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Given n general points p1, p2, . . . , pn ∈ P
r it is natural to ask whether there is a curve

of given degree d and genus g passing through them; by counting dimensions a natural

conjecture is that such a curve exists if and only if

n ≤

⌊

(r + 1)d − (r − 3)(g − 1)

r − 1

⌋

.

The case of curves with nonspecial hyperplane section was recently studied in [2], where

the above conjecture was shown to hold with exactly three exceptions.

In this paper, we prove a “bounded-error analog” for special linear series on

general curves; more precisely we show that existence of such a curve subject to the

stronger inequality

n ≤

⌊

(r + 1)d − (r − 3)(g − 1)

r − 1

⌋

− 3.

Note that the −3 cannot be replaced with −2 without introducing exceptions (as a

canonical curve in P
3 can only pass through nine general points, while a naive dimension

count predicts twelve).

We also use the same technique to prove that the twist of the normal bundle

NC(−1) satisfies interpolation for curves whose degree is sufficiently large relative to
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Interpolation for Curves in Projective Space 11427

their genus, and deduce from this that the number of general points contained in the

hyperplane section of a general curve is at least

min

(

d,
(r − 1)2d − (r − 2)2g − (2r2 − 5r + 12)

(r − 2)2

)

.

As explained in [7], these results play a key role in the author’s proof of the

maximal rank conjecture [9].

1 Introduction

If C is a general curve, equipped with a general map f : C → P
r of degree d, it is natural

to ask how many general points are contained in f (C). This problem has been studied in

many cases, including for nonspecial curves [2], for space curves [13], and for canonical

curves [12]. To state the problem precisely, we make the following definition.

Definition 1.1. We say a stable map f : C → P
r of degree d from a curve of genus g is

a Brill–Noether curve (BN-curve) if it is a limit of nondegenerate degree d maps C′ → P
r

with [C′] ∈ Mg of general moduli.

If [ f ] lies in a unique component of Mg(Pr, d), we say f is an interior curve.

The celebrated Brill–Noether theorem then asserts that BN-curves exist if and only if

ρ(d, g, r) := (r + 1)d − rg − r(r + 1) ≥ 0.

Moreover, for ρ(d, g, r) ≥ 0, there is only one component of Mg(Pr, d) (respectively

Mg,n(Pr, d)) corresponding to BN-curves (respectively marked BN-curves); we write

Mg(Pr, d)◦ (respectively Mg,n(Pr, d)◦) for that component. The question posed at the

beginning then amounts to asking when the natural map Mg,n(Pr, d)◦ → (Pr)n is

dominant. In order for this to happen, it is evidently necessary for

(r + 1)d − (r − 3)(g − 1) + n = dim Mg,n(Pr, d)◦ ≥ dim(Pr)n = rn,

or equivalently,

n ≤
(r + 1)d − (r − 3)(g − 1)

r − 1
.

However, this is not sufficient: When (d, g, r) = (6, 4, 3), the above equation gives

n ≤ 12; but every canonical curve in P
3 lies on a quadric, and so can only pass through
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11428 E. Larson

nine general points (three less than expected). Our main theorem implies that the above

condition is “as close as possible to sufficient given the above example”—a bound that

is (barely!) good enough to prove the maximal rank conjecture, as explained in [7].

Theorem 1.2. There exists a BN-curve of degree d and genus g in P
r (with

ρ(d, g, r) ≥ 0), passing through n general points, if

(r − 1)n ≤ (r + 1)d − (r − 3)(g − 1) − 2r.

In particular, such a curve exists so long as

n ≤
(r + 1)d − (r − 3)(g − 1)

r − 1
− 3.

Remark 1.3. There are examples of smooth curves passing through many more general

points than the formula given in Theorem 1.2, given by complete intersections. However,

such curves are not useful for studying either the extrinsic geometry of general curves

(e.g., in the proof of the maximal rank conjecture c.f. [7]), nor for studying the intrinsic

geometry of general curves and the geometry of Mg (e.g., in the construction of moving

curves in Mg c.f. [1]). For such applications, it is essential to know that the smooth curves

found passing through the given general points are BN-curves, which is exactly what is

guaranteed by our theorem.

Using similar techniques, we also study the analogous question for hyperplane

sections; for a hyperplane H, we ask how many general points in H are contained in

f (C) ∩ H. This problem has been studied for r ≤ 4 in [8], but remains open in higher-

dimensional projective spaces. As with the case of general points in f (C), it is evidently

necessary for n ≤ d and

(r + 1)d − (r − 3)(g − 1) = dim Mg(Pr, d)◦ ≥ dim Hn + dim G = (r − 1)n + (r + 1),

where G ⊂ AutPr denotes the subgroup fixing H pointwise; or upon rearrangement,

n ≤ min

(

d,
(r + 1)d − (r − 3)g − 4

r − 1

)

.

Again this is not sufficient, for a similar reason: when (d, g, r) = (6, 4, 3), the above

equation gives n ≤ 6; but every canonical curve in P
3 lies on a quadric, so its hyperplane
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Interpolation for Curves in Projective Space 11429

section lies on a conic, and can thus only pass through five general points. Our 2nd main

theorem implies the above condition is nevertheless also not far from sufficient.

Theorem 1.4. The hyperplane section of a general BN-curve of degree d and genus g

in P
r contains d − n general points (with 0 ≤ n ≤ d) if

(2r − 3)(d + 1) − (r − 2)2(g − n) − 2r2 + 3r − 9 ≥ 0.

Or equivalently, the number of general points contained in the hyperplane section of a

general BN-curve of degree d and genus g in P
r is at least

min

(

d,
(r − 1)2d − (r − 2)2g − (2r2 − 5r + 12)

(r − 2)2

)

.

These theorems are proven by studying the normal bundle of the general marked

BN-curve f : (C, p1, p2, . . . , pn) → P
r. Namely, let C be a nodal curve, p1, p2, . . . , pn be

smooth points of C, and f : C → P
r be a map. As long as f is unramified, basic

deformation theory (which is a special case of more general results of [4] and [3], as

explained in Section 2 of [5]) implies the map

f �→ (f (p1), f (p2), . . . , f (pn))

from the corresponding Kontsevich space to (Pr)n is smooth at [f ] if

H1(Nf (−p1 − · · · − pn)) = 0.

Here, Nf denotes the normal bundle of the map f : C → P
r, which is defined as

Nf = ker(f ∗�
Pr → �C)∨.

The conclusions of Theorems 1.2 and 1.4 are trivially always true when r = 1 (in

which case f is surjective); we may therefore suppose r ≥ 2, which implies a general

BN-curve is unramified. Since a map between irreducible varieties is dominant if it is

generically smooth, Theorem 1.2 then reduces to the assertion that H1(Nf (−p1 − · · · −

pn)) = 0 for f : (C, p1, p2, . . . , pn) → P
r a general marked BN-curve. This condition

is visibly open, so to prove Theorem 1.2 it suffices to exhibit an unramified marked
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11430 E. Larson

BN-curve f : (C, p1, p2, . . . , pn) → P
r, of each degree d and genus g satisfying the

assumptions of Theorem 1.2, for which

H1(Nf (−p1 − · · · − pn)) = 0. (1)

In proving Theorem 1.4, we first consider a related problem: We ask when a

general BN-curve has general hyperplane section, and in that case through how many

additional independently general points it passes. To study this question, we note that,

as above, so long as f is unramified and transverse to a hyperplane H, the map

f �→ (f (p1), f (p2), . . . , f (pn), f (C) ∩ H)

from the corresponding Kontsevich space to (Pr)n × Symd H is smooth at [f ] if

H1(Nf (−1)(−p1 − · · · − pn)) = 0. (2)

Conditions (1) and (2) above are closely related to the property of interpolation

for the normal bundle Nf and its twist Nf (−1).

Definition 1.5. We say that a vector bundle E → C on a curve C satisfies interpolation

if, for a general effective divisor D of any degree,

H0(E(−D)) = 0 or H1(E(−D)) = 0.

Note that if E → C satisfies interpolation, then H1(E(−p1 − · · · − pn)) = 0 for

general points p1, p2, . . . , pn ∈ C if and only if n ≤ χ(E)/ rk(E). The above argument

therefore shows that

• If Nf satisfies interpolation for f a general BN-curve of degree d and genus

g, then f (C) can pass through n general points if and only if

n ≤
(r + 1)d − (r − 3)(g − 1)

r − 1
.

• If Nf (−1) satisfies interpolation for f a general BN-curve of degree d and

genus g, then f (C) has a general hyperplane section, and passes through

n additional general points (independent of its hyperplane section) if and

only if

n ≤
2d − (r − 3)(g − 1)

r − 1
.
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Interpolation for Curves in Projective Space 11431

We now state the following theorem on interpolation for the twist of the normal

bundle, from which Theorem 1.4 will be deduced.

Theorem 1.6. If f : C → P
r is a general BN-curve of degree d and genus g, then Nf (−1)

satisfies interpolation provided that

(2r − 3)d − (r − 2)2g − 2r2 + 3r − 9 ≥ 0.

Note that Theorem 1.6 is trivial when r = 1 (in which case Nf = 0). For r = 2,

Theorems 1.2, 1.4, and 1.6 follow immediately from the above discussion, once we note

that Nf  KC(3) and Nf (−1)  KC(2) are nonspecial line bundles so in particular satisfy

interpolation. More precise versions of Theorems 1.2, 1.4, and 1.6 are already known for

r = 3 by work of Vogt [13], and for r = 4 by work of the author and Vogt [11]. We may

therefore assume for simplicity that r ≥ 5 for the remainder of the paper. (Although we

note that with a bit more care, the techniques used here apply to lower values of r too;

in particular, they cannot be used to prove a sharper version of Theorem 1.2 with the

−3 replaced by a −2, as that would contradict the known counterexample with r = 3

mentioned above.)

The key idea to prove our main theorems is to degenerate f to a map f ◦ : C∪� D →

P
r from a reducible curve, so that f ◦|C and f ◦|D are both nonspecial, and so that f ◦|D

factors through a hyperplane H. We then use a trick of [8] (which we recall as Lemma 2.1

below) to reduce the desired statements to facts about the normal bundles of f ◦|C and

f ◦|D, which then follow from results of [2] on interpolation for nonspecial curves.

Note: Throughout this paper, we work over an algebraically closed field of characteristic

zero. Unless otherwise specified, all curves are assumed to be nodal.

2 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Since Theorem 1.2 holds when d ≥ g + r by

Corollary 1.4 of [2], we suppose that d < g + r in this section. The key input in our

proof of Theorem 1.2 will be the following lemma from [8]:

Lemma 2.1 (Lemma 2.7 of [8]). Let f : C ∪� D → P
r be an unramified map from a nodal

curve, such that f |D factors as a composition of fD : D → H with the inclusion of a

hyperplane ι : H ⊂ P
r, while f |C is transverse to H along �.

Let E and F be Cartier divisors supported on C�� and D�� respectively. Suppose

that, for some i ∈ {0, 1},

Hi(NfD
(−� − F)) = Hi(OD(1)(� − F)) = Hi(Nf |C

(−E)) = 0.
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11432 E. Larson

Then we have

Hi(Nf (−E − F)) = 0.

Corollary 2.2. Let f : C ∪� D → P
r be an interior BN-curve of the form appearing in

Lemma 2.1 (1st paragraph), such that f |C and fD are BN-curves; f (�) is a set of s + r

general points in H, where s = g + r − d; and D is of genus (r − 2)t and f |D is of degree

(r − 2)t + r − 1, for some integer t.

If s − 1 ≤ 2t ≤ r + s + 1, and d − (r − 2)t − 2r + 1 �= 2 if r = 5, then Theorem 1.2

holds for curves of degree d and genus g in P
r.

Proof. Note that our assumptions force C to be of genus g + 1 − (r − 2)t − s − r =

d − (r − 2)t − 2r + 1, and f |C to be of degree d − ((r − 2)t + r − 1) = d − (r − 2)t − r + 1. In

particular, f |C is nonspecial.

Since f is an interior curve, and � is a general set of points, we may deform f

to assume that (fD, �) is general in the component of M(r−2)t,s+r(H, (r − 2)t + r − 1) cor-

responding to BN-curves, and that f |C is general in the component of Md−(r−2)t−2r+1(Pr,

d − (r − 2)t − r + 1) corresponding to BN-curves.

By Lemma 2.1, it suffices to produce Cartier divisors E and F, supported on C��

and D � � respectively, satisfying

deg E + deg F =

⌊

(r + 1)d − (r − 3)(g − 1)

r − 1
−

2r

r − 1

⌋

,

for which

H1(NfD
(−� − F)) = H1(OD(1)(� − F)) = H1(Nf |C

(−E)) = 0. (3)

By Corollary 1.4 of [2] for fD, and for f |C (except when r = 5 and and d− (r−2)t−

2r + 1 = 2 which does not hold by assumption), when E and F are general divisors the

conditions (3) reduce to

deg F + s + r ≤
r · ((r − 2)t + r − 1) − (r − 4)((r − 2)t − 1)

r − 2
= r + 2 + 4t (4)

deg F − s − r ≤ ((r − 2)t + r − 1) + 1 − (r − 2)t = r (5)

deg E ≤
(r + 1)(d − (r − 2)t − r + 1) − (r − 3)(d − (r − 2)t − 2r)

r − 1

=
4d − (4r − 8)t + r2 − 6r + 1

r − 1
. (6)
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Interpolation for Curves in Projective Space 11433

We will make (4) an equality by choosing deg F = 4t + 2 − s; upon rearrangement, (5)

becomes 2t ≤ r + s + 1, which holds by assumption. Finally, (6) becomes

⌊

(r + 1)d − (r − 3)(g − 1)

r − 1
−

2r

r − 1

⌋

− (4t + 2 − s) ≤
4d − (4r − 8)t + r2 − 6r + 1

r − 1
;

this in turn follows from

(r + 1)d − (r − 3)(g − 1)

r − 1
−

2r

r − 1
− (4t + 2 − s) ≤

4d − (4r − 8)t + r2 − 6r + 1

r − 1
,

or upon rearrangement, 2t ≥ s − 1, which also holds by assumption. �

Our goal is thus to construct curves satisfying the assumptions of Corollary 2.2.

For this purpose, we will first need the following lemma.

Lemma 2.3. Let f : C → P
r be an unramified map from a curve with H1(Nf ) = 0. If

� ⊂ C is a set of n ≤ r+2 points with f (�) in linear general position, then H1(Nf (−�))= 0.

Proof. The (long exact sequence in cohomology attached to the) short exact sequence

of sheaves

0 → Nf (−�) → Nf → Nf |� → 0

reduces our problem to showing H0(Nf ) → H0(Nf |�) is surjective. For this, we use the

commutative diagram

The top horizontal map is surjective since n ≤ r + 2 and f (�) is in linear general

position by assumption, and the right vertical map is always surjective. Consequently,

the bottom horizontal map is surjective as desired. �

With this out of the way, the construction of f can be done in most cases by the

following lemma.

Lemma 2.4. There exists a reducible interior BN-curve f : C ∪� D → P
r of the form

appearing in Corollary 2.2 (1st paragraph), with t = �s/2�.
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11434 E. Larson

Proof. We argue by induction on d, for a stronger hypothesis: That such a curve f

exists which, in addition, satisfies

• f (C) passes through 2 (if s is odd) or 1 (if s is even) points in P
r that are

general, independently from f (�);

• f (D) passes through a point in H that is general, independently from f (�)

and the above general point in f (C), provided that s is even;

• and H1(Nf ) = 0.

First we consider the case ρ(d, g, r) = 0, which implies d = r(s + 1) and g = (r + 1)s.

When s = 1, we take f |C to be a general elliptic normal curve—which has a

general hyperplane section, and passes through two additional independently general

points in P
r as required, by Lemma 6.1 of [6]. We let fD be a rational normal curve in

H passing through all points of intersection of f |C(C) with H. The union is a BN-curve

by Theorem 1.7 of [6], which is an interior curve satisfying H1(Nf ) = 0 by combining

Lemmas 3.2, 3.3, and 3.4 of [6].

For the inductive argument, we assume the given statement for s − 1 and seek

to verify it for s. Let f0 : C0 ∪�0
D0 → P

r be such a curve of degree d0 = rs and genus

g0 = (r + 1)(s − 1).

If s is even we pick general subsets of three points �C ⊂ C0 and of r − 1 points �D ⊂ D0.

Write �C  P
2 and �D  P

r−2 for the linear spans of f0(�C) and f0(�D), respectively.

Note that a line passing through two points of f0(�C) is general (independent of f0(�0))

by our inductive hypothesis; in particular, �C ∩ H contains a point which is general

in H (independent of f0(�0)), and �C contains an additional independently general

point in P
r.

Since �D ⊂ H is a general hyperplane section, p = �C ∩ �D is a general point

of �C ∩ H, and is thus general in H (independent of f0(�0)); moreover if q1 ∈ �C and

q2 ∈ �D are general, then q1 and q2 are general in P
r and H, respectively (independent of

f0(�0) and p). Let C′ ⊂ �C be a rational normal curve (i.e., of degree dim �C = 2) through

f0(�C)∪{p, q1}, and D′ ⊂ �D be a rational normal curve through f0(�D)∪{p, q2}. Then we

will show that

f : (C0 ∪�C
C′) ∪�0∪{p} (D0 ∪�D

D′) → P
r

gives the required curve.

Writing f as (C0 ∪�0
D0) ∪�C∪�D

(C′ ∪p D′) → P
r, iteratively applying Theorem 1.6

of [2] shows it is a BN-curve. In addition, applying Theorem 1.6 of [2] shows f |C0∪�C
C′ is

a BN-curve to P
r, and f |D0∪�D

D′ is a BN-curve to H, as desired.
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Interpolation for Curves in Projective Space 11435

Moreover, Lemmas 3.2, 3.3, and 3.4 of [2] imply H1(Nf |C′∪pD′
) = 0. Applying

Lemma 2.3, we conclude H1(Nf |C′∪pD′
(−�C − �D)) = 0. Together with our inductive

hypothesis, using Lemmas 3.3 and 3.4 of [2], this implies H1(Nf ) = 0 as desired.

Finally, we note that f (C0 ∪�C
C′) passes through one point in P

r that is general

independent from f (�0 ∪ {p}), namely q1; and f (D0 ∪�D
D′) passes through 1 point in H

that is general independent from f (�0 ∪ {p}) ∪ {q1}, namely q2.

If s is odd we pick a general subset � ⊂ C0 of r + 1 points, a general point q1 ∈ f (C0), a

general point p ∈ D0, and a general point q2 ∈ P
r. By our inductive hypothesis, q1 ∈ P

r is

general independent from f0(�0), and f0(p) ∈ H is general independent from f0(�0).

Let C′ be a rational normal curve through f (�) ∪ {p, q2}. Then we will show that

f : (C0 ∪� C′) ∪�∪{p} D0 → P
r

gives the required curve.

Writing f as (C0 ∪�0
D0) ∪�∪{p} C′ → P

r, applying Theorem 1.6 of [2] shows it is a

BN-curve. In addition, applying Theorem 1.6 of [2] shows f |C0∪�C′ is a BN-curve to P
r, as

desired.

Moreover, Lemma 3.2 of [2] implies H1(Nf |C′
(−� − p)) = 0. Together with our

inductive hypothesis, using Lemmas 3.3 and 3.4 of [2], this implies H1(Nf ) = 0 as

desired.

Finally, we note that f (C0 ∪� C′) passes through two points in P
r that are general

independent from f (�0 ∪ {p}), namely {q1, q2}. �

Proof of Theorem 1.2 Combining Lemma 2.4 with Corollary 2.2 proves Theorem 1.2

unless we have r = 5 and d − (r − 2)�s/2� − 2r + 1 = 2; or upon rearrangement r = 5 and

d = 3 · �s/2� + 11. Note that, in these cases,

s = g + 5 − d =
d − 5 − ρ(d, g, 5)

5
≤

d − 5

5
;

consequently

d ≤ 3 ·
d − 5

10
+ 11 ⇒ d ≤

95

7
< 14,

and so

s ≤
d − 5

5
<

9

5
< 2 ⇒ s = 1,

which gives d = 11 and thus g = 7.
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11436 E. Larson

It thus remains to prove Theorem 1.2 in the case (d, g, r) = (11, 7, 5), that is, to

prove that such a curve can pass through eleven general points. But a curve of degree

10 and genus 6 can pass through eleven general points by work of Stevens [12], and

the union of a curve of degree 10 and genus 6 with a 2-secant line gives a curve of the

required degree and genus, which is a BN-curve by Theorem 1.6 of [6]. �

3 The Twist

We now turn to studying interpolation for the twist NC(−1). In greater generality, we

make the following definition.

Definition 3.1. Let d, g, r, n be nonnegative integers with n ≤ d and ρ(d, g, r) ≥ 0; take

f : C → P
r to be a general BN-curve of degree d and genus g.

We say (d, g, r, n) is good if the general hyperplane section f (C)∩H contains d−n

general points in H.

We say (d, g, r, n) is excellent if Nf (−D) satisfies interpolation, where D ⊂ C is a

divisor of degree d − n supported in a general hyperplane section.

By definition, the twist Nf (−1) satisfies interpolation if and only if (d, g, r, 0) is

excellent. Mirroring our previous argument, we will begin from knowledge that some

range of degrees and genera are excellent.

Proposition 3.2. Let d, g, r, n be nonnegative integers with n ≤ d and ρ(d, g, r) ≥ 0.

Then (d, g, r, n) is excellent provided that

d ≥ g + r,

(d, g, r) /∈ {(5, 2, 3), (6, 2, 4), (7, 2, 5)}, and

2d + (r − 1)n ≥ (2r − 4)g − r + 3.

Proof. This follows from combining Theorem 1.3 and Proposition 4.12 of [2]. �

Our goal in this section is to prove Theorem 1.6, by showing that Nf (−1) satisfies

interpolation, subject to the inequality

(2r − 3)d − (r − 2)2g − 2r2 + 3r − 9 ≥ 0. (7)

Lemma 3.3. Theorem 1.6 holds for curves of degree d and genus g in P
r unless

2d ≤ (2r − 4)g − r + 2 (8)
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Interpolation for Curves in Projective Space 11437

and

g ≥

⎧

⎨

⎩

5 if r ∈ {5, 6}

4 otherwise.
(9)

Proof. By our assumption that r ≥ 5, note that (6) implies d ≥ g + r; in addition,

(6) is not satisfied for (d, g, r) = (7, 2, 5). In particular, if 2d ≥ (2r − 4)g − r + 3, then

Proposition 3.2 implies that Nf (−1) satisfies interpolation as desired. Note that, using

(6), this implies

g ≥ 3 +
5r + 12

2r2 − 6r + 4
,

which yields (8). �

Corollary 3.4. Let f : C ∪� D → P
r be an interior BN-curve of the form appearing in

Lemma 2.1 (1st paragraph), with f |C and fD BN-curves too, so that D is of genus t ≥ 1,

and is of degree (r − 3)t + 1, and � is a set of t general points in H. If

t ≥ 2, (10)

(r, t) /∈ {(5, 2), (6, 2)}, (11)

g ≥ 2t − 1, (12)

d ≥ g + r + 2 + (r − 5)t, (13)

(d − (r − 3)t, g − 2t, r) �= (8, 1, 5), and (14)

2d − (2r − 4)g + (2r − 2)t ≥ r + 1, (15)

then Theorem 1.6 holds for curves of degree d and genus g in P
r.

Proof. As in the proof of Corollary 2.2, we may deform f to assume that (fD, �) is

general in the component of Mt,t(H, (r − 3)t + 1) corresponding to BN-curves, and that

f |C is general in the component of Mg−2t+1(Pr, d−(r−3)t−1) corresponding to BN-curves.

Let F = OD(1)(p), and E = OC(1)(�) for a general divisor � ⊂ C. Note with these

choices that

OD(1)(� − F) = OD(�)(−p) and NfD
(−� − F) = NfD

(−1)(−� − p)
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11438 E. Larson

both have Euler characteristic zero. Moreover, NfD
(−1) satisfies interpolation by Propo-

sition 3.2, provided that

(r − 3)t + 1 ≥ t + r − 1

((r − 3)t + 1, t, r − 1) /∈ {(5, 2, 3), (6, 2, 4), (7, 2, 5)}

2((r − 3)t + 1) ≥ (2r − 6)t − r + 4.

The last of these conditions is immediate for r ≥ 5, while the 1st follows from (10) and

(11), and the 2nd follows from (11). We conclude that

H0(OD(1)(� − F)) = H1(OD(1)(� − F)) = H0(NfD
(−� − F)) = H1(NfD

(−� − F)) = 0.

In particular, applying Lemma 2.1, we see that Nf (−1) satisfies interpolation provided

that Nf |C
(−1) does, which in turn (by Proposition 3.2) follows from

g − 2t + 1 ≥ 0

d − (r − 3)t − 1 ≥ g − 2t + 1 + r,

(d − (r − 3)t − 1, g − 2t + 1, r) /∈ {(5, 2, 3), (6, 2, 4), (7, 2, 5)}, and

2(d − (r − 3)t − 1) ≥ (2r − 4)(g − 2t + 1) − r + 3;

or upon rearrangement, and using r ≥ 5, the inequalities (11–14). �

Lemma 3.5. If d ≥ (r − 2)t + 1 in addition to the inequalities (10–15) are satisfied,

there exists a reducible interior BN-curve f : C ∪� D → P
r of the form appearing in

Corollary 3.4.

Proof. We argue by induction on t for a stronger hypothesis: that such a curve f

exists which, in addition, satisfies H1(Nf ) = 0, and for which f |D passes through two

additional points in H that are general independent of �.

Note first that (10) and (11), in conjunction with Theorem 1.3 of [2], imply there

is a nonspecial curve fD : D → H of degree (r−3)t+1 and genus t, for which NfD
satisfies

interpolation; as r[(r − 3)t + 1] − (r − 4)(t − 1) ≥ (r − 2)(t + 2), the general such curve

passes through at least t + 2 general points.

If t ≤ r + 2, we let fC : C → P
r be a general BN-curve of degree d − (r − 3)t − 1

and genus g − 2t + 1. By (12–15) and Proposition 3.2, we see that fC(C) ∩ H consists
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Interpolation for Curves in Projective Space 11439

of d − (r − 3)t − 1 general points; by our assumption that d ≥ (r − 2)t + 1, we have

d − (r − 3)t − 1 ≥ t. From the previous paragraph, there is a nonspecial curve fD : D → H

of degree (r −3)t+1 and genus t, passing through a subset � of t points of fC(C)∩H, and

passing through two additional general points in H. Gluing fC to fD along �, there exists

such a curve f : C ∪� D → P
r, with f |C and fD general BN-curves, meeting at a general

set of t points � ⊂ H. The curve f is a BN-curve by Theorem 1.9 of [6], and is an interior

curve with H1(Nf ) = 0 by combining Lemmas 3.2, 3.3, and 3.4 of [6]; by construction, f |D

passes through two additional points in H which are general independent of �.

For the inductive step, we suppose t ≥ r + 3, and let (d0, g0, t0) = (d − r + 3, g − 2,

t−1); note that (10) and (11) are satisfied for (d0, g0, t0) by our assumption that t ≥ r +3,

and that (12–15) and d0 ≥ (r−2)t0+1 are immediate. We may therefore let f0 : C0∪�0
D0 →

P
r be such a reducible BN-curve of degree d0 and genus g0 with #�0 = t0, which satisfies

H1(Nf0
) = 0, and such that f0(D0) passes through two additional points that are general

independent of �0. Let {q1, q2} and {q′
1, q′

2} be two distinct such sets of points, so both

are general independent of �0 (although of course not necessarily independent from �0

and each other).

Note that deg f0|C0
= (d − r + 3) − (r − 3)(t − 1) − 1 ≥ t by assumption; we

may therefore pick a point p ∈ (f0(C0) ∩ H) � �0. By (12)–(15) for (d0, g0, t0) established

in the previous paragraph, in conjunction with Proposition 3.2, the hyperplane section

f0(C0) ∩ H is general; thus, p is general, independent of �0, and thus, independent of

�0 ∪ {q1, q2}. Pick a linear subspace �  P
r−3 ⊂ H passing through {p, q1, q2}, and let

D′ ⊂ � be a rational normal curve through {p, q1, q2}. We then claim

f : C0 ∪�0∪{p} (D0 ∪{q1,q2} D′) → P
r

gives the required curve.

Writing f as (C0 ∪�0
D0) ∪{p,q1,q2} D′ → P

r, applying Theorem 1.6 of [6] shows it is

a BN-curve.

Moreover, Lemmas 3.2 of [6] implies H1(Nf |D′
(−p − q1 − q2)) = 0. Together with

our inductive hypothesis, using Lemmas 3.3 and 3.4 of [6], this implies H1(Nf ) = 0 as

desired.

Finally, we note that f (D0 ∪{q1,q2} D′) passes through two general points in H,

independent of �0 ∪ {p}, namely {q′
1, q′

2}. �

Proof. of Theorem 1.6 Combining Corollary 3.4 with Lemma 3.5, all that remains to

prove Theorem 1.6 is to solve a purely combinatorial problem: We must show that,
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11440 E. Larson

subject to r ≥ 5 and (7–9), there exists an integer t satisfying d ≥ (r − 2)t + 1 and

(10)–(15). For this, we shall take

t =

⎧

⎨

⎩

s + 1 if (r, s) ∈ {(5, 2), (6, 2)};

s otherwise
, where s =

⌈

(2r − 4)g − 2d + r + 1

2r − 2

⌉

.

This automatically satisfies (11). By construction,

t ≥ s ≥
(2r − 4)g − 2d + r + 1

2r − 2
,

which implies (15). Moreover, rearranging (8), we obtain

(2r − 4)g − 2d + r + 1

2r − 2
≥

2r − 1

2r − 2
> 1 ⇒ s ≥ 2, (16)

which, since t ≥ s, implies (10). If (d, g, r) = ((r − 3)t + 8, 2t + 1, 5), then (7) becomes

upon rearrangement t ≤ 3
4 , in contradiction to (10), which was just established; this

establishes (14). In addition,

s ≤
(2r − 4)g − 2d + r + 1

2r − 2
+ 1 −

1

2r − 2
. (17)

Combined with (7), we obtain

s ≤
(2r − 4)g − 2d + r + 1

2r − 2
+ 1 −

1

2r − 2
+

(2r − 3)d − (r − 2)2g − 2r2 + 3r − 9

(r − 2)(r − 1)

=
d − 1

r − 2
−

r2 + 16

2r2 − 6r + 4

≤
d − 1

r − 2
−

⎧

⎨

⎩

1 if r ∈ {5, 6};

0 otherwise.

This implies d ≥ (r − 2)t + 1, as desired.

For the (12) and (13), the obvious upper bound (17) will not suffice; instead we

rearrange (7) to produce

(2r − 4)g − 2d + r + 1

2r − 2
≤

g − 1

2
−

(r − 1)g + 18

4r2 − 10r + 6
,

which in turn implies s ≤ g/2. If r ∈ {5, 6}, then (9) gives g ≥ 5. Note that when g = 5,

our bound s ≤ 5/2 immediately gives s ≤ 4/2 = 2. Moreover, if r ∈ {5, 6} and g ≥ 6, then

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
1
/1

5
/1

1
4
2
6
/5

5
4
2
0
1
5
 b

y
 g

u
e
s
t o

n
 2

5
 D

e
c
e
m

b
e
r 2

0
2
2



Interpolation for Curves in Projective Space 11441

(r−1)g+18

4r2−10r+6
> 1

2 . We conclude that

s ≤

⎧

⎨

⎩

g−1
2 if r ∈ {5, 6};

g
2 otherwise.

(18)

This bound implies (12). Moreover, for all g ≥ 8, we have

(r − 2)2g + 2r2 − 3r + 9

2r − 3
≥ g + r + 2 + (r − 5) ·

⎧

⎨

⎩

g+1
2 if r ∈ {5, 6};

g
2 otherwise.

Combined with (7) and (18), this yields (13) for g ≥ 8.

From (9), in order to complete the proof, all that remains is to verify (12) for

g ∈ {4, 5, 6, 7}. In these cases, (7) becomes

d ≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3r − 5 + 10
2r−3 if g = 4;

7r−13
2 + r+19

4r−6 if g = 5;

4r − 8 + r+9
2r−3 if g = 6;

9r−18
2 + r+20

4r−6 if g = 7.

⇒ d ≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3r − 4 if g = 4;

7r−12
2 if g = 5;

4r − 7 if g = 6;

9r−17
2 if g = 7.

And (18) becomes

s ≤

⎧

⎨

⎩

2 if g ∈ {4, 5};

3 if g ∈ {6, 7}.
(19)

This implies (13), except for the cases (r, g) ∈ {(5, 5), (6, 4), (6, 5), (6, 6), (6, 7)}. In those

cases, (7) becomes

d ≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

89
7 if (r, g) = (5, 5);

127
9 if (r, g) = (6, 4);

143
9 if (r, g) = (6, 5);

53
3 if (r, g) = (6, 6);

175
9 if (r, g) = (6, 7).

⇒ d ≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

13 if (r, g) = (5, 5);

15 if (r, g) = (6, 4);

16 if (r, g) = (6, 5);

18 if (r, g) = (6, 6);

20 if (r, g) = (6, 7).

Together with (19) this implies the (13) in these cases. �

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
1
/1

5
/1

1
4
2
6
/5

5
4
2
0
1
5
 b

y
 g

u
e
s
t o

n
 2

5
 D

e
c
e
m

b
e
r 2

0
2
2



11442 E. Larson

4 General Points in a Hyperplane Section

In this section, we investigate the number of general points contained in the hyperplane

section of a general BN-curve. For the remainder of this section, we let (d, g, r, n) denote

nonnegative integers with ρ(d, g, r) ≥ 0 and n ≤ d and r ≥ 5; our goal is to prove

Theorem 1.4, which asserts that (d, g, r, n) is good (c.f. Definition 3.1) provided that

(2r − 3)(d + 1) − (r − 2)2(g − n) − 2r2 + 3r − 9 ≥ 0.

Our argument will be via induction, using the results of the preceding section

as a base case. The various inductive arguments we shall use are as follows.

Lemma 4.1. Let (d, g, r, n) be nonnegative integers with ρ(d, g, r) ≥ 0 and n ≤ d − 4.

Suppose that g ≥ 2r with strict inequality when r = 5, and that n ≥ 2r−6. Then (d, g, r, n)

is good if (d − 2r + 2, g′, r, n − 2r + 6) is good, where

g′ =

⎧

⎨

⎩

g − 2r if r ≥ 6;

g − 11 if r = 5.

Proof. Note that our assumptions imply g′ ≥ 0, and that n′ := n − 2r + 6 and

d′ := d − 2r + 2 satisfy 0 ≤ n′ ≤ d′. Moreover,

ρ(d′, g′, r) ≥ (r + 1)(d − 2r + 2) − r(g − 2r) − r(r + 1) = (r + 1)d − rg − r(r + 1) + 2 ≥ 0.

In particular, (d′, g′, r, n′) are nonnegative integers with 0 ≤ n′ ≤ d′ and ρ(d′, g′, r) ≥ 0.

By assumption, (d′, g′, r, n′) is good.

So let f1 : C → P
r be a general BN-curve of degree d′ and genus g′, whose

hyperplane section f1(C) ∩ H contains a set S of d′ − n′ = d − n − 4 general points.

Pick a set T of 4 independently general points in H, and let H ′ be a general hyperplane

containing T (in particular H ′ is independently general from C, and from H ′ since r ≥ 5).

Since ρ(d, g, r) ≥ 0, we have

d ≥
rg + r(r + 1)

r + 1
≥

r · 2r + r(r + 1)

r + 1
> 3r − 2 ⇒ d ≥ 3r − 1 ⇒ d′ ≥ r + 1.

Similarly, when r = 5, we have

d ≥
5g + 30

6
≥

5 · 11 + 30

6
> 14 ⇒ d ≥ 15 ⇒ d′ ≥ 7.
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Interpolation for Curves in Projective Space 11443

Putting these together, we conclude d′ ≥ c, where we define

c :=

⎧

⎨

⎩

r + 1 if r > 5;

7 if r = 5.

By Lemma 6.1 of [6], the hyperplane section f1(C)∩H ′ contains a set � of c general

points. By [12], there is a canonical curve f2 : D → H ′ (of genus r) passing through �. We

may then construct (f1 ∪ f2) : C ∪� D → P
r, which is a BN-curve, by Theorem 1.9 of [6],

and is of degree d and genus g passing through the set S ∪ T ⊂ H of d − n general points

as desired. �

Lemma 4.2. Write

a =

⌈

r − 2

2

⌉

,

and suppose g ≥ a + 1 and n ≥ a. Then (d, g, r, n) is good if (d − a, g − a − 1, r, n − a) is

good.

Proof. Note that our assumptions imply g′ := g − a − 1 ≥ 0, and that n′ := n − a and

d′ := d − a satisfy 0 ≤ n′ ≤ d′. Moreover,

ρ(d′, g′, r) = (r+1)(d−a)−r(g−a−1)−r(r+1) = (r+1)d−rg−r(r+1)+r−a ≥ r−a ≥ 0.

In particular, (d′, g′, r, n′) are nonnegative integers with 0 ≤ n′ ≤ d′ and ρ(d′, g′, r) ≥ 0.

By assumption, (d′, g′, r, n′) is good.

So let f : C → P
r be a general BN-curve of degree d′ and genus g′, whose

hyperplane section f (C) ∩ H contains d′ − n′ = d − n general points.

By Theorem 1.8 of [6], there exists a BN-curve f̂ : C ∪� P
1 → P

r with #� = a + 2

and f̂ |
P1 of degree a, such that f̂ |C = f . In particular, f̂ is a BN-curve of degree d′ + a = d

and genus g′ + a + 1 = g whose hyperplane section contains the hyperplane section of f ,

and thus contains d − n general points as desired. �

Lemma 4.3. Suppose that g ≥ 1, and n ≥ 1, and ρ(d, g, r) ≥ 1. Then (d, g, r, n) is good

if (d − 1, g − 1, r, n − 1) is good.

Proof. Note that our assumptions imply g′ := g − 1 ≥ 0, and that n′ := n − 1 and

d′ := d − 1 satisfy 0 ≤ n′ ≤ d′. Moreover,

ρ(d′, g′, r) = (r + 1)(d − 1) − r(g − 1) − r(r + 1) = (r + 1)d − rg − r(r + 1) − 1 ≥ 0.
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In particular, (d′, g′, r, n′) are nonnegative integers with 0 ≤ n′ ≤ d′ and ρ(d′, g′, r) ≥ 0.

By assumption, (d′, g′, r, n′) is good.

So let f : C → P
r be a general BN-curve of degree d′ and genus g′, whose

hyperplane section f (C) ∩ H contains d′ − n′ = d − n general points.

Pick {p, q} ⊂ C general. By Theorem 1.6 of [6], the curve f̂ : C ∪{p,q} P
1 → P

r, where

f̂ |
P1 is a line, is a BN-curve. It is evidently of degree d′ + 1 = d and genus g′ + 1 = g,

and its hyperplane section contains the hyperplane section of f , and thus contains d−n

general points as desired. �

Lemma 4.4. If (d, g, r, n) is good, then so is (d + 1, g, r, n).

Proof. Let f : C → P
r be a general BN-curve of degree d and genus g, whose hyperplane

section f (C) ∩ H contains d − n general points.

Pick a general point p ∈ C. By Theorem 1.6 of [6], the curve f̂ : C ∪{p} P
1 → P

r,

where f̂ |
P1 is a line, is a BN-curve. It is evidently of degree d + 1 and genus g, and its

hyperplane section contains the hyperplane section of f , plus the independently general

point f̂ (P1) ∩ H, and thus contains d + 1 − n general points as desired. �

Lemma 4.5. Suppose that, for some integer b ≥ 0, we have b ≤ d − n, and b ≤ g, and

ρ(d, g, r) ≥ b, and that

2d + (r − 1)n − (r − 3)g − 4b − 2 ≥ 0.

Then (d, g, r, n) is good if (d − b, g − b, r, n) is excellent.

Proof. If b = 0, the result is obvious; we thus suppose b ≥ 1. Note that our assumptions

imply g′ := g − b ≥ 0, and that n and d′ := d − b satisfy 0 ≤ n ≤ d′. Moreover,

ρ(d′, g′, r) = (r + 1)(d − 1) − r(g − 1) − r(r + 1) = (r + 1)d − rg − r(r + 1) − 1 ≥ 0.

In particular, (d′, g′, r, n) are nonnegative integers with 0 ≤ n ≤ d′ and ρ(d′, g′, r) ≥ 0. By

assumption, (d′, g′, r, n) is excellent.

So let f : C → P
r be a general BN-curve of degree d′ and genus g′, whose

hyperplane section contains a set D of d′ −n′ = d−n−b general points. By assumption,

χ(Nf (−D)) = (r + 1)(d − b) − (r − 3)(g − b − 1) − (r − 1)(d − b − n) ≥ (r − 1)(b + 1),

and so f passes through a set S of b + 1 points that are general, independent of D.
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Let C′ be a rational curve of degree b through S. Then f̂ : C ∪S C′ → P
r is a

BN-curve by Theorem 1.6 of [6]. It is evidently of degree d′ + b = d and genus g′ + b = g,

and its hyperplane section is the union of the hyperplane sections of f̂ |C and f̂ |C′ , which

contain independently general sets of d − b − n and b points by construction, for d − n

general points in total. �

Lemma 4.6. Suppose that nonnegative integers d1, g1, d2, g2, n1, n2, k with

ρ(di, gi, r) ≥ 0 and ni ≤ di for i ∈ {1, 2}, and with k ≥ 1, satisfy

(r + 1)d1 − rg1 + r ≥ rk

2d2 − (r − 3)(g2 − 1) ≥ (r − 1)(k − n).

Then (d1 + d2, g1 + g2 + k − 1, r, n1 + n2) is good if (d1, g1, r, n1) is good and (d2, g2, r, n2)

is excellent.

Proof. Since (d1, g1, r, n1) is good by assumption, we may let f1 : C1 → P
r be a general

BN-curve of degree d1 and genus g1, whose hyperplane section contains a set D1 of

d1 − n1 general points. Since (r + 1)d1 − rg1 + r ≥ rk, Corollary 1.3 of [10] implies that f1

passes through a set S of k general points.

Since by assumption (d2, g2, r, n2) is excellent and 2d2 − (r − 3)(g2 − 1) ≥

(r − 1)(k − n), we may let f2 : C2 → P
r be a general BN-curve of degree d2 and genus

g2, passing through S and an independently general set D2 of d2 − n2 general points.

By Theorem 1.6 of [6], the curve C1 ∪S C2 → P
r is a BN-curve; by inspection, its

hyperplane section contains a set D1 ∪ D2 of d1 + d2 − n1 − n2 general points. �

The remainder of the paper is a purely combinatorial argument to show that the

above inductive arguments, together with the base cases established by Theorem 1.6,

suffice to prove Theorem 1.4.

Lemma 4.7. Suppose that (d, g, r, n) satisfy the hypothesis of Theorem 1.4. Write

a =

⌈

r − 2

2

⌉

.

Suppose that

• Either g ≤ 2r with strict inequality for r ≥ 6, or n ≤ 2r − 7;
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11446 E. Larson

• If r ≤ 39, then

g ≥
(5r − 7)n − (2r2 − 9r + 9) ·

⌊

n
a

⌋

− 4r2 + 94r − 150

r − 1
.

Then (d, g, r, n) is good. In other words, Theorem 1.4 holds subject to the above

hypotheses.

Proof. We apply Lemma 4.2 x times, where

x = min

(⌊

g

a + 1

⌋

,
⌊n

a

⌋

)

,

followed by Lemma 4.3 y times where

y = min(g − (a + 1)x, n − ax),

followed by Lemma 4.5 with b = z where

z = min(g − (a + 1)x − y, d − n, 10).

This can be done so long as

ρ(d − ax, g − (a + 1)x, r) ≥ y + z

2(d − ax − y) + (r − 1)(n − ax − y) − (r − 3)(g − (a + 1)x − y) − 4z − 2 ≥ 0;

if these inequalities hold, then we are reduced to showing that

(d′, g′, r, n′) := (d − ax − y − z, g − (a + 1)x − y − z, r, n − ax − y)

is excellent.

By definition of y, either n′ = n − ax − y = 0, or g − (a + 1)x − y = 0; in the 2nd

case, by definition of z, we also have z = 0 and so g′ = g − (a + 1)x − y − z = 0.

Next, by definition of z, either z = d − n (which gives d′ = n′), or z = 10, or we

have z = g− (a+1)x −y (which gives g′ = 0). Since (d′, g′, r, n′) is automatically excellent

when g′ = 0 by Proposition 3.2, and we cannot have d′ = n′ if n′ = 0, the only case that

remains to consider is when n′ = 0 and z = 10 but g′ �= 0. Note that this forces x = �n/a�

and g′ = g − n − x − 10; in particular, g ≥ n + 11, which since either g ≤ 2r or n ≤ 2r − 7,

forces n ≤ 2r − 7.
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In this case, we can invoke Theorem 1.6 to conclude that (d′, g′, r, n′) is excellent,

as desired, provided that

(2r − 3)(d − ax − y − z) − (r − 2)2(g − (a + 1)x − y − z) − 2r2 + 3r − 9 ≥ 0.

Combining all these inequalities and substituting y = n − ax and z = 10, all that must

be done to complete the proof is to show

rx + (r + 1)d − rg − n − r2 − r − 10 ≥ 0

(r − 3)x + 2d − (r − 3)g + (r − 5)n − 42 ≥ 0

(2r − 3)d + (r − 2)2(x − g) + (r2 − 6r + 7)n + 8r2 − 57r + 61 ≥ 0.

Using the hypothesis of Theorem 1.4 to bound d from below, and recalling that

g′ = g − n − x − 10, these inequalities follow from

r3 − 5r2 + 3r + 4

r + 1
g′ + 10r2 − 62r + 82 ≥ (2r − 3)n − (r − 2)2x (20)

r − 1

2
g′ + 2r2 − 42r + 70 ≥ (2r − 3)n − (r − 2)2x (21)

10r2 − 62r + 73 ≥ (2r − 3)n − (r − 2)2x. (22)

Note that (r − 2)2/(2r − 3) ≤ (r − 2)/2 ≤ a, and that n ≤ 2r − 7 < 4 · (r − 2)/2 ≤ 4a. Since

x = �n/a�, this implies

(2r −3)n− (r −2)2x ≤ (2r −3) · (4a−1)− (r −2)2 ·3 ≤ (2r −3) · (2r −3)− (r −2)2 ·3 = r2 −3.

Since g′ ≥ 1, this implies (20) for r ≥ 5, and (21) for r ≥ 40, and (22) for r ≥ 6. When r = 5,

we have a = 2 and n ≤ 3; for each of these four values of n, we easily verify (22). It thus

remains to verify (21) for r ≤ 39. But upon rearrangement (using g′ = g − n − x − 10 and

n = �n/a�), this is exactly our assumption that

g ≥
(5r − 7)n − (2r2 − 9r + 9) ·

⌊

n
a

⌋

− 4r2 + 94r − 150

r − 1
.

�

Corollary 4.8. Suppose that (d, g, r, n) satisfy the hypothesis of Theorem 1.4. If either

g ≤ 2r with strict inequality for r ≥ 6, or n ≤ 2r − 7, then (d, g, r, n) is good. In
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other words, Theorem 1.4 holds subject to the hypothesis that either g ≤ 2r with strict

inequality for r ≥ 6, or n ≤ 2r − 7.

Proof. From Lemma 4.7, it remains to check the finitely many values of (g, r, n) with

5 ≤ r ≤ 39 and n ≤ 2r − 7 and

g ≤
(5r − 7)n − (2r2 − 9r + 9) ·

⌊

n
a

⌋

− 4r2 + 94r − 151

r − 1
where a =

⌈

r − 2

2

⌉

.

And for each such triple, by Lemma 4.4, we just have to check the minimal value of d

satisfying the hypotheses of Theorem 1.4; all that remains is thus a finite computation,

which is done in Appendix A. �

Proof. of Theorem 1.4 We argue by induction on d, with bases cases given by

Corollary 4.8. For the inductive step, we may suppose g ≥ 2r with strict inequality

for r = 5, and n ≥ 2r − 6. In particular, we may apply Lemma 4.1, which asserts that

(d, g, r, n) is good provided that (d − 2r + 2, g′, r, n − 2r + 6) is good. Note that

(2r − 3)((d − 2r + 2) + 1) − (r − 2)2(g′ − (n − 2r + 6)) − 2r2 + 3r − 9

= (2r − 3)(d + 1) − (r − 2)2(g − n) − 2r2 + 3r − 9 +

⎧

⎨

⎩

2r2 − 14r + 18 if r ≥ 6;

7 if r = 5.

Since (d, g, r, n) satisfies the assumptions of Theorem 1.4, so does (d − 2r + 2, g′, r,

n − 2r + 6); thus (d − 2r + 2, g′, r, n − 2r + 6) is good by our inductive hypothesis as

desired. �

A Code for Theorem 1.4

In this section, we give python code to do the finite computations described in Section 4;

running this code produces no output, thus verifying Theorem 1.4 in these cases.
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