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Abstract
We consider a language dynamics ODE model for two
languages on a square lattice. The model is an exten-
sion of the one popularized by Abrams and Strogatz. In
our study, we are interested in the existence and spec-
tral stability of structures such as stripes, which are real-
ized through pulses and/or the concatenation of fronts,
and spots, which are a contiguous collection of sites
in which one language is dominant. Because the cou-
pling between adjacent sites is nonlinear, the transi-
tion between regions speaking two different languages
is super-exponential. The full dynamics are considered
as a function of the prestige of a language. It is seen
that as the prestige varies, it allows for a language to
spread through the lattice, or conversely for its demise.
Although most of the work is done assuming a square
lattice, we briefly consider the problem on a triangle lat-
tice to illustrate the robustness of the findings. We con-
clude by looking at the existence and spectral stability
of fronts and pulses for an associated continuum PDE
model. In this model, the super-exponential decay asso-
ciated with the lattice model is reflected in the existence
of compactly supported structures (compactons).
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1 INTRODUCTION

In their seminal paper,1 Abrams and Strogatz developed a simple ODE model,

𝑢̇ = (1 − 𝑢)𝑢𝑝 − 𝐴𝑢(1 − 𝑢)𝑝, (1)

to help understand language competition and the decline in the number of people who speak
such historic languages as Welsh, Quechua, and Scottish Gaelic. We will henceforth label Equa-
tion (1) as the AS model (see Figure 1 for a cartoon representation of this compartment model).
The underlying assumptions for this model are that all speakers are monolingual, and the pop-
ulation is highly connected with no spatial or social structure. In Equation (1), 𝑢 represents the
proportion of the population that speak language𝑈. If 𝑣 is the proportion that speak language 𝑉,
as all speakers are monolingual, 𝑣 = 1 − 𝑢. The assumption of monolingual speakers only may
be considered to be too simplistic in terms of language; however, in the context of religious affil-
iation, it is natural, as here language 𝑈 actually refers to those who have some type of religious
affiliation, and language 𝑉 represents those who do not.2
The parameter 𝑝 > 0measures volatility. The case 𝑝 = 1 is a neutral situation, where transition

probabilities from one language to another depend linearly on local language densities. If 𝑝 > 1,
there is a larger than neutral resistance to changing the language (low volatility), and if 𝑝 < 1,
there is a lower than neutral resistance to changing the language (high volatility). Experimen-
tally, it is estimated that 𝑝 = 1.31 ± 0.25.1 In this paper, we respect the experimental findings and
assume 𝑝 > 1, so the volatility is low.
The parameter 𝐴 > 0 represents the affinity of the general population towards one language

or the other. In linguistics terminology, the parameter 𝐴 can be used to represent the prestige
associated with a particular language. The fixed points 𝑢 = 0 (language 𝑉 is preferred) and 𝑢 = 1

(language 𝑈 is preferred) are stable, while 𝑢 = 𝐵∕(1 + 𝐵) with 𝐵 = 𝐴1∕(𝑝−1) is unstable. If 𝐴 <

1 and 𝑢(0) = 0.5 (both languages are initially equally preferred), then 𝑢(𝑡) → 1 as 𝑡 → +∞, so
the population has an affinity for language 𝑈 or language 𝑈 has more prestige in the general
population. On the other hand, if 𝐴 > 1 and 𝑢(0) = 0.5, then 𝑢(𝑡) → 0 as 𝑡 → +∞, so language 𝑉

has more prestige in the entire population.
An agent-based model associated with the AS model Equation (1) when 𝑝 = 1,

𝑢̇ = (1 − 𝐴)𝑢(1 − 𝑢), (2)

is considered in Ref. 30. In the derivation of this continuum model it is assumed, for example,
on a square lattice, that an individual interacts only with the nearest neighbors. When 𝐴 ≠ 1, the
agent-based model gives the same interpretation as (2). In particular, ifU has more prestige, then
the entire population will eventually speak language U, whereas if V has more prestige, then all
will eventually speak language V. An agent-based model is also considered in Ref. 32. In the fully
connected case, the dynamics of the associated mean-field model are equivalent to the AS model.
As pointed out by Ref. 22, the monolingual assumption implies the two languages are so dis-

similar that conversation is practically impossible between the two competing language groups.
These authors extend the AS model to allow for languages that are similar enough for there to be
bilingual speakers. The proportion of the population that is bilingual satisfies 𝑏 = 1 − 𝑢 − 𝑣 with
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F IGURE 1 The compartment model associated with AS model Equation (1). The variable 𝑢 represents the
proportion of the population that speaks language 𝑈, and 𝑣 is the proportion that speaks language 𝑉. It is
assumed 𝑢 + 𝑣 = 1

0 ≤ 𝑏 ≤ 1. The model is

𝑢̇ = (1 − 𝑘)(1 − 𝑢)(1 − 𝑣)𝑝 − 𝐴𝑢(1 − 𝑢)𝑝

𝑣̇ = (1 − 𝑘)𝐴(1 − 𝑣)(1 − 𝑢)𝑝 − 𝑣(1 − 𝑣)𝑝,
(3)

where 0 < 𝑘 < 1 represents the ease of bilingualism. In particular, 𝑘 = 0means that conversation
is not possible between monolingual speakers, and 𝑘 = 1 implies 𝑈 = 𝑉. The larger the value of
𝑘, themore similar are the two languages. If 𝑘 = 𝑏 = 0, thenmodel Equation (3) reduces tomodel
Equation (1). An analysis of the model Equation (3) is provided in Refs. 8, 9, 25.
The AS model has been extended to networks. Each node of the network corresponds to a

group whose dynamics are governed by the ASmodel, while the dynamics between groups satisfy
some other rule. Amano et al.3 collected and analyzed world-wide data taking into account such
things as geographical range size, speaker population size, and speaker growth rate (i.e., changes
in the number of speakers) of the world’s languages, and assessed interrelations among these
three components to understand how they contribute to shaping extinction risk in languages.
The role of population density and how it effects the interaction rates among groups is discussed
in Ref. 18 in the context of language shift in Galicia, which is a bilingual community in northwest
Spain. They model the problem by looking at Equations (3) on a network, with the strength of the
interactions between nodes depending on the population density. The model for 𝑗 = 1,… , 𝑛 is

𝑢̇𝑗 = (1 − 𝑘𝑗)(1 − 𝑢𝑗)(1 − 𝑣𝑗)
𝑝 − 𝐴𝑗𝑢𝑗(1 − 𝑢𝑗)

𝑝 + 𝐾𝑗

(
𝑢 − 𝑢𝑗

)
𝑣̇𝑗 = (1 − 𝑘𝑗)𝐴𝑗(1 − 𝑣𝑗)(1 − 𝑢𝑗)

𝑝 − 𝑣𝑗(1 − 𝑣𝑗)
𝑝 + 𝐾𝑗

(
𝑣 − 𝑣𝑗

)
.

(4)

Here 𝑦 represents the average of the set, {𝑦𝑗}. The positive parameter𝐾𝑗 is assumed to be a strictly
increasing function of the population density. The authors33 follow a similar strategy, except they
assume the nonlinearities are of Lotka–Volterra type. Taking a different approach, Ref. 35 assume
a diffusion process to take into account spatial effects. Fujie et al.13 and Zhou et al.36 consider the
problem of competition among more than two languages.
In this paper, we consider the language competition problem on lattices under the assump-

tion of low volatility, 𝑝 > 1. For ease, we will primarily work with 𝑝 = 2, but our experience is
that other values of 𝑝 > 1 do not affect the results qualitatively. As long as the interactions are
superlinear, the relevant phenomenology and associated bifurcation diagrams do not change sig-
nificantly as regards their principal features. We will assume there is no bilingual subpopulation
(see Refs. 18, 23, 25 for some work in this area under the assumption of a single group). We will
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assume the existence of 𝑛 distinct population groups, and let 0 ≤ 𝑢𝑗 ≤ 1 represent the proportion
of those in group 𝑗 who speak language 𝑈 (𝑣𝑗 = 1 − 𝑢𝑗 speak language 𝑉). For each 𝑗 = 1,… , 𝑛,
the resulting equation is a natural extension of the compartment model illustrated in (1),

𝑢̇𝑗 =

(
𝑛∑

𝑘=1

𝑰𝑗𝑘𝑢
𝑝

𝑘

)
⋅ (1 − 𝑢𝑗) − 𝐴𝑗

(
𝑛∑

𝑘=1

𝑰𝑗𝑘(1 − 𝑢𝑘)
𝑝

)
⋅ 𝑢𝑗, (5)

where 𝑰𝑗𝑘 ≥ 0. We implicitly assume in this model that the population of each group is fixed,
and there is no migration of speakers from one group to another. We call the matrix 𝑰 = (𝑰𝑗𝑘) the
influence matrix, and the term 𝑰𝑗𝑘 represents the influence group 𝑘 has on group 𝑗 through the
between-group reaction rate. If we think of the system (5) as being a compartment model, then
the term 𝑰𝑗𝑘𝑢

𝑝

𝑘
is the rate constant associated with the influence that the 𝑈 speakers in group

𝑘 have on the 𝑉 speakers in group 𝑗, and 𝑰𝑗𝑘(1 − 𝑢𝑘)
𝑝 is the rate constant associated with the

influence that the 𝑉 speakers in group 𝑘 have on the𝑈 speakers in group 𝑗. Clearly, when 𝑛 = 1,
the system (5) collapses to the AS model Equation (1). Later in this paper, we will look at the
dynamics associated only with specific influence matrices; namely, that associated with a square
lattice in 3 and 4, and that for a triangular lattice in 5.
Let us briefly compare the systems (4) and (5). In the case of no bilingual speakers, the system

(4) collapses to

𝑢̇𝑗 = (1 − 𝑢𝑗)𝑢
𝑝

𝑗
− 𝐴𝑗𝑢𝑗(1 − 𝑢𝑗)

𝑝 + 𝐾𝑗

(
𝑢 − 𝑢𝑗

)
. (6)

First note that the systems (5) and (6) have the feature that the on-site dynamics are the same as
those for the AS model. The model Equation (6) has a linear coupling term that assumes group
𝑗 is influenced by the difference between the average proportion of language 𝑈 speakers for all
the groups and the proportion who speak𝑈 in group 𝑗. On the other hand, under the assumption
that each external group has an equal influence on a given group, 𝑰𝑗𝑗 = 1 and 𝑰𝑗𝑘 = 𝐾𝑗∕(𝑛 − 1)

for all 𝑘 ≠ 𝑗, the system (5) becomes

𝑢̇𝑗 = (1 − 𝑢𝑗)𝑢
𝑝

𝑗
− 𝐴𝑗𝑢𝑗(1 − 𝑢𝑗)

𝑝 + 𝐾𝑗

[
(1 − 𝑢𝑗)𝑢

𝑝

≠𝑗
− 𝐴𝑗𝑢𝑗(1 − 𝑢)

𝑝

≠𝑗

]
, (7)

where we use the notation,

𝑓≠𝑗 =
1

𝑛 − 1

∑
𝑘≠𝑗

𝑓𝑘.

The nonlinear coupling term for themodel Equation (7) takes into account the average proportion
of speakers of language𝑈 and language𝑉 for all other groups, and is clearly very different from the
linear coupling term associated with the model Equation (6). It is an open question as to whether
this functional difference in the coupling terms leads to a qualitative difference in the dynamics.
The AS model can also be used to model opinion propagation in a population in which it is

assumed that people have either opinion𝑈, or opinion 𝑉, where we think of 𝑉 as being “not𝑈.”
Marvel et al.,21 hereafter referred to as MS, provide a model similar to (3) in which it is assumed
there are three distinct groups: those who hold opinion 𝑈, those who hold opinion 𝑉, and the
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remaining who are undecided,

𝑢̇ = (1 − 𝑢 − 𝑣)𝑢 − 𝑢𝑣

𝑣̇ = (1 − 𝑢 − 𝑣)𝑣 − 𝑢𝑣.

The underlying assumption in this compartmentmodel is that in order for one who initially holds
opinion 𝑈 to eventually hold opinion 𝑉 (or vice-versa), the person first must become undecided.
Wang et al.34 extended the MSmodel to allow for several competing opinions. TheMSmodel was
extended to networks in Ref. 7, and this extended model was studied using dynamical systems
techniques. Tanabe andMasuda31 proposed and analyzed an interesting opinion formationmodel
(hereafter labelled TM) in which it was assumed that the population itself breaks down into two
groups: congregators and contrarians. In contrast, the MS model implicitly assumes the entire
population is filled with congregators. One conclusion of the TM model is that if a large enough
proportion of the population is contrarian, then no majority opinion will be achieved. This is in
contrast to the conclusion of those models in which it is assumed there are only congregators, as
here amajority opinion is always obtained. The TMmodel was later refined in Ref. 11, and the new
model allowed for the effects of peer pressure, and incorporated the influence of zealots. From a
qualitative perspective, the mean-field models used for opinion dynamics and language death
have many similarities. Thus, although we frame our results using the formulation associated
with language, they are also directly applicable to mean-field opinion formation models.
In this paper, we are primarily interested in the existence and stability of spatial structures

for the network system (5). For the sake of exposition, we mostly assume the groups have been
arranged on a square lattice, so 𝑢𝑗𝑘 will represent the proportion of the population at site (𝑗, 𝑘)

who speak language 𝑈. We will also briefly consider a triangular lattice to demonstrate that the
lattice type does not appear to have a large qualitative influence on the dynamics. The interactions
on the lattice are nearest-neighbor (NN) only, and there will be no preferential distinction in the
reaction rates, 𝑰𝑗𝑘 = 𝑰𝑘𝑗 . Wewill also assume the prestige is uniform throughout the entire lattice,
𝐴𝑗𝑘 = 𝐴. Even under the assumption on the interaction matrix, it is an interesting problem in
its own right to allow for a spatially inhomogeneous distribution of the prestige and see how it
affects the prevalent dynamics. The consequences of removing these assumptions will be left for
a future paper.
For the square lattice, we start by considering the existence and stability of fronts and pulses

for the system (5), as these are prototypical nonlinear patterns that may mediate the spread of
a language, opinion, or religious affiliation over the lattice domain of interest. The underlying
assumption here is 𝑢𝑗𝑘 = 𝑈𝑗 , so the 2D problem becomes an effectively 1D problem. A front is
a solution for which 𝑈𝑗 = 0 (or 𝑈𝑗 = 1) for 1 ≤ 𝑗 ≤ 𝑛0, and 𝑈𝑗 = 1 (or 𝑈𝑗 = 0) for 𝑗 ≥ 𝑛0 + 𝓁

and some 𝓁 ≥ 1. In other words, to the left of 𝑛0 language 𝑉 is spoken, and to the right of 𝑛0 + 𝓁

language 𝑈 is spoken. For the 1D problem, a pulse is a solution for which 𝑈𝑗 = 0 for 𝑗 ≤ 𝑛0 and
𝑗 ≥ 𝑛0 + 𝓁, and𝑈𝑗 > 0 for𝑛0 < 𝑗 < 𝑛0 + 𝓁. On the full lattice, a pulse solution inwhat followswill
correspond to a stripe of language 𝑈 speakers who are surrounded on both sides by 𝑉 speakers.
Wewill consider when fronts can travel, which implies that language𝑈 is invading language𝑉, or
vice-versa.Wewill also consider when pulses can grow or shrink.Wewill see that a growing pulse
can be thought of as the concatenation of two fronts traveling in opposing directions, so language
𝑈 eventually takes over the entire lattice. A shrinking pulse eventually disappears, which means
that language𝑈 has gone extinct. As we will see, the prestige associated with speaking𝑈 (𝐴 < 1)

or 𝑉 (𝐴 > 1) plays a central role in the analysis. We will also briefly look at a fully 2D structure, a
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spot, which is a contiguous group of sites with 𝑢𝑗𝑘 > 0 surrounded by 𝑢𝑗𝑘 = 0—an island of𝑈 in a
sea of𝑉.Wewill briefly redo the analysis for a triangular lattice to demonstrate that the lattice type
does not appear to be important from a qualitative perspective. Of course, it is an open problem
to show that this is actually the case. We will conclude by looking at the associated continuum
model, and study the existence and spectral stability of (concatenated) waves for this model. Here
the nonlinear diffusion allows for compactly supported spatial structures, which actually makes
it easier to study concatenated waves because of the absence of tail–tail interactions.

2 THEMODEL ON A SQUARE LATTICE

We consider the model Equation (5) on a square lattice with NN interactions only. The prestige
will be uniform throughout the lattice, 𝐴𝑗𝑘 = 𝐴. Although we will assume 𝑝 = 2, our numerical
experiments indicate that from a qualitative perspective the results presented herein are robust as
long as 𝑝 > 1. Under these assumptions, the model Equation (5) is

𝑢̇𝑗𝑘 =
[
𝜖0𝑢

2
𝑗𝑘

+ 𝜖1

(
𝑢2

𝑗+1,𝑘
+ 𝑢2

𝑗−1,𝑘
+ 𝑢2

𝑗,𝑘+1
+ 𝑢2

𝑗,𝑘−1

)]
(1 − 𝑢𝑗𝑘)

− 𝐴
[
𝜖0(1 − 𝑢𝑗𝑘)

2 + 𝜖1
(
(1 − 𝑢𝑗+1,𝑘)

2 + (1 − 𝑢𝑗−1,𝑘)
2 + (1 − 𝑢𝑗,𝑘+1)

2 + (1 − 𝑢𝑗,𝑘−1)
2
)]

𝑢𝑗𝑘.

Here 1 ≤ 𝑗, 𝑘 ≤ 𝑛, and we assume in the model that at the edge of the square there are Neumann
boundary conditions, for example, 𝑢𝑛+1,𝑘 = 𝑢𝑛𝑘. The parameter 𝜖0 > 0 is the on-site interaction
rate, and the parameter 𝜖1 > 0 is theNN interaction rate. Using the notation for the discrete Lapla-
cian,

Δdis𝑓𝑗𝑘 = 𝑓𝑗+1,𝑘 + 𝑓𝑗−1,𝑘 + 𝑓𝑗,𝑘+1 + 𝑓𝑗,𝑘−1 − 4𝑓𝑗𝑘,

the ODE takes the more compact form,

𝑢̇𝑗𝑘 = (𝜖0 + 4𝜖1)𝑢𝑗𝑘(1 − 𝑢𝑗𝑘)
[
(1 + 𝐴)𝑢𝑗𝑘 − 𝐴

]
+ 2𝐴𝜖1𝑢𝑗𝑘Δdis𝑢𝑗𝑘

+ 𝜖1
[
1 − (1 + 𝐴)𝑢𝑗𝑘

]
Δdis𝑢

2
𝑗𝑘

. (8)

Note that in this formulation the onsite interaction rate is also influenced by the NN interac-
tion rate.
If we assume that the interactions between neighbors are strong, 𝜖1 ≫ 1, then on setting 𝑅 =

𝜖0 + 4𝜖1 ≫ 1, we have the limiting continuum model,

𝜕𝑡𝑢 = 𝑅𝑢(1 − 𝑢)[(1 + 𝐴)𝑢 − 𝐴] + (1 + 𝐴)𝑢(1 − 𝑢)Δ𝑢 + [1 − (1 + 𝐴)𝑢]|∇𝑢|2. (9)

Here Δ represents the Laplacian, and ∇ is the gradient operator. The continuum model incorpo-
rates the expected temporal dynamics associated with the original ODE model, but the coupling
dynamics between sites is dictated by an effective nonlinear diffusion. The PDE is physical in the
following sense: 𝑢(𝑥, 𝑦, 𝑡) = 0 implies 𝜕𝑡𝑢(𝑥, 𝑦, 𝑡) ≥ 0, and 𝑢(𝑥, 𝑦, 𝑡) = 1 implies 𝜕𝑡𝑢(𝑥, 𝑦, 𝑡) ≤ 0.
Note that diffusion is not present when the entire population supports one language, 𝑢 = 0 or
𝑢 = 1. This is the underlying mechanism associated with compactly supported steady-state solu-
tions.
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When studying the solution structure to the ODE (8), or the accompanying PDE (9), we will
first focus on the existence and spectral stability of time-independent patterns that vary in one
direction only. For theODE (8), wewill set𝑢𝑗,𝑘(𝑡) = 𝑈𝑗 for all 𝑗, 𝑘, and𝑈𝑗 will solve the 1Ddiscrete
model,

0 = (𝜖0 + 4𝜖1)𝑈𝑗(1 − 𝑈𝑗)
[
(1 + 𝐴)𝑈𝑗 − 𝐴

]
+ 2𝜖1𝐴𝑈𝑗Δ𝑗𝑈𝑗 + 𝜖1

[
1 − (1 + 𝐴)𝑈𝑗

]
Δ𝑗𝑈

2
𝑗
, (10)

where Δ𝑗𝑓𝑗 = 𝑓𝑗+1 + 𝑓𝑗−1 − 2𝑓𝑗 . For the PDE (9), we will set 𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝑥), and 𝑈(𝑥) will
solve the nonlinear ODE,

0 = 𝑅𝑈(1 − 𝑈)[(1 + 𝐴)𝑈 − 𝐴] + (1 + 𝐴)𝑈(1 − 𝑈)𝑈′′ + [1 − (1 + 𝐴)𝑈](𝑈′)2, ′ =
d

d𝑥
. (11)

In both cases, wewill be looking for fronts and pulses, the latter of which corresponds to stripes for
the full system. These solutions act as transitions between regions where language𝑈 is dominant
and language 𝑉 is dominant.

Remark 1. Even though the derivation is dissimilar, the continuummodel Equation (9) is remark-
ably similar to the mean-field model associated with the square lattice as provided for in Ref. [32,
equation (48)]. The model Equation (9) has the additional term, [1 − (1 + 𝐴)𝑢]|∇𝑢|2; however,
both models have the important feature that the diffusion coefficient is singular. Dynamically,
both systems have the feature that a contiguous domain tends to evolve in a way that reduces the
curvature of the boundary (see also further relevant discussion regarding the dynamics below).

3 EXISTENCE AND SPECTRAL STABILITY OF STRIPES FOR THE
DISCRETEMODEL

A front solution to the discrete model Equation (10) satisfies 𝑈𝑗 = 0 (1) for 𝑗 ≤ 𝓁, and 𝑈𝑗 = 1 (0)

for 𝑗 ≥ 𝑘, where 1 < 𝓁 < 𝑘 < 𝑛. A pulse solution will satisfy 𝑈𝑗 = 0 (1) for 𝑗 ≤ 𝓁 and 𝑗 ≥ 𝑘, and
𝑈𝑗 ∼ 1 (0) for 𝓁 < 𝑗 < 𝑘. The transition between the states 0 and 1 will be monotone. A stripe
solution to the full 2D model will be a pulse, or a concatenation of two fronts. As we will see, the
concatenation of two fronts provides for a “thicker” stripe. In the same spirit, we can also discuss
multi-stripes, which are the concatenation of several pulses and/or fronts.

3.1 Existence: fronts

If 𝜖1 = 0, the system uncouples, so a monotone front can be constructed analytically. In this limit,
for a front we set 𝑈𝑗 = 0 (1) for 𝑗 = 1,… , 𝓁, and 𝑈𝑗 = 1 (0) for 𝑗 = 𝓁 + 1,… , 𝑛. We will refer to
this front as the off-site front. As each of the fixed points is stable for the scalar AS model, the
front will be stable for the full system. By the Implicit Function Theorem, the front will persist
and be stable for 0 < 𝜖1 ≪ 1. We can concatenate these fronts when 𝜖1 = 0 to form stable stripes,
and then again apply the Implicit Function Theorem to show the existence and stability for small
𝜖1.
When 𝜖1 = 0, we can construct another monotone front by setting 𝑈𝑗 = 0 (1) for 𝑗 =

1,… , 𝓁, 𝑈𝓁+1 = 𝐴∕(1 + 𝐴), and 𝑈𝑗 = 1 (0) for 𝑗 = 𝓁 + 2,… , 𝑛. As all of the fixed points but the
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F IGURE 2 Numerically generated existence curves for stationary 𝑉 → 𝑈 fronts, that is, 𝑈𝑗 = 0 to the left,
and 𝑈𝑗 = 1 to the right. The curve is given for 𝑅1 = 0.6 in the left panel. The solid (blue) curves denote a stable
front (when 𝐴 = 1 it is an off-site front), and the dashed (red) curves denote an unstable front (when 𝐴 = 1 it is
an on-site front). The saddle-node bifurcation points are given by black circles. The vertical axis is the 𝓁2-norm.
Regarding the boundary in the right panel, inside the two curves (which are the saddle-node bifurcation points)
there is a stable stationary front, and outside the curves the front travels. The invading language is provided in
the figure

one at 𝑗 = 𝓁 are stable for the scalar AS model, the front will be unstable for the full system with
the linearization having one positive eigenvalue. By the Implicit Function Theorem, the front will
persist and be unstable with one positive eigenvalue for 0 < 𝜖1 ≪ 1. We will refer to this front as
the on-site front.
When 𝜖1 = 0, the off-site and on-site fronts exist for any value of 𝐴. However, once there is

nontrivial coupling we expect there will be an interval of 𝐴 values that contains 𝐴 = 1 on which
the fronts will exist. In order to determine this interval, we will do numerical continuation using
the MATLAB package, Matcont10. Using this package will also allow us to numerically continue
bifurcation points in parameter space. Setting

𝑅1 =
𝜖1
𝜖0

,

wewill numerically explore the (𝑅1, 𝐴)-parameter space. Wewill use the above theoretical results
as a starting point for small 𝑅1.
For each fixed 𝑅1 > 0, there will be an associated snaking diagram in the parameter 𝐴. For a

particular example, consider the left figure in Figure 2. The horizontal axis is 𝐴, and the vertical
axis is the 𝓁2-norm of the front. In this figure, the solid (blue) curve corresponds to a stable front
(which is off-sitewhen𝐴 = 1), and the dashed (red) curve corresponds to an unstable front (which
is on-sitewhen𝐴 = 1). These two curvesmeet at a saddle-node bifurcation point,which is denoted
by an open black circle. We see there is an 𝐴− < 1 < 𝐴+ for which there are stable fronts when
𝐴− < 𝐴 < 𝐴+, and no stationary fronts (at least as seen via numerical continuation) outside this
interval. The values of 𝐴± depend on 𝑅1. Each of the upward shifts of the stable and unstable
branches correspond to waveforms that are shifted by an integer number of lattice nodes to the
left (hence the growth in norm). The right panel in 2 shows the functions 𝐴± as a function of 𝑅1.
Althtough we do not show it here, even in the limit 𝑅1 → +∞ the two curves do not converge to



KAPITULA and KEVREKIDIS 9

F IGURE 3 The numerically
generated wave speed when 𝑅1 = 0.6 is
given by the solid (blue) curve. The (red)
diamonds mark the boundary for the
existence of the stationary front,
𝐴− ∼ 0.9395 and 𝐴+ ∼ 1.0644, at which
the wave speed is zero. The dashed black
line is the wave-speed prediction of
Equation (13) provided by the PDE model

1; instead, we have𝐴+(+∞) ∼ 1.0082, and𝐴−(+∞) ∼ 0.9918. Inside the two curves, and for fixed
𝑅1, there is a stable stationary front.

3.2 Existence: traveling fronts

Outside the two curves,𝐴±(𝑅1), there is a traveling front. Traveling waves will be written as𝑈(𝑥 +

𝑐𝑡), so𝑈𝑗(𝑡) = 𝑈(𝑗 + 𝑐𝑡). Setting 𝜉 = 𝑥 + 𝑐𝑡, the resulting forward–backward difference equation
to which the traveling wave is a solution is

𝑐𝑈′ = (𝜖0 + 4𝜖1)𝑈(1 − 𝑈)[(1 + 𝐴)𝑈 − 𝐴]

+ 2𝐴𝜖1𝑈[𝑈(𝜉 + 1) + 𝑈(𝜉 − 1) − 2𝑈(𝜉)]

+ 𝜖1[1 − (1 + 𝐴)𝑈]
[
𝑈(𝜉 + 1)2 + 𝑈(𝜉 − 1)2 − 2𝑈(𝜉)2

]
.

This system is numerically solved using a variant of Newton’s method (see Refs. 12, 15, 17 for the
details).
We consider in detail the case of 𝑅1 = 0.6. The numerical result is plotted in Figure 3. Our

experience is that from a qualitative perspective the value of 𝑅1 is not particularly important, as
diagrams similar to Figure 3 can be obtained for different values of 𝑅1. The points 𝐴±(𝑅1) are
marked with a (red) diamond. It should be the case that at these points 𝑐 = 0; unfortunately, the
fact that the linearization becomes singular at 𝐴 = 𝐴± precludes good convergence of the algo-
rithm near these points. Away from these bifurcation points there is good convergence of the
numerical algorithm. Assuming 𝑈𝑗 = 0 to the left, and 𝑉𝑗 = 0 to the right,

∙ 𝑐 < 0means language 𝑉 invades language 𝑈
∙ 𝑐 > 0means language 𝑈 invades language 𝑉.

From the simulation we see that if 𝐴 > 𝐴+ ∼ 1.0644, that is, language 𝑉 has more prestige, then
language 𝑉 invades language 𝑈. On the other hand, if 𝐴 < 𝐴− ∼ 0.9395, that is, language 𝑈 has
more prestige, then language𝑈 invades language𝑉. Note that the speed increases as the preferred
language becomes more prestigious. Indeed, up to a small correction, and sufficiently far away
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from 𝐴±, the wave speed follows the formal prediction of the continuum model, Equation (13).
The predicted curve, which is associated with the limit 𝑅1 → +∞, is given by the black dashed
line. This result has been numerically verified for several different values of 𝑅1. One can observe
the nontrivial effect of discreteness in establishing an interval where the fronts can be stationary.
Indeed, the continuummodel is found to possess vanishing speed at the isolated point of prestige
balance, namely at 𝐴 = 1, while the discrete variant requires a detuning from this value in order
to enable such a depinning from the vanishing speed setting.

Remark 2. It is an interesting exercise to consider the scaling law for the wave speed as 𝐴 →

𝐴±; however, we have not pursued this. The interested reader should consult Refs. 4, 19 and the
references therein for details as to how such a law may be derived.

3.3 Existence: pulses

As is the case for fronts, if 𝜖1 = 0 a pulse can be constructed analytically by setting 𝑈𝑗 = 0 (1) for
1 ≤ 𝑗 ≤ 𝓁 and 𝑘 ≤ 𝑗 ≤ 𝑛, and𝑈𝑗 = 1 (0) for 𝓁 < 𝑗 < 𝑘. As each of the fixed points is stable for the
scalar AS model, the pulse will be stable for the full system. By the Implicit Function Theorem,
the pulse will persist and be stable for 0 < 𝜖1 ≪ 1. We can concatenate these pulses when 𝜖1 = 0

to form stable multi-pulses, and then again apply the Implicit Function Theorem to show the
existence and stability for small 𝜖1. Assuming the background supports language𝑉, the size of the
pulse is the number of adjacent groups that support language𝑈. For small 𝜖1, the size is 𝑘 − 𝓁 − 1.
Numerically it is seen that if a pulse is of size 4 or larger, then it is realized as a concatenation of

a 𝑉 → 𝑈 and a𝑈 → 𝑉 stationary front. Consequently, in this case the front dynamics completely
determine the pulse dynamics. If the front is stationary, so is the pulse. If the front moves, so will
the edge of the pulse. On the other hand, if the pulse is of size 1, 2, or 3 (see the right panels of
Figure 4 for representative illustrations), then the dynamics are not related to front dynamics.
From a dynamics perspective the pulse ceases to exist after a saddle-node bifurcation occurs.
UsingMatcont, the saddle-node bifurcation point can be traced in (𝑅1, 𝐴)-space. The results are

presented in Figure 4. The pulse will exist inside the boundary curve. The cusp point is (𝑅1, 𝐴) ∼

(0.1996, 0.6936) for the pulse of size 1, and (𝑅1, 𝐴) ∼ (0.6352, 0.9246) for the pulse of size 2. For
a pulse of size 3, the cusp point satisfies 𝑅1 > 31.77 with 0 < 1 − 𝐴 ≪ 1, and is not shown in the
figure. Note that the cusp point converges to 𝐴 = 1 as the size of the pulse increases, and satisfies
𝐴 < 1. This is due to the fact that language𝑈 has more prestige for 𝐴 < 1. If the background was
language 𝑈 instead of language 𝑉, then the cusp point would satisfy 𝐴 > 1.
From a dynamics perspective, if 𝑅1 is less than the cusp point value, and if𝐴 is small enough so

that (𝑅1, 𝐴) is below the bottom boundary curve, then the pulse will grow until it can be thought
of as a concatenation of two fronts. Once this occurs, the edges of the pulse will move according
to the front dynamics. The pulse grows because the prestige for language 𝑈 is sufficiently large.
On the other hand, if (𝑅1, 𝐴) is above the top boundary curve, then language 𝑉 has sufficient
prestige so that the background language prevails, and the pulse simply disappears in finite time.
See Figure 5 for the corroborating results of a particular simulation; in particular, the top two
panels look at a pulse of size 1, and the bottom two panels look at a pulse of size 2.

Remark 3. If we assume a pulse of language 𝑉 sits on a background of language 𝑈, then we will
get the same curves as in Figure 4. However, the dynamical interpretation leading to Figure 5 will
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F IGURE 4 The left panel provides the numerically generated boundary of pulses of size 1 through 3. The
boundary is given by a solid (blue) curve for the pulse of size 1, a (red) dashed curve for a pulse of size 2, and a
(green) dashed-dotted curve for a pulse of size 3. For a given pulse size, the pulse exists inside the two curves, and
ceases to exist outside. The right panel gives an example of each pulse for 𝑅1 = 0.05 and 𝐴 = 1. The pulse of size 1
is shown in the upper right panel, the pulse of size 2 in the middle right panel, and the pulse of size 3 in the lower
right panel

be reversed. In particular, if 𝐴 is too small the pulse will disappear, whereas if 𝐴 is sufficiently
large it will grow.

3.4 Multiple stripes via pulse concatenation

We now consider the problem of concatenating individual pulses to form multi-pulses. For
the sake of convenience, and without loss of generality, we assume that background consists
of language 𝑉. As with the single pulses, each of the multi-pulses will be stable when 𝜖1 = 0,
and they will persist as stable structures for sufficiently small 𝜖1. Typically, the construction of
multi-pulses would involve a discussion of tail–tail interactions between individual pulses, and
an application of the Hale–Lin–Sandstede (HLS) method (e.g., see Refs 5, 6, 16, 24, 26–29 and
the references therein). However, for the system under consideration this is less relevant, as
the nonlinear coupling between adjacent sites renders the transition from one state to another
to be super-exponential, instead of the exponential rates associated with linear coupling (see
Figure 6 for a representative demonstration of this phenomena). Consequently, to leading order
one can think of pulses as being compactons (a compactly supported structure), and fronts as
being a compactly supported transition between two states.1 In this light, to leading order, and as
long as the individual pulses are initially sufficiently separated, the dynamics associated with a
concatenation of 𝑘 pulses is really just the dynamics of 𝑘 uncoupled pulses, each of which evolves
according to the rules presented in 3.3.

Remark 4. Unfortunately, at this time we do not know how to rigorously prove the above state-
ments regarding the concatentation of pulses and/or fronts. The HLSmethod uses the linear cou-

1We will return to this aspect in more detail in the continuum limit analysis, see 6.1.
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F IGURE 5 The results of a numerical simulation of the full ODE (8) where the initial condition satisfies
𝑢𝑗𝑘(0) = 𝑢𝑗𝓁(0) for all 𝑘, 𝓁. The color white represents language 𝑉, and the color black represents language 𝑈. In
the top two figures, 𝑅1 = 0.15. For the top left figure 𝐴 = 0.9 (so the point is above the boundary for a pulse of size
1), and for the top right figure 𝐴 = 0.6 (so the point is below the boundary for a pulse of size 1). In both figures,
the initial condition for fixed 𝑘 is a small perturbation of a pulse of size 1. In the bottom, two figures 𝑅1 = 0.5. For
the bottom left figure, 𝐴 = 1.0 (so the point is above the boundary for a pulse of size 2), and for the bottom right
figure, 𝐴 = 0.8 (so the point is below the boundary for a pulse of size 2). In both figures, the initial condition for
fixed 𝑘 is a small perturbation of a pulse of size 2

pling, and the resulting exponential dichotomies, to rigorously reduce the full concatenation prob-
lem to a solvable linear algebra problem where the size of the matrix is equal to the number of
concatenated pulses. At this time, it is not clear to us how to adapt the HLS methods and ideas to
the problem at hand, where the coupling is both nonlinear and singular. This is clearly an inter-
esting problem for future study.

As this is only a case study, we will focus on the example of the two-pulse, which at the 𝜖1 = 0

limit we label as 𝑗-𝑘-𝓁. Here 𝑗 and 𝓁 refer to the size of the pulse that supports language 𝑈, and
𝑘 is the intervening pulse of size 𝑘 that supports language 𝑉. For example, a 2-1-2 can be thought
of when 𝜖1 = 0 as the sequence of 𝑢-values,⋯00𝟏𝟏0𝟏𝟏00⋯. Of particular interest is the value of
𝑘 needed so that a two-pulse can really be thought of as the concatenation of two one-pulses.
First consider the 2-1-2 pulse. The boundary for which this solution exists (again, determined

by a saddle-node bifurcation) is presented as a solid (blue) curve in Figure 7. The cusp point is
(𝑅1, 𝐴) ∼ (0.1478, 1.2954). For (𝑅1, 𝐴) values inside the curve, the pulse will exist as a stationary
solution and be stable, whereas outside the curve it does not exist. From a dynamical perspective,
if 𝑅1 < 0.1478, and if 𝐴 is chosen so that the point lies below the lower boundary curve, then
the solution will quickly become a single pulse of size 5 (i.e., the internal 0 becomes a 1), see the



KAPITULA and KEVREKIDIS 13

F IGURE 6 The top panel
provides the numerically generated
pulse of size 3, say 𝑢3, for
(𝑅1, 𝐴) = (0.9, 1.0). The bottom
panel shows ln(𝑢3). For 𝑗 ≤ 12 and
𝑗 ≥ 22, the numerically determined
value of ln(𝑢3) is −∞. If the decay
to 𝑢 = 0 was exponential, the
bottom panel would be linear in 𝑗.
Instead, it is concave down

F IGURE 7 The left panel provides the numerically generated boundary of the two-pulse 2-1-2 (solid (blue)
curve) and 2-2-2 (dashed (red) curve). The two-pulse exists inside the two curves, and ceases to exist outside. The
right panel gives an example of each pulse when 𝑅1 = 0.05 and 𝐴 = 1.0. The 2-1-2 pulse is upper right, and the
2-2-2 pulse is lower right

center panel of Figure 8 with (𝑅1, 𝐴) = (0.1, 1.0). As discussed previously, a pulse of this size can
be thought of as the concatenation of two fronts. If the value of 𝐴 is such that the point is also
below the lower boundary of the curve presented in the right panel of Figure 2, so that𝑈 invades
𝑉, then both fronts will travel until the entire lattice is overtaken by language𝑈 (see the left panel
of Figure 8 with (𝑅1, 𝐴) = (0.1, 0.6)). On the other hand, if 𝑅1 < 0.1478, and 𝐴 is chosen so that
the point lies above the upper boundary curve, then the solution will quickly decay to a pulse of
size zero, that is, language 𝑉 is spoken over the entire lattice (see the right panel of Figure 8 with
(𝑅1, 𝐴) = (0.1, 1.7)).
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F IGURE 8 The results of a numerical simulation of the full ODE Equation (8) with 𝑅1 = 0.1 where the
initial condition satisfies 𝑢𝑗𝑘(0) = 𝑢𝑗𝓁(0) for all 𝑘, 𝓁. The color white represents language 𝑉, and the color black
represents language 𝑈. In all three panels, the initial condition is a small perturbation of a 2-1-2 pulse. For the left
panel 𝐴 = 0.6, for the middle panel 𝐴 = 1.0, and for the right panel 𝐴 = 1.7

Remark 5. If 𝑅1 > 0.1478, then the pulse no longer exists, and the fate of the perturbation is a
more difficult question to answer. This task will be left for a future paper.

Next consider the 2-2-2 pulse. The boundary for which this solution exists is presented as a
dashed (red) curve in Figure 7. The cusp point is (𝑅1, 𝐴) ∼ (0.3515, 0.9879). The dynamics asso-
ciated with (𝑅1, 𝐴) points chosen outside of the domain bounded by the curve are exactly as that
outlined above. For points below the curve, the solution quickly becomes a single pulse of size
6, which again is the concatenation of two fronts. Each front will travel, and 𝑈 will grow, if 𝐴

is sufficiently small. For points above the curve the solution again quickly decays to a pulse of
size zero.
Finally, consider the 2-𝑘-2 pulse for any 𝑘 ≥ 3. Here we find this is a true concatenation of two

pulses of size 2, so the boundary curve is given by the dashed (red) curve in Figure 4. Moreover,
the dynamics of this pulse is initially governed by the dynamics associated with a pulse of size 2
(see the bottom two panels of Figure 5).
Althtough we do not present the corroborating details here, there was nothing special about

initially choosing 𝑗 = 𝓁 = 2. Consequently, we now have the following rule-of-thumb. If we start
with a two-pulse of size 𝑗-𝑘-𝓁, and if 𝑘 ≥ 3, then the resulting dynamics will initially be indepen-
dently governed by those associated with the pulse of size 𝑗 and pulse of size 𝓁. The individual
pulses “see” each other only if the gap between the two is one or two adjacent sites. Indeed, this
rule holds for any concatenation of pulses. As long as the distance between adjacent pulses is at
least 3 sites, the existence boundary curve is exactly that associated with each individual pulse
that makes up the entire multi-pulse. Moreover, the dynamics are governed by those associated
with the single pulse until the distance between individual pulses is reduced to one or two sites.

3.5 Spectral stability

We have proven stable fronts and pulses exists for small 𝜖1 for the 1Dmodel Equation (8). We now
remove the assumption that 𝜖1 is small, and assume that a stable front/pulse exists for (8). On
doing so, we now consider the spectral stability for the original 2D model Equation (8).
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As the 1D solution is stable, the spectrum for the associated linearized self-adjoint operator,
1D, is strictly negative, so

⟨1D𝑣𝑗, 𝑣𝑗⟩ < 0. (12)

For the 2D problem, the self-adjoint linearized operator has the form,

2D = 1D + 2(1 + 𝐴)𝜖1𝑈𝑗(1 − 𝑈𝑗)Δ𝑘.

Using a Fourier decomposition for the eigenfunctions in the transverse direction

𝑣𝑗𝑘 ↦ 𝑣𝑗e
i𝜉𝑘, −𝜋 ≤ 𝜉 < 𝜋,

we find

2D𝑣𝑗𝑘 =
[
1D − 4(1 + 𝐴)𝜖1(1 − cos(𝜉))𝑈𝑗(1 − 𝑈𝑗)

]
𝑣𝑗e

i𝜉𝑘.

As the second term in the sum is a nonpositive operator, by using the inequality (12) we can con-
clude

⟨2D𝑣𝑗𝑘, 𝑣𝑗𝑘⟩ < 0.

Consequently, all the eigenvalues for this operator must be strictly negative.

Lemma 1. A spectrally stable front/pulse for the 1D problem (10) is spectrally stable for the full 2D
problem (8).

4 SPOTS: A CASE STUDY

We now consider the existence and spectral stability of spots. A spot is a contiguous set of sites on
the lattice that all share language 𝑈 (or 𝑉). All other sites share language 𝑉 (or 𝑈). For example,
a 2 × 3 spot will be a rectangle of height 2 and length 3, so there will be 6 total sites that share lan-
guage𝑈. When 𝜖1 = 0, a stable spot of any size and shape can be formed. By the Implicit Function
Theorem, the spot will persist and be spectrally stable for small 𝜖1. Our goal here is to construct
a snaking diagram associated with a particular spot, and then briefly discuss the dynamics as a
function of the prestige associated with small perturbations of the steady-state solution.

4.1 Existence

Consider the snaking diagram associated with a steady-state solution. We will start with the con-
figurations at 𝑅1 = 0.1 of a 1 × 1 square of𝑈 sitting on a background of 𝑉. The results are plotted
in Figure 9. The figure on the left gives the snaking diagram, and some stable solutions arising
from the snaking are given on the right. For the snaking diagram stable solutions aremarked with
a (blue) square, and unstable solutions aremarkedwith a (red) dot. The initial 1 × 1 configuration
grows in norm seemingly without bound until the entire lattice is filled with 𝑈. Although we do
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F IGURE 9 The numerically generated snaking diagram starting with a 1 × 1 spot for a square lattice of size
20 × 20 when 𝑅1 = 0.1. The figure on the left is the snaking diagram, and the figures on the right provide stable
solutions arising from the diagram. The notation on the vertical axis, |𝑢|2, represents the square of the 𝓁2-norm of
the solution. The upper right panel has (𝐴, |𝑢|2) ∼ (0.5, 0.6139), the next one down has
(𝐴, |𝑢|2) ∼ (0.9276, 7.0127), the third one down has (𝐴, |𝑢|2) ∼ (1.0449, 16.8568), and the bottom panel on the
right has (𝐴, |𝑢|2) ∼ (1.0139, 32.2287). Each of these points is marked by a large (blue) diamond on the snaking
diagram. For the snaking diagram stable, solutions are marked by a (blue) circle, and unstable solutions are
marked with a (red) dot. Although we do not show it here, the growth in terms of the total number of contiguous
groups holding language 𝑈 appears to have no upper bound

not provide all the pictures here, as the norm of the solution grows the shape of the contiguous𝑈

speakers for a stable solution is either a square or something that has roughly a circular geometry.
Regarding the transition from stable to unstable solutions, it is generally not a saddle-node bifur-
cation, for example, at the transition point the number of unstable eigenvalues will go from zero
to two. Moreover, within the curve of unstable solutions, there are additional bifurcations where
the number of positive eigenvalues either increases or decreases. The solution structure is rich,
but we leave a detailed look at it for a different paper.
It is not necessary that a snaking diagram for a spot connect stable solutions with arbitrarily

large norm. For an example, consider the stable solution given in the right panel of Figure 10.
The panel on the left shows the associated snaking diagram. Note that there is only one stable
branch of solutions associated with this curve. The solution is shown for 𝑅1 = 0.06; however, it is
not robust relative to large changes in 𝜖1, and it ceases to exist for 𝑅1 > 0.07.

Remark 6. We should point out that as in the case of single stripes being concatenated to formmore
complicated stripe patterns, we can concatenate single spots to formmore complicated structures.
All that is required for each spot to essentially be an isolated structure is for the spots to be suf-
ficiently separated. Our experience is that a minimal separation distance between two adjacent
spots of three sites is enough.
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F IGURE 10 A snaking
diagram for a spot when
𝑅1 = 0.06. The left panel shows
the numerically generated
diagram, and a representative
stable solution is given in the
right panel. Stable solutions are
marked with a (blue) circle,
and unstable solutions are
denoted by a (red) dot

4.2 Dynamics

Now let us consider the dynamical implications of the snaking diagram. In particular, we shall
look at the effect of varying𝐴 for fixed𝑅1 = 0.1. Recall that for stripeswe saw in 3.2 that outside the
snaking diagram traveling waves would appear; in particular, if 𝐴 < 𝐴−, then language 𝑈 would
invade language𝑉, whereas if𝐴 > 𝐴+, then language𝑉 would invade language𝑈. Consequently,
we expect a similar behavior for spots; in particular, a spot will grow or die as a function of the
prestige. For a particular example, we start with a stable solution arising from the 1 × 1 initial
configuration when 𝐴 = 0.8165. The square of the 𝓁2-norm of this solution is roughly 11. This
solution is contained in the small stable branch shown in Figure 9 with 𝐴− ∼ 0.8139 and 𝐴+ ∼

0.8192.
First suppose that𝐴 = 0.6 < 𝐴−.When looking at the snaking diagram,we see that there are no

stable steady-state solutions with larger norm for this value of 𝐴. The time evolution associated
with this initial condition is provided in Figure 11. Of particular interest is the evolution of the
square of the norm in the far right panel. We see that the norm is growing up to at least 𝑡 =

50. Although we do not show it here, the norm continues to grow until all the nodes share the
common language𝑈. The growth in language𝑈 is manifested in the square becoming larger and
larger as those nodes containing 𝑉 at the boundary between 𝑈 and 𝑉 switch to language 𝑈.
Next suppose that𝐴 = 0.75 < 𝐴−. When looking at the snaking diagram, we see there is a (sta-

ble) steady-state solutionwith this value of𝐴 andwhich also has a larger norm. The time evolution
associated with this initial condition is provided in Figure 12. Of particular interest is the evolu-
tion of the square of the norm in the far right panel, which in this case achieves a steady-state.
The final state at 𝑡 = 50 corresponds to the first stable solution on the snaking diagram where
𝐴 = 0.75, and whose norm is greater than 11. Language𝑈 invades language 𝑉 until a steady-state
configuration is reached.
For the next example, suppose that 𝐴 = 0.9 > 𝐴+. When looking at the snaking diagram, we

see there is a steady-state solution with this value of 𝐴 and which also has a smaller norm. The
time evolution associated with this initial condition is provided in Figure 13. Of particular interest
is the evolution of the square of the norm in the far right panel, which in this case also achieves
a steady-state. The final state at 𝑡 = 50 corresponds to the first stable solution on the snaking
diagram where 𝐴 = 0.9, and whose norm is less than 11. Language 𝑉 invades language 𝑈 until a
steady-state configuration is reached.
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F IGURE 11 The time evolution of an 𝐴 = 0.8165 solution when 𝐴 = 0.6. The panel on the far left shows
the evolution of the square of the 𝓁2-norm of the solution

F IGURE 1 2 The time evolution of an 𝐴 = 0.8165 solution when 𝐴 = 0.75. The panel on the far left shows
the evolution of the square of the 𝓁2-norm of the solution

For the last example, suppose that 𝐴 = 1.1 > 𝐴+. When looking at the snaking diagram, we
see there is no steady-state solution with this value of 𝐴 and which also has a smaller norm. The
time evolution associated with this initial condition is provided in Figure 14. Of particular interest
is the evolution of the square of the norm in the far right panel, which in this case goes to zero.
Language 𝑉 invades language 𝑈 until the entire lattice shares the common language 𝑉.
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F IGURE 13 The time evolution of an 𝐴 = 0.8165 solution when 𝐴 = 0.9. The panel on the far left shows
the evolution of the square of the 𝓁2-norm of the solution

F IGURE 14 The time evolution of an 𝐴 = 0.8165 solution when 𝐴 = 1.1. The panel on the far left shows
the evolution of the square of the 𝓁2-norm of the solution

In conclusion, we have the following rule-of-thumb if the initial configuration is near a steady
state solution. If the value of 𝐴 is decreased, so that the prestige of language 𝑈 increases, then
a spot of 𝑈 in a sea of 𝑉 will grow until a stable steady-state associated with that value of 𝐴 is
achieved. If no such steady-state exists, then eventually the entire lattice will share language 𝑈.
On the other hand, if the value of𝐴 is increased, so that the prestige of language𝑉 increases, then
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F IGURE 15 The triangular lattice. Each site is connected with equal interaction strength, 𝜖1, to its six
nearest neighbors. The on-site interaction rate is 𝜖0

a spot of𝑈 in a sea of𝑉will shrink in size until a stable steady-state associatedwith that value of𝐴
is achieved. If no such steady-state exists, then eventually the entire lattice will share language 𝑉.
Although we do not show it here, this rule was manifested in every numerical simulation that we
performed. It would be most interesting to translate this observation into a precise mathematical
statement. This is left as an interesting direction for future work.

5 THE TRIANGULAR LATTICE: A BRIEF LOOK

We now briefly consider the existence problem on a triangular lattice (see Figure 15). As for the
square lattice, the on-site interaction strength will be 𝜖0, and the NN strength will be 𝜖1. Again, we
will denote 𝑅1 = 𝜖1∕𝜖0. We will look at fronts and spots for this lattice, and compare the results to
those associated with the square lattice.
We first consider the existence of a front. A representative example is given in the left panel of

Figure 16. In the right panels of Figure 16we look at the snaking diagrams for three different values
of 𝑅1. When 𝑅1 = 0.32 and 𝑅1 = 0.7, there are three distinct branches of stable solutions, unlike
the square lattice where there is only one branch. The curve of unstable solutions connecting
the stable solutions becomes less complicated as 𝑅1 increases. Although we do not show it here,
for 𝑅1 < 0.2 the bifurcation diagram is very complicated, and there are many branches of stable
solutions. Indeed, preliminary calculations seem to suggest that the number of branches becomes
arbitrarily large as 𝑅1 → 0+. For 𝑅1 ∼ 0.7732, there is a saddle-node bifurcation, and the three
branches of stable solutions collapse to one (see the bottom right panel of Figure 16 for𝑅1 = 0.85 >

0.7732). Finally, when compared to the snaking diagram for the front on a square lattice in Figure
2, the prestige interval for which there is a stable stationary front is smaller for the triangular
lattice than for the square lattice.
Now consider a spot. We show the snaking diagram (left panel of Figure 17) associated with

what for small norm is four contiguous sites speaking the same language (upper right panel of Fig-
ure 17). Note that the snaking diagram here is qualitatively similar to that of Figure 9 for a square
lattice. In Figure 17, stable solutions marked with a (blue) diamond are plotted in the right panels.
The plots on the right have the feature that as 𝐴 increases, the size of the spot also increases.
Finally, as with the square lattice we note that not all spots grow without bound. Consider

the solution given in the right panel of Figure 18, which exists when 𝑅1 = 0.032. Here we see
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F IGURE 16 The numerically generated snaking diagram for a front on a triangular lattice of size 20 × 20.
The figure on the left is the front, and the figures on the right provide snaking diagrams for three different values
of 𝑅1. The notation on the vertical axis, |𝑢|2, represents the square of the 𝓁2-norm of the solution. For the snaking
diagram stable, solutions are marked by a (blue) circle, and unstable solutions are marked with a (red) dot. The
diagram repeats itself once the entire front has shifted one lattice site

that the snaking diagram does not allow for solutions to get larger and larger in norm, and is
instead a bounded curve figure like that in Figure 10 for the square lattice. We numerically find
that this solution ceases to exist for 𝑅1 > 0.035. It is an interesting problem to determine what
initial configurationswill lead to snaking diagrams that correspond to solutions that grow in norm
until the entire lattice is eventually filled.

6 EXISTENCE AND SPECTRAL STABILITY OF STRIPES FOR THE
CONTINUUMMODEL

We now consider the existence and spectral stability of solutions to the continuum PDE model
Equation (9). Although we only derived this model in the context of the square lattice, it also
arises for the triangular lattice (in the reaction term 𝑅, replace 4𝜖1 with 6𝜖1).
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F IGURE 17 The numerically generated snaking diagram for a spot on a triangular lattice of size 20 × 20

when 𝑅1 = 0.05. The figure on the left is the snaking diagram, and the figures on the right provide stable
solutions arising from the diagram. The notation on the vertical axis, |𝑢|2, represents the square of the 𝓁2-norm of
the solution. The solutions being plotted are marked by a (blue) diamond in the snaking diagram. Stable solutions
are marked by a (blue) circle, and unstable solutions are marked with a (red) dot. Although we do not show it
here, the growth in terms of the total number of contiguous groups holding language 𝑈 appears to have no
upper bound

F IGURE 18 A snaking diagram for a spot on a triangular lattice when 𝑅1 = 0.032. The left panel shows the
numerically generated diagram, and a representative stable solution is given in the right panel
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F IGURE 19 The numerically generated compacton fronts for various values of 𝑝 when 𝑅 = 8. The left
panel gives three representative graphs: the solution for 𝑝 = 1.3 is given by the solid (blue) curve, the solution for
𝑝 = 2.3 is given by the dashed (red) curve, and the solution for 𝑝 = 3.3 is given by the black circles. The right
panel gives the width of the front,𝑊, for a range of 𝑝-values

6.1 Existence: compactons

The existence problem is settled by finding solutions to the nonlinear ODE (11). Recalling 𝑅 =

𝜖0 + 4𝜖1, under the assumption that neither language is more prestigious, 𝐴 = 1, there exists the
exact compacton solution,

𝑈c(𝑥) =
1

2

[
1 + cos

(√
𝑅

2
𝑥

)]
.

In writing this solutions, there is the implicit understanding that the compacton is continuous
with𝑈c(𝑥) ≡ 0 or𝑈c(𝑥) ≡ 1 outside some finite spatial interval. Of course, any spatial translation
of the compacton is also a solution. Not only do these compactons define compactly supported
pulses, they also define fronts connecting 𝑢 = 0 to 𝑢 = 1. One front satisfies 𝑈c(𝑥) = 0 for 𝑥 ≤

−𝜋
√

2∕𝑅, and𝑈c(𝑥) = 1 for 𝑥 ≥ 0 (of course, this front can be translated). Another front satisfies
𝑈c(𝑥) = 1 for 𝑥 ≤ 0, and𝑈c(𝑥) = 0 for 𝑥 ≥ 𝜋

√
2∕𝑅 (again, this front can be translated). Note that

the width of the front/pulse depends on the reaction rate, 𝑅.

Remark 7. There is also an explicit compact solution when 𝑝 = 3,

𝑈c(𝑥) =
1

2

[
1 + cos

(√
2𝑅

3
𝑥

)]
.

Numerically, as illustrated in Figure 19 we see compacton fronts for any 𝑝 > 1. The left panel
shows representative solutions, while the right panel gives the width, 𝑊, of the compactons for
various values of 𝑝. Numerically, we see that𝑊 is a monotone decreasing function of 𝑝.
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F IGURE 20 The numerically generated wave speed for the 𝑉 → 𝑈 front. The solid (red) curve corresponds
to the analytic prediction, and the (blue) circles are the approximate wave speed derived from a numerical
simulation of the PDE Equation (14) with 𝑅 = 8 using the standard second-order finite difference schemes to
approximate the spatial derivatives

6.2 Traveling waves

If𝐴 ≠ 1, numerical simulations indicate that the compacton fronts will travel at a constant speed
that depends on𝐴. Moreover, the simulations suggest that the shape of the front at a fixed time is
roughly that of the compacton for𝐴 = 1. In order to derive an approximate analytic expression for
the wavespeed, we plug𝑈c(𝑥 + 𝑐𝑡) into the PDE (14), multiply the resultant equation by 𝜕𝑥𝑈c(𝑥 +

𝑐𝑡), and then integrate over the domain where the front is nonconstant. Doing all this leads to the
following predictions for the wave-speed,

𝑉 → 𝑈, 𝑐 = −

√
2𝑅

𝜋
(𝐴 − 1); 𝑈 → 𝑉, 𝑐 =

√
2𝑅

𝜋
(𝐴 − 1). (13)

The notation 𝑗 → 𝑘 corresponds to the front that has value 𝑗 for 𝑥 ≪ 0 and value 𝑘 for 𝑥 ≫ 0.
See Figure 20 for the comparison of the theoretical prediction with the results of a numer-
ical simulation of the PDE (14). Numerical simulations indicate that these are good predic-
tions for a relatively large range of 𝐴 for the 1D PDE model; recall the relevant discussion
also in Figure 3. Moreover, we find that for 𝑅 sufficiently large, and away from the saddle-
node bifurcation points, these are also good predictions for the wave-speed for the discrete
model.

Remark 8. If 𝐴 < 1, so that language 𝑈 is preferred, the front will move so that language 𝑈

invades language 𝑉. On the other hand, if 𝐴 > 1, so that 𝑉 is preferred, 𝑉 will invade 𝑈. The
standing compacton that exists for 𝐴 = 1 is then seen as a transition between these two invasion
fronts.
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6.3 Spectral stability: one dimension

Let us now consider the spectral stability of these compactons. The 1D version of the PDE (9) is

𝜕𝑡𝑢 = 𝑅𝑢(1 − 𝑢)[(1 + 𝐴)𝑢 − 𝐴] + (1 + 𝐴)𝑢(1 − 𝑢)𝜕2
𝑥𝑢 + [1 − (1 + 𝐴)𝑢](𝜕𝑥𝑢)2. (14)

Writing 𝑢 = 𝑈s + 𝑣, where𝑈s is a steady-state solution, when 𝐴 = 1 the linearized problem for 𝑣

is

𝜕𝑡𝑣 = 2𝜕𝑥[𝑈s(1 − 𝑈s)𝜕𝑥𝑣] + 𝑔(𝑈s)𝑣, (15)

where

𝑔(𝑈s) = 𝑅(−6𝑈2
s + 6𝑈s − 1) + 2(1 − 2𝑈s)𝜕

2
𝑥𝑈s − 2(𝜕𝑥𝑈s)

2.

The associated spectral problem is

2𝜕𝑥[𝑈s(1 − 𝑈s)𝜕𝑥𝑣] + 𝑔(𝑈s)𝑣 = 𝜆𝑣.

This is a degenerate Sturm–Liouville problem.
We first consider the spectral stability of fronts. Without loss of generality, assume the solution

in question is the 𝑉 → 𝑈 front,

𝑈s(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 ≤ −𝜋

√
2∕𝑅

𝑈c(𝑥), −𝜋
√

2∕𝑅 < 𝑥 < 0

1, 𝑥 ≥ 0.

Lemma 2. The front is spectrally stable.

Proof. Outside the interval [−𝜋
√

2∕𝑅, 0], the spectral problem is

𝜆𝑣 = −𝑅𝑣 ⇝ 𝜆 = −𝑅, or 𝑣 ≡ 0.

Because of the degeneracy associated with the diffusion coefficient, the essential spectrum for the
operator comprises a single point.
Over the interval on which the front is nontrivial, 𝑥 ∈ [−𝜋

√
2∕𝑅, 0], the spectral problem is the

singular Sturm–Liouville problem,

1

2
𝜕𝑥

[
sin

2

(√
𝑅

2
𝑥

)
𝜕𝑥𝑣

]
−

𝑅

4

(
3 cos2

(√
𝑅

2
𝑥

)
− 1

)
𝑣 = 𝜆𝑣. (16)

The form of the coefficients follows from using the analytic expression for the compacton. If 𝜆 ≠

−𝑅, then for the sake of continuity we need Dirichlet boundary conditions at the endpoints,

𝑣

(
−

√
2

𝑅
𝜋

)
= 𝑣(0) = 0.
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Due to spatial translation, a solution when 𝜆 = 0 is 𝑣0(𝑥) = 𝜕𝑥𝑈s. As the front is monotone,
this eigenfunction is of one sign. Consequently, by classical Sturmian theory, 𝜆 = 0 is the largest
eigenvalue. ■

Now consider the concatenation of fronts. As each front is a compacton, there will be no tail–
tail interaction leading to small eigenvalues. Consequently, each front will add another eigenvalue
associated with the eigenvalue of the original front. The associated eigenfunction will simply be
a spatial translation of the associated eigenfunction of the original front. In particular, if there are
𝑁 fronts, then 𝜆 = 0will be a semi-simple eigenvalue with geometric multiplicity𝑁, and all other
eigenvalues will be strictly negative. The multiplicity follows from the fact that each front can be
spatially translated without affecting any of the other fronts. We now have:

Corollary 1. The concatenation of fronts is spectrally stable. Moreover, the zero eigenvalue will have
geometric multiplicity equal to the number of concatenated fronts.

Finally, consider the spectral stability of the pulse compacton,

𝑈c(𝑥) =
1

2

[
1 + cos

(√
𝑅

2
𝑥

)]
, −

√
2

𝑅
𝜋 ≤ 𝑥 ≤

√
2

𝑅
𝜋.

If we start with the concatenation of a left front and a right front, we have a a flat-topped com-
pacton. By Corollary 1 there will be two zero eigenvalues, and the rest of the spectrum will be
negative. At the limit of a zero length top we recover the pulse compacton. Consequently, we can
think of the pulse as the concatenation of two fronts, a left front and a right front. The eigenvalue
at zero will have geometric multiplicity two. One eigenfunction will be 𝜕𝑥𝑈c of the left front, and
zero elsewhere, while another will be 𝜕𝑥𝑈c of the right front, and zero elsewhere. Using linearity,
we note that one eigenfunction is the sum of these two, which is precisely the expected spatial
translation eigenfunction of the full compacton, 𝜕𝑥𝑈c.

Corollary 2. Pulse compactons are spectrally stable, and the zero eigenvalue has geometric multi-
plicity two.

6.4 Spectral stability: two dimensions

For the 1D model Equation (14), a single front is spectrally stable with a simple zero eigenvalue,
and a concatenation of 𝑁 fronts is spectrally stable with a semi-simple zero eigenvalue of multi-
plicity𝑁. Let𝑈(𝑥) represent a spectrally stable concatenation of𝑁 fronts, which is a stripe pattern
on the plane. We now consider the spectral stability of the stripes for the full 2D problem.

Lemma 3. A stripe is spectrally stable.

Proof. Denote the 1D self-adjoint linearization in (15) about the concatenation as 1. The lin-
earization about this striped pattern for the full PDE (9) is

2 = 1 + 2𝑈(1 − 𝑈)𝜕2
𝑦,
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which is also self-adjoint. Using the Fourier transform to write candidate eigenfunctions,

𝑤(𝑥, 𝑦) = 𝑣(𝑥)ei𝜉𝑦,

we have,

2𝑤 =
(
1 − 2𝜉2𝑈(1 − 𝑈)

)
𝑣ei𝜉𝑦.

We already know 1 is a nonpositive self-adjoint operator. As 𝜉2𝑈(1 − 𝑈) ≥ 0, we can there-
fore conclude 2 is a nonpositive self-adjoint operator. In particular, there are no strictly positive
eigenvalues. ■

7 CONCLUSIONS & FUTURE CHALLENGES

We have derived an ODE model of language dynamics on a square lattice (and briefly, a trian-
gular lattice) that is a natural generalization of the AS language model on one lattice site. The
model can also be used to discuss, for example, the spread of an opinion through the lattice, or
the growth/decay of religious observance on the lattice. We also looked at the continuum limit of
the lattice ODE, which is a PDE that features a degenerate diffusion term. We numerically stud-
ied the existence of special spatial structures on the lattice; primarily, stripes and spots. Through
a combination of numerics and analysis we analyzed the dynamics associated with small pertur-
bations of these spatial structures. Finally, we provided rules-of-thumb to help understand how
languages die and grow as a function of their prestige, and interaction with neighboring commu-
nities.
As is already evident from the discussion above, there are numerous directions in this emerging

field that are worthwhile of further study. Some are already concerning the model at hand. As
highlighted earlier, features such as the bifurcation of traveling solutions from standing ones and
their scaling laws, or themore precise identification of the discrete solutions and their tails from a
mathematical analysis perspective would be of interest. Although it is unclear whether something
analytical can be said about the bifurcation diagram of genuinely two-dimensional states such as
spots, our numerical observations regarding the model dynamics formulate a well-defined set of
conjectures regarding the fate of a spot when the prestige is decreased or increased that may be
relevant to further explore mathematically.
It would also be germane to consider variations of the model. Here, we selected as a first step of

study to explore an ordered two-dimensional square lattice. However, it is also worth generaliz-
ing to more complex networks and modified (influence or) “adjacency matrices” to explore their
impact on the findings presented in this work. As indicated herein, the role of near-neighbor
interactions is expected to maintain some of the key features we considered; yet, in a progres-
sively connected world the consideration of nonlocal long-range interactions may be of interest
in its own right. For example, preliminary results indicate that for a fully connected network it
only takes a small level of interaction between adjacent sites before the entire network speaks one
language. Another possibility is to insert a spatially heterogeneous prestige𝐴𝑗𝑘 and examine how
its spatial variation may influence standing and traveling structures. There are numerous vari-
ants that can be considered thereafter, for example, how does a local prestige variation interact
with the traveling wave patterns discussed in this paper? Such queries have been considered in
other contexts where the interactions bear a linear component recently, for example, see Ref. 14,
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but have yet to be considered in a fully nonlinear setting such as the one herein. Such studies, as
applicable, will be reported in future publications.

Remark 9. The recent work of Kusdiantara and Susanto20 came to our attention after this paper
was accepted for publication. These authors consider the existence and stability of fronts, stripes,
and spots for a discrete Allen–Cahn equation on a lattice with a bistable nonlinearity. They con-
sider square, triangular, and honeycomb lattices. Unlike this paper, the coupling betweenNN sites
is assumed to be linear; moreover, it is weak (𝑅1 ≪ 1 in our language). Like us, they find that the
lattice type does not seem to have a significant influence on the qualitative features of a snaking
diagram. It is an interesting problem to consider the model presented in this paper in the small
coupling limit, and attempt to determine if nature of the coupling (linear vs. nonlinear) has a sig-
nificant influence on the snaking diagram. Preliminary calculations indicate it may; especially,
when considering the triangular lattice.

ACKNOWLEDGMENT
The work of P. Keverkidis was partially supported by the US National Science Foundation under
Grant No. DMS-1809074.

REFERENCES
1. Abrams D, Strogatz S. Modelling the dynamics of language death. Nature. 2003;424:900.
2. Abrams D, Yaple H, Wiener R. Dynamics of social group competition: modeling the decline of religious affil-

iation. Phys Rev Lett. 2011;107:088701.
3. Amano T, Sandel B, Eager H, et al.. Global distribution and drivers of language extinction risk. Proc R Soc B.

2014;281:20141574.
4. Anderson T, Faye G, Scheel A, Stauffer D. Pinning and unpinning in nonlocal systems. J Dyn Diff Eq.

2016;28:897-923.
5. Bramburger J, Sandstede B. Localized patterns in planar bistable weakly coupled lattice systems.Nonlinearity.

2020a;33:3500-3525.
6. Bramburger J, Sandstede B, Spatially localized structures in lattice dynamical systems. J Nonlinear Sci.

2020b;30:603-644.
7. Bujalski J, Dwyer G, Kapitula T, et al.. Consensus and clustering in opinion formation on networks. Phil Trans

R Soc A. 2018;376:20170186.
8. Colucci R, Mira J, Nieto J, Otero-Espinar M. Coexistence in exotic scenarios of a modified Abrams-Strogatz

model. Complexity. 2014;21(4):86-93.
9. Colucci R, Mira J, Nieto J, Otero-Espinar M. Non trivial coexistence conditions for a model of language com-

petition obtained by bifurcation theory. Acta Appl Math. 2016;146:187-203.
10. Dhooge A, Govaerts W, Kuznetsov Y. Matcont: a MATLAB package for numerical bifurcation analysis of

ODEs. ACM TOMS. 2003;29:141-164.
11. Eekhoff K. Opinion formation dynamicswith contrarians and zealots. SIAM Undergraduate Res. Online.

2019;12.
12. Elmer C, Van Vleck E. A variant of Newton’s method for the computation of traveling waves of bistable

differential-difference equations. J Dyn Diff Eq. 2002;14(3):493-517.
13. Fujie R, Aihara K, Masuda N. A model of competition among more than two languages. J Stat Phys.

2013;151:289-303.
14. Hoffman A, Hupkes H, Van Vleck E. Entire Solutions for Bistable Lattice Differential Equations with Obstacles.

American Mathematical Society; 2017.
15. Hupkes H, Verdun Lunel S. Analysis of Newton’s method to compute travelling waves in discretemedia. J Dyn

Diff Eq. 2005;17(3):523-572.
16. Hupkes H, Sandstede B. Stability of pulse solutions for the discrete Fitzhugh-Nagumo system. Trans Amer

Math Soc. 2013;365:251-301.



KAPITULA and KEVREKIDIS 29

17. Hupkes H, Pelinovsky D, Sandstede B. Propagation failure in the discrete Nagumo equation. Proc Amer Math
Soc. 2011;139(10):3537-3551.

18. Juane M, Seoane L, Mu nuzuri A, Mira J. Urbanity and the dynamics of language shift in Galicia. Nature
Comm. 2019;10:1680.

19. Kevrekidis P, Kevrekidis I, Bishop A. Propagation failure, universal scalings and Goldstone modes. Phys Lett
A. 2001;279(5-6):361-369.

20. Kusdiantara R, Susanto H. Snakes in square, honeycomb, and triangular lattices. Nonlinearity. 2019;32:5170-
5190.

21. Marvel S, Hong H, Papush A, Strogatz S. Encouraging moderation: clues from a simple model of ideological
conflict. Phys Rev Lett. 2012;109:118702.

22. Mira J, Paredes Á. Interlinguistic similarity and language death dynamics.Europhys Lett. 2005;69(6):1031-1034.
23. Mira J, Seoane L, Nieto J. The importance of interlinguistic similarity and stable bilingualism when two lan-

guages compete. New J Phys. 2011;13:033007.
24. Moore R, Promislow K. Renormalization group reduction of pulse dynamics in thermally loaded optical para-

metric oscillators. Physica D. 2005;206:62-81.
25. Otero-Espinar M, Seoane L, Nieto J, Mira J. An analytic solution of a model of language competition with

bilingualism and interlinguistic similarity. Physica D. 2013;264:17-26.
26. Parker R, Kevrekidis P, Sandstede B. Existence and spectral stability of multi-pulses in discrete Hamiltonian

lattice systems. Physica D. 2020;408:132414.
27. Promislow K. A renormalization method for modulational stability of quasi-steady patterns in dispersive sys-

tems. SIAM J Math Anal. 2002;33(6):1455-1482.
28. Sandstede B. Stability of multiple-pulse solutions. Trans Amer Math Soc. 1998;350:429-472.
29. Sandstede B. Stability of travelling waves. In Fiedler B, ed.Handbook of Dynamical Systems. Elsevier Science;

2002:983-1055.
30. StaufferD, Castelló X, EguíluzV, SanMiguelM.MicroscopicAbrams-Strogatzmodel of language competition.

Physica A. 2007;374:835-842.
31. Tanabe S, Masuda N. Complex dynamics of a nonlinear voter model with contrarian agents. Chaos.

2013;23:043136.
32. Vazquez F, Castelló X, SanMiguel M. Agent basedmodels of language competition: macroscopic descriptions

and order-disorder transitions. J Stat Mech. 2010:P04007.
33. Vidal-Franco I, Guiu-Souto J, Mu nuzuri A. Social media enhances languages differentiation: a mathematical

description. R Soc Open Sci. 2017;4:170094.
34. Wang S, Rong L, Wu J. Bistability and multistability in opinion dynamics models. Appl. Math Comp.

2016;289:388-395.
35. Yun J, Shang SC, Wei XD, Liu S, Li ZJ. The possibility of coexistence and co-development in language compe-

tition: ecology-society computational model and simulation. SpringerPlus. 2016;5:855.
36. Zhou Z, Szymanski B, Gao J. Modeling competitive evolution of multiple languages. PLOS One. 2020;15(5):

e0232888.

How to cite this article: Kapitula T, Kevrekidis PG. Language competition on lattices.
Stud Appl Math. 2021;1–29. https://doi.org/10.1111/sapm.12439

https://doi.org/10.1111/sapm.12439

	Language competition on lattices
	Abstract
	1 | INTRODUCTION
	2 | THE MODEL ON A SQUARE LATTICE
	3 | EXISTENCE AND SPECTRAL STABILITY OF STRIPES FOR THE DISCRETE MODEL
	3.1 | Existence: fronts
	3.2 | Existence: traveling fronts
	3.3 | Existence: pulses
	3.4 | Multiple stripes via pulse concatenation
	3.5 | Spectral stability

	4 | SPOTS: A CASE STUDY
	4.1 | Existence
	4.2 | Dynamics

	5 | THE TRIANGULAR LATTICE: A BRIEF LOOK
	6 | EXISTENCE AND SPECTRAL STABILITY OF STRIPES FOR THE CONTINUUM MODEL
	6.1 | Existence: compactons
	6.2 | Traveling waves
	6.3 | Spectral stability: one dimension
	6.4 | Spectral stability: two dimensions

	7 | CONCLUSIONS & FUTURE CHALLENGES
	ACKNOWLEDGMENT
	REFERENCES


