Algebraic Geometry 8 (3) (2021) 286-318
doi:10.14231/AG-2021-007

The integral Chow ring of M,

Eric Larson

ABSTRACT

In this paper, we compute the Chow ring of the moduli stack M, of stable curves
of genus 2 with integral coefficients.

1. Introduction

Characteristic classes of vector bundles play an essential role in many areas of mathematics,
from algebraic topology to differential geometry. Geometrically, characteristic classes of real or
complex vector bundles are elements of the cohomology or Chow rings of the moduli stacks of
real or complex vector spaces. These are the classifying spaces BGL, R and BGL, C, whose
cohomology or Chow rings are freely generated as a ring by the familiar Stiefel-Whitney and
Chern classes, respectively.

Like vector spaces, algebraic curves are also ubiquitous in many areas of mathematics, so
it is natural to try to understand their characteristic classes. Geometrically, this amounts to
understanding the Chow ring (or cohomology ring) of the moduli stack M, of stable curves
of genus g. (Since the smooth Artin stack M ¢ is a global quotient stack, work of Edidin and
Graham [EG98] implies that its Chow groups CH*(M ) possess an intersection product. In fact,
by work of Kresch, intersection products exist, more generally, on any smooth Artin stack that

admits a stratification by global quotient stacks; cf. Section 5.1 of [Kre99].)

QUESTION. What is the Chow ring CH* (]\79) of M,?

Despite much progress over the past half century, answers to this question are only known
after making various simplifications—and even then only in small genus.

One such simplification is to study the Chow ring with rational coefficients CH* (]\7 g) ® Q;
this removes the subtle torsion phenomenon that exists due to the presence of loci of curves with
automorphisms. For example, the Chow ring of M ¢ With rational coefficients is known for g = 2
by work of Mumford [Mumg83] and for g = 3 by work of Faber [Fab90].

Another such simplification is to replace M, with a simpler but related space, for example
M, or My, (with n > 3) or My, (with n > 1). For example, the full Chow ring (that is, with
integral coefficients) of M, is known for g = 2 by work of Vistoli [Vis98].
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THE INTEGRAL CHOW RING OF Mo

However, to date, the full Chow ring CH* (]\7 g) is not known in a single case. The goal of the
present paper is to give the first such example.

THEOREM 1.1. Over any base field of characteristic distinct from 2 and 3, the Chow ring of the
moduli space of stable curves of genus 2 is given by

CH* (M2) = Z[A1, A2, 01]/ (2477 — 482,20\ 1 X2 — 4812, 65 + 07N, 267 + 201M1)

where A1 and Ao denote the Chern classes of the Hodge bundle and 61 denotes the class of the
boundary substack with a disconnecting node.

In this basis, the class of the boundary substack with a self-node is given by §g = 10A1 — 26 .

One might hope to compute the Chow ring of M5 using a presentation of Ms as a quotient
stack [EG98], as done for Ms by Vistoli in [Vis98]. Unfortunately, finding a suitable presentation
of My seems extremely difficult.

Instead, we stratify Mo into the boundary divisor A; and its complement M . A, whose
Chow rings can be computed using equivariant intersection theory. The usual localization sequ-
ence for Chow groups of schemes also holds for Artin stacks of finite type (cf. [Kre99, Proposi-
tion 2.3.6]), so we obtain an exact sequence

CH*(A;) — CH*(M3) — CH* (M3 \ A1) = 0.

One key observation is that a variant of Vistoli’s argument in [Vis98] can not only compute
CH*(Ms), but in fact compute both the Chow ring and the first higher Chow groups with
¢-adic coefficients (which control the failure of left-exactness in the above sequence) of Ma \ Aj.
Unfortunately, the first higher Chow groups of the open stratum Mo~ A; do not vanish for £ = 2;
they are generated by 2-torsion classes in degrees 4 and 5.

For the degree 4 generator, we observe that all the 2-torsion in CH?(A) arises, in some
sense, “locally” from those curves in A; which admit a bielliptic involution (exchanging the two
components). Using the universal family of curves with a bielliptic involution as a test family,
we show that the pushforward map CH?*(A;) — CH* (]\7 2) is injective, and so the image of the
degree 4 generator in CH3(A1) must vanish.

By contrast, the degree 5 generator can be thought of as arising, in some sense, “globally”
from the presence of the hyperelliptic involution on every curve; in particular, it seems extremely
difficult to study this class using a test family. Instead, we get a handle on this class using
the action of G,, on My given by taking the “universal quadratic twist with respect to the
hyperelliptic involution.” This G,,-action kills the degree 5 generator, which then corresponds
to a “syzygy” between two relations of smaller degree in CH*(My/G,,); using this, we can
explicitly compute that the boundary map vanishes on this degree 5 generator.

A brief outline of the remainder of the paper is as follows: We begin in Section 2 by fixing
some notation for some group representations that will appear throughout the paper. Next, in
Section 3, we give presentations of the strata A; and My~ Ay, as quotients of open subsets in
affine spaces by linear algebraic groups—a group we term G defined in the next section for Aq,
respectively the group GLy for My~ Ay. In Section 4, we give formulas for pushforward maps
between Chow groups of various projective bundles under multiplication maps, that will be used
throughout the remainder of the paper. Then in Section 5, we compute CH*(BG). This is enough
to show in Section 6 that CH* (]\7 2) is generated by d1, A1, and A9, as claimed, and to establish
all the relations appearing in the statement of Theorem 1.1 in characteristic zero.

287



ERrICc LARSON

Then in Section 7, we explicitly compute the pushforward and pullback maps between Chow
groups along BT — BG, where T is the maximal torus of GG. In Sections 8 and 9, we compute the
Chow ring of the stratum A1, respectively the Chow ring and first higher Chow groups with ¢-adic
coefficients of the stratum My~ Ay; we also derive an explicit formula (which happens to evaluate
to zero) for the image of the degree 5 generator mentioned above. In Section 10, we use this to
reduce Theorem 1.1 to the nonvanishing of a finite number of classes in CH* (]\7 2) ®Z/27. Finally,
in Section 11, we compute the Chow ring of the universal family of bielliptic curves of genus 2,
which completes the proof of Theorem 1.1 by serving as a test family to show the nonvanishing
of these desired classes.

1.1 Results in cohomology

In characteristic zero, one may similarly ask for the singular (orbifold) cohomology with integral
coefficients of My. A variant of the arguments developed here for Chow groups implies that
the even cohomology is isomorphic to the Chow ring via the cycle class map, and that the odd
cohomology groups have exponent at most 96. Although determining the ring structure, or even
the precise isomorphism type as groups, of the odd cohomology would require additional ideas,
the orders of the groups H*"*!(M5) can be determined explicitly (cf. equation (10.3)).

1.2 Remark

Upon completion of this manuscript, the author learned that Angelo Vistoli and Andrea Di
Lorenzo are working on a different approach to this problem, which will hopefully yield an inde-
pendent proof of Theorem 1.1.

2. Notation

In this section, we fix some notational conventions that we shall use for the remainder of the
paper.

Assumptions on the characteristic

For the remainder of the paper, we work over a field k of characteristic distinct from 2 and 3.

Assumptions on stacks

For the remainder of the paper, we shall use the word stack to refer to an Artin stack which admits
a stratification by global quotient stacks. (In fact, all the stacks we shall need are global quotient
stacks.) As shown by Kresch in Theorem 2.1.12 of [Kre99], extending earlier work of Edidin and
Graham for global quotient stacks [EG98], the Chow groups of such stacks satisfy the expected
properties, including localization sequences, intersection products when they are smooth, and
invariance under passing to the total space of a vector bundle.

Convention for projective bundles

Given a vector bundle £ — X, we adopt the convention that its projective bundle PE denotes
the space of lines in &.

DEFINITION 2.1. Write V for the standard representation of GLg, and define the representations

V, =Sym"V* and V,(m)="V,® (det V)®™,
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DEFINITION 2.2. We denote by G the wreath product
G =G 1227 := (G, X Gp) X Z/27.,

where the action of Z/27Z on G,,, x G, permutes the factors.

Given a representation L of G,,, we observe that the direct sum L ¢ L inherits a natural
action of G (where the Z/2Z-action permutes the factors); we write L 8 L for this.

DEFINITION 2.3. Write L,, for the 1-dimensional representation of G,, where z acts as multipli-
cation by z", and let

Lal,ag,...,an = La1 S La2 b---D Lan .
Let W, as,....a,, be the representation of G defined by

Waia0,.an = Layas,....an B Layas,...an »

and write W = Wj.
Additionally, let T" be the representation of G arising from the sign representation of the
Z./2Z-quotient of G.

DEFINITION 2.4. Write

a; = ¢ (V) e CHY(BGLy), B;=c¢;(W)e CH*(BG), and ~=c(I') € CH*(BG).

3. Presentations of A; and My ~ Ay

In this section, we give presentations of the boundary stratum A; of curves with a disconnecting
node, and of its complement My \. Aj, as the quotient of an affine space by the action of an
algebraic group. These presentations will be used in subsequent sections to compute the Chow
rings of these loci.

3.1 A presentation of A,

Note that the curves parameterized by A are in the form of two elliptic curves glued together
at their marked points. In other words, the stack A; can be described as the symmetric square
of M 1,1+

A~ Sym2 ]\7171 ,
where for any global quotient stack X/H, we write Sym?[X/H] := [X x X/(HZ/27)).

Note that M is indeed a global quotient stack. Namely, recall that an elliptic curve E can
be written in Weierstrass form

y* =23 +ax +b,
which is stable if and only if @ and b do not simultaneously vanish. The fiber of the Hodge bundle

here is given by
dx
H(wg) = <>
(wr) "

Moreover, the isomorphisms between two curves in Weierstrass form are given by

2

(x,y) — (u_ m,u_?’y) for ue€ Gyy;

the isomorphism given by u defines an isomorphism between the curves y? = 2> + ax + b and
y? = 23 + u*ax + ubb and acts on dx/y as multiplication by w.
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Thus, ]\7171 ~ (L4p ~\ 0)/G,,. Moreover, the Hodge bundle of ]\71,1 is the pullback of the
representation Ly from BG,,. Consequently, we have the following fundamental presentation:

Aq ~ Sym? Mig~ (Wye~ (Lag x 0UO x Lyg)) /G, (3.1)
and the Hodge bundle is the pullback from BG of the representation 7.

3.2 A presentation of Ma ~ A,

Here we show that curves in My~ A; admit a canonical degree 2 map to P! and use this to give
a presentation of My \. Aj that mirrors Vistoli’s presentation of My in [Vis98] (subsequently
generalized to other stacks of cyclic covers by Arsie and Vistoli in [AV04]). However, to make
this paper more self-contained, we do not suppose familiarity with the above-mentioned results.

We first claim that a stable curve C' of genus 2 satisfies [C] € Mo\ Ay if and only if H%(w¢)
is basepoint-free.

Indeed, if p € C is smooth, then by the Riemann—-Roch formula for O¢(p), the point p is
a basepoint of HY(w¢) if and only if dim H°(O¢(p)) = 2. In this case, the corresponding complete
linear series defines a map C' — P! which is of degree 1 on the irreducible component containing p
and of degree 0 on all other irreducible components. In particular, the irreducible component of C
containing p is isomorphic to P! (that is, rational with no self-nodes) and meets every connected
component of its complement in a unique point. This is impossible for a stable curve of genus 2,
so H'(we) can never have a smooth basepoint.

If p € C is singular, then write C for the partial normalization of C' at p. Note that sections
of we vanishing at p are in bijection with sections of w. In particular, by the Riemann-Roch
formula for Op, the point p is a basepoint of H°(we) if and only if dim HO((’)C) = 2, that is, if
and only if p is a disconnecting node.

Thus H%(wc) is basepoint-free if and only if C' has no disconnecting nodes, that is, if and
only if [C] € Ma ~\ Ay, as desired.

Consequently, every [C] € My \ Ay comes equipped with a canonical map to P'; by the
Riemann—Hurwitz formula, this map is branched over six points with multiplicity. We conclude
that the family of curves in weighted projective space given by

22 = az® + b’y + cay? + dady® + exy* + fry® + gy°, (3.2)
over the locus of degree 6 polynomials ax® + bx®y + cxty? + day® + ex®y* + fxy® + gy® with no
triple root, contains every isomorphism class [C] € M2 \ Aj.

Moreover, since the map to P! is canonical, we conclude that any isomorphism between two
curves in this family is via a linear change of variables on z and y and scalar multiplication
on z, that is, via the action of GLg xG,, with GLg acting on (z,y) and G,, acting on z. By
inspection, the subgroup of GLg XG,, acting trivially is the image of G,, under the map ¢t —
(t‘ 1, t3). We conclude that U is isomorphic to the quotient of the locus of degree 6 polynomials
az® + bxdy + caxty? + dady® + ex®y* + fxy® + gy® with no triple root by the natural action
of (GLg XG,,) /G, constructed above.

To recast this in a somewhat nicer form, we observe that (GLy XG,,)/G,, is itself isomorphic
to GLo via the map GLg xG,,, — GL9 defined by

A
Axtr—>det .

A,

whose kernel is, by inspection, the image of G,, under the map t — (t -1, t3). An inverse to this
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map is given by
A~ AxdetA.

In particular, it follows that
My~ Ay ~ (Vg(2) \ {forms with triple roots})/ GLs .

Moreover, since H’(we) = (z,y) with the natural action of GLg, it follows that the Hodge bundle
is the pullback of the representation V7 from BGLs.

4. Pushforwards along multiplication maps

Let X be any stack and €& — X be a rank 2 vector bundle on X. Write ¢; = ¢(€), and
x = ¢1(Opg(1)) for the tautological class of the projective bundle PE. In this section, we give
formulas for the pushforward maps on Chow groups under multiplication maps, similar to those
obtained by Vistoli in [Vis98].

DEFINITION 4.1. For j < r, define the class sl e CHj (IP’ Sym” 5) as the pushforward of z1x2 - - - x;
under the multiplication map (PE)7 x ]P’(Symr_] & ) — PSym" &, where x; denotes the pullback
of x under projection to the ith PE-factor.

LEMMA 4.2. The s’ can be calculated via the following recurrence relation:
Q=1 and st =(t+je1)-sl+j(r+1—j)ea-si71,
where t is the hyperplane class on P Sym" £.

Proof. By functoriality, it suffices to consider the case when X = BGLy, in which case the Chow
ring of X is torsion-free. Moreover, recall that Chow groups of the projective bundles are free
as modules over the Chow ring of the base. Therefore, we may work with rational coefficients.

Write 7: (PE)" — PSym” € for the multiplication map. As (PE)"/ — PSym" 7 £ is degree
(r — 7)!, we obtain

: 1
sl = G —j)!ﬂ*(xl cxj).

By push-pull and the symmetry of 7, this implies

; 1
J r—j
= & —j)!ﬂ-*(xl .. .;13]'7136?) + = j)!ﬂ-*(xl .. '$j+1)
J r—17J
= (r _j)!ﬂ'*(:l,‘l .. 'lejfl(_clxj — 02)) + (7“ _j)!ﬂ'*(ml .. ':L'j+1)
__da I ) VR ,
— (r_j)!m(ﬂm ;) =i+ 1) (1 wj_1) + =y 1)!7T*(3:1 Tjt1)
=—jer sl —j(r+1—j)eg sl 4 st
which yields the desired formulas. O

re

LEMMA 4.3. As a CH*(X)-module, CH*(PSym’ £) is generated by the classes s?, s}, ..., st

Proof. From the recurrence relations of Lemma 4.2, it is clear by induction on j that the sub-
Z[c1, c2]-module of CH* (IP’ Sym” 5) generated by 1, ¢, t2, ..., t/ coincides with the sub-Z[cy, cal-

module generated by 89, s}, s%, ., S ]
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The point of choosing this system of generators is that the pushforward along the multipli-
cation map takes a particularly nice form in this basis.

LEMMA 4.4. The pushforward along the multiplication map
PSym® € x PSym® & — PSym*™* &
is given by

a B
Sq X 8

S .
a— a+b

(a—oH—b—B) LatB

Proof. Consider the commutative diagram, all of whose arrows are multiplication maps (plus
permuting the factors):

(Pé’)a X (IP) Sym®™¢ 8) X (IPS)ﬂ X P(Symb—ﬂ 5) N (]}Dg)a-ﬁ-ﬁ X P(Syma+b—a—ﬂ 5)

l !

P(Sym“ 5) X P(Symb 5) —_— ]P’(Sym“'H’ 5) .
Then the left and right sides of the desired equality are the pushforwards around the left and
right sides of the diagram, respectively, of the class z1x2 -+ 2o - Y192 - - - Y3. O

LEMMA 4.5. The class of the diagonal PE C PE x PE is given by x1 + x2 + ¢1.

Proof. The result is given in Lemma 3.8 of [Vis98].

For completeness, we include a proof here: By functoriality, and considering the case when
X = BGLs and £ is the standard representation, the desired class must be given by ax+bxo+ccy,
for constants a, b, and c.

When X is a point, this formula asserts that the diagonal in P! x P! has class (a,b); thus,
a = b= 1. Moreover, when we tensor £ by a line bundle £ with Chern class ¢ = ¢;(£), then the
class of the diagonal is unaffected, but the x; are replaced by x; — ¢ while ¢, is replaced by ¢ + 2¢.
It follows that

(x1—0)+ (xa —€) + c(c1 +20) = x1 + x2 + ccq
and so ¢ = 1, as desired. O
LEMMA 4.6. The class of the triple diagonal PE C PE x PE x PE is given by
(129 + o3 + x321) + (21 + 22 + 23) - €1 + C% —C2.

Proof. By Lemma 4.5, the image of the diagonal map PE — PE x PE is x1 + x2 + ¢1, where x
and x1 are the pullbacks of the hyperplane classes from both factors of PE. Hence, the image of
the triple diagonal map is given by

[As] = (z1 + 22 + 1) (z2 + 23+ 1)
= (2122 + Tox3 + x371) + (21 + T2 +23) - €1 + & + T3+ 129
= (w172 + wox3 + 371) + (21 + 2+ 23) 01+ —ca. O
LEMMA 4.7. The pushforward along the symmetric square map PE — PSym? € is given by
s?»—>23%+201, 5] '—)S%—QCQ.

Proof. By Lemma 4.5, the image of the diagonal map PE — PE x PE is [A] = 1 +x2 + ¢1, where
1 and x1 are the pullbacks of the hyperplane classes from both factors of PE. Next, we multiply
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the above expression by x1, to get
z1-[Al =x1(x1 + 20+ 1) = (—c11 — o) + x1(22 + 1) = X129 — €32

The desired formulas follow immediately. O
LEMMA 4.8. The pushforward along the symmetric cube map PE — P Sym? & is given by

3(1) —> 38% + 6015§ + 6(0% — 62) , s% > s% — 6023§ — 6c1c9 .
Proof. By Lemma 4.6, the image of the triple diagonal map PE — PE x PE x PE is given by

[As] = (z122 + zows + x321) + (21 + 22 + 23) - €1 + c% —cy.
Next, we multiply the above expression by x; to get

z1 - [As] = 23 (2 + 3 + ¢1) + T12073 + 1 (22 + T3)C1 + T (C% — 02)

= (—c1z1 — e2) (w2 + 23 + 1) + T1T273 + 21 (72 + T3)C1 + 21 (] — €2)

= 212273 — (21 + 22 +T3) -2 — €1 - C2.
The desired formulas follow immediately. O

LEMMA 4.9. Let Y C W be an inclusion of vector bundles over X. Then the fundamental class
of PV C PW in CH*(PW) is given by the Chern polynomial of the quotient bundle W/V. That
is, if dim W/V = d, then

PY] = 2% + c;(W/ V)™t + o 4 g W) V),
where x = ¢1(Opyy(1)).

Proof. The composition Opyy(—1) = 7*W — 7*(W/V), where m: W — X denotes the structure
map, gives a section of 7*(W/V) ® Opyy(1) whose vanishing locus is PV C PW. Thus

[PV] = ca(*(W/V) @ Opw(1)) = 2%+ cs(W/ V)2 4+ ca(W)V) O
LEMMA 4.10. For rank 2 vector bundles £ and & on X, the pushforward along the Segre map
P& x PES — P(gl ® 52)

is given by
12z +c1(&) + (&),
z1 = 22 + 1 (E)x + (&) — e2(&1),
To = 22+ 1 (E1)x + c2(E1) — c2(&2),

T1x2 — 3+ (Cl (&) +a (52)).%‘2 + (62(51) + 61(51)01(52) + 02(52))1'
+ c1(&1)ca (&) + c2(&1)er (&) -
Proof. To find the pushforward of 1, we note that by functoriality, the desired class must be
given by az + bei(€1) + cc1(&E2) for constants @ and b. When X is a point, this formula asserts
that the Segre surface P! x P! C P? is of degree a; thus a = 2. Moreover, when we tensor &

by a line bundle £ with Chern class ¢ = ¢1(£), then the pushforward is unaffected, but z is
replaced by « — ¢ while ¢1(&;) is replaced by ¢1(€1) + 2¢ and ¢1(&2) is unchanged. It follows that

2(z =€)+ b(c1(&r1) +20) + ce1 (&) = 2z + bey (&1) + cer(E2)

and so b =1, as desired. By symmetry, ¢ = 1 too.
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To find the pushforward of x1, we note that by functoriality, the desired class must be given by
(L’E2 + bCl (61)13 + CCl(gQ)ZU + d62(51) + 662(52) + fCl(gl)Q + 961(52)2 + hCl(EQ)Cl (61)

for constants a, b, ¢, d, e, f, g, and h. Moreover, by symmetry, the pushforward of x5 must be
given by

az? + cc1(E1)x 4 bey (E2)x + eca(E)) + dez(E2) + ge1(E1)? + fer(E2)? + her(E)er(&1) .
In particular, the pushforward of x1 + x2 must be given by
20 + (b + ¢)(c1(E1) + c1(E2))z + (d + e)(c2(E1) + ¢2(&2))
+(f + 9)(c1(&1)* + c2(€2)?) + 2her (E2)er (&1) -

But by push-pull and our previous calculation of the pushforward of 1, the pushforward of x1 42
must also be

z- (22 + c1(&) + c1(£)) = 222 + 2(c1(&1) + a1(£2)) .

We conclude that a =b+c=1and d+e = f+ g = h = 0. In other words, the pushforward
of £1 must be given by

z? -+ bcl(é’l)x + (1 — b)Cl(gg)l' + dCQ(El) — dC2(82) + fCl (51)2 — f61(82)2

for constants b, d, and f. When &; is trivial, the pushforward of z; is simply the fundamental
class of the diagonal P& C P(E @ &2), so by Lemma 4.9,

22+ (1= b)er(E2)x — dea(E) — fe1(E2)? = 2% + c1(E2)x + c2(&2) .
Thus d = —1 and b = f = 0, and so the class of the pushforward of z; is given by
2+ c1(&2)x + c2(E2) — ca(&1) -
And by symmetry, the class of the pushforward of x5 is given by
2?4 c1(E1)x + c2(E1) — c2(&2) .

Finally, to calculate the pushforward of x1x2, we note that by the projection formula, the
pushforward of (z1 + x2) - x2 is

z - (2% 4 c1(E1)x + c2(E1) — ca(£2)) .
On the other hand, 73 = —c;1(E2)w2 — c2(E2), so the pushforward of 3 is
—c1(&2) - (362 + c1(&1)x + c2(&1) — 2(&2)) — c2(&2) - (22 + c1(&1) + e1(&2))
Subtracting, we obtain that the pushforward of xixs is
23+ (c1(E1) + c1(E)) 2% + (c2(E1) + c1(E1)e1(E2) + ca(E2))x + c1(E1)e2(E2) + ca(E1)er1 (&)
as desired. ]

5. The Chow ring of BG

Let G = (G, xGyy,) XZ/2 as in Definition 2.2. Our goal in this section is to compute the Chow ring
CH*(BG) with integral coefficients. One approach would be to use general results on Chow rings
of wreath products obtained by Totaro (cf. Section 2.8 of [Tot14]), which in particular determine
CH*(BG) ® Z/2Z, and then leverage CH*(BG) ® Z/2Z to compute CH*(BG). Instead, we give
here an independent argument which directly computes the integral Chow ring in this case.
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To start with, we observe that we have a natural embedding G — GLo as the stabilizer
of an unordered pair of distinct lines in V. In particular, BG is identified with the complement
of the image of the squaring (Veronese) map

PV;/ GLy — PVa/ GLy .
Write ¢ = ¢1(Opyy(1)).
LEMMA 5.1. The Chow ring of PVy/ GLq is given by
CH*(PVa/ GLa) =~ Zay, as, t]/((t* — 201t + daz) (t — 1)) .

Proof. Write a1 and ao for the Chern roots of V. From Grothendieck’s projective bundle formula,
the Chow ring of PV; is given by Z[aq, ae, t]/p, where

p=(t—2a1)(t —2a2)(t — a1 — az) = (* — 201t + 4o (t — o). O

From Lemma 4.7 and the localization exact sequence for Chow rings, we conclude that
CH*(BG) is the quotient of CH*(PV2/ GL2) by the relations 2si — 2a1 = s3 — 2a9 = 0. Using
Lemma 4.2, we calculate

33:1, sy =1, sgth—a1t+2a2.
Thus,
25% —2a1 =2t — 20, s% — 2a9 =2 —oagt.
Note that these relations imply (#2 — 2a1t + 4as)(t — a1) = 0. We conclude that
CH*(BG) ~ Z[al, a9, t]/(2t — 2a1, t2 — Oélt) . (5.1)
THEOREM 5.2. The Chow ring of BG is given by
CH*(BG) ~ Z[B1, B2,7]/ (27, 7* + B17) -

Proof. We have already done most of the work; it remains just to note that the representation V'
of GLy restricts to the representation W of G, so a; = f;, and to identify + and rewrite the
presentation (5.1) in terms of .

Because v is the pullback to CH'(BG) of a nontrivial 2-torsion element in CH'(B(Z/27))
and G splits as a semidirect product, + is a nontrivial 2-torsion element in CH!(BG). From (5.1),
the only such element is ¢ — ay. Substituting ¢ = v + ay into (5.1) yields the desired result. [

5.1 Results in cohomology
The analogous argument in singular cohomology (using the long exact sequence of a pair plus
the Thom isomorphism in place of the localization sequence) shows that, in characteristic zero,
the cycle class map CH*(BG) — H*(BG) is an isomorphism.

(The reader who is interested in results in cohomology, but does not find this analogy trans-
parent, is encouraged to return to this section after reading Section 8.1, where the “analogous
argument for cohomology” is spelled out completely in a significantly more involved case.)

6. Generators and some relations

In this section, we show that CH* (]\72) is generated by A1, Ag, and d1, as per Theorem 1.1.
We then establish several relations that these generators satisfy; in characteristic zero, this in-
cludes all relations claimed in Theorem 1.1.
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LEMMA 6.1. We have d1]|a, =7 — A1.

Proof. The normal bundle of A; in My is given by the line bundle whose fiber over E; U, Fs is
canonically identified with T),Fy ® T}, E». For any two line bundles Ly and Ls, there is a natural
isomorphism L1 ® Ly ~ A?(L1 @ Ly); however, this isomorphism does not respect exchanging L1
and Ly (the two sides differ by a sign). Thus, T,E ® T,E, differs from /\Q(TpEl ® T,E»>) by the
class of the sign representation . Since T,y ® T, Ey ~ H O(w E1U, 5,)" has first Chern class — Ay,
this gives the desired formula. O

From Theorem 5.2 and the presentation given in Section 3.1, we see that the Chow ring of A
is generated by A1, Ag, and ~y; similarly, from the presentation given in Section 3.2, we see that
the Chow ring of Mo ~\. A; is generated by A; and Ay. Applying the localization sequence

CH*_I(Al) — CH* (MQ) — CH* (MQ AN Al) —0
together with Lemma 6.1, we see that CH* (]\72) is generated by A1, A2, and 41, as promised.

6.1 Relations from CH*(BG)

Since the relations 2y = v2 + A1y = 0 hold in CH*(BG), they must also hold in CH*(A;). Using
Lemma 6.1, we may write these relations as

201 + 2\ = 67 + 6101 =0 € CH*(Ay) .
Pushing these relations forward to Ms, we obtain relations in CH* (]\7 2):

6.2 Relations from the Grothendieck—Riemann—Roch theorem

Here we recall Mumford’s proof of several relations in CH* (]\7 2) in [Mum83], taking care to work
with integral coefficients rather than rational coefficients where possible.

Let m: C — M be the universal curve. Write w, for the relative dualizing sheaf and Q}r for
the sheaf of relative differentials; these are sheaves on C. Applying the Grothendieck—Riemann—
Roch theorem to calculate the pushforward of the structure sheaf of C under w, we obtain the
following.

LEMMA 6.2. The following relations hold modulo torsion:
2= ™ (Cl (Q}r)) y 12)\1 = T (Cl (Q;)Q + (&) (Q}r)) y 12)\% — 24)\2 = T (01 (Q}T)CQ (Q}r)) .

Remark 6.3. Pappas has shown that for maps of nonnegative relative dimension in characteristic
zero, the relations given by the Grothendieck—Riemann—Roch theorem hold integrally when de-
nominators are cleared [Pap07]. Consequently, these relations hold exactly in characteristic zero.

Write § = Sy U S1 C C for the universal singular locus, where Sy denotes the universal
self-node and S; denotes the universal disconnecting node. Since Q! ~ w, ® Zs, we have

() =ci(wr) and  ea(Qr) = [S].
The relations of Lemma 6.2 may thus be written as
2=m(c1(wr)), 12\ = (cl(w,r)2 + [8]) , 12)\% — 24)0g = m(c1(wr) - [S]) -
LEMMA 6.4. We have the following relation in CH*(C):
c1(wr)? = c1(wr)A + Xo — [S1] = 0.
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Proof. As shown in Section 3.2, the natural map 7*m.w; — w,; vanishes exactly along S;. Let £
denote its kernel, so we have an exact sequence

0= L= 1m*"mwr = wr ®ZTZg, — 0.
Since S is a local complete intersection of codimension 2, the projective dimension of w, ® Zs,
is 1; consequently, £ is a line bundle, and so
1+ 1 (m*mwr) + co(m¥mewy) L+ A+ A2
1t c1(wr @ Is, ) + ca(wr ®Igl)]2 - [1 + c1(wr) + [S1]] 5
= c1(wr)? = c1(wr) A1 + Ao — [S1]. O

0= CQ([:)

LEMMA 6.5. We have the following relation in CH* (]\72) modulo torsion: 24)\% — 485 = 0.

Remark 6.6. In characteristic zero, the arguments of this section establish this relation exactly
(not just modulo torsion); cf. Remark 6.3.

Proof. In light of the relation 12)\% — 24)\y = . (c1(wy) - [S]), it remains to show that ¢ (w;) - [S]
is 2-torsion. But this is clear since the residue map gives a trivialization of wy|s up to sign. [

LEMMA 6.7. We have the following relation in CH* (]\72) modulo torsion: 69 = 10\ — 207.

Remark 6.8. In characteristic zero, the arguments of this section establish this relation exactly
(not just modulo torsion); cf. Remark 6.3. Combined with Lemma 6.9 below, we obtain the
relation 201 Ao — 461 2 = 0.

Proof. Combining the relations 2 = m.(ci(wy)) and 12X = m,(c1(wx)? + [S]) with Lemma 6.4,
we obtain
12\ = 7, (61 (ou,,)2 + [S]) = 7. (c1(wr) A1 — A2 + [S1] + [So] + [S1])
= Tx(c1(wr)) A1 + 2 ([S1]) + 74(So) = 2A1 + 201 + do -

This yields the desired relation upon rearrangement. O
LEMMA 6.9. We have the following relation in CH* (]\72): 2009 = 0.

Proof. The map M1 — M obtained by gluing together the marked points is 2-to-1 onto Ay,
so the composition of pullback followed by pushforward CH* (]\7 2) — CH* (]\7 172) — CH* (]\7 2)
is multiplication by 2dp.

It thus suffices to show that the pullback of Ay to M 1,2 is zero. But this is clear since the

residue map gives a surjection from the pullback of the Hodge bundle to the structure sheaf
Of MLQ. O

6.3 Results in cohomology
Since the cycle class map is a ring homomorphism, all relations in CH* (]\7 2) established here also

hold in H* (]\7 2) in characteristic zero. However, we shall see later that H* (]\7 2) is not generated
by /\1, /\2, and 51.
7. Pushforward and pullback along B(G,, X G,,) — BG

In this section, we calculate the pushforward and pullback maps along

w: B(Gy, x G,) — BG.
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Write t1 and t5 in CH*(G,,, x G,;,) for the Chern classes of the standard representations of each
Gy-factor. Since pullback is induced by restrictions of representations, we immediately find

7 (B1) =t +ta, 7 (B2) =tita, 7 (y)=0.

LEMMA 7.1. The pushforward map along w: B(G,, X G,,) — BG may be described recursively
as follows:

(1) =2, m(t1) =p1+7,
Ty (t(f) = BT (t”l‘fl) — Bomy (t‘f?) for a>2,
r (988) = B0 ().

Proof. Since 7 is of degree 2, we have m,(1) = 2.

Suppose 7. (t1) = aBy + by. Then by symmetry, m.(t2) = a1 + by. Moreover, by push-pull
we have

261 = mem* B1 = mi(t1 + t2) = (aB1 + bY) + (B + by) = 2a51,
(b - a)’YQ =7 (a/Bl + b’Y) =y Tyt = 77*(751 : 77*’7) = 71'>|<(tl : 0) =0.
Thus, a = b =1, that is, m.(t1) = 1 + 7, as claimed.
Using push-pull, we have for a > 2
T (t9) = (b + 1)) — tatat{ ) = Bim (t77) = Boma (¢72).
And finally, using push-pull and symmetry, we have
m (t515) = ()™ D) = gD, (1), =

We conclude this section by calculating the Chern classes of the representations V,, H V,,,
which are obtained by pushing forward the representation V,, of G,, x G,, with weight (n,0)
to BG.

LEMMA 7.2. The Chern classes of W,, are given by
ca(Wn) =nfi+ (n+ 1)y, ca(Wy)=n’p.

Proof. We argue by induction on n. When n = 0, the representation Wy is the regular repre-
sentation of the Z/2Z-quotient of G, which splits as 1 @ I'; its Chern classes are thus 7 and 0,
respectively. When n = 1, the representation W; = W has Chern classes 81 and 2 by definition.

For the inductive hypothesis, we suppose n > 2. Observe that we have a direct sum decom-
position

Wn1 @ Wi = Wy @ (Wya @ *Wy @T)
Writing a,, and b,, for the Chern roots of W,,, we obtain

(1 +apn—1+ al)(l +anp—1 + bl)(l + bn—l + al)(l + bn—l + bl)
=(1+an)(1+b)1+an2+p1+7)(1+by2+B1+7). (7.1)

Comparing terms of degree 1 on both sides of (7.1), and using the relation 2y = 0, we have

2((17171 + bnfl) + 2((11 + bl) = Qn + bn + anp—2 + bn72 + 2ﬁ1 )
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and so by our inductive hypothesis,
c1 (Wn) =an+b, = 2(an_1 + bn—l) + 2(&1 + bl) — (an—2 + bn_g) — 201
=2[(n—1)p1+ny] +281 —[(n—2)B1 + (n — 1)v] — 23
=np + (n+1)y.

Similarly, comparing terms of degree 2 on both sides of (7.1), and using 2y = 0, we have

(an—1 + bp—1)* + 2an_1bn—1 + (a1 + b1)* + 2a1b1 + 3(an—1 + bp—1)(a1 + b1)
= anbn + an—obp—2 + (B1 + 7)(an-2 + bn—2) + (B1 + ) + (an + bn)(an—2 + bu—2 + 2B1),
and so by our inductive hypothesis, together with 2y = 72 4+ 817 =0,
co(Wh) = anby

= (an—14 bp_1)? + 2an_1by_1 + (a1 + b1)? + 2a1b;
+ 3(an—1+bp-1)(a1 +b1) — an—2bp—2 — (B1 + ) (an—2 + bp—2)
— (b1 + 7)2 — (an +bn)(an—2 + bn—2 +251)

= [(n=1)B1+n ) +2(n = 1)*B2 + B + 252
+3[(n = 1)B1 + my]B1 — (n = 2)*B2 — (B + )[(n = 2)B1 + (n — 1)1]
— (81 +7)% = [nf1 + (n + D]([(n = 2)B1 + (n — 1)7] +261)

=n?fy— (n—1)(v* + B17)

=n2By. O

8. The Chow ring of A;

In this section, we calculate the Chow ring CH*(A1). Recall the presentation of A; obtained in
Section 3.1:
A~ (W476 ~ (L476 x 0U0 x L4’6)) /G

In this section, we will use the calculations of CH*(BG) ~ CH*(Wy46/G) from Section 5 to com-
pute the Chow ring of A; using the localization sequence.

We first note that the formulas in Section 4 apply to calculate loci in the total space of vector
bundles with the origin excised: simply pull back the corresponding classes from the projectiviza-
tion. So to start with, we excise the origin of Wy using the localization sequence

CH**(BG) — CH*(Wy6/G) — CH*(W') = 0, where W' = (Wye~ (0x0))/G.

In terms of the isomorphism CH*(BG) ~ CH*(W,6/G), this first map is multiplication by the
Euler class e(Wy) = ca(Wa), and so

CH*(W') ~ CH*(BG)/ca(Wag) -
To compute c4(Wy6), we use Lemma 7.2, which gives
e(Wyg) = ca(Wag) = ca(Wy) - ca(Ws) = 16)g - 36Xa = 57613 . (8.1)
To get from W’ to Ay, we have to excise the closed substack
Z = (((Las ~ 0) x 0) U (0 X (Lag ~ 0))) /G = ((Lag ~ 0) X 0)/(Gpn X Gppy) .
This isomorphism implies that CH*(Z) is generated by {1,¢1} as a module over CH*(BG), so it
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suffices to determine the images of 1 and ¢; under the localization sequence
CH*%(Z) — CH*(W') — CH*(A1) = 0.
But from Lemma 4.9, the class of
Z" = (L1 ~ 0) X 0) /(G X Gyn) C (Layg ® Lag ~ (0 x 0))/(Gpy x Gpy)

which maps isomorphically onto Z, is given by c2(0 x Lyg) = 24t3. Consequently, the images
of 1 and t; are the pushforwards of 24t3 and 24t1t3 along B(G,, x G,,) — BG; by Lemma 7.1,
these are 24\? — 48\ and 241 \g, respectively. These imply our earlier relation 5763 = 0, and
therefore the following result.

THEOREM 8.1. The Chow ring of A1 is given by
CH*(A1) = Z[A1, A2, 7]/ (27,77 + A1y, 24)F — 48)2,24M1\0) . (8.2)
Remark 8.2. One observes from this that after inverting 2, the Chow ring is Sym? CH* (]\7 171).

8.1 Results in cohomology
(The reader interested only in the Chow ring of My may wish to skip this section.)

An essentially analogous argument in singular cohomology shows that in characteristic zero,
the even singular cohomology of A7 is isomorphic to its Chow ring via the cycle class map and also
computes both the order and an upper bound for the exponent of the odd cohomology groups.
Unlike many other arguments given in this paper, working with cohomology introduces two
minor subtleties not present when working with Chow groups; we therefore spell this argument
out explicitly for the interested reader.

We begin by computing the even cohomology of W’ which is completely analogous to com-
puting its Chow ring.

LEMMA 8.3. The even cohomology of W' is isomorphic to its Chow ring via the cycle class map
H2"(W') ~ CH"(W'),
and its odd cohomology is, as a group, isomorphic to
H20H (W) o (Z,/22)mx0Ln=3)/2])

Proof. We wish to mimic, in cohomology, the Chow localization sequence for excision of the
origin 0/G ~ BG of Wy to obtain its complement W’. For this, we use the long exact sequence
for the pair (Wy /G, W'), which gives long exact sequences

s I (W6 /G) — BTN (W) — H2"(Wae /G, W) — B> (Wae/G)
— (W) — B (Wye /G W) — - -
Using the Thom isomorphism
HY (Wae/G,W') = H*(Wy6/G, Wais/G ~ 0/G) ~ H8(0/G) = H*8(BG) ,
we obtain the exact sequences
0 =H""(Wy6/G) — H* W) — B> ¥(BG) — H*"(Wy6/G)
— H**(W') - H**"(BG) =0,

which identify the even cohomology H*"((Wy6 ~ (0 x 0))/G) (respectively, the odd cohomology
H2" " (Wye ~ (0 x 0))/G)) with the cokernel (respectively, kernel) of multiplication by e(Wy)
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from H2"~8(BG) to H*"(BG), just as the localization sequence for Chow rings identified CH" (W)
with the cokernel of multiplication by e(Wy ) from CH"4(BG) to CH"(BG).

We conclude that the even cohomology of W’ is isomorphic to its Chow ring via the cycle
class map, and its odd cohomology is isomorphic to the kernel of multiplication by e(Wyge)
on H*""%(BG):

H* (W) ~ {z € CH"*(BG): 576)3 - = 0} = v - (Z/2Z) [\, Aa]n—5
~ (7./272)Px(0L(n=3)/2]) ]
The first subtlety here is that, in order to compute the cohomology of A by excision of Z
from W', we need Z to have no odd cohomology.
LEMMA 8.4. The cohomology of Z is isomorphic to
H*(2) ~ Zft1, 1) (2482)
where t1 and to are of degree 2. In particular, the odd cohomology of Z vanishes.
Proof. When we excise the origin of L6, we obtain the exact sequences
0=H""(Li6/(Gp x Gp)) — H*H(Z) — B4 B(Gyy, x Gy))
— H?"(Ly6/(Gm x Gp)) — H*™(Z) — H* 3(B(G,, x Gy)) =0,

which identify the even cohomology H?"(Z) (respectively, the odd cohomology H?"*!(Z)) with
the cokernel (respectively, kernel) of the map H*"~4(B(G,, x G,,)) — H**(B(G, x G,,)) given
by multiplication by e(Ly ). Because e(L4g) = 24t7, which is not a zero divisor in the cohomology
ring H*(B(Gy, x Gy)) =~ Z[t1, t2], we obtain H*(Z) ~ Z[t1,t5]/(24t}), as claimed. O

When we excise Z from W’ to obtain A, we obtain the exact sequences
0= H2n73(Z) N H2n+1(W/) ~ (Z/2Z)max(0,t(n73)/2j) — H2n+1(A1) — H2n74(Z)
— H*(W') — H**(A,) — H*°(Z) =0,
which identify the even cohomology H**(A1) (respectively, the odd cohomology H2"*1(A1)) with
the cokernel (respectively, an extension by (Z/22)™*(0:L(n=3)/2) of the kernel) of the pushforward

map H*"~4(Z) — H*(W’). In particular, the even cohomology of A; is isomorphic to its Chow
ring via the cycle class map

H2"(A;) ~ CH"(A1).
The second subtlety here is that computing the kernel of H**~4(Z) — H*"(W’) requires a bit
of thought. Namely, to compute it, we first pull back to the degree 2 cover of W' given by
W' := (L4 ® Ly~ (0x0))/ (G, X Gpp) .
The same argument used to compute H*(W’) shows
H*(W") ~ H*(B(Gy, x Gpy))/ca(Wae) = Zlt1,t2]/ (576t1t3) .

For a cohomology class x € H*(B(G,, x Gy,)), denote by T its image under the automorphism
exchanging the two Gy,-factors; in these terms, the composition of pullback and pushforward

H* (B(Guy % Grp)) — H(BG) — H*(B(Gyp x Gpp)) is given by a2 + 7.

Recall that the class of Z” in W” is given by co(0 x Lyg) = 24t3; consequently, the composi-
tion H2~4(Z) — H2(W') — H*(W") is given by

T 2485 - T + 2483 - 1 = 2415 - 1 + 248 - T € Z[t1, o)/ (5761713 .
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In particular, an element z € H*(Z) = Z[t1,t2]/(24¢}) in the kernel of H**~*(Z) — H**(W’)
must satisfy
24t3 -z + 2417 T € (576t583) & th-x+ 1] T € (241513)

and, in particular, must satisfy = € (¢?). When we write x = ¢2 - 3y, the above condition becomes
313 y+1t7 13-y € (24t343), that is, y + ¥ € (24). As a module over the ring of symmetric
functions in t; and to, the space of such y is generated by 12 and ¢; — to. Unwinding this, we see
that the kernel of H?"~4(Z) — H?"(W') is contained in the sub-H*(BG)-module of H*"~4(Z2)
generated by 12t? and (t; — t2)t2. Conversely, applying Lemma 7.1, we see that both 12¢? and
(t; —t2)t? are contained in the kernel of H2"~4(Z) — H?"(W’). Thus, the kernel of H*"~4(Z) —
H?"(W') is exactly the sub-H*(BG)-module of H*"~*(Z) generated by 12¢? and (t; — t2)t3. As
a group, this is

(b — t2)12 - (Z/24Z) 1, ta)—5 © 1262 - (Z/22)[11]—1
1 ifn>4,

~ (7./2472)On=1) o (7./27)¢  for €= _
0 otherwise.

Putting this together, we have shown the following.

PROPOSITION 8.5. The even cohomology of Ay is isomorphic to its Chow ring via the cycle class
map H?"(A1) ~ CH"(A), and its odd cohomology H?"*'(A,) is a group of exponent at most
48 and order

1 ifn>4,

2qmax(0n—4)  gmax(0,[(n=3)/2])+¢ = where €=
0 otherwise.

9. The Chow ring and higher Chow groups of Ma \ A

In this section, we compute the Chow ring and higher Chow groups with /-adic coefficients
(where ¢ is prime to the characteristic of the base field k) of My \ A; and of its quotient by the
twisting action of G,,—that is, the action of G,, on Ms . A; obtained by scaling with weight 1
the coefficients a, b, ¢, d, e, f, and g in (3.2).

Bloch’s higher Chow groups [Blo86] are defined as the homology of certain complexes z*(X, o)
(here we have one complex for each value of *, and e denotes the grading of the complexes). These
groups are significantly easier to compute with torsion coefficients (in which case they can often
be compared to étale cohomology) and when the base field is algebraically closed. So here we
adopt the convention that by “higher Chow groups with ¢-adic coefficients,” we mean the groups

CH*(X,n;Zy) := H, (@1 (X7, 0) @F Z /M) ,

m

where X7 denotes the base change of X to the algebraic closure k of our base field k. Note that
when the CH* (X, n; Z/¢™Z) are finitely generated, we have

CH* (X, 3 Zy) ~ lim CH*(Xg, n; Z/0"Z) .

m

In particular, since we have shown that CH*(A;) and CH* (JW 2) are finitely generated, we still
have

CH*(X,0;Z¢) = CH (X3) ® Zy for X € {A1, Mg, My~ Ar}.
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Moreover, Bloch’s higher Chow groups satisfy CH*(Speck, 1;Z/¢™Z) = 0 by Theorem 10.3 of
[MVWO06] (in combination with the isomorphism given in Lecture 19 of [MVWO06] between higher
Chow groups and motivic cohomology). Consequently, this definition of “higher Chow groups
with f-adic coefficients” satisfies CH*(Speck, 1;Z¢) = 0.
The description of My ~. A; given in Section 3.2 shows that
(M3~ A1) /Gy, == (PVg(2) \ {forms with triple roots})/ GLy
~ (PVs ~\ {forms with triple roots})/ GLs .

DEFINITION 9.1. Write t = ¢1(Opy; (1)).

So by construction, My ~\ A1 is a G,,-bundle over (]\7 2\ Al) /G, given by the complement
of the zero section in a line bundle with Chern class ¢t —2A;. (One could also take 2\ —¢. Indeed,
the complement of the zero section in a line bundle is isomorphic to the complement of the zero
section in the dual line bundle, so there is no natural choice of sign here.)

LEMMA 9.2. The stack PVs/ GLg has Chow ring CH*(PVs/ GLa) = Z[A1, A2, t]/p(A1, A2, t), where
P(A1, Az, t) = (12 — 6A1t + 36X2) (7 — 6A1t + BAT + 16)2) (£* — 6A1t + 8AT + 4X2) (t — 3A1).
Moreover, its first higher Chow groups with (-adic coefficients vanish:
CH*(PVs/ GLo,1;Zy) = 0.
Proof. When we write a and [ for the Chern roots of V* (with o + 8 = —A; and aff = Ag),
Grothendieck’s formula for the Chow ring of a projective bundle gives
CH*(PVs/ GLz) = CH*(BGL2)[t]/p(t) = Z[ 1, X2][t]/p(¢) ,
where

p(t) = (t+6a)(t + 68)(t + 5o+ B)(t + o+ 58)(t + da + 2B)(t + 2a + 48)(t + 3o + 30)
= (2 = 6A1t + 36X2) (£ — 6A1t + 5A] + 16X2) (t — 6A1 + 8AT +4X2) (t — 3A1) .

Since CH*(Speck,1;Z;) = 0 and higher Chow groups are preserved under taking vector
bundles, we have CH*(A}, 1;Z;) = 0. Using the localization sequence and the standard decom-
position of the Grassmanian into Schubert cells, we see that CH*(Gry(m,n),1;Zy) = 0, where
Gri(m,n) denotes any Grassmanian over k. Consequently, CH*(BGLz2, 1;Z;) = 0, and so the

first higher Chow groups vanish for any projective bundle over BGLs (see, for example, [Blo86,
Theorem 7.1]), including for PVgs/ GLs. O

DEFINITION 9.3. Write 77 C PVy/ GLy for the locus with exactly one triple root, and write
Ty C PVs/ GL3 for the locus of perfect cubes.

DEFINITION 9.4. Write cub;: (PV1/GLy) — (PV3/GL2) and cuby: (PV2/ GL) — (PVs/ GL2)
for the cubing maps. Write S;; = s} x s} (recall Definition 4.1), and denote by s;; the pushforward
of S;; under the map

6: (PV; x PV3)/GLy — PVg/ GLy  defined by (f,g9) — f3-g.
Observe that we have the following commutative diagram:

1xcuby

(PVi x PV3)/ GLy (PV; x PV3)/ GLy
multiplication l l 0

PV3/ GLy b2, PY/GLy .
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In particular, taking the images of the generators s x s{, we obtain from Lemmas 4.4 and 4.8
(With c1 = —X and ¢g = )\2)

2cubg (88) = 3502 — 6A1801 + 6(/\% — /\2) 500 ,
cuby (S%) = 3819 — 61811 + 6()\% — /\2)810 ,
cuba (S%) = 503 — 62501 + 6A1A2500,

cubsy (S%) = 513 — 6A2511 + 61 X210 .
The middle two relations give two expressions for cubs (s%), which must therefore be equal. Note
also that this forces the coefficients of sgs to be even; we can thus write
! 1
Sp2 = 5 S02 -

LEMMA 9.5. The Chow ring CH*((PVs \ T>)/ GLs2) is generated as a module over Z[A1, A2| by

the elements sg, sé, s%, s%, sé, sg, and sg, subject to the relations

3- [862 — A1So1 + ()\% — /\2)800] =0,

3- [312 — 2)\1811 + 2()\% — )\2)810] = 0,

513 — 69511 + 6A1Aas190 = 0.
Moreover, assuming that these three elements are linearly independent over Z[\1, A2], the first
higher Chow group vanishes; that is, CH*((PVs \ T2)/ GLg, 1; Zy) = 0.
Proof. Using the first of our two expressions for cubg (S%), this is immediate from Lemmas 9.2
and 4.3 together with the localization exact sequence

-+ — CH*(PVg/ GLg, 1;Z¢) = 0 — CH*((PVs \ T3)/ GLa, 1;Z¢) — CH* (Th): ® Z
LEMMA 9.6. The Chow ring CH*((MQ ~ Al)/Gm) is generated as a module over Z[\1, \2] by
the elements sQ, st, %, s¢, s, s2, and s, subject to the relations
500 = S10 = 501 = 511 = Sog = s12 = 513 = 0.
Moreover, assuming that these seven elements are linearly independent over Z| A1, A2], the first
higher Chow group vanishes; that is, CH*((MQ ~ Al)/Gm, 1; Zg) =0.
Proof. From the localization exact sequence
-+~ — CH*((PV; x PV;)/ GLg) — CH*((PV; x PV3)/ GLy) — CH*(T1) — 0,

it follows that CH*(T}) is generated as a module over Z[\1, A2] by Soo, So1, Soz2, So3, S10, S11,
Si2, and Si3, with the relations (cf. Lemma 4.8):

3502 — 6A1S01 + 6(AT — A2)So0 =0,  Sos — 6A2S01 + 6A1 X200 = 0,

3512 — 6A1511 + 6(A] — X2)S10 =0, Si3 — 622511 + 6A1 2510 = 0.

Equivalently, eliminating Sps and Si3 via the two rightmost relations and writing
z = Sp2 — 2M1801 +2(A] — A2)Soo  and y = S12 — 2\ 811 +2(A] — A2)Sho,

we have that the Chow ring CH*(T}) is generated as a module over Z[A1, \2] by Soo, So1, Si0,
S11, « and y, with relations

3xr =3y =0.
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Note that the assumed independence of sgg, S10, So1, S11, She, S12, and s13 implies the in-
dependence assumed in Lemma 9.5. By Lemma 9.5, the Chow ring CH*((PVg \ Ta)/ GLog) is
generated as a module over Z[\1, \o] by 38, sg, s%, S%, sé, sg, and sg, subject to the relations

3z = 0, 3 H(y) =0, 813 —6A3511 +6A1A2s10=0,
where 6(z) = 22/, and CH*((PVs \ T2)/ GLa, 1;Z¢) = 0. Using the localization exact sequence
CH**(T}) — CH*((PVg \ Tv)/ GL2) — CH*((M2 \ A1) /Gy,) — 0,

we conclude that the Chow ring CH*((MQ ~ Al)/Gm) is generated as a module over Z[A1, 2]

by the elements sg, sé, s%, s%, s‘é, sg, and sg, subject to the relations

500 = S10 = So1 = 511 = 2’ = 0(y) = s13 — 62511 + 6A1X2510 = 0.

Moreover, assuming that these seven elements are linearly independent over Z[A1, Ao], the local-
ization sequence

s — CH*<(P‘/6 AN TQ)/GLQ, I;Zg) — CH*((MQ AN Al)/Gm, 1;Zg)
— CH* 2(T1)z ® Zy — CH*(PV5 N T2)/ GLa)z ® Zg — - - -

implies CH*((MQ ~ Al)/Gm, 1;Zg) = 0. Since
= 862 — A1801 + ()\% — )\2)800 and Yy = s12 — 21511 + 2()\% — )\2)810,

the submodule generated by these seven elements is the same as the submodule generated by
the seven elements given in the statement of the lemma. O

We now combine Lemmas 4.4 and 4.8 to calculate s;; by pushing forward along 6. For this,
we factor 6 as cubing the first factor followed by multiplication:

(PVl X ]P)Vg)/GLQ — (]P)VE; X ]P)V;),)/GLQ — ]P)‘/G/GLQ .
The results are as follows:

Sq — 6)\28% + 6)\1)\28%

3 x 83 > 53 — 60Ags + 120A1 Xasd
Sg — 6)\25:1), + 6)\1)\28g

3

3

3

3

X 54 > 8¢ — 36258 + 60\ Aasg
X 5% > sg — 18Xasg + 24\ \as?

X sg =+ 59 — 6asg + 6 \as

510 S% X 83 >
S11: S% X 83 >
s§ — 6253 + 61 Aas)
Sq — 6)\28:1; + 6)\1)\23g

312: 51 X 53 —

[ s Sy e Sy

313: Sl X 33 —

s500: 89 x 89— [3s2 — 615k + 6()\% - )\g)sg] X 59— 1252 — 60155 + 120()\% — )\2)38,
s01: 89 x s3> [3s2 — 6A1sk + 6()\% - )\g)sg] X 55 > 9sp — 36152 + 60()\% - )\g)sé,

= 80y = 35§ — ONisp + 12(A] — Xo) s .
LEMMA 9.7. We have CH* ((M2 \ A1) /G, 1;Z¢) = 0.

Proof. We just have to check that si0, s11, s12, S13, S00, So1, and s(, are linearly independent
over Z[A1, Ao]. For this, we use the above expressions for them in the basis 9, s§, s2, s, s¢, 3,
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and s8, which reduces our problem to checking that the following matrix is nonsingular:

1201 A2 —60A2 0 1 0 00

0 601 A2 —36A2 0 1 00

0 0 2401 X2 —18x 0 1 0

0 0 0 6A1 A2 —6Xy 0 1

120(Af — A2)  —60\; 12 0 0 00
0 60(A\f —X2) =36\ 9 0 00

0 0 1200 -X) —-9% 3 0 0

It thus remains to note that this matrix has determinant 86400(/\% — 4)\2)3 # 0. O

LEMMA 9.8. The Chow ring of (]\72 ~ Al)/Gm is given by
CH* (M2~ A1) /Gp) = Z[A1, A2, 1]/ (s00, S10 S02) -
Proof. By Lemmas 9.6 and 9.2,
CH*((Ma ~ A1) /Gyn) = Z[A1, Aa, 1]/ (D, 500, 5105 501, 511, 5025 512, 513) -

As 0*t restricts to a hyperplane class on the P3-factor, push-pull implies that sij € (800, s10) for
any ¢ and j (but not that s, € (s00, s10)!), as well as that p € (sgo, s10). Thus, soo, s10, and s{,
generate the ideal of relations. O

To compute the Chow ring of (]\7 2\ Al) /G, more explicitly, we first use the recursion of
Lemma 4.2. to compute the first few s}:
sA=1, st=t, s2=1>—\t+6\,
sg =17 — 3\t + (2M\] + 16X2)t — 12X1 N0,
sg =1 — 61t + (11AT 4+ 28X0)t% + (—6AT — 7201 X\2)t + 36ATA2 + T2)3.
Substituting these into the expressions for s;; given above, we obtain
s10 = 13— 3A1t2 + (2] — 4400) ¢ + 108\ A2 = 20\ Mg + (12 — Mt — 44)0) - (t — 2)\1),
500 = 12t% — T2\t 4 12007 — 48Xy = 24)3 — 48y + (12t — 48)1) - (t — 2)\1),
Sop = 3t — 2TA1t% + (T20] + 72X2) 1% — (48AF + 348X 1 X2 )t + 288AT o + 14473
= —60(A] — 4X2) (t — 3\1) - (£ — 2X\1) + (3t — 6A1)s10 — (M1t — 3AT 4+ 3X2) s00 -
In other words, the Chow ring of (1\7 2\ Al) /Gy, is generated by A1, A2, and ¢ with relations
Ry =20A1 2 + (2 — At —44Xo) - (t —2M\1) =0,
Ro = 24)3 — 48)o + (12t — 48\1) - (t — 2X\1) = 0,
Ry = 60(A] — 4X2) (t — 3A1) - (t —2X\1) = 0.
THEOREM 9.9. The Chow ring of Mo ~. A1 is given by
CH*(Ma ~\ A1) = Z[A1, Ao]/ (2407 — 489,20\ A2) .

In addition, CH* (M ~ Ay,1;Zy) is generated freely as a module over (Z/2Z)[A1, 2] by two
2-torsion classes in degrees 4 and 5, respectively.
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Proof. Note that My~ A is a G,,-bundle over (]\72 ~ Al)/Gm, with Chern class t — 2\1. From
the localization sequence

CH*((MQ AN Al)/Gm) — CH*((MQ AN Al)/Gm) — CH*(MQ AN Al) — 0,
we learn that CH* (]\7 2\ Al) is given by the cokernel of multiplication by ¢ — 2A; on the Chow
ring CH*((]W 2\ Al) / Gm), which is evidently the ring given in the statement of the theorem.

Moreover, from the localization sequence

s — CH*((MQ \Al)/Gm,l;Zg) =0— CH*(MQ \Al,l;Zg)
— CH*fl((MQ \Al)/Gm)E(X)Zg — CH*((MQ \Al)/Gm)E®Z£ — e

we learn that CH* (]\72 N A, 1 Zg) is given by the kernel of multiplication by t — 2X;
on CH*_l((M 2\ Al) / Gm)E ® Zyg. This kernel is evidently generated by the classes

cq = 60()\% — 4)\2)(t — 3)\1) ,
5 = BA1Ag - (126 — 4801) — (6AT — 12X0) - (£2 — Ait — 44)) .

Finally, by inspection, both of these classes, when multiplied by 2 or ¢, are in the ideal
(R1, Ra, R3). To see that these classes generate the kernel freely over (Z/2Z)[A1, A2], assume to
the contrary that some linear combination p4 - ¢4 + ps - ¢5, with pg, ps not both in (2,t), was
in (Rl, RQ, Rg)

As ¢4, c5, R, Rg € (2) but Ry ¢ (2), we have py - ¢4+ ps - ¢5 € (2R1, R, R3) C (2152,4). Since
cy € (2t274), we obtain ps - c5 € (2t2,4). As cs ¢ (2752,4)7 this forces ps € (2,1).

In particular, p5-c5 € (R1, Ra, R3), s0 ps-c4 € (R1, R, R3). As ¢35, Ry, R3 € (4), but R; ¢ (2),
we have py - ¢4 + ps - ¢5 € (4R1, Ra, R3) C (4t,8). Since ¢4 ¢ (4t,8), this forces ps € (2,1). dJ

Observe that the twisting G,,-action extends over the whole of M,. Indeed, consider the
universal family of curves over Mo, pulled back to M3 x G,,. There is a natural action of Z/27Z via
the hyperelliptic involution on the universal family over My composed with multiplication by —1
on G,,; the quotient of this family by this action gives a family of curves over Mo x (G, /(Z/27))—
or, using the isomorphism Ms x (G,,,/(Z/2Z)) ~ Mo x G, given by the squaring map, a family
of curves over My x G,,, that is, an action of G,, on Ms,. By inspection, this restricts to the
twisting action defined above on My ~\ Aj.

Our next task is to leverage the fact that the G,,-action extends over the whole of Mj
to compute the image of the degree 5 generator in CH® (M2 NAq T Zg) in CH4(A1)E® Zy under
the boundary map in the localization sequence

+-+— CH (M2 \ Ay, 1;Z) — CHY (A1) ® Zy — CH (M) @ Zg — -+ .

First observe that since CH* (]\7 2N A1 Zg) is generated in degrees 4 and 5, any degree 2 or 3
class x € CH* (MQ)E®Zg whose image in CH* (]\72 ~ A1)5®Zg vanishes is the image of a unique
degree 1 or 2 class in CH*(Ay); ® Zg¢, which we denote by 7.

LEMMA 9.10. The image of the degree 5 generator in CH® (]\72 N AL Zg) in CH4(A1)E® Zy is
given by

BA1A2 - (2407 — 48X2) — (6AF — 12X2) - 20A1 X
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Proof. Consider the diagram
0 — CH*(A1/Gp)j ® Zy — CH* (M2/Gpn) ® Zy — CH* (Mo~ A1) /Gpn)7 ® Zg — 0

| | !

00— CH*(Al/Gm)E(@Zg — CH*(MQ/Gm)E(@Zg — CH*((MQ AN Al)/Gm)E(@Zg — 0,

where the vertical maps are multiplication by ¢t —2A1; since CH* ((]\72 ~ Al)/(Gm, 1; Zg) =0, the
rows are exact. The snake lemma then gives us a map from the kernel of multiplication by ¢ —2)\;
on CH* ((]\72 ~ Al)/Gm)E@) Zy to the cokernel of multiplication by ¢ —2A; on CH*(A1/Gy, )z ®
Zy; under the identification of the former with CH* (]\72 N A, 1;Zg) = 0 and the latter with
CH*(A1)z ® Zy, this map corresponds to the boundary map appearing in the localization exact
sequence.

We have a natural lift of ¢ —2X; (and thus ¢) corresponding to the extension of the Gp,-action.
Given a class in z € CH*(M2/G,)z ® Z¢ whose image in CH*((MQ ~ Al)/Gm)E ® Zy is zero,
we also write T for the class in CH*(A1/Gy,); ® Z¢ mapping to .

Now the map arising from the snake lemma can be described as follows: Given a class in the
kernel of multiplication by t — 2A; on CH*((MQ ~ Al)/Gm)E ® Zy, we pick a lift of this class
to CH*(M2/Gy,)y; @ Zg; we multiply that lift by ¢ — 2A;; we write that (uniquely) as the image
of a class in CH*(A1/G,)z® Zg¢; and finally, we reduce that class modulo ¢ —2); to obtain a class
in the cokernel of multiplication by ¢ —2X; on CH*(A1/G,, )z ® Zy. Following that recipe for our
degree 5 class, we obtain

(t —2X1) - [BAiA2 - (126 — 48X1) — (6A3 — 12X9) - (82 — At — 44X9)] mod ¢ — 2); .

Writing
(t—2X1) - [BA1Ag - (12t — 48X1) — (6AT — 12X2) - (£2 — At — 44)) ]
= (5A12) - [24A] — 48X0 + (12t — 48)1)(t — 2\1)]
— (6)\% - 12)\2) . [20)\1)\2 + (t2 — it — 44)\2) (t — 2)\1)] ,
we obtain

(BA1A2) - [2402 — 48)o + (12¢ — 48)1)(t — 2X\;) mod ¢ — 2)]
— (6A7 — 12X) - [20A 102 + (2 — Ait — 44X0) (£ — 201) mod t — 2X].

Since 24X — 48y + (12t — 48)1)(t — 2X\1) mod t — 2); is a class in degree 2 and the map
CHQ(Al)E(X) Zy — CH? (MQ)E® Zy is injective, this class is determined by its image in the Chow
group CH? (]\7 2)E® Zy, which is just 24)\? — 48)\y. Consequently, this class can be written simply

as 2402 — 48),. Reasoning similarly for the second term, we deduce the formula given in the
statement of the lemma. O

9.1 Results in cohomology

The analogous argument in singular cohomology shows that in characteristic zero, the even
singular cohomology of My ~ A; is isomorphic to its Chow ring via the cycle class map

H2n(M2 N Al) ~ CHR(M2 N Al)
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and that the odd singular cohomology of My . A is isomorphic to its first higher Chow groups
via the cycle class map

H2n+1(M2 AN Al,Zg) ~ CHn(MQ AN Al, 1;25) .

In particular, H*"*! (M5~ A;) is freely generated as a module over (Z/2Z)[A1, A2] by two 2-tor-
sion classes in degrees 2-4+1=9 and 2-5+ 1 = 11. So as a group,

2 (W N A) = (Z/22) M Mol © (2/22) M1, Dolns
~ (Z/QZ)max(O,L(n—?)/QJ)—‘rmax(O,L(n—3)/2]) _ (Z/2Z)max(0,n—3) )

10. Reduction to three nonvanishing statements

In this section, we show that Theorem 1.1 holds provided that the classes

91(01 + )\1))\%, 01(01 + A1)A2, and (51((51 + /\1)()\% + )\2)
are all nonvanishing in CH*(M3) ® Z/2Z (which we assume for the remainder of this section).
Since

CH (A1) = Z[A, A2, 7/ (2777 + Ay, 2407 — 482,240 )4o)
is invariant under extension of the base field from k to k and only has torsion coprime to the
characteristic (as we have assumed the characteristic is distinct from 2 and 3), the injectivity of

CH*(A1)y; ® Zg — CH* (M) ® Zg

for ¢ coprime to the characteristic implies the injectivity of CH*(A1) — CH*™(M3).

10.1 Injectivity in degrees 0, 1, and 2

By Theorem 9.9, the morphism CH*(A); ® Zy — CH*! (]\72)%@) Zy is injective in degrees 0, 1,
and 2, for all £ coprime to the characteristic. Consequently, the map CH*(A;) — CH*H! (]\7 2) is
injective in degrees 0, 1, and 2.

10.2 Relations from the Grothendieck—Riemann—Roch theorem

Here we show that the relations established in Section 6.2 in characteristic zero, and modulo
torsion in arbitrary characteristic, in fact hold exactly in arbitrary characteristic distinct from 2
and 3.

The injectivity of CH?(A;) — CH! (]\7 2), combined with Theorems 8.1 and 9.9, implies that
CH! (]\7 2) is torsion-free. Thus, the formula in Lemma 6.7 holds exactly, not merely modulo
torsion. Combined with Lemma 6.9, this implies the relation

20A\g — 45100 = 0. (10.1)

Next, the relation 24)\% — 48Xy = 0 holds on My ~ A1 by Theorem 9.9 and holds on M,
modulo torsion by Lemma 6.5. Since CHl(Al) — CH? (]\72) is injective, 24/\% — 489 must equal
the pushforward of a torsion class in CH!'(A;). But the only nonzero torsion class in CH!(A;)
is v, whose pushforward is d1(d1 + A1) by Lemma 6.1. Thus, either

24X2 — 4805 =0, or 24X7 — 48Xy =81(61 4+ A1) .
This second relation implies §1(6; + A1) = 0 € CH? (]\7 2) ® Z/27Z, which contradicts our assump-
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tion that 01 (01 +A1)A? #£0 € CcH* (]\72) ®Z/27. Consequently the first relation must hold; that is,
2403 — 48X\ = 0. (10.2)

10.3 Injectivity in degree 3

By Lemma 6.1, the kernel of CH3(A;) — CH* (]\72) is contained in the kernel of multiplication
by ¥ — A1. Any element of this latter kernel can be written as a polynomial p(A1, A2,~y) which
satisfies

(v = M) P € (29,7 4+ A7, 240] — 4809, 2401 02) C (7,24) = —\p € (7,24) = p € (v, 24).

As multiplication by 24 is zero on CH3(A;), any such element is thus a multiple of 7; using the
relations 2y = 72 + A1y = 0, we see that there are only three such nonzero elements: A2, vz,
and fy()\% + )\2).

Pushing these classes forward to CH* (]\7 2) using Lemma 6.1, we obtain exactly the three
classes whose reduction modulo 2 we have assumed is nonvanishing.

10.4 Injectivity in higher degrees

Combining the injectivity we have established in degrees 0, 1, 2, and 3 with Theorem 9.9 and
Lemma 9.10, it remains to show

BA1A2 - (2407 — 48X2) — (6A% — 12)2) - 20A1\2 = 0 € CHY(A4) .
But using the relations (10.2) and (10.1), we have
5A1A2 - (2402 — 48)2) — (6A7 — 12)2) - 20A1h2
=5XMA2 -0 — (6AT — 12X2) - 4o = —Ay - (24A] — 48X2) = 0.

10.5 Conclusion of the proof
The injectivity established thus far implies that we have a short exact sequence
0 — CH*!(A;) — CH*(M3) — CH* (M5~ A) =0,

and we have previously (Theorems 8.1 and 9.9) established that

CH*(A1) = Z[A1, A2, 7]/ (27,77 + A1y, 2427 — 48)0, 241 \0)

CH*(Ms \ A) = Z[A1, Xo]/ (2427 — 482,20\ A2) .
Given Lemma 6.1, and the relations (10.2) and (10.1) that we have established and which extend
the relations 24)\% —48X9 = 0 and 20\ 1 Ay = 0 from Mo~ A1 to all of Mo, it follows that CH* (1\72)

is generated by A1, A2, and d; with relations given by (10.2), (10.1), and the pushforwards of the
relations that hold in CH*(A;), that is,

2407 — 48Xy =0, 20A\ A2 —451A0 =0, [2(01 +\)]-61 =0,
[(51+)\1)2—|—A1((51+)\1)] -6, =0, [24/\%—48)\2] <01 =0, [24)\1/\2] <01 =0.

By inspection, these relations generate exactly the ideal of relations claimed in Theorem 1.1.

10.6 Results in cohomology

Since the cycle class map CH" (]\7 2\ Al) — H? (]\7 2\ Al) is an isomorphism (cf. Section 9.1)
and CH"(]WQ) — CH”(JWQ ~ Al) is surjective, it follows that HQ"(MQ) — HQ"(MQ ~ Al) is
surjective.
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And since the cycle class map CH" (]\72 NALL L Zg) — g2t (]\72 NAT, Zg) is an isomorphism
(cf. Section 9.1) and the boundary maps CH" (Mo~ Ay,1;Zg) — CH" (A1) ® Zg are zero, the
boundary maps H?" ! (M2 N A, Zg) — H"2(A1) ® Zy are all zero.

Putting this together, we see that all of the boundary maps in the associated long exact

sequence for cohomology groups are zero. The five lemma thus implies that the even cohomology
of M5 is isomorphic to its Chow ring via the cycle class map

HQn(M2) ~ CH”(MQ)
and that the odd cohomology of My is an extension of the odd cohomology of Ms . Ay by

the odd cohomology of Aj. Combining the results of Section 8.1 with Section 9.1, this implies
the odd cohomology of My has exponent at most 96 and is of order

#H2n+1 (Mg) _ #H2n+1 (MZ N Al) i #H2n71(A1)

1 ifn>5,

] (10.3)
0 otherwise.

— 24max(0,n—5) . 2max(0,n—3)+max(0,L(n—4)/2J)+e , where € = {

11. Chow ring of the bielliptic stack

As shown in Section 10, in order to complete the proof of Theorem 1.1, all that remains is to
show that the classes

(51(51 + /\1))\% , (51((51 + )\1))\2 , and (51((51 + )\1)()\% + AQ)

are all nonvanishing in CH* (]\7 2) ®7Z/27. We will do this by pulling these classes back to a certain
test family, given explicitly in Section 11.2.

11.1 Motivation for our test family
(This section is, strictly speaking, not logically necessary.)

Recall that these classes are pushforwards of classes on Aj, which are multiples of the pull-
back to A; of the generator of CH*(B(Z/2Z)), where Z /27 acts by exchanging an ordered pair
of elliptic curves. The fixed-point locus of this Z/2Z-action corresponds to curves in A consisting
of two isomorphic elliptic curves joined at a point, and on this locus, the Z/2Z-action gives rise
to the automorphism that exchanges the two components, which is a bielliptic involution. This
consideration suggests that the universal family of bielliptic curves would serve as a good test
family. To be precise, we have the following.

DEFINITION 11.1. A bielliptic curve of genus 2 is a stable curve C' of genus 2, together with
an unordered pair {¢, '} of bielliptic involutions which differ by multiplication by the hyperelliptic
involution.

LEMMA 11.2. Let C be a bielliptic curve of genus 2. Then dim H° (w%) = 3, and the hyperelliptic
involution acts trivially on H° (w%) The bielliptic involution (which is well defined modulo the
hyperelliptic involution) has a 2-dimensional trivial eigenspace and a 1-dimensional nontrivial
eigenspace.

Proof. Since H° (wal) = 0 when C is a stable curve, the Riemann—-Roch formula implies
dim H° (w%) = 3 as desired. The remaining conditions are then visibly both open and closed, so
it suffices to check them when C' is smooth.
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In this case, any section of w% sent to its negative under the hyperelliptic involution must
vanish at the six Weierstrass points; since w% is of degree 4, there are no such sections, and so
the hyperelliptic involution acts trivially.

For the action of the bielliptic involution, write f: C' — FE for the quotient map. Then there is
an evident filtration H°(f*w%,) C H(f*wp®wc) C H°(wd ), whose quotients are 1-dimensional,
on which the bielliptic involution acts as +1, —1, and +1, respectively. O

Consequently, every bielliptic curve comes equipped with a canonical map to P! defined by the
sections of H' (w%) invariant under the bielliptic involution. By the Riemann—Hurwitz formula,
this map is branched over five points with multiplicity.

Moreover, taking the ramification points of the quotients of C' by the two bielliptic involutions
mapping to P! defines two subsets of four of these five points. Their intersection then gives
a canonically defined subset of three points. We conclude that the family of curves in weighted
projective space given by

2% = (ax + by) - (ex® + fzly + gy’ + hy?)
w? = (cx +dy) - (ex® + fz’y + gy’ + hy?)

over the locus of triples of two degree 1 polynomials and one degree 3 polynomial whose product
has no triple roots, contains every isomorphism class of bielliptic curves.

Moreover, since the map to P! is canonical, we conclude that any isomorphism between
two curves in this family is via a linear change of variables on z and y, scalar multiplication and
exchanging on z and w, and rescaling the cubic polynomial. In other words, any such isomorphism
is via the action of GLg XG X G,,, with GLg acting on (z,y), and G acting on (z,w), and G,,
acting on a, b, ¢, d with weight —1 and on e, f, g, h with weight +1. By inspection, the subgroup
of GLy xG x Gy, acting trivially is the image of G,, under the map ¢ — (t 1,1, t3).

We conclude that the stack of bielliptic curves is isomorphic to the quotient of the locus
of triples of polynomials of degrees 1, 1, and 3, whose product has no triple root, by the natural
action of (GLg XG x Gy,) /Gy, constructed above.

To recast this in a somewhat nicer form, we observe that (GLy XG X G,) /Gy, is itself iso-
morphic to GLy XG via the map GLo XG X G,;, — GLg XG defined by

4
dezA‘A>< <de;A> B,

whose kernel is, by inspection, the image of G,, under the map ¢ — (t 1,141, t3). An inverse
to this map is given by A x B— A x B x det A.

AXx Bxt—

11.2 Our test family

Our test family will be an open substack (obtained by excising the triple root loci) of the space
[Va(1) x (Vi(=1) B W_5)]/(G x GLg);

here, we view elements of V3(1) as cubic polynomials ex® 4+ fx?y + gxy? + hy® and elements
of V1(—1) K W_4 as pairs of linear polynomials (ax + by, cx + dy). There is a family of genus 2
curves defined over this quotient by

2% = (ax +by) - (ex® + foly + gay® + hy?)

w? = (cx +dy) - (ex® + fz?y + gzy® + hy?)
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where GLg acts naturally on (z,y) and G acts naturally on (z,w). Away from the triple root
loci, these curves are stable. This will serve as our test family; the discussion of Section 11.1
shows that this is the universal family of bielliptic curves.

11.3 The zero sections

As in Section 8, we will use the formulas in Section 4 to calculate loci in the total space of vector
bundles with the origin excised, by pulling back the corresponding classes from the projectiviza-
tion.

So we begin by excising the origins of V3(1) and Vi(—1) X W_5; as in Section 4, this imposes
relations given by the vanishing of the Euler classes e(V3(1)) = ¢4(V3(1)) and e(Vi(—1)XW_3) =
ca(Vi(—1) K W_y), respectively.

Write a; and as for the Chern roots of V' and b; and by for the Chern roots of W5. Then the
Euler class of V3(1) is
e(Vg(l)) = (a1 - 3(11)(041 - 3(12)(041 - 2a1 - ag)(al —al — 2(12)
= (af — 3(a1 + a2)aq + 9a1az) (oF — 3(a1 + a)ar + 2(a1 + a2)* + araz)
( 2302 + 90@) (a1 — 303 + 203 + ozg)
=903

— 2aas.

Similarly, the Euler class of V;(—1) X W_5 is

eV (1) X W_9) =(—a1 —a; —b1)(—a1 —az —b1)(—a1 — a3 — b2)(—ay1 — az — ba)
= ((o1 4+ b1)* + (a1 + b1) (a1 + a2) + araz)

: ((041 + b2)? 4 (a1 + bo)(ay + a2) + a1a2)
= ((041 + 51)2 + (o + b1)ar + Oé2) : ((041 + bz)2 + (0q + b2)ay + Oéz)
= (b1b2)® + 3a1 (b1 + b2)b1bs + (207 + as) (b1 + b2)?

+ (504% — 2a2)blb2 + (605:1)’ + 3a1a2) (b1 + ba) + (20@ + 042)2
= (4B2)% + 31 (281 + 7)(4B2) + (203 + a2) (261 + 7)*

+ (5@% — 2042)(462) + (604? + 3a1a2) (261 +7) + (204% + a2)2
= 4ot + 12038 + 8a25? 4+ 4atay + 6arazfy + das B3

+ 2007 B2 + 2401 8182 + ar0y + 2817 + a5 — 8aafy + 1643

+ (204% + a2) (’72 + /31’7) + (3a§’ =+ 304%1 + aja + a1 + 604152)(2’7)
= daf + 120761 + 807} + dajas + 6anasf + danfi

+ 2003 B2 + 2401 8182 + a1y + 21y + o3 — 8agfa + 1635 .

Next we excise the locus in Vi(—1) K W_y where one of the linear forms is zero. In other
words, we excise from (V1(—1) K W_a \ (0 x 0))/(G x GLg) the closed substack Z given by

(Vi(=1) R (L_3 x 0) UVi(=1) K (0 x L_5))/(G x GLy)
~ (Vl(—l) X (L_Q X 0))/(Gm X Gm X GLQ) .

As a module over CH*(BG x BGLjy), the Chow ring CH*(Z) is generated by 1 and t;, so it
suffices to determine the pushforwards of 1 and ¢; to CH*([V1(—1) K W_2\ (0 x 0)]/(G x GL3)).
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If we write a1 and a9 for the Chern roots of V', then applying Lemma 4.9, we see that the class of
Vi(=1) X (L_2 x 0) \ (0 x 0)]/(Gy, x Gy, x GLg2)
CViI(=1)XR(L_a@® L_3)~ (0x0)]/(Gp, x Gy, x GL3)
is given by
co(Vi(=1) X (0 x L_3)) = (—a1 — 2ta — a1)(—a1 — 2ta — ag)
= (a1 + 2t2)% + (a1 + 2t2) (a1 + az) + aras
= (a1 +2t2)% + (a1 + 2t2)an + ag = 415 + 6asts + 207 + as.
Excising this locus therefore introduces relations given by the pushforwards of
A3 + 6arts + 203 +as  and (43 + 6aits + 205 + as)ty
along B(G,, x G,,) = BG; by Lemma 7.1, these are
4- (B + By — 2B2) + 6ay - (B +7) + (207 + a2) - 2
=407 + 6a1 81 + 457 + 202 — 862 + (3 + 261) - 2y
=402 + 60181 + 467 + 200 — 83,

respectively

4+ (B1B2 +7PBa) + 6a1 - 282 + (203 + ) - (B1 + )

= 2071 + 2Bt + 120182 + 45182 + a2y + (of + 22) - 2v

= 2071 + 281 + 120182 + 45162 + a2y .

To summarize, the relations obtained by excising the loci where one form is zero are thus
903 — 2a%as =0,
4o + 60181 + 467 + 209 — 863 = 0,
2011 + a2f + 120182 + 4B1B2 + apy = 0, (11.1)
4af + 120381 + 80267 + 4ol as + 6oy as By + 4anf? + 2002 s
+ 24001 8182 + anay + a1y + i — 8azfa + 1665 = 0.

11.4 The tautological classes

Since

xdy — ydr xdy — ydz
z w ’

H(we) =< ;

with the natural action of GLg on (z,y) and G on (z, w), the Hodge bundle is just the dual of the
standard representation of G tensored with the dual of the determinant representation of GLs.
In particular, its Chern classes are

M =—B1—20 and Xy =ai+aifB+ 5.

To find the pullback of §; to our family, we note that the preimage of the boundary stratum A;
is the image of the Segre map Vi(—1) x W_g — Vi (—1) K W_5. So by Lemma 4.10,

0 = Cl(Vl(—l)) + Cl(ng) = —3a1 — 201 + .

314



THE INTEGRAL CHOW RING OF Mo

11.5 Excision of triple root loci

To excise the triple root loci, we will find the classes of the triple root loci in the product
of projectivizations

[PVA(1) x P(V(—1) B W_5)]/(G x GLy) = [PVs x P(Vs BW_5)]/(G x GLy)

and pull back to [V3(1) x (V1(—1)KW_3)]/(G x GL32) by substituting the hyperplane class on PV3
for ay and the hyperplane class on P(V; X W_5) for —ay.

We begin by excising the locus where the cubic form has a triple root. When we substitute
the hyperplane class on PV3 for aq, the recursion relation from Lemma 4.2 yields
$9=1, si=o1, s2=23ay, s5=aa. (11.2)
Consequently, we can apply Lemma 4.8 to calculate that excising this locus imposes relations
given by the vanishing of

35% — 6a15i1), + 6(0(% — ag) =3as and s% — 60428%, + 6o = ajag .

We next excise the locus where all three forms share a common factor; this is the image of
the closed immersion

[P‘/Q X ]P)Vl X PW_Q]/(G X GLQ) — []P’Vg X ]P)(Vl X W_Q)]/(G X GLQ)

defined by (f,g,h) — (f- 9,9 X h).

Note that the hyperplane class on PV3, respectively on P(V; K W_5), pulls back to the sum of
the hyperplane classes on PVs and PVy, respectively on PV; and PW_s. Since these, along with
the hyperplane class on PW_,, generate CH*([PV; x PV; x PW_3]/(G x GL2)) as a module over
CH*(BG x BGLy), the relations obtained by excision are all generated by the pushforwards of
the fundamental class 1 and hyperplane class w = ¢;(Opw_,(1)) under this map.

To compute these two pushforwards, we factor this map as the composition of the diagonal
map on the PV;-factor

[PVa x PV] x PW_3]/(G x GLg) — [PV2 x (PV; x PV}) x PW_5]/(G x GLg) (11.3)
followed by multiplication and the Segre map
[(PV2 x PV}) x (PVh x PW_9)]/(G x GL2) — [PV3 x P(V; K W_5)]/(G x GLz2) . (11.4)
When we write z1 and xo for the hyperplane sections on the two PVj-factors, Lemma 4.5
gives that the pushforwards of 1 and w under (11.3) are z; — a1 + 2 and 1w — W + Taw.

Using Lemmas 4.4 and 4.10, and writing = = ¢1(Op(v;gw_,)(1)), We see that the pushforwards
of these classes under (11.4) are

sy [22 4+ c1(V1) + cr(W_a)] — o - 385 - [22 + 1 (V1) + e1(W_2)]
+3s5 - [22 + el(Woa)x + co(Wos) — e2(V1)],
respectively
s§ - [22 + c1t(Vi)z + ca(Vi) — co(W_2)] — a1 - 35§ - [2% + c1(Vi)z + ea(VA) — co(W_2)]
+3s3 - [2° 4 (c1(V1) + er(W=2))2® + (e2(V1) + c1(Vi)er (Wea) + c2(W—2))z
+ c1(V1)ea(W_2) 4 c2(Vi)er (W-2)] .

From Lemma 4.2, we have that sg = 1 and that szl,) is the hyperplane class on PV3, which we
must substitute for aq. Substituting = for —aq, the relations we obtain from excising this locus
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are the vanishing of

o7 - [—2041 + Cl(vl) + Cl(W_z)] —3a; - [—20(1 + Cl(vl) + Cl(W_Q)]
+3[af — erl(Woa)an + co(Woa) — c2(V1)]

respectively the vanishing of

aq - [O&% — Cl(Vl)Oq + 02(‘/1) — CQ(W72):| — 3&1 . [O&% — Cl(Vl)Ozl + 02(‘/1) — CQ(W72):|
+3[—af + (1l(V1) + cs(Woa))af — (e2(V1) + er(Vi)er (Woa) + c2(W-g)) e
+ca1(V1)ea(W_2) + ca(V1)ea (W_g)] .

Since Vi = V*, we have ¢1 (V1) = —aq and ¢2(V1) = aq; similarly, since W_g = W3, Lemma 7.2
gives ¢1(W_g) = v — 231 and co(W_g) = 435. Substituting these in and collecting like terms, we
see that our relations are simply the vanishing of

902 + 1001 1 + a1y — 3ag + 1282 — 3o - 2y = 9a2 + 10a1 61 + a1y — 3ag + 125,
respectively the vanishing of

QoY — 1004‘;’ — 1204%,81 — bajag — b6ag B — 161 P + (304% + ozz) -2
= QY — 1004“;) — 1204%,81 — 5&1042 — 6042ﬂ1 — 16(1152 .

Finally, we excise the locus where the cubic form is divisible by the square of one of the linear
forms. This locus is the norm from G,,, X G,,, to G of the locus where the square of the first linear
form divides the cubic form (this latter locus is only (G, X G, x GLg)-equivariant).

Away from the locus where one of the linear forms is zero, we have a (G,, X G, x GL2)-

equivariant natural map P(V; X W_s) — PV} x PV; induced by projection from the subspaces
Vi X (L_g x0) and V; X (0 x L_9). This induces a map

PVs x P(V4 K W_3) — PVs x PVy x PV; ; (11.5)

the locus we want to excise can then be described as the pullback under this map of the image
of the map

PV; x PV; x PV; — PV; x PV; x PV4 (11.6)

defined by (f,g,h) — (fg2,g,h).

Since the pullback under (11.5) of the hyperplane class on the first PV;-factor differs from the
hyperplane class on P(V1KW_5) by 2to, we just need to push forward the generators of CH* ([PV; x
PVi x PV1]/(Gp, x Gy, x GL2)) along (11.6), substitute the hyperplane class on PV3 for a,
substitute the hyperplane class on the first PVi-factor for —ay — 2¢s, and take norms along
B(G,, x G,,) — BG. Moreover, since pullback along (11.6) is surjective by inspection, the only
generators we need to use are 1 and ¢; (which generate CH*(B(G,, x G,,)) as a module over
CH*(BG)).

To implement this, we factor (11.6) as a composition of a triple diagonal map on the middle
PVi-factor

PVi x PV; x PV — PV x (PV; x PV x PVy) x PV (11.7)
followed by multiplication
(PV1 x PV; x PVp) x PV} x PV — PV3 x PVy x PV, . (11.8)

Write x; (with 1 < ¢ < 5) for the hyperplane class on the ith PV-factor. From Lemma 4.6,
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the pushforward of the fundamental class is
ToX3 + T34 + TgXo — (xg + 23 + CC4)O(1 + a% — Q2.

Using Lemma 4.4 and (11.2), and writing = for the hyperplane class on PV; that we must
substitute for —ay — 2t2, we deduced that the pushforward of the fundamental class along (11.8)
is then

183 + 22 - 285 — 207 - 255 — ajz - 655 + (a% —a2) - 659
= 3&2 + 2(—&1 - 2t2) . 2041 - 20[1 . 2&1 — al(—al - 2t2) -6 + (Ck% - 042) -6
= 4oty + 40&% — 3ay .

Our relations are thus given by the vanishing of the norms along B(G,, X G,,) — BG of the
classes

4oty + 40@ —3as  and (4a1t2 + 40@ — 3a2)t1 .
By Lemma 7.1, these are
daq (B +7) + 8at — 6ag = 4a1 By + 8a — 6ag + 2 - 2y = 4oy B1 + 8ai — 6ag,
respectively
dor - 282 + (40F — 3an) (81 + ) = 8ai B + 4aif — 3aafi + ay + (205 — 2as) - 2
=812 + 403 B1 — 321 + a2y .

To summarize, the relations obtained by excising the triple root loci are thus:
300 =0, oa1az =0, 4oy +8a% —6as =0,
8a1fa + 4aify — 3Py + agy =0, (11.9)
90f + 1001 81 + a1y — 3ag + 1282, =0,
QoY — 1Oa:1)’ — 120(%& —bajag — 6agB; — 16182 = 0.

11.6 Chow ring of our test family

From our expressions for the tautological classes on My in Section 11.4, we can express oy, 1,
and (B2 in terms of v, 1, A1, and As:

a; = =2\ +61 —7, B1 =3\ —26 + 2y,
ﬁQZAQ—a%—alﬂl:2)\%—3>\1(51+5%+3)\1’y—251’7+’}’2+)\2.

Subtracting the relation 4a3 + 6131 + 487 + 2a9 — 862 = 0 (see (11.1)) from the relation
3ag =0 (see (11.9)), we obtain

o = 4a? + 6018y + 467 — 8B8a = 20101 — 2M17 — 8)a .

Substituting these expressions into all of our previous relations in (11.1), (11.9), and Theo-
rem 5.2, we check the ideal the resulting relations generate is as follows.

THEOREM 11.3. The Chow ring of the moduli space B of bielliptic curves is generated by 7, 01, A1,
and Ay, subject to the relations

29 =0, YV+Xy=0, Z+57+8\ —12X =0, 24X7 —48\y =0,
202 420161 =0, 20A A —45; 0 =0, 88X —8\ )\ =0.
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In particular, reducing modulo 2, we obtain
CH*(B) ® Z/2Z ~ Z[y, 61, A1, 2]/ (¥* + A17, 65 + 617)
from which we conclude that the classes
5101+ A)AT, 61(01+ A)A2,  and  61(d1 4+ M) (A + A2)
are all nonvanishing in CH*(B) ® Z/2Z and thus in CH* (M) ® Z/2Z, as desired.
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