrum in inset (top) and eigenfunc-
tion (v,, w,) corresponding to interaction eigenmode (bottom) for out-of-phase double
breather (left) and in-phase double breather (right) for discrete sine-Gordon. Orange
solid line in Floquet spectrum plot corresponds to unit circle. Coupling parameter
d = 0.25, breather distance N; = 6.

the relative error between the computation of these Floquet eigenmodes using the formula (62)
and the computation of these modes from the monodromy matrix. As expected, the relative
error increases with the coupling parameter d, and decreases with the separation distance N .
Figure 7 shows the initial condition u,,(0) and Floquet spectra for two special two-site breathers,
for which the two excited sites at the AC limit are in adjacent lattice nodes. We will call these
inter-site centered breathers, in analogy to the inter-site centered soliton in DNLS [58]. As
predicted by [40], the in-phase inter-site centered breather is unstable, and the out-of-phase
inter-site centered breather is spectrally stable, at least for small d. Since the two copies of
the primary breather in the inter-site centered breather are not well separated, the eigenvalue
results of section 4 do not apply. This is a distinguishing feature between the theory presented
herein and the earlier results, e.g., of [35, 36]. The latter are well-tailored to this case, while
the theory presented herein is suitable for the case of well-separated breathers, as described
above.

For completeness here, and also per its intrinsic interest, we show in figure 8§ the bifurca-
tion diagram for an out-of-phase double breather, starting from the AC limit. The parameter
continuation starts on the lower branch, where the double breather has a pair of interaction
eigenmodes on the unit circle (label (D). The upper branch is a double breather whose con-
stituent breathers are out-of-phase, yet each encompasses two in-phase adjacent excited sites
(label @), i.e. two inter-site centered breathers, which we recall leads to instability (figure 7);
this breather has two pairs of real interaction eigenmodes, in addition to a pair of interaction
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Figure 6. (a) Semilog plot of magnitude of Floquet exponent A corresponding to inter-
action eigenmode vs N, for in-phase double breather with d = 0.1,0.15,0.2,0.25 for
discrete sine-Gordon. (b) Semilog plot of the relative error of Floquet multipliers of
double breathers vs N; for the case of coupling parameter d = 0.25. Semilog plot of
the relative error of interaction eigenmode computation vs d for out-of-phase double
breathers (c) and in-phase double breathers (d) for breather distance N; = 4,5,6,7.

Figure 7. Initial condition u,(0) and Floquet spectrum (inset) for out-of-phase inter-site
centered breather (a), and in-phase inter-site centered breather (b) for discrete sine-
Gordon. Coupling parameter d = 0.1.
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Figure 8. Bifurcation diagram plotting energy #H(u) vs d for out-of-phase double
breather in the soft sine-Gordon potential with N; = 6. Points of interest are marked
with black dots and labeled with circled numbers, which correspond to Floquet spectra
(and in select cases also to the configurations at the bottom left). Continuous spectrum
bands are not shown for clarity. Bifurcations are indicated in the inset with a black cross.

eigenmodes on the unit circle. The middle branch is an asymmetric double breather, com-
prising one single-site breather and another intersite-centered breather which is out-of-phase
with it (label ®); this breather has one pair of real interaction eigenmodes, and one pair of
interaction eigenmodes on the unit circle. There is a corresponding branch (not shown) where
the order of the two breathers is reversed. As d is increased along the lower branch, a pair
of internal modes appears on the unit circle (label 2)); these have opposite Krein signature
from the nearby interaction eigenmode. These collide and move off of the unit circle (label 3)
in the form of a complex quartet (corresponding to an oscillatory instability). At this point, a
second pair of internal modes has appeared on the unit circle, which then passes between the
first pair of Floquet modes (not shown). By label @, the pair of eigenmodes which left the
unit circle has rejoined the unit circle. Between label @ and label (3, the second pair of inter-
nal modes collides (with the branch traced by label ® and label @) at (1, 0) in a subcritical
pitchfork bifurcation and moves off of the unit circle. This pitchfork is symmetry-breaking,
and produces the asymmetric, middle branches of the bifurcation diagram, indicated by the
dashed line. Between label 3 and label (©), there is a turning point (fold bifurcation), in which
the first pair of internal modes collides and moves off of the unit circle. This collision rep-
resents a saddle-center bifurcation with the branch corresponding to label @, designated by
the dotted line, a branch that bears generically two real multiplier pairs. We find it quite rele-
vant to recall that qualitatively similar pitchfork bifurcations are seen for multi-kinks in DKG
([21, figure 4]) and for vortex pairs in the two-dimensional DNLS equation ([59, figure 4]).
Indeed, this seems to represent a generic mode of disappearance in such discrete nonlinear
lattice dynamical systems of states that do not persist all the way to the continuum limit.
Figure 9 shows the bifurcation diagram for an in-phase double breather, again starting from
the AC limit. The diagram is qualitatively similar, in that two bifurcations (a pitchfork and a
saddle-center) result from collisions of internal modes at (1, 0). The main difference is that,
since the starting in-phase breather has a pair of real interaction eigenmodes, these are not
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Figure 10. Turning point of parameter continuation dy vs separation distance N; for
out-of-phase and in-phase double breathers for discrete sine-Gordon.

involved in any collisions with the internal modes. In both cases, there is a turning point (fold
bifurcation) in the bifurcation diagram at a critical value dy of the coupling parameter d, at
which point the parameter continuation reverses direction in d, again marking a saddle-center
bifurcation. For the out-of-phase double breather, this occurs after the pitchfork bifurcation of
the site-centered breathers with the asymmetric ones (see inset in figure 8). On the contrary, for
the in-phase double breather, the pitchfork bifurcation occurs between the branch comprising
a pair of inter-site centered breathers and the asymmetric branch bearing one on-site and one
inter-site centered breather (see inset in figure 9). A plot of the turning point d; vs the separation
distance N, suggests that dj increases linearly with N, for both the in-phase and the out-of-
phase double breather (figure 10).
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Figure 11. (a) Out-of-phase double breather with the Floquet spectrum shown in the
inset for discrete sine-Gordon. Time evolution of the perturbation of the out-of-phase
breather, showing the amplitude of the peaks of u;, and ugr vs 7 (b), and difference in this
amplitude from the unperturbed breather (c). Coupling parameter d = 0.2, separation
distance N; = 4, perturbation parameter § = 0.01.

Finally, we demonstrate the effect of the interaction eigenmodes on the dynamics of the dou-
ble breathers by performing long-term numerical timestepping experiments. For a timestepping
scheme, we use a symplectic and symmetric implicit Runge—Kutta method [62] to preserve the
symplectic structure of the Hamiltonian system. Specifically, we use the Matlab implementa-
tion of the irk2 scheme of order 12 from [63]. For each experiment, we perturb the stationary
breather by adding the eigenvector (v,, w,) corresponding to the interaction eigenmode y, mul-
tiplied by a small factor §. (If the eigenvector is complex, we use the real part of the eigenvector
for the perturbation). For a double breather u, (), let u () = Uy (1) and ugr(t) = Uyt (1) be
the center sites (i.e. the sites of maximal excitation) of the left and the right breather, respec-
tively. First, we look at the out-of-phase double breather (figure 11(a)). We choose the coupling
parameter d = 0.2 and separation distance N; = 4 so that we avoid the (nonlinearity induced)
1:2 resonance between the interaction eigenmode and the continuous spectrum bands, which
leads to a nonlinear instability (see [40] for details). Although we expect that nonlinear insta-
bilities due to these higher order resonances will occur, they will be manifested at times beyond
the time intervals of our simulations. When the out-of-phase double breather is perturbed, the
peak amplitudes of uy (f) and ug(f) oscillate in opposite directions with frequency given by the
imaginary part of log(u)/T (see figure 11), with relative error less than 0.005, where 1 is the
Floquet multiplier on the unit circle corresponding to the interaction eigenmode.

When the in-phase double breather is perturbed in the same way, the oscillations in uy (f) ini-
tially increase in both amplitude and period, while those in ug (#) decrease in both amplitude and
period (figure 12(d)). (These are reversed if the perturbation is in the opposite direction.) We
can interpret this behavior by looking at the form of the corresponding eigenfunction (figure 5,
right). An addition of a small multiple of this eigenfunction to the double breather at r = 0
causes one breather to increase in both amplitude and velocity (thus in energy), and the other
to decrease in both amplitude and velocity. Since sine-Gordon is a soft potential, the breather
which increases in energy also increases in period, and the breather which decreases in energy
also decreases in period. For separation distance N; = 6, as t evolves, we see that the peri-
ods of uy (f) and ugr(f) vary periodically in opposite directions (figure 12(c)), thus the phase
differences between the two breathers vary periodically as well (figures 12(a) and (b)). The
amplitudes of uy (f) and ug(?) also vary periodically in opposite directions (figure 12(e)). In
effect, the perturbed in-phase double breather appears to be oscillating about the neutrally sta-
ble, out-of-phase double breather, a feature that persists robustly over longer time scales. The
growth rate of the difference in norm between the perturbed and unperturbed solutions is given
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Figure 12. Time evolution of the perturbation for an in-phase breather for discrete sine-
Gordon. (a) Colormap showing u,, vs t for sites —5 to 5; breathers start in-phase (top)
and are out-of-phase at approximately # = 215 (bottom). (b) Phase difference between
two breathers vs #; 0 is in-phase, 7 is out-of-phase. (c) Period of two breathers vs f;
the period 7 is measured as the distance between consecutive peaks. (d) Time evolu-
tion of u and ur for unperturbed breather (dotted blue lines) and perturbed breather
(solid orange lines). (e) Maximum amplitude of ;. and ug vs . (f) Semilog plot showing
time evolution in difference of > norm of perturbed and unperturbed breather, together
with least squares regression line. Coupling parameter d = (.25, separation distance
N, = 6, perturbation parameter 6 = 0.005.

by /7, with a relative error of less than 0.001, where z > 1 is the larger of the Floquet mul-
tiplier pair (figure 12). If the separation distance N, is smaller, the two breathers attract each
other, and eventually merge into a localised, single-site breather state (see figure 13 for sepa-
ration distance N; = 4). This limiting solution is close to a higher energy, single-site breather,
and is located between the initial starting sites for the pair of breathers. The energy density at
lattice site n, which is plotted in the bottom panels of figure 13, is given by

1 d
hn = Svn 4 V) + 7 [ = ) + (= 100)°], (65)
where v, = it,, so that the Hamiltonian (5) is the sum of the energy densities over the entire
lattice. A plot of the total energy vs time (figure 13(b)) indicates that energy is conserved by
the numerical scheme over the simulation time, providing validation of this result.

5.2. Hard ¢* potential

The results for the soft ¢* potential are similar to those for sine-Gordon (which is expected,
since the first two terms in the Taylor expansion of the sine-Gordon potential are qualitatively
similar to the soft ¢4 potential), thus we will not show them here. We instead look at the hard
¢4 potential. For all of the plots in the section, unless otherwise noted, we use a lattice size
L = 15, and the energy at the AC limit is £ = 1.75, which corresponds to a period of
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Figure 13. (a) Colormap showing the evolution in 7 of |u,| for discrete sine-Gordon.
(b) Total energy H(u(z)) vs t (H is given by (5)). (c¢) and (d) Energy density vs time
for central sites of breather. Labels of sites correspond to those in (a). Separation
distance N; = 4, coupling parameter d = 0.25, perturbation parameter 6 = 0.01, lattice
size parameter L = 150.

u,,,(O)

Figure 14. Initial condition u,(0) and Floquet spectrum (inset) for primary breather
(a), in-phase inter-site centered breather (b), and out-of-phase inter-site centered breather
(c) for hard ¢* potential with coupling parameter d = 0.1.

T = 4.1093. Figure 14 shows the initial conditions for the primary breather, the in-phase inter-
site centered breather, and the out-of-phase inter-site centered breather, together with their
Floquet spectra. In contrast to the sine-Gordon potential, the out-of-phase inter-site centered
breather is unstable, while the in-phase inter-site centered breather is spectrally stable for suffi-
ciently small d (see also figures 4 and 6 in [40]). These agree with the results of [35, 36]. As the
distance between breathers NV, is increased, the in-phase double breather is spectrally stable for
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Figure 15. Floquet spectra for N| = 1, 2, 3, 4 for in-phase double breather (top) and out-
of-phase double breather (bottom) for hard ¢4 potential with d = 0.125.

Table 2. Summary of Floquet interaction eigenmode pattern for double breathers for
soft sine-Gordon potential and hard ¢* potential.

Potential Ny Sign of K Sign of b, In-phase Out-of-phase

Sine-Gordon (soft) Even — — Unstable Stable
Odd — — Unstable Stable

¢* (hard) Even + + Unstable Stable
Odd + — Stable Unstable

N; odd and spectrally unstable for N; even, and the reverse is true for the out-of-phase double
breather (see figure 15). We note that the solvability condition K > 0 for the hard ¢* potential;
however, for the quantity b; in (62), b; > 0 for N; even, and b; < 0 for N; odd. This agrees
with the stability predictions following equation (62), and explains the alternating eigenvalue
pattern seen as the distance N, is increased. A summary of the Floquet spectral pattern for both
potentials is given in table 2.

Figure 16 shows the bifurcation diagram for out-of-phase and in-phase double breathers for
N; = 6. As noted above, the out-of-phase double breather is spectrally stable, while the in-
phase double breather is unstable. For N, odd, this pattern is reversed (not shown). The upper
branches are double breathers comprising two out-of-phase inter-site centered breathers, where
we recall that this is the unstable configuration for the inter-site centered breather. The middle
branch is an asymmetric double breather, comprising one single-site breather and one out-of-
phase inter-site centered breather. Figure 17 shows the relative error in the computation of the
Floquet interaction eigenmodes on the lower branches for both the in-phase and out-of-phase
double breathers for both even and odd N, using the formula (62). As for the sine-Gordon
equation, the relative error increases with d. We note that the relative error is less than 1072 up
to approximately d = 0.25, which is close to the turning points of the bifurcation diagrams.
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Figure 16. Bifurcation diagram plotting energy H(u) vs d for hard ¢* potential for out-
of-phase (top) and in-phase (bottom) double breather with N; = 6. Solutions and Floquet
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Figure 17. Semilog plot of relative error of interaction eigenmode computation vs d
for in-phase (a) and out-of-phase (b) double breathers for hard ¢4 potential with
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Figure 18. (a) Initial condition for asymmetric double breather solution with Floquet
spectrum in inset for discrete sine-Gordon, coupling parameter d = 0.075. (b) Colormap
showing solution to discrete sine-Gordon equation comprising one breather (on left) and
one kink (on right), coupling parameter d = 0.25. Time evolution is over one period T
of the breather.

6. Conclusions and future directions

In this paper, we studied multi-breather solutions to the DKG equation, with an emphasis on
a theoretical analysis of multi-breathers with well-separated excited sites, and their existence,
spectral stability and dynamical properties. Specifically, we looked at an approximation of
the system on a finite-dimensional Hilbert space, and used Lin’s method to construct multi-
breather solutions to this system. Furthermore, we used Lin’s method again to reduce the
eigenvalue problem to a low-dimensional, matrix equation, which can then be solved. This
can be done as long as the distances between copies of the primary breather are sufficiently
large. The results from this approximation are in very good agreement with direct numerical
computations of the Floquet spectrum, both for soft and hard potentials. The key determining
factor for the Floquet spectral pattern is the phase differences between adjacent copies of the
primary, single-site breather. In addition, our results showcased the crucial difference between
the soft sine-Gordon equation and the hard ¢* equation; in the latter case, the Floquet spec-
tral pattern depends in addition on whether the distances in lattice points between consecutive
copies of the primary breather are even or odd, while in the former case, it does not (see also,
e.g., the analogy with the interaction of dark solitons in the defocusing DNLS model of [64]).

Avenues of further research include exploring breathers and multi-breathers either in
Klein—Gordon lattices with asymmetric potentials, such as the Morse potential, or in other
models involving beyond-nearest-neighbor interactions, discussed, e.g., in [51] and references
therein. One class of models which would be interesting to study concerns equations in which
the potential involves off-site terms, such as the FPUT lattice. A natural extension of this
would be to look at higher dimensional lattices, both for on-site potentials such as in a higher
dimensional Klein—Gordon model, and more complex potentials, such as higher dimensional
FPUT lattices. In two dimensions, there are many possible regular lattice models, including
square, triangular, and honeycomb, and these different geometries may exhibit qualitatively
different behavior. Another possibility would be to look at more complex solutions. One class
of solutions which remains unexplored is asymmetric multi-breathers, solutions comprising
breathers which have different, but commensurate, fundamental periods. Figure 18(a) shows
an example of an asymmetric double breather solution to the discrete sine-Gordon equation;
the left breather has a fundamental period of 8, and the right breather has a fundamental period
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of 16, so the overall breather has a period of 16. While these solutions can be constructed
numerically by parameter continuation from the AC limit, preliminary numerical experiments
suggest that they only exist for small values of the coupling parameter d, and that they are spec-
trally unstable. In addition, preliminary numerical experiments suggest that there are solutions
comprising both breathers and kinks. See figure 18(b) for an example of a solution to the dis-
crete sine-Gordon equation in which a breather is connected to a kink. Finally, although the
finite-dimensional approximation used in the paper yields results which are in very good agree-
ment with those found numerically, it may be still possible to remove this restriction and prove
the results for the full system, although this would most likely involve an entirely different
approach.
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Appendix A. Proof of theorem 2

The proof is a straightforward adaptation of the proof of [49, theorem 2]. Let Y(n) =
y(n),y(n)) = wd,U(n). We take as an ansatz for the eigenfunction W(n) the following piece-
wise linear combination

W (n) = ci(UF () + AY; (n) + Wi (n), (66)

where ¢; € C, and W"(n) is defined on the same interval as U;"(n) in (48). Substituting (66)
into (40), using the relations

UF(n + 1) = DFy(U(n)UE(n)

YE(n+ 1) = DFy(Un)YE(n) + 20,BU (n), ©n
and simplifying, we obtain the equation
Wi + 1) = DFy(0:Qu(n) Wi (n) + N2¢;B[20,Yi(n) + Ui (n)]
+ [GE(n) + (22X, + NHBIWF (n) + ¢\ BY(n), (68)
where
G (n) = DFy(U;"(n)) — DFy(0iQu(n)). (69)

In addition to solving (68), the eigenfunction W must satisfy matching conditions at n = +N;
and n = 0. As in [21, 46, 49], this will in general not be possible. Instead, we solve the system
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Wi (n 4 1) = DFy(0,0(n)) Wi (n) + N¢;B[20,Y"(n) + Ui (n)]
+ [GE(n) + @A, + N)BIWFE(n) + ¢\’ BYE(n)

W N = Wi (=N = Cic

WH(0) = W; (0) € CZu(n), (70)
where

Cic = [Ur 1 (=N;) + MY (=N)eip1 — [UF (N + MYl (71
A solution to (70) is an eigenfunction if and only if the m jump conditions

& = (0:iZuO), WS (O0) =W (0) =0 i=1,....m (72)

are satisfied.
We proceed as in the proof of [49, theorem 2]. Since DF(0) is hyperbolic, and

||

| Qm(n) HLI%H([O,T]) < Cry

by the stable manifold theorem, we can adapt the results of [65] to decompose the evolution
operator ®(m, n) of the variational equation (43) in exponential dichotomies on Z*. We then
rewrite (68) as a fixed point problem using the discrete variation of constants formula (see, for
example [49, lemma 3]), and project onto the stable and unstable subspaces of the exponential
dichotomy. From there, we follow the steps in [49], using the estimates (51), to obtain a unique
solution to (70). The jump conditions (72) become

& = 010141 (Zu(N;T), O (=N (i1 — )
+ 03011 (Zu(—=N ), Qu(N; D) (ei — cin1)

— XS {2 1, BRAY ) + Oum]) + RO, (73)

n=—00

where the remainder term has the uniform bound
I ROV©@ e, < Clra” + [AD.
Evaluating the inner products, we obtain for the jumps
1
& = ai(cipr — &) + dialei = ci) + S NK + ROV(0), (74)

where a; and a;_; are defined by (54), and K is defined by (55). Equation (52) follows by writing
the jump conditions (74) in matrix form as

<A + émzl + R(A))c =0 (75)

on R™, where ¢ = (cy,...,cn)T, and the matrix A is defined by (53). Equation (75) has a
nontrivial solution if and only if its determinant is 0.
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