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The integral Chow ring of M2

Eric Larson

Abstract

In this paper, we compute the Chow ring of the moduli stack M2 of stable curves
of genus 2 with integral coefficients.

1. Introduction

Characteristic classes of vector bundles play an essential role in many areas of mathematics,
from algebraic topology to differential geometry. Geometrically, characteristic classes of real or
complex vector bundles are elements of the cohomology or Chow rings of the moduli stacks of
real or complex vector spaces. These are the classifying spaces BGLnR and BGLnC, whose
cohomology or Chow rings are freely generated as a ring by the familiar Stiefel–Whitney and
Chern classes, respectively.

Like vector spaces, algebraic curves are also ubiquitous in many areas of mathematics, so
it is natural to try to understand their characteristic classes. Geometrically, this amounts to
understanding the Chow ring (or cohomology ring) of the moduli stack Mg of stable curves
of genus g. (Since the smooth Artin stack Mg is a global quotient stack, work of Edidin and
Graham [EG98] implies that its Chow groups CH∗(Mg) possess an intersection product. In fact,
by work of Kresch, intersection products exist, more generally, on any smooth Artin stack that
admits a stratification by global quotient stacks; cf. Section 5.1 of [Kre99].)

Question. What is the Chow ring CH∗
(

Mg

)

of Mg?

Despite much progress over the past half century, answers to this question are only known
after making various simplifications—and even then only in small genus.

One such simplification is to study the Chow ring with rational coefficients CH∗
(

Mg

)

⊗ Q;
this removes the subtle torsion phenomenon that exists due to the presence of loci of curves with
automorphisms. For example, the Chow ring of Mg with rational coefficients is known for g = 2
by work of Mumford [Mum83] and for g = 3 by work of Faber [Fab90].

Another such simplification is to replace Mg with a simpler but related space, for example
Mg or M0,n (with n > 3) or M1,n (with n > 1). For example, the full Chow ring (that is, with
integral coefficients) of Mg is known for g = 2 by work of Vistoli [Vis98].
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The integral Chow ring of M2

However, to date, the full Chow ring CH∗
(

Mg

)

is not known in a single case. The goal of the
present paper is to give the first such example.

Theorem 1.1. Over any base field of characteristic distinct from 2 and 3, the Chow ring of the

moduli space of stable curves of genus 2 is given by

CH∗
(

M2

)

= Z[λ1, λ2, δ1]/
(

24λ2
1 − 48λ2, 20λ1λ2 − 4δ1λ2, δ

3
1 + δ21λ1, 2δ

2
1 + 2δ1λ1

)

,

where λ1 and λ2 denote the Chern classes of the Hodge bundle and δ1 denotes the class of the

boundary substack with a disconnecting node.

In this basis, the class of the boundary substack with a self-node is given by δ0 = 10λ1− 2δ1.

One might hope to compute the Chow ring of M2 using a presentation of M2 as a quotient
stack [EG98], as done for M2 by Vistoli in [Vis98]. Unfortunately, finding a suitable presentation
of M2 seems extremely difficult.

Instead, we stratify M2 into the boundary divisor ∆1 and its complement M2 r∆1, whose
Chow rings can be computed using equivariant intersection theory. The usual localization sequ-
ence for Chow groups of schemes also holds for Artin stacks of finite type (cf. [Kre99, Proposi-
tion 2.3.6]), so we obtain an exact sequence

CH∗(∆1)→ CH∗
(

M2

)

→ CH∗
(

M2 r∆1

)

→ 0 .

One key observation is that a variant of Vistoli’s argument in [Vis98] can not only compute
CH∗(M2), but in fact compute both the Chow ring and the first higher Chow groups with
`-adic coefficients (which control the failure of left-exactness in the above sequence) of M2r∆1.
Unfortunately, the first higher Chow groups of the open stratum M2r∆1 do not vanish for ` = 2;
they are generated by 2-torsion classes in degrees 4 and 5.

For the degree 4 generator, we observe that all the 2-torsion in CH3(∆1) arises, in some
sense, “locally” from those curves in ∆1 which admit a bielliptic involution (exchanging the two
components). Using the universal family of curves with a bielliptic involution as a test family,
we show that the pushforward map CH3(∆1) → CH4

(

M2

)

is injective, and so the image of the
degree 4 generator in CH3(∆1) must vanish.

By contrast, the degree 5 generator can be thought of as arising, in some sense, “globally”
from the presence of the hyperelliptic involution on every curve; in particular, it seems extremely
difficult to study this class using a test family. Instead, we get a handle on this class using
the action of Gm on M2 given by taking the “universal quadratic twist with respect to the
hyperelliptic involution.” This Gm-action kills the degree 5 generator, which then corresponds
to a “syzygy” between two relations of smaller degree in CH∗(M2/Gm); using this, we can
explicitly compute that the boundary map vanishes on this degree 5 generator.

A brief outline of the remainder of the paper is as follows: We begin in Section 2 by fixing
some notation for some group representations that will appear throughout the paper. Next, in
Section 3, we give presentations of the strata ∆1 and M2 r∆1, as quotients of open subsets in
affine spaces by linear algebraic groups—a group we term G defined in the next section for ∆1,
respectively the group GL2 for M2 r∆1. In Section 4, we give formulas for pushforward maps
between Chow groups of various projective bundles under multiplication maps, that will be used
throughout the remainder of the paper. Then in Section 5, we compute CH∗(BG). This is enough
to show in Section 6 that CH∗

(

M2

)

is generated by δ1, λ1, and λ2, as claimed, and to establish
all the relations appearing in the statement of Theorem 1.1 in characteristic zero.
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Then in Section 7, we explicitly compute the pushforward and pullback maps between Chow
groups along BT → BG, where T is the maximal torus of G. In Sections 8 and 9, we compute the
Chow ring of the stratum ∆1, respectively the Chow ring and first higher Chow groups with `-adic
coefficients of the stratumM2r∆1; we also derive an explicit formula (which happens to evaluate
to zero) for the image of the degree 5 generator mentioned above. In Section 10, we use this to
reduce Theorem 1.1 to the nonvanishing of a finite number of classes in CH∗

(

M2

)

⊗Z/2Z. Finally,
in Section 11, we compute the Chow ring of the universal family of bielliptic curves of genus 2,
which completes the proof of Theorem 1.1 by serving as a test family to show the nonvanishing
of these desired classes.

1.1 Results in cohomology

In characteristic zero, one may similarly ask for the singular (orbifold) cohomology with integral
coefficients of M2. A variant of the arguments developed here for Chow groups implies that
the even cohomology is isomorphic to the Chow ring via the cycle class map, and that the odd
cohomology groups have exponent at most 96. Although determining the ring structure, or even
the precise isomorphism type as groups, of the odd cohomology would require additional ideas,
the orders of the groups H2n+1

(

M2

)

can be determined explicitly (cf. equation (10.3)).

1.2 Remark

Upon completion of this manuscript, the author learned that Angelo Vistoli and Andrea Di
Lorenzo are working on a different approach to this problem, which will hopefully yield an inde-
pendent proof of Theorem 1.1.

2. Notation

In this section, we fix some notational conventions that we shall use for the remainder of the
paper.

Assumptions on the characteristic

For the remainder of the paper, we work over a field k of characteristic distinct from 2 and 3.

Assumptions on stacks

For the remainder of the paper, we shall use the word stack to refer to an Artin stack which admits
a stratification by global quotient stacks. (In fact, all the stacks we shall need are global quotient
stacks.) As shown by Kresch in Theorem 2.1.12 of [Kre99], extending earlier work of Edidin and
Graham for global quotient stacks [EG98], the Chow groups of such stacks satisfy the expected
properties, including localization sequences, intersection products when they are smooth, and
invariance under passing to the total space of a vector bundle.

Convention for projective bundles

Given a vector bundle E → X, we adopt the convention that its projective bundle PE denotes
the space of lines in E .

Definition 2.1. Write V for the standard representation of GL2, and define the representations

Vn = Symn V ∗ and Vn(m) = Vn ⊗ (detV )⊗m .
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Definition 2.2. We denote by G the wreath product

G = Gm o Z/2Z := (Gm ×Gm)o Z/2Z ,

where the action of Z/2Z on Gm ×Gm permutes the factors.

Given a representation L of Gm, we observe that the direct sum L ⊕ L inherits a natural
action of G (where the Z/2Z-action permutes the factors); we write L� L for this.

Definition 2.3. Write Ln for the 1-dimensional representation of Gm where z acts as multipli-
cation by zn, and let

La1,a2,...,an = La1 ⊕ La2 ⊕ · · · ⊕ Lan .

Let Wa1,a2,...,an be the representation of G defined by

Wa1,a2,...,an = La1,a2,...,an � La1,a2,...,an ,

and write W = W1.

Additionally, let Γ be the representation of G arising from the sign representation of the
Z/2Z-quotient of G.

Definition 2.4. Write

αi = ci(V ) ∈ CH∗(BGL2) , βi = ci(W ) ∈ CH∗(BG) , and γ = c1(Γ) ∈ CH∗(BG) .

3. Presentations of ∆1 and M2 r ∆1

In this section, we give presentations of the boundary stratum ∆1 of curves with a disconnecting
node, and of its complement M2 r ∆1, as the quotient of an affine space by the action of an
algebraic group. These presentations will be used in subsequent sections to compute the Chow
rings of these loci.

3.1 A presentation of ∆1

Note that the curves parameterized by ∆1 are in the form of two elliptic curves glued together
at their marked points. In other words, the stack ∆1 can be described as the symmetric square
of M1,1:

∆1 ' Sym2M1,1 ,

where for any global quotient stack X/H, we write Sym2[X/H] := [X ×X/(H o Z/2Z)].

Note that M1,1 is indeed a global quotient stack. Namely, recall that an elliptic curve E can
be written in Weierstrass form

y2 = x3 + ax+ b ,

which is stable if and only if a and b do not simultaneously vanish. The fiber of the Hodge bundle
here is given by

H0(ωE) =

〈

dx

y

〉

.

Moreover, the isomorphisms between two curves in Weierstrass form are given by

(x, y) 7→
(

u−2x, u−3y
)

for u ∈ Gm ;

the isomorphism given by u defines an isomorphism between the curves y2 = x3 + ax + b and
y2 = x3 + u4ax+ u6b and acts on dx/y as multiplication by u.
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Thus, M1,1 ' (L4,6 r 0)/Gm. Moreover, the Hodge bundle of M1,1 is the pullback of the
representation L1 from BGm. Consequently, we have the following fundamental presentation:

∆1 ' Sym2M1,1 ' (W4,6 r (L4,6 × 0 ∪ 0× L4,6)) /G , (3.1)

and the Hodge bundle is the pullback from BG of the representation W1.

3.2 A presentation of M2 r ∆1

Here we show that curves in M2r∆1 admit a canonical degree 2 map to P1 and use this to give
a presentation of M2 r ∆1 that mirrors Vistoli’s presentation of M2 in [Vis98] (subsequently
generalized to other stacks of cyclic covers by Arsie and Vistoli in [AV04]). However, to make
this paper more self-contained, we do not suppose familiarity with the above-mentioned results.

We first claim that a stable curve C of genus 2 satisfies [C] ∈M2 r∆1 if and only if H0(ωC)
is basepoint-free.

Indeed, if p ∈ C is smooth, then by the Riemann–Roch formula for OC(p), the point p is
a basepoint of H0(ωC) if and only if dimH0(OC(p)) = 2. In this case, the corresponding complete
linear series defines a map C → P1 which is of degree 1 on the irreducible component containing p
and of degree 0 on all other irreducible components. In particular, the irreducible component of C
containing p is isomorphic to P1 (that is, rational with no self-nodes) and meets every connected
component of its complement in a unique point. This is impossible for a stable curve of genus 2,
so H0(ωC) can never have a smooth basepoint.

If p ∈ C is singular, then write C̃ for the partial normalization of C at p. Note that sections
of ωC vanishing at p are in bijection with sections of ωC̃ . In particular, by the Riemann–Roch
formula for OC̃ , the point p is a basepoint of H0(ωC) if and only if dimH0(OC̃) = 2, that is, if
and only if p is a disconnecting node.

Thus H0(ωC) is basepoint-free if and only if C has no disconnecting nodes, that is, if and
only if [C] ∈M2 r∆1, as desired.

Consequently, every [C] ∈ M2 r ∆1 comes equipped with a canonical map to P1; by the
Riemann–Hurwitz formula, this map is branched over six points with multiplicity. We conclude
that the family of curves in weighted projective space given by

z2 = ax6 + bx5y + cx4y2 + dx3y3 + ex2y4 + fxy5 + gy6 , (3.2)

over the locus of degree 6 polynomials ax6 + bx5y+ cx4y2 + dx3y3 + ex2y4 + fxy5 + gy6 with no
triple root, contains every isomorphism class [C] ∈M2 r∆1.

Moreover, since the map to P1 is canonical, we conclude that any isomorphism between two
curves in this family is via a linear change of variables on x and y and scalar multiplication
on z, that is, via the action of GL2×Gm with GL2 acting on (x, y) and Gm acting on z. By
inspection, the subgroup of GL2×Gm acting trivially is the image of Gm under the map t 7→
(

t · 1, t3
)

. We conclude that U is isomorphic to the quotient of the locus of degree 6 polynomials
ax6 + bx5y + cx4y2 + dx3y3 + ex2y4 + fxy5 + gy6 with no triple root by the natural action
of (GL2×Gm)/Gm constructed above.

To recast this in a somewhat nicer form, we observe that (GL2×Gm)/Gm is itself isomorphic
to GL2 via the map GL2×Gm → GL2 defined by

A× t 7→
detA

t
·A ,

whose kernel is, by inspection, the image of Gm under the map t 7→
(

t · 1, t3
)

. An inverse to this
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map is given by

A 7→ A× detA .

In particular, it follows that

M2 r∆1 ' (V6(2)r {forms with triple roots})/GL2 .

Moreover, since H0(ωC) = 〈x, y〉 with the natural action of GL2, it follows that the Hodge bundle
is the pullback of the representation V1 from BGL2.

4. Pushforwards along multiplication maps

Let X be any stack and E → X be a rank 2 vector bundle on X. Write ci = ci(E), and
x = c1(OPE(1)) for the tautological class of the projective bundle PE . In this section, we give
formulas for the pushforward maps on Chow groups under multiplication maps, similar to those
obtained by Vistoli in [Vis98].

Definition 4.1. For j 6 r, define the class sjr ∈ CHj
(

P Symr E
)

as the pushforward of x1x2 · · ·xj
under the multiplication map (PE)j × P

(

Symr−j E
)

→ P Symr E , where xi denotes the pullback
of x under projection to the ith PE-factor.

Lemma 4.2. The sjr can be calculated via the following recurrence relation:

s0r = 1 and sj+1
r = (t+ jc1) · s

j
r + j(r + 1− j)c2 · s

j−1
r ,

where t is the hyperplane class on P Symr E .

Proof. By functoriality, it suffices to consider the case when X = BGL2, in which case the Chow
ring of X is torsion-free. Moreover, recall that Chow groups of the projective bundles are free
as modules over the Chow ring of the base. Therefore, we may work with rational coefficients.

Write π : (PE)r → P Symr E for the multiplication map. As (PE)r−j → P Symr−j E is degree
(r − j)!, we obtain

sjr =
1

(r − j)!
π∗(x1 · · ·xj) .

By push-pull and the symmetry of π, this implies

t · sjr =
1

(r − j)!
π∗

(

x1 · · ·xj · (x1 + · · ·+ xr)
)

=
j

(r − j)!
π∗

(

x1 · · ·xj−1x
2
j

)

+
r − j

(r − j)!
π∗(x1 · · ·xj+1)

=
j

(r − j)!
π∗

(

x1 · · ·xj−1(−c1xj − c2)
)

+
r − j

(r − j)!
π∗(x1 · · ·xj+1)

= −
jc1

(r − j)!
π∗(x1 · · ·xj)−

j(r + 1− j)c2
(r − j + 1)!

π∗(x1 · · ·xj−1) +
1

(r − j − 1)!
π∗(x1 · · ·xj+1)

= −jc1 · s
j
r − j(r + 1− j)c2 · s

j−1
r + sj+1

r ,

which yields the desired formulas.

Lemma 4.3. As a CH∗(X)-module, CH∗
(

P Symr E
)

is generated by the classes s0r , s
1
r , . . ., s

r
r.

Proof. From the recurrence relations of Lemma 4.2, it is clear by induction on j that the sub-
Z[c1, c2]-module of CH∗

(

P Symr E
)

generated by 1, t, t2, . . ., tj coincides with the sub-Z[c1, c2]-

module generated by s0r , s
1
r , s

2
r , . . ., s

j
r.
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The point of choosing this system of generators is that the pushforward along the multipli-
cation map takes a particularly nice form in this basis.

Lemma 4.4. The pushforward along the multiplication map

P Syma E × P Symb E → P Syma+b E

is given by

sαa × sβb 7→

(

a− α+ b− β

a− α

)

· sα+β
a+b .

Proof. Consider the commutative diagram, all of whose arrows are multiplication maps (plus
permuting the factors):

(PE)α ×
(

P Syma−α E
)

× (PE)β × P
(

Symb−β E
)

−−−−→ (PE)α+β × P
(

Syma+b−α−β E
)





y





y

P
(

Syma E
)

× P
(

Symb E
)

−−−−→ P
(

Syma+b E
)

.

Then the left and right sides of the desired equality are the pushforwards around the left and
right sides of the diagram, respectively, of the class x1x2 · · ·xα · y1y2 · · · yβ .

Lemma 4.5. The class of the diagonal PE ⊂ PE × PE is given by x1 + x2 + c1.

Proof. The result is given in Lemma 3.8 of [Vis98].

For completeness, we include a proof here: By functoriality, and considering the case when
X = BGL2 and E is the standard representation, the desired class must be given by ax1+bx2+cc1,
for constants a, b, and c.

When X is a point, this formula asserts that the diagonal in P1 × P1 has class (a, b); thus,
a = b = 1. Moreover, when we tensor E by a line bundle L with Chern class ` = c1(L), then the
class of the diagonal is unaffected, but the xi are replaced by xi−` while c1 is replaced by c1+2`.
It follows that

(x1 − `) + (x2 − `) + c(c1 + 2`) = x1 + x2 + cc1 ,

and so c = 1, as desired.

Lemma 4.6. The class of the triple diagonal PE ⊂ PE × PE × PE is given by

(x1x2 + x2x3 + x3x1) + (x1 + x2 + x3) · c1 + c21 − c2 .

Proof. By Lemma 4.5, the image of the diagonal map PE → PE × PE is x1 + x2 + c1, where x1
and x1 are the pullbacks of the hyperplane classes from both factors of PE . Hence, the image of
the triple diagonal map is given by

[∆3] = (x1 + x2 + c1)(x2 + x3 + c1)

= (x1x2 + x2x3 + x3x1) + (x1 + x2 + x3) · c1 + c21 + x22 + c1x2

= (x1x2 + x2x3 + x3x1) + (x1 + x2 + x3) · c1 + c21 − c2 .

Lemma 4.7. The pushforward along the symmetric square map PE → P Sym2 E is given by

s01 7→ 2s12 + 2c1 , s11 7→ s22 − 2c2 .

Proof. By Lemma 4.5, the image of the diagonal map PE → PE ×PE is [∆] = x1+x2+ c1, where
x1 and x1 are the pullbacks of the hyperplane classes from both factors of PE . Next, we multiply
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the above expression by x1, to get

x1 · [∆] = x1(x1 + x2 + c1) = (−c1x1 − c2) + x1(x2 + c1) = x1x2 − c2 .

The desired formulas follow immediately.

Lemma 4.8. The pushforward along the symmetric cube map PE → P Sym3 E is given by

s01 7→ 3s23 + 6c1s
1
3 + 6

(

c21 − c2
)

, s11 7→ s33 − 6c2s
1
3 − 6c1c2 .

Proof. By Lemma 4.6, the image of the triple diagonal map PE → PE × PE × PE is given by

[∆3] = (x1x2 + x2x3 + x3x1) + (x1 + x2 + x3) · c1 + c21 − c2 .

Next, we multiply the above expression by x1 to get

x1 · [∆3] = x21(x2 + x3 + c1) + x1x2x3 + x1(x2 + x3)c1 + x1
(

c21 − c2
)

= (−c1x1 − c2)(x2 + x3 + c1) + x1x2x3 + x1(x2 + x3)c1 + x1
(

c21 − c2
)

= x1x2x3 − (x1 + x2 + x3) · c2 − c1 · c2 .

The desired formulas follow immediately.

Lemma 4.9. Let V ⊂ W be an inclusion of vector bundles over X. Then the fundamental class

of PV ⊂ PW in CH∗(PW) is given by the Chern polynomial of the quotient bundle W/V. That
is, if dimW/V = d, then

[PV] = xd + c1(W/V)xd−1 + · · ·+ cd(W/V) ,

where x = c1(OPW(1)).

Proof. The composition OPW(−1)→ π∗W → π∗(W/V), where π : W → X denotes the structure
map, gives a section of π∗(W/V)⊗OPW(1) whose vanishing locus is PV ⊂ PW. Thus

[PV] = cd(π
∗(W/V)⊗OPW(1)) = xd + c1(W/V)xd−1 + · · ·+ cd(W/V) .

Lemma 4.10. For rank 2 vector bundles E1 and E2 on X, the pushforward along the Segre map

PE1 × PE2 → P(E1 ⊗ E2)

is given by

1 7→ 2x+ c1(E1) + c1(E2) ,

x1 7→ x2 + c1(E2)x+ c2(E2)− c2(E1) ,

x2 7→ x2 + c1(E1)x+ c2(E1)− c2(E2) ,

x1x2 7→ x3 + (c1(E1) + c1(E2))x
2 + (c2(E1) + c1(E1)c1(E2) + c2(E2))x

+ c1(E1)c2(E2) + c2(E1)c1(E2) .

Proof. To find the pushforward of 1, we note that by functoriality, the desired class must be
given by ax + bc1(E1) + cc1(E2) for constants a and b. When X is a point, this formula asserts
that the Segre surface P1 × P1 ⊂ P3 is of degree a; thus a = 2. Moreover, when we tensor E1
by a line bundle L with Chern class ` = c1(L), then the pushforward is unaffected, but x is
replaced by x− ` while c1(E1) is replaced by c1(E1) + 2` and c1(E2) is unchanged. It follows that

2(x− `) + b(c1(E1) + 2`) + cc1(E2) = 2x+ bc1(E1) + cc1(E2) ,

and so b = 1, as desired. By symmetry, c = 1 too.
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To find the pushforward of x1, we note that by functoriality, the desired class must be given by

ax2 + bc1(E1)x+ cc1(E2)x+ dc2(E1) + ec2(E2) + fc1(E1)
2 + gc1(E2)

2 + hc1(E2)c1(E1)

for constants a, b, c, d, e, f , g, and h. Moreover, by symmetry, the pushforward of x2 must be
given by

ax2 + cc1(E1)x+ bc1(E2)x+ ec2(E1) + dc2(E2) + gc1(E1)
2 + fc1(E2)

2 + hc1(E2)c1(E1) .

In particular, the pushforward of x1 + x2 must be given by

2ax2 + (b+ c)(c1(E1) + c1(E2))x+ (d+ e)(c2(E1) + c2(E2))

+ (f + g)(c1(E1)
2 + c2(E2)

2) + 2hc1(E2)c1(E1) .

But by push-pull and our previous calculation of the pushforward of 1, the pushforward of x1+x2
must also be

x · (2x+ c1(E1) + c1(E2)) = 2x2 + x(c1(E1) + c1(E2)) .

We conclude that a = b + c = 1 and d + e = f + g = h = 0. In other words, the pushforward
of x1 must be given by

x2 + bc1(E1)x+ (1− b)c1(E2)x+ dc2(E1)− dc2(E2) + fc1(E1)
2 − fc1(E2)

2

for constants b, d, and f . When E1 is trivial, the pushforward of x1 is simply the fundamental
class of the diagonal PE2 ⊂ P(E2 ⊕ E2), so by Lemma 4.9,

x2 + (1− b)c1(E2)x− dc2(E2)− fc1(E2)
2 = x2 + c1(E2)x+ c2(E2) .

Thus d = −1 and b = f = 0, and so the class of the pushforward of x1 is given by

x2 + c1(E2)x+ c2(E2)− c2(E1) .

And by symmetry, the class of the pushforward of x2 is given by

x2 + c1(E1)x+ c2(E1)− c2(E2) .

Finally, to calculate the pushforward of x1x2, we note that by the projection formula, the
pushforward of (x1 + x2) · x2 is

x · (x2 + c1(E1)x+ c2(E1)− c2(E2)) .

On the other hand, x22 = −c1(E2)x2 − c2(E2), so the pushforward of x22 is

−c1(E2) ·
(

x2 + c1(E1)x+ c2(E1)− c2(E2)
)

− c2(E2) · (2x+ c1(E1) + c1(E2)) .

Subtracting, we obtain that the pushforward of x1x2 is

x3 + (c1(E1) + c1(E2))x
2 + (c2(E1) + c1(E1)c1(E2) + c2(E2))x+ c1(E1)c2(E2) + c2(E1)c1(E2) ,

as desired.

5. The Chow ring of BG

LetG = (Gm×Gm)oZ/2 as in Definition 2.2. Our goal in this section is to compute the Chow ring
CH∗(BG) with integral coefficients. One approach would be to use general results on Chow rings
of wreath products obtained by Totaro (cf. Section 2.8 of [Tot14]), which in particular determine
CH∗(BG)⊗ Z/2Z, and then leverage CH∗(BG)⊗ Z/2Z to compute CH∗(BG). Instead, we give
here an independent argument which directly computes the integral Chow ring in this case.
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To start with, we observe that we have a natural embedding G ↪→ GL2 as the stabilizer
of an unordered pair of distinct lines in V . In particular, BG is identified with the complement
of the image of the squaring (Veronese) map

PV1/GL2 → PV2/GL2 .

Write t = c1(OPV2
(1)).

Lemma 5.1. The Chow ring of PV2/GL2 is given by

CH∗(PV2/GL2) ' Z[α1, α2, t]/
((

t2 − 2α1t+ 4α2

)

(t− α1)
)

.

Proof. Write a1 and a2 for the Chern roots of V . From Grothendieck’s projective bundle formula,
the Chow ring of PV2 is given by Z[α1, α2, t]/p, where

p = (t− 2a1)(t− 2a2)(t− a1 − a2) =
(

t2 − 2α1t+ 4α2

)

(t− α1) .

From Lemma 4.7 and the localization exact sequence for Chow rings, we conclude that
CH∗(BG) is the quotient of CH∗(PV2/GL2) by the relations 2s12 − 2α1 = s22 − 2α2 = 0. Using
Lemma 4.2, we calculate

s02 = 1 , s12 = t , s22 = t2 − α1t+ 2α2 .

Thus,

2s12 − 2α1 = 2t− 2α1 , s22 − 2α2 = t2 − α1t .

Note that these relations imply (t2 − 2α1t+ 4α2)(t− α1) = 0. We conclude that

CH∗(BG) ' Z[α1, α2, t]/
(

2t− 2α1, t
2 − α1t

)

. (5.1)

Theorem 5.2. The Chow ring of BG is given by

CH∗(BG) ' Z[β1, β2, γ]/
(

2γ, γ2 + β1γ
)

.

Proof. We have already done most of the work; it remains just to note that the representation V
of GL2 restricts to the representation W of G, so αi = βi, and to identify γ and rewrite the
presentation (5.1) in terms of γ.

Because γ is the pullback to CH1(BG) of a nontrivial 2-torsion element in CH1(B(Z/2Z))
and G splits as a semidirect product, γ is a nontrivial 2-torsion element in CH1(BG). From (5.1),
the only such element is t− α1. Substituting t = γ + α1 into (5.1) yields the desired result.

5.1 Results in cohomology

The analogous argument in singular cohomology (using the long exact sequence of a pair plus
the Thom isomorphism in place of the localization sequence) shows that, in characteristic zero,
the cycle class map CH∗(BG)→ H∗(BG) is an isomorphism.

(The reader who is interested in results in cohomology, but does not find this analogy trans-
parent, is encouraged to return to this section after reading Section 8.1, where the “analogous
argument for cohomology” is spelled out completely in a significantly more involved case.)

6. Generators and some relations

In this section, we show that CH∗
(

M2

)

is generated by λ1, λ2, and δ1, as per Theorem 1.1.
We then establish several relations that these generators satisfy; in characteristic zero, this in-
cludes all relations claimed in Theorem 1.1.
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Lemma 6.1. We have δ1|∆1
= γ − λ1.

Proof. The normal bundle of ∆1 in M2 is given by the line bundle whose fiber over E1 ∪p E2 is
canonically identified with TpE1 ⊗ TpE2. For any two line bundles L1 and L2, there is a natural
isomorphism L1⊗L2 ' ∧

2(L1⊕L2); however, this isomorphism does not respect exchanging L1

and L2 (the two sides differ by a sign). Thus, TpE1 ⊗ TpE2 differs from ∧2(TpE1 ⊕ TpE2) by the
class of the sign representation γ. Since TpE1⊕TpE2 ' H0(ωE1∪pE2

)∨ has first Chern class −λ1,
this gives the desired formula.

From Theorem 5.2 and the presentation given in Section 3.1, we see that the Chow ring of ∆1

is generated by λ1, λ2, and γ; similarly, from the presentation given in Section 3.2, we see that
the Chow ring of M2 r∆1 is generated by λ1 and λ2. Applying the localization sequence

CH∗−1(∆1)→ CH∗
(

M2

)

→ CH∗
(

M2 r∆1

)

→ 0

together with Lemma 6.1, we see that CH∗
(

M2

)

is generated by λ1, λ2, and δ1, as promised.

6.1 Relations from CH∗(BG)

Since the relations 2γ = γ2 +λ1γ = 0 hold in CH∗(BG), they must also hold in CH∗(∆1). Using
Lemma 6.1, we may write these relations as

2δ1 + 2λ1 = δ21 + δ1λ1 = 0 ∈ CH∗(∆1) .

Pushing these relations forward to M2, we obtain relations in CH∗
(

M2

)

:

2δ21 + 2δ1λ1 = δ31 + δ21λ1 = 0 ∈ CH∗
(

M2

)

.

6.2 Relations from the Grothendieck–Riemann–Roch theorem

Here we recall Mumford’s proof of several relations in CH∗
(

M2

)

in [Mum83], taking care to work
with integral coefficients rather than rational coefficients where possible.

Let π : C → M2 be the universal curve. Write ωπ for the relative dualizing sheaf and Ω1
π for

the sheaf of relative differentials; these are sheaves on C. Applying the Grothendieck–Riemann–
Roch theorem to calculate the pushforward of the structure sheaf of C under π, we obtain the
following.

Lemma 6.2. The following relations hold modulo torsion:

2 = π∗
(

c1
(

Ω1
π

))

, 12λ1 = π∗
(

c1
(

Ω1
π

)2
+ c2

(

Ω1
π

))

, 12λ2
1 − 24λ2 = π∗

(

c1
(

Ω1
π

)

c2
(

Ω1
π

))

.

Remark 6.3. Pappas has shown that for maps of nonnegative relative dimension in characteristic
zero, the relations given by the Grothendieck–Riemann–Roch theorem hold integrally when de-
nominators are cleared [Pap07]. Consequently, these relations hold exactly in characteristic zero.

Write S = S0 ∪ S1 ⊂ C for the universal singular locus, where S0 denotes the universal
self-node and S1 denotes the universal disconnecting node. Since Ω1

π ' ωπ ⊗ IS , we have

c1(Ω
1
π) = c1(ωπ) and c2

(

Ω1
π

)

= [S] .

The relations of Lemma 6.2 may thus be written as

2 = π∗(c1(ωπ)) , 12λ1 = π∗
(

c1(ωπ)
2 + [S]

)

, 12λ2
1 − 24λ2 = π∗(c1(ωπ) · [S]) .

Lemma 6.4. We have the following relation in CH∗(C):

c1(ωπ)
2 − c1(ωπ)λ1 + λ2 − [S1] = 0 .
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Proof. As shown in Section 3.2, the natural map π∗π∗ωπ → ωπ vanishes exactly along S1. Let L
denote its kernel, so we have an exact sequence

0→ L → π∗π∗ωπ → ωπ ⊗ IS1
→ 0 .

Since S1 is a local complete intersection of codimension 2, the projective dimension of ωπ ⊗ IS1

is 1; consequently, L is a line bundle, and so

0 = c2(L) =

[

1 + c1(π
∗π∗ωπ) + c2(π

∗π∗ωπ)

1 + c1(ωπ ⊗ IS1
) + c2(ωπ ⊗ IS1

)

]

2

=

[

1 + λ1 + λ2

1 + c1(ωπ) + [S1]

]

2

= c1(ωπ)
2 − c1(ωπ)λ1 + λ2 − [S1] .

Lemma 6.5. We have the following relation in CH∗
(

M2

)

modulo torsion: 24λ2
1 − 48λ2 = 0.

Remark 6.6. In characteristic zero, the arguments of this section establish this relation exactly
(not just modulo torsion); cf. Remark 6.3.

Proof. In light of the relation 12λ2
1− 24λ2 = π∗(c1(ωπ) · [S]), it remains to show that c1(ωπ) · [S]

is 2-torsion. But this is clear since the residue map gives a trivialization of ωπ|S up to sign.

Lemma 6.7. We have the following relation in CH∗
(

M2

)

modulo torsion: δ0 = 10λ1 − 2δ1.

Remark 6.8. In characteristic zero, the arguments of this section establish this relation exactly
(not just modulo torsion); cf. Remark 6.3. Combined with Lemma 6.9 below, we obtain the
relation 20λ1λ2 − 4δ1λ2 = 0.

Proof. Combining the relations 2 = π∗(c1(ωπ)) and 12λ1 = π∗
(

c1(ωπ)
2 + [S]

)

with Lemma 6.4,
we obtain

12λ1 = π∗
(

c1(ωπ)
2 + [S]

)

= π∗(c1(ωπ)λ1 − λ2 + [S1] + [S0] + [S1])

= π∗(c1(ωπ))λ1 + 2π∗([S1]) + π∗(S0) = 2λ1 + 2δ1 + δ0 .

This yields the desired relation upon rearrangement.

Lemma 6.9. We have the following relation in CH∗
(

M2

)

: 2δ0λ2 = 0.

Proof. The map M1,2 → M2 obtained by gluing together the marked points is 2-to-1 onto ∆0,
so the composition of pullback followed by pushforward CH∗

(

M2

)

→ CH∗
(

M1,2

)

→ CH∗
(

M2

)

is multiplication by 2δ0.

It thus suffices to show that the pullback of λ2 to M1,2 is zero. But this is clear since the
residue map gives a surjection from the pullback of the Hodge bundle to the structure sheaf
of M1,2.

6.3 Results in cohomology

Since the cycle class map is a ring homomorphism, all relations in CH∗
(

M2

)

established here also
hold in H∗

(

M2

)

in characteristic zero. However, we shall see later that H∗
(

M2

)

is not generated
by λ1, λ2, and δ1.

7. Pushforward and pullback along B(Gm × Gm) → BG

In this section, we calculate the pushforward and pullback maps along

π : B(Gm ×Gm)→ BG .
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Write t1 and t2 in CH∗(Gm ×Gm) for the Chern classes of the standard representations of each
Gm-factor. Since pullback is induced by restrictions of representations, we immediately find

π∗(β1) = t1 + t2 , π∗(β2) = t1t2 , π∗(γ) = 0 .

Lemma 7.1. The pushforward map along π : B(Gm ×Gm)→ BG may be described recursively

as follows:

π∗(1) = 2 , π∗(t1) = β1 + γ ,

π∗
(

ta1
)

= β1π∗
(

ta−1
1

)

− β2π∗
(

ta−2
1

)

for a > 2 ,

π∗
(

ta1t
b
2

)

= β
min(a,b)
2 π∗

(

t
|a−b|
1

)

.

Proof. Since π is of degree 2, we have π∗(1) = 2.

Suppose π∗(t1) = aβ1 + bγ. Then by symmetry, π∗(t2) = aβ1 + bγ. Moreover, by push-pull
we have

2β1 = π∗π
∗β1 = π∗(t1 + t2) = (aβ1 + bγ) + (aβ1 + bγ) = 2aβ1 ,

(b− a)γ2 = γ · (aβ1 + bγ) = γ · π∗t1 = π∗(t1 · π
∗γ) = π∗(t1 · 0) = 0 .

Thus, a = b = 1, that is, π∗(t1) = β1 + γ, as claimed.

Using push-pull, we have for a > 2

π∗(t
a
1) = π∗

(

(t1 + t2)t
a−1
1 − t1t2t

a−2
1

)

= β1π∗
(

ta−1
1

)

− β2π∗
(

ta−2
1

)

.

And finally, using push-pull and symmetry, we have

π∗
(

ta1t
b
2

)

= π∗
(

(t1t2)
min(a,b)t

|a−b|
1

)

= β
min(a,b)
2 π∗

(

t
|a−b|
1

)

.

We conclude this section by calculating the Chern classes of the representations Vn � Vn,
which are obtained by pushing forward the representation Vn of Gm × Gm with weight (n, 0)
to BG.

Lemma 7.2. The Chern classes of Wn are given by

c1(Wn) = nβ1 + (n+ 1)γ , c2(Wn) = n2β2 .

Proof. We argue by induction on n. When n = 0, the representation W0 is the regular repre-
sentation of the Z/2Z-quotient of G, which splits as 1 ⊕ Γ; its Chern classes are thus γ and 0,
respectively. When n = 1, the representation W1 = W has Chern classes β1 and β2 by definition.

For the inductive hypothesis, we suppose n > 2. Observe that we have a direct sum decom-
position

Wn−1 ⊗W1 'Wn ⊕
(

Wn−2 ⊗ ∧
2W1 ⊗ Γ

)

.

Writing an and bn for the Chern roots of Wn, we obtain

(1 + an−1 + a1)(1 + an−1 + b1)(1 + bn−1 + a1)(1 + bn−1 + b1)

= (1 + an)(1 + bn)(1 + an−2 + β1 + γ)(1 + bn−2 + β1 + γ) . (7.1)

Comparing terms of degree 1 on both sides of (7.1), and using the relation 2γ = 0, we have

2(an−1 + bn−1) + 2(a1 + b1) = an + bn + an−2 + bn−2 + 2β1 ,
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and so by our inductive hypothesis,

c1(Wn) = an + bn = 2(an−1 + bn−1) + 2(a1 + b1)− (an−2 + bn−2)− 2β1

= 2[(n− 1)β1 + nγ] + 2β1 − [(n− 2)β1 + (n− 1)γ]− 2β1

= nβ1 + (n+ 1)γ .

Similarly, comparing terms of degree 2 on both sides of (7.1), and using 2γ = 0, we have

(an−1 + bn−1)
2 + 2an−1bn−1 + (a1 + b1)

2 + 2a1b1 + 3(an−1 + bn−1)(a1 + b1)

= anbn + an−2bn−2 + (β1 + γ)(an−2 + bn−2) + (β1 + γ)2 + (an + bn)(an−2 + bn−2 + 2β1),

and so by our inductive hypothesis, together with 2γ = γ2 + β1γ = 0,

c2(Wn) = anbn

= (an−1 + bn−1)
2 + 2an−1bn−1 + (a1 + b1)

2 + 2a1b1

+ 3(an−1 + bn−1)(a1 + b1)− an−2bn−2 − (β1 + γ)(an−2 + bn−2)

− (β1 + γ)2 − (an + bn)(an−2 + bn−2 + 2β1)

= [(n− 1)β1 + nγ]2 + 2(n− 1)2β2 + β2
1 + 2β2

+ 3[(n− 1)β1 + nγ]β1 − (n− 2)2β2 − (β1 + γ)[(n− 2)β1 + (n− 1)γ]

− (β1 + γ)2 − [nβ1 + (n+ 1)γ]([(n− 2)β1 + (n− 1)γ] + 2β1)

= n2β2 − (n− 1)(γ2 + β1γ)

= n2β2 .

8. The Chow ring of ∆1

In this section, we calculate the Chow ring CH∗(∆1). Recall the presentation of ∆1 obtained in
Section 3.1:

∆1 ' (W4,6 r (L4,6 × 0 ∪ 0× L4,6)) /G .

In this section, we will use the calculations of CH∗(BG) ' CH∗(W4,6/G) from Section 5 to com-
pute the Chow ring of ∆1 using the localization sequence.

We first note that the formulas in Section 4 apply to calculate loci in the total space of vector
bundles with the origin excised: simply pull back the corresponding classes from the projectiviza-
tion. So to start with, we excise the origin of W4,6 using the localization sequence

CH∗−4(BG)→ CH∗(W4,6/G)→ CH∗(W ′)→ 0 , where W ′ = (W4,6 r (0× 0))/G .

In terms of the isomorphism CH∗(BG) ' CH∗(W4,6/G), this first map is multiplication by the
Euler class e(W4,6) = c4(W4,6), and so

CH∗(W ′) ' CH∗(BG)/c4(W4,6) .

To compute c4(W4,6), we use Lemma 7.2, which gives

e(W4,6) = c4(W4,6) = c2(W4) · c2(W6) = 16λ2 · 36λ2 = 576λ2
2 . (8.1)

To get from W ′ to ∆1, we have to excise the closed substack

Z =
(

((L4,6 r 0)× 0) ∪ (0× (L4,6 r 0))
)

/G ' ((L4,6 r 0)× 0)/(Gm ×Gm) .

This isomorphism implies that CH∗(Z) is generated by {1, t1} as a module over CH∗(BG), so it
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suffices to determine the images of 1 and t1 under the localization sequence

CH∗−2(Z)→ CH∗(W ′)→ CH∗(∆1)→ 0 .

But from Lemma 4.9, the class of

Z ′′ =
(

(L4,6 r 0)× 0
)

/(Gm ×Gm) ⊂
(

L4,6 ⊕ L4,6 r (0× 0)
)

/(Gm ×Gm) ,

which maps isomorphically onto Z, is given by c2(0 × L4,6) = 24t22. Consequently, the images
of 1 and t1 are the pushforwards of 24t22 and 24t1t

2
2 along B(Gm × Gm) → BG; by Lemma 7.1,

these are 24λ2
1 − 48λ2 and 24λ1λ2, respectively. These imply our earlier relation 576λ2

2 = 0, and
therefore the following result.

Theorem 8.1. The Chow ring of ∆1 is given by

CH∗(∆1) = Z[λ1, λ2, γ]/
(

2γ, γ2 + λ1γ, 24λ
2
1 − 48λ2, 24λ1λ2

)

. (8.2)

Remark 8.2. One observes from this that after inverting 2, the Chow ring is Sym2CH∗
(

M1,1

)

.

8.1 Results in cohomology

(The reader interested only in the Chow ring of M2 may wish to skip this section.)

An essentially analogous argument in singular cohomology shows that in characteristic zero,
the even singular cohomology of ∆1 is isomorphic to its Chow ring via the cycle class map and also
computes both the order and an upper bound for the exponent of the odd cohomology groups.
Unlike many other arguments given in this paper, working with cohomology introduces two
minor subtleties not present when working with Chow groups; we therefore spell this argument
out explicitly for the interested reader.

We begin by computing the even cohomology of W ′, which is completely analogous to com-
puting its Chow ring.

Lemma 8.3. The even cohomology of W ′ is isomorphic to its Chow ring via the cycle class map

H2n(W ′) ' CHn(W ′) ,

and its odd cohomology is, as a group, isomorphic to

H2n+1(W ′) ' (Z/2Z)max(0,b(n−3)/2c) .

Proof. We wish to mimic, in cohomology, the Chow localization sequence for excision of the
origin 0/G ' BG of W4,6 to obtain its complement W ′. For this, we use the long exact sequence
for the pair (W4,6/G,W ′), which gives long exact sequences

· · · → H2n+1(W4,6/G)→ H2n+1(W ′)→ H2n(W4,6/G,W ′)→ H2n(W4,6/G)

→ H2n(W ′)→ H2n−1(W4,6/G,W ′)→ · · · .

Using the Thom isomorphism

Hk(W4,6/G,W ′) = Hk(W4,6/G,W4,6/Gr 0/G) ' Hk−8(0/G) = Hk−8(BG) ,

we obtain the exact sequences

0 = H2n+1(W4,6/G)→ H2n+1(W ′)→ H2n−8(BG)→ H2n(W4,6/G)

→ H2n(W ′)→ H2n−7(BG) = 0 ,

which identify the even cohomology H2n((W4,6 r (0× 0))/G) (respectively, the odd cohomology
H2n+1((W4,6 r (0× 0))/G)) with the cokernel (respectively, kernel) of multiplication by e(W4,6)
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from H2n−8(BG) to H2n(BG), just as the localization sequence for Chow rings identified CHn(W ′)
with the cokernel of multiplication by e(W4,6) from CHn−4(BG) to CHn(BG).

We conclude that the even cohomology of W ′ is isomorphic to its Chow ring via the cycle
class map, and its odd cohomology is isomorphic to the kernel of multiplication by e(W4,6)
on H2n−8(BG):

H2n+1(W ′) '
{

x ∈ CHn−4(BG) : 576λ2
2 · x = 0

}

= γ · (Z/2Z)[λ1, λ2]n−5

' (Z/2Z)max(0,b(n−3)/2c) .

The first subtlety here is that, in order to compute the cohomology of ∆1 by excision of Z
from W ′, we need Z to have no odd cohomology.

Lemma 8.4. The cohomology of Z is isomorphic to

H∗(Z) ' Z[t1, t2]/
(

24t21
)

,

where t1 and t2 are of degree 2. In particular, the odd cohomology of Z vanishes.

Proof. When we excise the origin of L4,6, we obtain the exact sequences

0 = H2n+1(L4,6/(Gm ×Gm))→ H2n+1(Z)→ H2n−4(B(Gm ×Gm))

→ H2n(L4,6/(Gm ×Gm))→ H2n(Z)→ H2n−3(B(Gm ×Gm)) = 0 ,

which identify the even cohomology H2n(Z) (respectively, the odd cohomology H2n+1(Z)) with
the cokernel (respectively, kernel) of the map H2n−4(B(Gm ×Gm))→ H2n(B(Gm ×Gm)) given
by multiplication by e(L4,6). Because e(L4,6) = 24t21, which is not a zero divisor in the cohomology
ring H∗(B(Gm ×Gm)) ' Z[t1, t2], we obtain H∗(Z) ' Z[t1, t2]/

(

24t21
)

, as claimed.

When we excise Z from W ′ to obtain ∆1, we obtain the exact sequences

0 = H2n−3(Z)→ H2n+1(W ′) ' (Z/2Z)max(0,b(n−3)/2c) → H2n+1(∆1)→ H2n−4(Z)

→ H2n(W ′)→ H2n(∆1)→ H2n−5(Z) = 0 ,

which identify the even cohomology H2n(∆1) (respectively, the odd cohomology H2n+1(∆1)) with
the cokernel (respectively, an extension by (Z/2Z)max(0,b(n−3)/2c) of the kernel) of the pushforward
map H2n−4(Z)→ H2n(W ′). In particular, the even cohomology of ∆1 is isomorphic to its Chow
ring via the cycle class map

H2n(∆1) ' CHn(∆1) .

The second subtlety here is that computing the kernel of H2n−4(Z)→ H2n(W ′) requires a bit
of thought. Namely, to compute it, we first pull back to the degree 2 cover of W ′ given by

W ′′ := (L4,6 ⊕ L4,6 r (0× 0))/(Gm ×Gm) .

The same argument used to compute H∗(W ′) shows

H∗(W ′′) ' H∗(B(Gm ×Gm))/c4(W4,6) = Z[t1, t2]/
(

576t21t
2
2

)

.

For a cohomology class x ∈ H∗(B(Gm × Gm)), denote by x its image under the automorphism
exchanging the two Gm-factors; in these terms, the composition of pullback and pushforward

H∗(B(Gm ×Gm))→ H∗(BG)→ H∗(B(Gm ×Gm)) is given by x 7→ x+ x .

Recall that the class of Z ′′ in W ′′ is given by c2(0 × L4,6) = 24t22; consequently, the composi-
tion H2n−4(Z)→ H2n(W ′)→ H2n(W ′′) is given by

x 7→ 24t22 · x+ 24t22 · x = 24t22 · x+ 24t21 · x ∈ Z[t1, t2]/
(

576t21t
2
2

)

.
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In particular, an element x ∈ H∗(Z) = Z[t1, t2]/
(

24t21
)

in the kernel of H2n−4(Z) → H2n(W ′)
must satisfy

24t22 · x+ 24t21 · x ∈
(

576t21t
2
2

)

⇔ t22 · x+ t21 · x ∈
(

24t21t
2
2

)

and, in particular, must satisfy x ∈ (t21). When we write x = t21 · y, the above condition becomes
t22 · t

2
1 · y + t21 · t

2
2 · y ∈

(

24t21t
2
2

)

, that is, y + y ∈ (24). As a module over the ring of symmetric
functions in t1 and t2, the space of such y is generated by 12 and t1− t2. Unwinding this, we see
that the kernel of H2n−4(Z) → H2n(W ′) is contained in the sub-H∗(BG)-module of H2n−4(Z)
generated by 12t21 and (t1 − t2)t

2
1. Conversely, applying Lemma 7.1, we see that both 12t21 and

(t1 − t2)t
2
1 are contained in the kernel of H2n−4(Z)→ H2n(W ′). Thus, the kernel of H2n−4(Z)→

H2n(W ′) is exactly the sub-H∗(BG)-module of H2n−4(Z) generated by 12t21 and (t1 − t2)t
2
1. As

a group, this is

(t1 − t2)t
2
1 · (Z/24Z)[t1, t2]n−5 ⊕ 12t21 · (Z/2Z)[t1]n−4

' (Z/24Z)max(0,n−4) ⊕ (Z/2Z)ε for ε =

{

1 if n > 4 ,

0 otherwise .

Putting this together, we have shown the following.

Proposition 8.5. The even cohomology of ∆1 is isomorphic to its Chow ring via the cycle class

map H2n(∆1) ' CHn(∆1), and its odd cohomology H2n+1(∆1) is a group of exponent at most

48 and order

24max(0,n−4) · 2max(0,b(n−3)/2c)+ε , where ε =

{

1 if n > 4 ,

0 otherwise .

9. The Chow ring and higher Chow groups of M2 r ∆1

In this section, we compute the Chow ring and higher Chow groups with `-adic coefficients
(where ` is prime to the characteristic of the base field k) of M2 r∆1 and of its quotient by the
twisting action of Gm—that is, the action of Gm on M2 r∆1 obtained by scaling with weight 1
the coefficients a, b, c, d, e, f , and g in (3.2).

Bloch’s higher Chow groups [Blo86] are defined as the homology of certain complexes z∗(X, •)
(here we have one complex for each value of ∗, and • denotes the grading of the complexes). These
groups are significantly easier to compute with torsion coefficients (in which case they can often
be compared to étale cohomology) and when the base field is algebraically closed. So here we
adopt the convention that by “higher Chow groups with `-adic coefficients,” we mean the groups

CH∗(X,n;Z`) := Hn

(

lim
←−
m

z∗(Xk, •)⊗
L Z/`mZ

)

,

where Xk denotes the base change of X to the algebraic closure k of our base field k. Note that
when the CH∗(Xk, n;Z/`

mZ) are finitely generated, we have

CH∗(X,n;Z`) ' lim
←−
m

CH∗(Xk, n;Z/`
mZ) .

In particular, since we have shown that CH∗(∆1) and CH∗
(

M2

)

are finitely generated, we still
have

CH∗(X, 0;Z`) = CH∗(Xk)⊗ Z` for X ∈
{

∆1,M2,M2 r∆1

}

.
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Moreover, Bloch’s higher Chow groups satisfy CH∗(Spec k, 1;Z/`mZ) = 0 by Theorem 10.3 of
[MVW06] (in combination with the isomorphism given in Lecture 19 of [MVW06] between higher
Chow groups and motivic cohomology). Consequently, this definition of “higher Chow groups
with `-adic coefficients” satisfies CH∗(Spec k, 1;Z`) = 0.

The description of M2 r∆1 given in Section 3.2 shows that
(

M2 r∆1

)

/Gm ' (PV6(2)r {forms with triple roots})/GL2

' (PV6 r {forms with triple roots})/GL2 .

Definition 9.1. Write t = c1(OPV6
(1)).

So by construction, M2 r∆1 is a Gm-bundle over
(

M2 r∆1

)

/Gm given by the complement
of the zero section in a line bundle with Chern class t−2λ1. (One could also take 2λ1− t. Indeed,
the complement of the zero section in a line bundle is isomorphic to the complement of the zero
section in the dual line bundle, so there is no natural choice of sign here.)

Lemma 9.2. The stack PV6/GL2 has Chow ring CH∗(PV6/GL2) = Z[λ1, λ2, t]/p(λ1, λ2, t), where

p(λ1, λ2, t) =
(

t2 − 6λ1t+ 36λ2

)(

t2 − 6λ1t+ 5λ2
1 + 16λ2

)(

t2 − 6λ1t+ 8λ2
1 + 4λ2

)

(t− 3λ1) .

Moreover, its first higher Chow groups with `-adic coefficients vanish:

CH∗(PV6/GL2, 1;Z`) = 0 .

Proof. When we write α and β for the Chern roots of V ∗ (with α + β = −λ1 and αβ = λ2),
Grothendieck’s formula for the Chow ring of a projective bundle gives

CH∗(PV6/GL2) = CH∗(BGL2)[t]/p(t) = Z[λ1, λ2][t]/p(t) ,

where

p(t) = (t+ 6α)(t+ 6β)(t+ 5α+ β)(t+ α+ 5β)(t+ 4α+ 2β)(t+ 2α+ 4β)(t+ 3α+ 3β)

=
(

t2 − 6λ1t+ 36λ2

)(

t2 − 6λ1t+ 5λ2
1 + 16λ2

)(

t− 6λ1 + 8λ2
1 + 4λ2

)

(t− 3λ1) .

Since CH∗(Spec k, 1;Z`) = 0 and higher Chow groups are preserved under taking vector
bundles, we have CH∗(An

k , 1;Z`) = 0. Using the localization sequence and the standard decom-
position of the Grassmanian into Schubert cells, we see that CH∗(Grk(m,n), 1;Z`) = 0, where
Grk(m,n) denotes any Grassmanian over k. Consequently, CH∗(BGL2, 1;Z`) = 0, and so the
first higher Chow groups vanish for any projective bundle over BGL2 (see, for example, [Blo86,
Theorem 7.1]), including for PV6/GL2.

Definition 9.3. Write T1 ⊂ PV6/GL2 for the locus with exactly one triple root, and write
T2 ⊂ PV6/GL2 for the locus of perfect cubes.

Definition 9.4. Write cub1 : (PV1/GL2) → (PV3/GL2) and cub2 : (PV2/GL2) → (PV6/GL2)
for the cubing maps. Write Sij = si1×s

j
3 (recall Definition 4.1), and denote by sij the pushforward

of Sij under the map

θ : (PV1 × PV3)/GL2 → PV6/GL2 defined by (f, g) 7→ f3 · g .

Observe that we have the following commutative diagram:

(PV1 × PV1)/GL2
1×cub1−−−−−→ (PV1 × PV3)/GL2

multiplication





y





y
θ

PV2/GL2
cub2−−−−→ PV6/GL2 .
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In particular, taking the images of the generators si1 × sj1, we obtain from Lemmas 4.4 and 4.8
(with c1 = −λ1 and c2 = λ2)

2cub2
(

s02
)

= 3s02 − 6λ1s01 + 6
(

λ2
1 − λ2

)

s00 ,

cub2
(

s12
)

= 3s12 − 6λ1s11 + 6
(

λ2
1 − λ2

)

s10 ,

cub2
(

s12
)

= s03 − 6λ2s01 + 6λ1λ2s00 ,

cub2
(

s22
)

= s13 − 6λ2s11 + 6λ1λ2s10 .

The middle two relations give two expressions for cub2
(

s12
)

, which must therefore be equal. Note
also that this forces the coefficients of s02 to be even; we can thus write

s′02 =
1
2 s02 .

Lemma 9.5. The Chow ring CH∗((PV6 r T2)/GL2) is generated as a module over Z[λ1, λ2] by
the elements s06, s

1
6, s

2
6, s

3
6, s

4
6, s

5
6, and s66, subject to the relations

3 ·
[

s′02 − λ1s01 +
(

λ2
1 − λ2

)

s00
]

= 0 ,

3 ·
[

s12 − 2λ1s11 + 2
(

λ2
1 − λ2

)

s10
]

= 0 ,

s13 − 6λ2s11 + 6λ1λ2s10 = 0 .

Moreover, assuming that these three elements are linearly independent over Z[λ1, λ2], the first

higher Chow group vanishes; that is, CH∗((PV6 r T2)/GL2, 1;Z`) = 0.

Proof. Using the first of our two expressions for cub2
(

s12
)

, this is immediate from Lemmas 9.2
and 4.3 together with the localization exact sequence

· · · → CH∗(PV6/GL2, 1;Z`) = 0→ CH∗((PV6 r T2)/GL2, 1;Z`)→ CH∗−4(T2)k ⊗ Z`

→ CH∗(PV6/GL2)k ⊗ Z` → CH∗((PV6 r T2)/GL2)k ⊗ Z` → 0 .

Lemma 9.6. The Chow ring CH∗
((

M2 r ∆1

)

/Gm

)

is generated as a module over Z[λ1, λ2] by
the elements s06, s

1
6, s

2
6, s

3
6, s

4
6, s

5
6, and s66, subject to the relations

s00 = s10 = s01 = s11 = s′02 = s12 = s13 = 0 .

Moreover, assuming that these seven elements are linearly independent over Z[λ1, λ2], the first

higher Chow group vanishes; that is, CH∗
((

M2 r∆1

)

/Gm, 1;Z`

)

= 0.

Proof. From the localization exact sequence

· · · → CH∗((PV1 × PV1)/GL2)→ CH∗((PV1 × PV3)/GL2)→ CH∗(T1)→ 0 ,

it follows that CH∗(T1) is generated as a module over Z[λ1, λ2] by S00, S01, S02, S03, S10, S11,
S12, and S13, with the relations (cf. Lemma 4.8):

3S02 − 6λ1S01 + 6
(

λ2
1 − λ2

)

S00 = 0 , S03 − 6λ2S01 + 6λ1λ2S00 = 0 ,

3S12 − 6λ1S11 + 6
(

λ2
1 − λ2

)

S10 = 0 , S13 − 6λ2S11 + 6λ1λ2S10 = 0 .

Equivalently, eliminating S03 and S13 via the two rightmost relations and writing

x = S02 − 2λ1S01 + 2
(

λ2
1 − λ2

)

S00 and y = S12 − 2λ1S11 + 2
(

λ2
1 − λ2

)

S10 ,

we have that the Chow ring CH∗(T1) is generated as a module over Z[λ1, λ2] by S00, S01, S10,
S11, x and y, with relations

3x = 3y = 0 .
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Note that the assumed independence of s00, s10, s01, s11, s
′
02, s12, and s13 implies the in-

dependence assumed in Lemma 9.5. By Lemma 9.5, the Chow ring CH∗((PV6 r T2)/GL2) is
generated as a module over Z[λ1, λ2] by s06, s

1
6, s

2
6, s

3
6, s

4
6, s

5
6, and s66, subject to the relations

3x′ = 0 , 3 · θ(y) = 0 , s13 − 6λ2s11 + 6λ1λ2s10 = 0 ,

where θ(x) = 2x′, and CH∗((PV6 r T2)/GL2, 1;Z`) = 0. Using the localization exact sequence

CH∗−2(T1)→ CH∗((PV6 r T2)/GL2)→ CH∗
((

M2 r∆1

)

/Gm

)

→ 0 ,

we conclude that the Chow ring CH∗
((

M2 r∆1

)

/Gm

)

is generated as a module over Z[λ1, λ2]
by the elements s06, s

1
6, s

2
6, s

3
6, s

4
6, s

5
6, and s66, subject to the relations

s00 = s10 = s01 = s11 = x′ = θ(y) = s13 − 6λ2s11 + 6λ1λ2s10 = 0 .

Moreover, assuming that these seven elements are linearly independent over Z[λ1, λ2], the local-
ization sequence

· · · → CH∗((PV6 r T2)/GL2, 1;Z`)→ CH∗
((

M2 r∆1

)

/Gm, 1;Z`

)

→ CH∗−2(T1)k ⊗ Z` → CH∗((PV6 r T2)/GL2)k ⊗ Z` → · · ·

implies CH∗
((

M2 r∆1

)

/Gm, 1;Z`

)

= 0. Since

x′ = s′02 − λ1s01 +
(

λ2
1 − λ2

)

s00 and y = s12 − 2λ1s11 + 2
(

λ2
1 − λ2

)

s10 ,

the submodule generated by these seven elements is the same as the submodule generated by
the seven elements given in the statement of the lemma.

We now combine Lemmas 4.4 and 4.8 to calculate sij by pushing forward along θ. For this,
we factor θ as cubing the first factor followed by multiplication:

(PV1 × PV3)/GL2 → (PV3 × PV3)/GL2 → PV6/GL2 .

The results are as follows:

s10 : s
1
1 × s03 7→

[

s33 − 6λ2s
1
3 + 6λ1λ2s

0
3

]

× s06 7→ s36 − 60λ2s
1
6 + 120λ1λ2s

0
6 ,

s11 : s
1
1 × s13 7→

[

s33 − 6λ2s
1
3 + 6λ1λ2s

0
3

]

× s16 7→ s46 − 36λ2s
2
6 + 60λ1λ2s

1
6 ,

s12 : s
1
1 × s23 7→

[

s33 − 6λ2s
1
3 + 6λ1λ2s

0
3

]

× s26 7→ s56 − 18λ2s
3
6 + 24λ1λ2s

2
6 ,

s13 : s
1
1 × s33 7→

[

s33 − 6λ2s
1
3 + 6λ1λ2s

0
3

]

× s36 7→ s66 − 6λ2s
4
6 + 6λ1λ2s

3
6 ,

s00 : s
0
1 × s03 7→

[

3s23 − 6λ1s
1
3 + 6

(

λ2
1 − λ2

)

s03
]

× s03 7→ 12s26 − 60λ1s
1
6 + 120

(

λ2
1 − λ2

)

s06 ,

s01 : s
0
1 × s13 7→

[

3s23 − 6λ1s
1
3 + 6

(

λ2
1 − λ2

)

s03
]

× s13 7→ 9s36 − 36λ1s
2
6 + 60

(

λ2
1 − λ2

)

s16 ,

⇒ s′02 = 3s46 − 9λ1s
3
6 + 12

(

λ2
1 − λ2

)

s26 .

Lemma 9.7. We have CH∗
((

M2 r∆1

)

/Gm, 1;Z`

)

= 0.

Proof. We just have to check that s10, s11, s12, s13, s00, s01, and s′02 are linearly independent
over Z[λ1, λ2]. For this, we use the above expressions for them in the basis s06, s

1
6, s

2
6, s

3
6, s

4
6, s

5
6,
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and s66, which reduces our problem to checking that the following matrix is nonsingular:

120λ1λ2 −60λ2 0 1 0 0 0

0 60λ1λ2 −36λ2 0 1 0 0

0 0 24λ1λ2 −18λ2 0 1 0

0 0 0 6λ1λ2 −6λ2 0 1

120
(

λ2
1 − λ2

)

−60λ1 12 0 0 0 0

0 60
(

λ2
1 − λ2

)

−36λ1 9 0 0 0

0 0 12
(

λ2
1 − λ2

)

−9λ1 3 0 0

It thus remains to note that this matrix has determinant 86400
(

λ2
1 − 4λ2

)3
6= 0.

Lemma 9.8. The Chow ring of
(

M2 r∆1

)

/Gm is given by

CH∗
((

M2 r∆1

)

/Gm

)

= Z[λ1, λ2, t]/(s00, s10, s
′
02) .

Proof. By Lemmas 9.6 and 9.2,

CH∗
((

M2 r∆1

)

/Gm

)

= Z[λ1, λ2, t]/(p, s00, s10, s01, s11, s
′
02, s12, s13) .

As θ∗t restricts to a hyperplane class on the P3-factor, push-pull implies that sij ∈ (s00, s10) for
any i and j (but not that s′02 ∈ (s00, s10)!), as well as that p ∈ (s00, s10). Thus, s00, s10, and s′02
generate the ideal of relations.

To compute the Chow ring of
(

M2 r ∆1

)

/Gm more explicitly, we first use the recursion of

Lemma 4.2. to compute the first few sj6:

s06 = 1 , s16 = t , s26 = t2 − λ1t+ 6λ2 ,

s36 = t3 − 3λ1t
2 +

(

2λ2
1 + 16λ2

)

t− 12λ1λ2 ,

s46 = t4 − 6λ1t
3 +

(

11λ2
1 + 28λ2

)

t2 +
(

−6λ3
1 − 72λ1λ2

)

t+ 36λ2
1λ2 + 72λ2

2 .

Substituting these into the expressions for sij given above, we obtain

s10 = t3 − 3λ1t
2 +

(

2λ2
1 − 44λ2

)

t+ 108λ1λ2 = 20λ1λ2 +
(

t2 − λ1t− 44λ2

)

· (t− 2λ1) ,

s00 = 12t2 − 72λ1t+ 120λ2
1 − 48λ2 = 24λ2

1 − 48λ2 + (12t− 48λ1) · (t− 2λ1) ,

s′02 = 3t4 − 27λ1t
3 +

(

72λ2
1 + 72λ2

)

t2 −
(

48λ3
1 + 348λ1λ2

)

t+ 288λ2
1λ2 + 144λ2

2

= −60
(

λ2
1 − 4λ2

)

(t− 3λ1) · (t− 2λ1) + (3t− 6λ1)s10 −
(

λ1t− 3λ2
1 + 3λ2

)

s00 .

In other words, the Chow ring of
(

M2 r∆1

)

/Gm is generated by λ1, λ2, and t with relations

R1 = 20λ1λ2 +
(

t2 − λ1t− 44λ2

)

· (t− 2λ1) = 0 ,

R2 = 24λ2
1 − 48λ2 + (12t− 48λ1) · (t− 2λ1) = 0 ,

R3 = 60
(

λ2
1 − 4λ2

)

(t− 3λ1) · (t− 2λ1) = 0 .

Theorem 9.9. The Chow ring of M2 r∆1 is given by

CH∗
(

M2 r∆1

)

= Z[λ1, λ2]/
(

24λ2
1 − 48λ2, 20λ1λ2

)

.

In addition, CH∗
(

M2 r ∆1, 1;Z`

)

is generated freely as a module over (Z/2Z)[λ1, λ2] by two

2-torsion classes in degrees 4 and 5, respectively.
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Proof. Note that M2 r∆1 is a Gm-bundle over
(

M2 r∆1

)

/Gm, with Chern class t− 2λ1. From
the localization sequence

CH∗
((

M2 r∆1

)

/Gm

)

→ CH∗
((

M2 r∆1

)

/Gm

)

→ CH∗
(

M2 r∆1

)

→ 0 ,

we learn that CH∗
(

M2 r∆1

)

is given by the cokernel of multiplication by t− 2λ1 on the Chow
ring CH∗

((

M2 r∆1

)

/Gm

)

, which is evidently the ring given in the statement of the theorem.

Moreover, from the localization sequence

· · · → CH∗
((

M2 r∆1

)

/Gm, 1;Z`

)

= 0→ CH∗
(

M2 r∆1, 1;Z`

)

→ CH∗−1
((

M2 r∆1

)

/Gm

)

k
⊗ Z` → CH∗

((

M2 r∆1

)

/Gm

)

k
⊗ Z` → · · · ,

we learn that CH∗
(

M2 r ∆1, 1;Z`

)

is given by the kernel of multiplication by t − 2λ1

on CH∗−1
((

M2 r∆1

)

/Gm

)

k
⊗ Z`. This kernel is evidently generated by the classes

c4 = 60
(

λ2
1 − 4λ2

)

(t− 3λ1) ,

c5 = 5λ1λ2 · (12t− 48λ1)−
(

6λ2
1 − 12λ2

)

·
(

t2 − λ1t− 44λ2

)

.

Finally, by inspection, both of these classes, when multiplied by 2 or t, are in the ideal
(R1, R2, R3). To see that these classes generate the kernel freely over (Z/2Z)[λ1, λ2], assume to
the contrary that some linear combination p4 · c4 + p5 · c5, with p4, p5 not both in (2, t), was
in (R1, R2, R3).

As c4, c5, R2, R3 ∈ (2) but R1 /∈ (2), we have p4 · c4 + p5 · c5 ∈ (2R1, R2, R3) ⊂
(

2t2, 4
)

. Since
c4 ∈

(

2t2, 4
)

, we obtain p5 · c5 ∈
(

2t2, 4
)

. As c5 /∈
(

2t2, 4
)

, this forces p5 ∈ (2, t).

In particular, p5 ·c5 ∈ (R1, R2, R3), so p4 ·c4 ∈ (R1, R2, R3). As c5, R2, R3 ∈ (4), but R1 /∈ (2),
we have p4 · c4 + p5 · c5 ∈ (4R1, R2, R3) ⊂ (4t, 8). Since c4 /∈ (4t, 8), this forces p5 ∈ (2, t).

Observe that the twisting Gm-action extends over the whole of M2. Indeed, consider the
universal family of curves over M2, pulled back to M2×Gm. There is a natural action of Z/2Z via
the hyperelliptic involution on the universal family over M2 composed with multiplication by −1
onGm; the quotient of this family by this action gives a family of curves overM2×(Gm/(Z/2Z))—
or, using the isomorphism M2 × (Gm/(Z/2Z)) 'M2 ×Gm given by the squaring map, a family
of curves over M2 × Gm, that is, an action of Gm on M2. By inspection, this restricts to the
twisting action defined above on M2 r∆1.

Our next task is to leverage the fact that the Gm-action extends over the whole of M2

to compute the image of the degree 5 generator in CH5
(

M2r∆1, 1;Z`

)

in CH4(∆1)k⊗Z` under
the boundary map in the localization sequence

· · · → CH5
(

M2 r∆1, 1;Z`

)

→ CH4(∆1)k ⊗ Z` → CH5
(

M2

)

k
⊗ Z` → · · · .

First observe that since CH∗
(

M2 r∆1, 1;Z`

)

is generated in degrees 4 and 5, any degree 2 or 3
class x ∈ CH∗

(

M2

)

k
⊗Z` whose image in CH∗

(

M2r∆1

)

k
⊗Z` vanishes is the image of a unique

degree 1 or 2 class in CH∗(∆1)k ⊗ Z`, which we denote by x.

Lemma 9.10. The image of the degree 5 generator in CH5
(

M2 r∆1, 1;Z`

)

in CH4(∆1)k ⊗Z` is

given by

5λ1λ2 ·
(

24λ2
1 − 48λ2

)

−
(

6λ2
1 − 12λ2

)

· 20λ1λ2 .
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Proof. Consider the diagram

0 −→ CH∗(∆1/Gm)k ⊗ Z` −→ CH∗
(

M2/Gm

)

k
⊗ Z` −→ CH∗

((

M2 r∆1

)

/Gm

)

k
⊗ Z` −→ 0





y





y





y

0 −→ CH∗(∆1/Gm)k ⊗ Z` −→ CH∗
(

M2/Gm

)

k
⊗ Z` −→ CH∗

((

M2 r∆1

)

/Gm

)

k
⊗ Z` −→ 0 ,

where the vertical maps are multiplication by t− 2λ1; since CH
∗
((

M2r∆1

)

/Gm, 1;Z`

)

= 0, the
rows are exact. The snake lemma then gives us a map from the kernel of multiplication by t−2λ1

on CH∗
((

M2 r∆1

)

/Gm

)

k
⊗Z` to the cokernel of multiplication by t− 2λ1 on CH∗(∆1/Gm)k ⊗

Z`; under the identification of the former with CH∗
(

M2 r ∆1, 1;Z`

)

= 0 and the latter with
CH∗(∆1)k ⊗ Z`, this map corresponds to the boundary map appearing in the localization exact
sequence.

We have a natural lift of t−2λ1 (and thus t) corresponding to the extension of the Gm-action.
Given a class in x ∈ CH∗(M2/Gm)k ⊗ Z` whose image in CH∗

((

M2 r∆1

)

/Gm

)

k
⊗ Z` is zero,

we also write x for the class in CH∗(∆1/Gm)k ⊗ Z` mapping to x.

Now the map arising from the snake lemma can be described as follows: Given a class in the
kernel of multiplication by t − 2λ1 on CH∗

((

M2 r ∆1

)

/Gm

)

k
⊗ Z`, we pick a lift of this class

to CH∗(M2/Gm)k ⊗ Z`; we multiply that lift by t− 2λ1; we write that (uniquely) as the image
of a class in CH∗(∆1/Gm)k⊗Z`; and finally, we reduce that class modulo t−2λ1 to obtain a class
in the cokernel of multiplication by t− 2λ1 on CH∗(∆1/Gm)k⊗Z`. Following that recipe for our
degree 5 class, we obtain

(t− 2λ1) ·
[

5λ1λ2 · (12t− 48λ1)−
(

6λ2
1 − 12λ2

)

·
(

t2 − λ1t− 44λ2

)]

mod t− 2λ1 .

Writing

(t− 2λ1) ·
[

5λ1λ2 · (12t− 48λ1)−
(

6λ2
1 − 12λ2

)

·
(

t2 − λ1t− 44λ2

)]

= (5λ1λ2) ·
[

24λ2
1 − 48λ2 + (12t− 48λ1)(t− 2λ1)

]

−
(

6λ2
1 − 12λ2

)

·
[

20λ1λ2 +
(

t2 − λ1t− 44λ2

)

(t− 2λ1)
]

,

we obtain

(5λ1λ2) ·
[

24λ2
1 − 48λ2 + (12t− 48λ1)(t− 2λ1) mod t− 2λ1

]

−
(

6λ2
1 − 12λ2

)

· [20λ1λ2 +
(

t2 − λ1t− 44λ2

)

(t− 2λ1) mod t− 2λ1] .

Since 24λ2
1 − 48λ2 + (12t− 48λ1)(t− 2λ1) mod t − 2λ1 is a class in degree 2 and the map

CH2(∆1)k⊗Z` → CH2
(

M2

)

k
⊗Z` is injective, this class is determined by its image in the Chow

group CH2
(

M2

)

k
⊗Z`, which is just 24λ2

1− 48λ2. Consequently, this class can be written simply

as 24λ2
1 − 48λ2. Reasoning similarly for the second term, we deduce the formula given in the

statement of the lemma.

9.1 Results in cohomology

The analogous argument in singular cohomology shows that in characteristic zero, the even
singular cohomology of M2 r∆1 is isomorphic to its Chow ring via the cycle class map

H2n
(

M2 r∆1

)

' CHn
(

M2 r∆1

)
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and that the odd singular cohomology of M2 r∆1 is isomorphic to its first higher Chow groups
via the cycle class map

H2n+1
(

M2 r∆1,Z`

)

' CHn
(

M2 r∆1, 1;Z`

)

.

In particular, H2n+1
(

M2r∆1

)

is freely generated as a module over (Z/2Z)[λ1, λ2] by two 2-tor-
sion classes in degrees 2 · 4 + 1 = 9 and 2 · 5 + 1 = 11. So as a group,

H2n+1
(

M2 r∆1

)

' (Z/2Z)[λ1, λ2]n−4 ⊕ (Z/2Z)[λ1, λ2]n−5

' (Z/2Z)max(0,b(n−2)/2c)+max(0,b(n−3)/2c) = (Z/2Z)max(0,n−3) .

10. Reduction to three nonvanishing statements

In this section, we show that Theorem 1.1 holds provided that the classes

δ1(δ1 + λ1)λ
2
1, δ1(δ1 + λ1)λ2, and δ1(δ1 + λ1)

(

λ2
1 + λ2

)

are all nonvanishing in CH∗
(

M2

)

⊗ Z/2Z (which we assume for the remainder of this section).
Since

CH∗(∆1) = Z[λ1, λ2, γ]/
(

2γ, γ2 + λ1γ, 24λ
2
1 − 48λ2, 24λ1λ2

)

is invariant under extension of the base field from k to k and only has torsion coprime to the
characteristic (as we have assumed the characteristic is distinct from 2 and 3), the injectivity of

CH∗(∆1)k ⊗ Z` → CH∗+1
(

M2

)

k
⊗ Z`

for ` coprime to the characteristic implies the injectivity of CH∗(∆1)→ CH∗+1
(

M2

)

.

10.1 Injectivity in degrees 0, 1, and 2

By Theorem 9.9, the morphism CH∗(∆1)k ⊗Z` → CH∗+1
(

M2

)

k
⊗Z` is injective in degrees 0, 1,

and 2, for all ` coprime to the characteristic. Consequently, the map CH∗(∆1)→ CH∗+1
(

M2

)

is
injective in degrees 0, 1, and 2.

10.2 Relations from the Grothendieck–Riemann–Roch theorem

Here we show that the relations established in Section 6.2 in characteristic zero, and modulo
torsion in arbitrary characteristic, in fact hold exactly in arbitrary characteristic distinct from 2
and 3.

The injectivity of CH0(∆1)→ CH1
(

M2

)

, combined with Theorems 8.1 and 9.9, implies that
CH1

(

M2

)

is torsion-free. Thus, the formula in Lemma 6.7 holds exactly, not merely modulo
torsion. Combined with Lemma 6.9, this implies the relation

20λ1λ2 − 4δ1λ2 = 0 . (10.1)

Next, the relation 24λ2
1 − 48λ2 = 0 holds on M2 r ∆1 by Theorem 9.9 and holds on M2

modulo torsion by Lemma 6.5. Since CH1(∆1)→ CH2
(

M2

)

is injective, 24λ2
1− 48λ2 must equal

the pushforward of a torsion class in CH1(∆1). But the only nonzero torsion class in CH1(∆1)
is γ, whose pushforward is δ1(δ1 + λ1) by Lemma 6.1. Thus, either

24λ2
1 − 48λ2 = 0 , or 24λ2

1 − 48λ2 = δ1(δ1 + λ1) .

This second relation implies δ1(δ1+λ1) = 0 ∈ CH2
(

M2

)

⊗Z/2Z, which contradicts our assump-
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tion that δ1(δ1+λ1)λ
2
1 6= 0 ∈ CH4

(

M2

)

⊗Z/2Z. Consequently the first relation must hold; that is,

24λ2
1 − 48λ2 = 0 . (10.2)

10.3 Injectivity in degree 3

By Lemma 6.1, the kernel of CH3(∆1)→ CH4
(

M2

)

is contained in the kernel of multiplication
by γ − λ1. Any element of this latter kernel can be written as a polynomial p(λ1, λ2, γ) which
satisfies

(γ − λ1) · p ∈
(

2γ, γ2 + λ1γ, 24λ
2
1 − 48λ2, 24λ1λ2

)

⊂ (γ, 24)⇒ −λ1p ∈ (γ, 24)⇒ p ∈ (γ, 24) .

As multiplication by 24 is zero on CH3(∆1), any such element is thus a multiple of γ; using the
relations 2γ = γ2 + λ1γ = 0, we see that there are only three such nonzero elements: γλ2

1, γλ2,
and γ

(

λ2
1 + λ2

)

.

Pushing these classes forward to CH4
(

M2

)

using Lemma 6.1, we obtain exactly the three
classes whose reduction modulo 2 we have assumed is nonvanishing.

10.4 Injectivity in higher degrees

Combining the injectivity we have established in degrees 0, 1, 2, and 3 with Theorem 9.9 and
Lemma 9.10, it remains to show

5λ1λ2 ·
(

24λ2
1 − 48λ2

)

−
(

6λ2
1 − 12λ2

)

· 20λ1λ2 = 0 ∈ CH4(∆1) .

But using the relations (10.2) and (10.1), we have

5λ1λ2 ·
(

24λ2
1 − 48λ2

)

−
(

6λ2
1 − 12λ2

)

· 20λ1λ2

= 5λ1λ2 · 0−
(

6λ2
1 − 12λ2

)

· 4λ2 = −λ2 ·
(

24λ2
1 − 48λ2

)

= 0 .

10.5 Conclusion of the proof

The injectivity established thus far implies that we have a short exact sequence

0→ CH∗−1(∆1)→ CH∗
(

M2

)

→ CH∗
(

M2 r∆
)

→ 0 ,

and we have previously (Theorems 8.1 and 9.9) established that

CH∗(∆1) = Z[λ1, λ2, γ]/
(

2γ, γ2 + λ1γ, 24λ
2
1 − 48λ2, 24λ1λ2

)

,

CH∗(M2 r∆) = Z[λ1, λ2]/
(

24λ2
1 − 48λ2, 20λ1λ2

)

.

Given Lemma 6.1, and the relations (10.2) and (10.1) that we have established and which extend
the relations 24λ2

1−48λ2 = 0 and 20λ1λ2 = 0 fromM2r∆1 to all ofM2, it follows that CH
∗
(

M2

)

is generated by λ1, λ2, and δ1 with relations given by (10.2), (10.1), and the pushforwards of the
relations that hold in CH∗(∆1), that is,

24λ2
1 − 48λ2 = 0 , 20λ1λ2 − 4δ1λ2 = 0 , [2(δ1 + λ1)] · δ1 = 0 ,

[

(δ1 + λ1)
2 + λ1(δ1 + λ1)

]

· δ1 = 0 ,
[

24λ2
1 − 48λ2

]

· δ1 = 0 , [24λ1λ2] · δ1 = 0 .

By inspection, these relations generate exactly the ideal of relations claimed in Theorem 1.1.

10.6 Results in cohomology

Since the cycle class map CHn
(

M2 r∆1

)

→ H2n
(

M2 r∆1

)

is an isomorphism (cf. Section 9.1)
and CHn

(

M2

)

→ CHn
(

M2 r ∆1

)

is surjective, it follows that H2n
(

M2

)

→ H2n
(

M2 r ∆1

)

is
surjective.
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And since the cycle class map CHn
(

M2r∆1, 1;Z`

)

→ H2n+1
(

M2r∆1,Z`

)

is an isomorphism
(cf. Section 9.1) and the boundary maps CHn

(

M2 r∆1, 1;Z`

)

→ CHn−1(∆1)⊗ Z` are zero, the
boundary maps H2n+1

(

M2 r∆1,Z`

)

→ H2n−2(∆1)⊗ Z` are all zero.

Putting this together, we see that all of the boundary maps in the associated long exact
sequence for cohomology groups are zero. The five lemma thus implies that the even cohomology
of M2 is isomorphic to its Chow ring via the cycle class map

H2n
(

M2

)

' CHn
(

M2

)

and that the odd cohomology of M2 is an extension of the odd cohomology of M2 r ∆1 by
the odd cohomology of ∆1. Combining the results of Section 8.1 with Section 9.1, this implies
the odd cohomology of M2 has exponent at most 96 and is of order

#H2n+1
(

M2

)

= #H2n+1
(

M2 r∆1

)

·#H2n−1(∆1)

= 24max(0,n−5) · 2max(0,n−3)+max(0,b(n−4)/2c)+ε , where ε =

{

1 if n > 5 ,

0 otherwise .
(10.3)

11. Chow ring of the bielliptic stack

As shown in Section 10, in order to complete the proof of Theorem 1.1, all that remains is to
show that the classes

δ1(δ1 + λ1)λ
2
1 , δ1(δ1 + λ1)λ2 , and δ1(δ1 + λ1)

(

λ2
1 + λ2

)

are all nonvanishing in CH∗
(

M2

)

⊗Z/2Z. We will do this by pulling these classes back to a certain
test family, given explicitly in Section 11.2.

11.1 Motivation for our test family

(This section is, strictly speaking, not logically necessary.)

Recall that these classes are pushforwards of classes on ∆1, which are multiples of the pull-
back to ∆1 of the generator of CH∗(B(Z/2Z)), where Z/2Z acts by exchanging an ordered pair
of elliptic curves. The fixed-point locus of this Z/2Z-action corresponds to curves in ∆1 consisting
of two isomorphic elliptic curves joined at a point, and on this locus, the Z/2Z-action gives rise
to the automorphism that exchanges the two components, which is a bielliptic involution. This
consideration suggests that the universal family of bielliptic curves would serve as a good test
family. To be precise, we have the following.

Definition 11.1. A bielliptic curve of genus 2 is a stable curve C of genus 2, together with
an unordered pair {ι, ι′} of bielliptic involutions which differ by multiplication by the hyperelliptic
involution.

Lemma 11.2. Let C be a bielliptic curve of genus 2. Then dimH0
(

ω2
C

)

= 3, and the hyperelliptic

involution acts trivially on H0
(

ω2
C

)

. The bielliptic involution (which is well defined modulo the

hyperelliptic involution) has a 2-dimensional trivial eigenspace and a 1-dimensional nontrivial

eigenspace.

Proof. Since H0
(

ω−1
C

)

= 0 when C is a stable curve, the Riemann–Roch formula implies
dimH0

(

ω2
C

)

= 3 as desired. The remaining conditions are then visibly both open and closed, so
it suffices to check them when C is smooth.
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In this case, any section of ω2
C sent to its negative under the hyperelliptic involution must

vanish at the six Weierstrass points; since ω2
C is of degree 4, there are no such sections, and so

the hyperelliptic involution acts trivially.

For the action of the bielliptic involution, write f : C → E for the quotient map. Then there is
an evident filtration H0

(

f∗ω2
E

)

⊂ H0(f∗ωE⊗ωC) ⊂ H0
(

ω2
C

)

, whose quotients are 1-dimensional,
on which the bielliptic involution acts as +1, −1, and +1, respectively.

Consequently, every bielliptic curve comes equipped with a canonical map to P1 defined by the
sections of H0

(

ω2
C

)

invariant under the bielliptic involution. By the Riemann–Hurwitz formula,
this map is branched over five points with multiplicity.

Moreover, taking the ramification points of the quotients of C by the two bielliptic involutions
mapping to P1 defines two subsets of four of these five points. Their intersection then gives
a canonically defined subset of three points. We conclude that the family of curves in weighted
projective space given by

z2 = (ax+ by) ·
(

ex3 + fx2y + gxy2 + hy3
)

,

w2 = (cx+ dy) ·
(

ex3 + fx2y + gxy2 + hy3
)

,

over the locus of triples of two degree 1 polynomials and one degree 3 polynomial whose product
has no triple roots, contains every isomorphism class of bielliptic curves.

Moreover, since the map to P1 is canonical, we conclude that any isomorphism between
two curves in this family is via a linear change of variables on x and y, scalar multiplication and
exchanging on z and w, and rescaling the cubic polynomial. In other words, any such isomorphism
is via the action of GL2×G × Gm, with GL2 acting on (x, y), and G acting on (z, w), and Gm

acting on a, b, c, d with weight −1 and on e, f , g, h with weight +1. By inspection, the subgroup
of GL2×G×Gm acting trivially is the image of Gm under the map t 7→

(

t · 1, t4 · 1, t3
)

.

We conclude that the stack of bielliptic curves is isomorphic to the quotient of the locus
of triples of polynomials of degrees 1, 1, and 3, whose product has no triple root, by the natural
action of (GL2×G×Gm)/Gm constructed above.

To recast this in a somewhat nicer form, we observe that (GL2×G × Gm)/Gm is itself iso-
morphic to GL2×G via the map GL2×G×Gm → GL2×G defined by

A×B × t 7→
detA

t
·A×

(

detA

t

)4

·B ,

whose kernel is, by inspection, the image of Gm under the map t 7→
(

t · 1, t4 · 1, t3
)

. An inverse
to this map is given by A×B 7→ A×B × detA.

11.2 Our test family

Our test family will be an open substack (obtained by excising the triple root loci) of the space

[V3(1)× (V1(−1)�W−2)]/(G×GL2) ;

here, we view elements of V3(1) as cubic polynomials ex3 + fx2y + gxy2 + hy3 and elements
of V1(−1) �W−2 as pairs of linear polynomials (ax + by, cx + dy). There is a family of genus 2
curves defined over this quotient by

z2 = (ax+ by) ·
(

ex3 + fx2y + gxy2 + hy3
)

,

w2 = (cx+ dy) ·
(

ex3 + fx2y + gxy2 + hy3
)

,
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where GL2 acts naturally on (x, y) and G acts naturally on (z, w). Away from the triple root
loci, these curves are stable. This will serve as our test family; the discussion of Section 11.1
shows that this is the universal family of bielliptic curves.

11.3 The zero sections

As in Section 8, we will use the formulas in Section 4 to calculate loci in the total space of vector
bundles with the origin excised, by pulling back the corresponding classes from the projectiviza-
tion.

So we begin by excising the origins of V3(1) and V1(−1)�W−2; as in Section 4, this imposes
relations given by the vanishing of the Euler classes e(V3(1)) = c4(V3(1)) and e(V1(−1)�W−2) =
c4(V1(−1)�W−2), respectively.

Write a1 and a2 for the Chern roots of V and b1 and b2 for the Chern roots of W2. Then the
Euler class of V3(1) is

e(V3(1)) = (α1 − 3a1)(α1 − 3a2)(α1 − 2a1 − a2)(α1 − a1 − 2a2)

=
(

α2
1 − 3(a1 + a2)α1 + 9a1a2

)(

α2
1 − 3(a1 + a2)α1 + 2(a1 + a2)

2 + a1a2
)

=
(

α2
1 − 3α2

1 + 9α2

)(

α2
1 − 3α2

1 + 2α2
1 + α2

)

= 9α2
2 − 2α2

1α2 .

Similarly, the Euler class of V1(−1)�W−2 is

e(V1(−1)�W−2) = (−α1 − a1 − b1)(−α1 − a2 − b1)(−α1 − a1 − b2)(−α1 − a2 − b2)

=
(

(α1 + b1)
2 + (α1 + b1)(a1 + a2) + a1a2

)

·
(

(α1 + b2)
2 + (α1 + b2)(a1 + a2) + a1a2

)

=
(

(α1 + b1)
2 + (α1 + b1)α1 + α2

)

·
(

(α1 + b2)
2 + (α1 + b2)α1 + α2

)

= (b1b2)
2 + 3α1(b1 + b2)b1b2 +

(

2α2
1 + α2

)

(b1 + b2)
2

+
(

5α2
1 − 2α2

)

b1b2 +
(

6α3
1 + 3α1α2

)

(b1 + b2) +
(

2α2
1 + α2

)2

= (4β2)
2 + 3α1(2β1 + γ)(4β2) +

(

2α2
1 + α2

)

(2β1 + γ)2

+
(

5α2
1 − 2α2

)

(4β2) +
(

6α3
1 + 3α1α2

)

(2β1 + γ) +
(

2α2
1 + α2

)2

= 4α4
1 + 12α3

1β1 + 8α2
1β

2
1 + 4α2

1α2 + 6α1α2β1 + 4α2β
2
1

+ 20α2
1β2 + 24α1β1β2 + α1α2γ + α2β1γ + α2

2 − 8α2β2 + 16β2
2

+
(

2α2
1 + a2

)(

γ2 + β1γ
)

+
(

3α3
1 + 3α2

1β1 + α1α2 + α2β1 + 6α1β2
)

(2γ)

= 4α4
1 + 12α3

1β1 + 8α2
1β

2
1 + 4α2

1α2 + 6α1α2β1 + 4α2β
2
1

+ 20α2
1β2 + 24α1β1β2 + α1α2γ + α2β1γ + α2

2 − 8α2β2 + 16β2
2 .

Next we excise the locus in V1(−1) � W−2 where one of the linear forms is zero. In other
words, we excise from (V1(−1)�W−2 r (0× 0))/(G×GL2) the closed substack Z given by

(

V1(−1)� (L−2 × 0) ∪ V1(−1)� (0× L−2)
)

/(G×GL2)

' (V1(−1)� (L−2 × 0))/(Gm ×Gm ×GL2) .

As a module over CH∗(BG × BGL2), the Chow ring CH∗(Z) is generated by 1 and t1, so it
suffices to determine the pushforwards of 1 and t1 to CH∗([V1(−1)�W−2r (0× 0)]/(G×GL2)).
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If we write a1 and a2 for the Chern roots of V , then applying Lemma 4.9, we see that the class of

[V1(−1)� (L−2 × 0)r (0× 0)]/(Gm ×Gm ×GL2)

⊂ [V1(−1)� (L−2 ⊕ L−2)r (0× 0)]/(Gm ×Gm ×GL2)

is given by

c2(V1(−1)� (0× L−2)) = (−α1 − 2t2 − a1)(−α1 − 2t2 − a2)

= (α1 + 2t2)
2 + (α1 + 2t2)(a1 + a2) + a1a2

= (α1 + 2t2)
2 + (α1 + 2t2)α1 + α2 = 4t22 + 6α1t2 + 2α2

1 + α2 .

Excising this locus therefore introduces relations given by the pushforwards of

4t22 + 6α1t2 + 2α2
1 + α2 and

(

4t22 + 6α1t2 + 2α2
1 + α2

)

t1

along B(Gm ×Gm)→ BG; by Lemma 7.1, these are

4 ·
(

β2
1 + β1γ − 2β2

)

+ 6α1 · (β1 + γ) +
(

2α2
1 + α2

)

· 2

= 4α2
1 + 6α1β1 + 4β2

1 + 2α2 − 8β2 + (3α1 + 2β1) · 2γ

= 4α2
1 + 6α1β1 + 4β2

1 + 2α2 − 8β2 ,

respectively

4 · (β1β2 + γβ2) + 6α1 · 2β2 +
(

2α2
1 + α2

)

· (β1 + γ)

= 2α2
1β1 + α2β1 + 12α1β2 + 4β1β2 + α2γ +

(

α2
1 + 2β2

)

· 2γ

= 2α2
1β1 + α2β1 + 12α1β2 + 4β1β2 + α2γ .

To summarize, the relations obtained by excising the loci where one form is zero are thus

9α2
2 − 2α2

1α2 = 0 ,

4α2
1 + 6α1β1 + 4β2

1 + 2α2 − 8β2 = 0 ,

2α2
1β1 + α2β1 + 12α1β2 + 4β1β2 + α2γ = 0 ,

4α4
1 + 12α3

1β1 + 8α2
1β

2
1 + 4α2

1α2 + 6α1α2β1 + 4α2β
2
1 + 20α2

1β2

+ 24α1β1β2 + α1α2γ + α2β1γ + α2
2 − 8α2β2 + 16β2

2 = 0 .

(11.1)

11.4 The tautological classes

Since

H0(ωC) =

〈

xdy − ydx

z
,
xdy − ydx

w

〉

,

with the natural action of GL2 on (x, y) and G on (z, w), the Hodge bundle is just the dual of the
standard representation of G tensored with the dual of the determinant representation of GL2.
In particular, its Chern classes are

λ1 = −β1 − 2α1 and λ2 = α2
1 + α1β1 + β2 .

To find the pullback of δ1 to our family, we note that the preimage of the boundary stratum ∆1

is the image of the Segre map V1(−1)×W−2 → V1(−1)�W−2. So by Lemma 4.10,

δ1 = c1(V1(−1)) + c1(W−2) = −3α1 − 2β1 + γ .
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11.5 Excision of triple root loci

To excise the triple root loci, we will find the classes of the triple root loci in the product
of projectivizations

[PV3(1)× P(V1(−1)�W−2)]/(G×GL2) ' [PV3 × P(V1 �W−2)]/(G×GL2)

and pull back to [V3(1)×(V1(−1)�W−2)]/(G×GL2) by substituting the hyperplane class on PV3

for α1 and the hyperplane class on P(V1 �W−2) for −α1.

We begin by excising the locus where the cubic form has a triple root. When we substitute
the hyperplane class on PV3 for α1, the recursion relation from Lemma 4.2 yields

s03 = 1 , s13 = α1 , s23 = 3α2 , s33 = α1α2 . (11.2)

Consequently, we can apply Lemma 4.8 to calculate that excising this locus imposes relations
given by the vanishing of

3s23 − 6α1s
1
3 + 6

(

α2
1 − α2

)

= 3α2 and s33 − 6α2s
1
3 + 6α1α2 = α1α2 .

We next excise the locus where all three forms share a common factor; this is the image of
the closed immersion

[PV2 × PV1 × PW−2]/(G×GL2)→ [PV3 × P(V1 �W−2)]/(G×GL2)

defined by (f, g, h) 7→ (f · g, g � h).

Note that the hyperplane class on PV3, respectively on P(V1�W−2), pulls back to the sum of
the hyperplane classes on PV2 and PV1, respectively on PV1 and PW−2. Since these, along with
the hyperplane class on PW−2, generate CH∗([PV2× PV1× PW−2]/(G×GL2)) as a module over
CH∗(BG × BGL2), the relations obtained by excision are all generated by the pushforwards of
the fundamental class 1 and hyperplane class w = c1(OPW

−2
(1)) under this map.

To compute these two pushforwards, we factor this map as the composition of the diagonal
map on the PV1-factor

[PV2 × PV1 × PW−2]/(G×GL2)→ [PV2 × (PV1 × PV1)× PW−2]/(G×GL2) (11.3)

followed by multiplication and the Segre map

[(PV2 × PV1)× (PV1 × PW−2)]/(G×GL2)→ [PV3 × P(V1 �W−2)]/(G×GL2) . (11.4)

When we write x1 and x2 for the hyperplane sections on the two PV1-factors, Lemma 4.5
gives that the pushforwards of 1 and w under (11.3) are x1 − α1 + x2 and x1w − α1w + x2w.
Using Lemmas 4.4 and 4.10, and writing x = c1(OP(V1�W

−2)(1)), we see that the pushforwards
of these classes under (11.4) are

s13 · [2x+ c1(V1) + c1(W−2)]− α1 · 3s
0
3 · [2x+ c1(V1) + c1(W−2)]

+ 3s03 ·
[

x2 + c1(W−2)x+ c2(W−2)− c2(V1)
]

,

respectively

s13 ·
[

x2 + c1(V1)x+ c2(V1)− c2(W−2)
]

− α1 · 3s
0
3 ·

[

x2 + c1(V1)x+ c2(V1)− c2(W−2)
]

+ 3s03 ·
[

x3 + (c1(V1) + c1(W−2))x
2 + (c2(V1) + c1(V1)c1(W−2) + c2(W−2))x

+ c1(V1)c2(W−2) + c2(V1)c1(W−2)
]

.

From Lemma 4.2, we have that s03 = 1 and that s13 is the hyperplane class on PV3, which we
must substitute for α1. Substituting x for −α1, the relations we obtain from excising this locus
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are the vanishing of

α1 · [−2α1 + c1(V1) + c1(W−2)]− 3α1 · [−2α1 + c1(V1) + c1(W−2)]

+ 3
[

α2
1 − c1(W−2)α1 + c2(W−2)− c2(V1)

]

,

respectively the vanishing of

α1 ·
[

α2
1 − c1(V1)α1 + c2(V1)− c2(W−2)

]

− 3α1 ·
[

α2
1 − c1(V1)α1 + c2(V1)− c2(W−2)

]

+ 3
[

−α3
1 + (c1(V1) + c1(W−2))α

2
1 − (c2(V1) + c1(V1)c1(W−2) + c2(W−2))α1

+ c1(V1)c2(W−2) + c2(V1)c1(W−2)
]

.

Since V1 = V ∗, we have c1(V1) = −α1 and c2(V1) = α1; similarly, sinceW−2 = W ∗
2 , Lemma 7.2

gives c1(W−2) = γ − 2β1 and c2(W−2) = 4β2. Substituting these in and collecting like terms, we
see that our relations are simply the vanishing of

9α2
1 + 10α1β1 + α1γ − 3α2 + 12β2 − 3α1 · 2γ = 9α2

1 + 10α1β1 + α1γ − 3α2 + 12β2 ,

respectively the vanishing of

α2γ − 10α3
1 − 12α2

1β1 − 5α1α2 − 6α2β1 − 16α1β2 +
(

3α2
1 + α2

)

· 2γ

= α2γ − 10α3
1 − 12α2

1β1 − 5α1α2 − 6α2β1 − 16α1β2 .

Finally, we excise the locus where the cubic form is divisible by the square of one of the linear
forms. This locus is the norm from Gm×Gm to G of the locus where the square of the first linear
form divides the cubic form (this latter locus is only (Gm ×Gm ×GL2)-equivariant).

Away from the locus where one of the linear forms is zero, we have a (Gm × Gm × GL2)-
equivariant natural map P(V1 � W−2) → PV1 × PV1 induced by projection from the subspaces
V1 � (L−2 × 0) and V1 � (0× L−2). This induces a map

PV3 × P(V1 �W−2)→ PV3 × PV1 × PV1 ; (11.5)

the locus we want to excise can then be described as the pullback under this map of the image
of the map

PV1 × PV1 × PV1 → PV3 × PV1 × PV1 (11.6)

defined by (f, g, h) 7→
(

fg2, g, h
)

.

Since the pullback under (11.5) of the hyperplane class on the first PV1-factor differs from the
hyperplane class on P(V1�W−2) by 2t2, we just need to push forward the generators of CH∗([PV1×
PV1 × PV1]/(Gm × Gm × GL2)) along (11.6), substitute the hyperplane class on PV3 for α1,
substitute the hyperplane class on the first PV1-factor for −α1 − 2t2, and take norms along
B(Gm ×Gm)→ BG. Moreover, since pullback along (11.6) is surjective by inspection, the only
generators we need to use are 1 and t1 (which generate CH∗(B(Gm × Gm)) as a module over
CH∗(BG)).

To implement this, we factor (11.6) as a composition of a triple diagonal map on the middle
PV1-factor

PV1 × PV1 × PV1 → PV1 × (PV1 × PV1 × PV1)× PV1 (11.7)

followed by multiplication

(PV1 × PV1 × PV1)× PV1 × PV1 → PV3 × PV1 × PV1 . (11.8)

Write xi (with 1 6 i 6 5) for the hyperplane class on the ith PV -factor. From Lemma 4.6,
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the pushforward of the fundamental class is

x2x3 + x3x4 + x4x2 − (x2 + x3 + x4)α1 + α2
1 − α2 .

Using Lemma 4.4 and (11.2), and writing x for the hyperplane class on PV1 that we must
substitute for −α1− 2t2, we deduced that the pushforward of the fundamental class along (11.8)
is then

1 7→ s23 + 2x · 2s13 − 2α1 · 2s
1
3 − α1x · 6s

0
3 +

(

α2
1 − α2

)

· 6s03

= 3α2 + 2(−α1 − 2t2) · 2α1 − 2α1 · 2α1 − α1(−α1 − 2t2) · 6 +
(

α2
1 − α2

)

· 6

= 4α1t2 + 4α2
1 − 3α2 .

Our relations are thus given by the vanishing of the norms along B(Gm × Gm) → BG of the
classes

4α1t2 + 4α2
1 − 3α2 and

(

4α1t2 + 4α2
1 − 3α2

)

t1 .

By Lemma 7.1, these are

4α1(β1 + γ) + 8α2
1 − 6α2 = 4α1β1 + 8α2

1 − 6α2 + 2 · 2γ = 4α1β1 + 8α2
1 − 6α2 ,

respectively

4α1 · 2β2 +
(

4α2
1 − 3α2

)

(β1 + γ) = 8α1β2 + 4α2
1β1 − 3α2β1 + α2γ +

(

2α2
1 − 2α2

)

· 2γ

= 8α1β2 + 4α2
1β1 − 3α2β1 + α2γ .

To summarize, the relations obtained by excising the triple root loci are thus:

3α2 = 0 , α1α2 = 0 , 4α1β1 + 8α2
1 − 6α2 = 0 ,

8α1β2 + 4α2
1β1 − 3α2β1 + α2γ = 0 , (11.9)

9α2
1 + 10α1β1 + α1γ − 3α2 + 12β2 = 0 ,

α2γ − 10α3
1 − 12α2

1β1 − 5α1α2 − 6α2β1 − 16α1β2 = 0 .

11.6 Chow ring of our test family

From our expressions for the tautological classes on M2 in Section 11.4, we can express α1, β1,
and β2 in terms of γ, δ1, λ1, and λ2:

α1 = −2λ1 + δ1 − γ , β1 = 3λ1 − 2δ1 + 2γ ,

β2 = λ2 − α2
1 − α1β1 = 2λ2

1 − 3λ1δ1 + δ21 + 3λ1γ − 2δ1γ + γ2 + λ2 .

Subtracting the relation 4α2
1 + 6α1β1 + 4β2

1 + 2α2 − 8β2 = 0 (see (11.1)) from the relation
3α2 = 0 (see (11.9)), we obtain

α2 = 4α2
1 + 6α1β1 + 4β2

1 − 8β2 = 2λ1δ1 − 2λ1γ − 8λ2 .

Substituting these expressions into all of our previous relations in (11.1), (11.9), and Theo-
rem 5.2, we check the ideal the resulting relations generate is as follows.

Theorem 11.3. The Chow ring of the moduli space B of bielliptic curves is generated by γ, δ1, λ1,

and λ2, subject to the relations

2γ = 0 , γ2 + λ1γ = 0 , δ21 + δ1γ + 8λ2
1 − 12λ2 = 0 , 24λ2

1 − 48λ2 = 0 ,

2δ21 + 2λ1δ1 = 0 , 20λ1λ2 − 4δ1λ2 = 0 , 8λ3
1 − 8λ1λ2 = 0 .
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In particular, reducing modulo 2, we obtain

CH∗(B)⊗ Z/2Z ' Z[γ, δ1, λ1, λ2]/
(

γ2 + λ1γ, δ
2
1 + δ1γ

)

,

from which we conclude that the classes

δ1(δ1 + λ1)λ
2
1 , δ1(δ1 + λ1)λ2 , and δ1(δ1 + λ1)

(

λ2
1 + λ2

)

are all nonvanishing in CH∗(B)⊗ Z/2Z and thus in CH∗
(

M2

)

⊗ Z/2Z, as desired.
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