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Abstract

We compute the number of general points through which a general Brill–Noether curve

in P
4 passes. We also prove an analogous theorem when some points are constrained

to lie in a transverse hyperplane. As explained in [10], these results play an essential

role in the first author’s proof of the Maximal Rank Conjecture [9].

1 Introduction

Interpolation of curves through points is a fundamental problem in algebraic geometry

whose study dates back to antiquity. The first cases that were studied historically were

rational plane curves. Some of these appear in Euclid’s Elements, such as the first

postulate that there exists a line through two points, and Proposition 5 from book IV,

which shows that every triangle may be inscribed in a circle (i.e., that there exists

a circle through any three non-collinear points). Other classical results include the

formula—often attributed to Lagrange, but originally discovered by Waring in 1779

[14]—for the unique degree d polynomial with specified values at d+1 distinct inputs.

The modern study of interpolation has focused on extensions of these results to

curves of higher genus in higher-dimensional projective spaces. The natural setting

for this problem is to consider Brill–Noether curves. By the Brill–Noether Theorem,

when ρ(d, g, r) = (r + 1)d − rg − r(r + 1) � 0, there is a unique component

Mg(P
r, d)◦ of Kontsevich’s space Mg(P

r, d) of stable maps dominating Mg , which
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236 E. Larson, I. Vogt

is of dimension

(r + 1)d − (r − 3)(g − 1).

We call curves parameterized by this component Brill–Noether curves (BN-curves).

Since passing through a point in P
r is expected to impose r −1 independent conditions,

BN-curves are expected to interpolate through

f (d, g, r) ..=

⌊

(r + 1)d − (r − 3)(g − 1)

r − 1

⌋

general points. While there are known exceptions in low-dimensional projective

spaces, we expect:

Conjecture 1.1 For all but finitely many tuples (d, g, r), a Brill–Noether curve of

degree d and genus g in P
r interpolates through f (d, g, r) general points (and no

more).

This conjecture has historically attracted significant attention. A related question for

plane curves (i.e., r = 2) was investigated using denergation by Hirschowitz in [5].

When r = 3, Perrin [11] investigated Conjecture 1.1 using liason, and Atanasov [2]

proved it when d � g + 3. The conjecture for r = 3 was finally settled by the second

author in [13]. In higher dimensions, asymptotic results when d is large compared

with g and r have been obtained by Ballico [3]. The most complete result for general

r is [1, Theorem 1.3], where the case d � g + r of the conjecture was settled.

The interpolation problem is hardest when the degree is small relative to the genus

and dimension of the projective space. This is for two reasons:

• All known counterexamples occur when the degree is as small as possible given

g and r . Consequently, any techniques which can probe curves where d is small

relative to g and r , must be complicated enough to work in exactly the cases where

the conjecture is true.

• The dimension of the space of maps from a curve of genus g to P
r is a increasing

function of the degree. Therefore the map may only be degenerated in limited ways

when the degree is small. In the range d � g + r , a BN-curve can be degenerated

to a union of lines, where each line is attached inductively to general points on

the curve. Such degenerations are only available in this range, so methods of [1]

cannot hope to probe the range d < g + r without new ideas.

Outside of the results of Vogt [13] when r = 3 and Stevens [12] when d = 2r and

g = r + 1, Conjecture 1.1 has remained open in the range d < g + r in higher-

dimensional projective spaces.

Additionally, one can study a variant of the above conjecture where we constrain

points to lie on a hypersurface. In low dimensions (r � 4), the intersection of a

general Brill–Noether curve of degree d and genus g with a transverse hypersurface

S of degree n in P
r exhibits behavior that does not appear in higher-dimensional

projective spaces (r � 5). Namely, for exactly five values of (r , n) — (r , n) ∈

{(2, 1), (2, 2), (3, 1), (3, 2), (4, 1)} — this intersection is a general set of dn points
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on S for all but finitely many (d, g) [8]. In these five cases, it is therefore natural to

ask a stronger question: can one pass a general Brill–Noether curve of degree d and

genus g through f (d, g, r) points which are general subject to the constraint that dn

of them lie on a transverse hypersurface of degree n? This question is straightfor-

ward for (r , n) ∈ {(2, 1), (2, 2)}, and work of [8,13] answer this stronger question for

(r , n) = (3, 1) and (r , n) = (3, 2), so the only remaining case is (r , n) = (4, 1).

In this paper, we focus on the case r = 4. This is a natural question because it is

both the smallest unsolved dimension for the interpolation problem and the largest

dimension in which the above phenonmena occur. From our main Theorem 1.4, we

deduce a complete answer to all of the above questions when r = 4:

Corollary 1.2 A general Brill–Noether curve of degree d and genus g in P
4 passes

through a set of f (d, g, 4) points which are general subject to the constraint that d of

them lie on a transverse hyperplane if and only if

(d, g) /∈ {(8, 5), (9, 6), (10, 7)}.

Remark 1.3 The geometry of these three cases is as follows:

• In these three cases, the statement fails because the section by a transverse hyper-

plane of the general curve is not a general set of d points in the hyperplane; instead

it is a set of d points which are general subject to the condition that they are distinct

points which lie on a complete intersection of 11 − d quadrics.

• Nevertheless, for (d, g) ∈ {(8, 5), (10, 7)}—but not for (d, g) = (9, 6)—a general

Brill–Noether curve of this degree and genus still passes through f (d, g, 4) + 1

points which are general subject to the constraint that d of them lie on a transverse

hyperplane and are distinct points which lie on a complete intersection of 11 − d

quadrics.

• This fails for (d, g) = (9, 6) because a general Brill–Noether curve of this degree

and genus lies on a quartic del Pezzo surface in P
4. However, such a curve still

passes through f (d, g, 4) points which are general subject to either the constraint

that d of them lie on a transverse hyperplane and are distinct points which lie on a

complete intersection of 11 − d quadrics, or the constraint that d − 1 of them lie

on a transverse hyperplane.

In addition to being interesting in their own right, these results have already found

applications in other work. As outlined in [10], the proof of the Maximal Rank Con-

jecture revolves around constructing curves through sets of points, some of which are

constrained to lie in hypersurfaces, and the results of the present paper play a key role.

We deduce these results by studying the normal bundle NC (respectively the twisted

normal bundle NC (−1)) for C a general Brill–Noether curve. We say that a vector

bundle E on a curve C satisfies interpolation if it is nonspecial (h1(E) = 0) and for

a general effective divisor D of any degree, either

h0(E(−D)) = 0, or h1(E(−D)) = 0.

The main result is then:
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Theorem 1.4 Let C be a general Brill–Noether curve of degree d and genus g in P
4.

Then NC (−1) satisfies interpolation if and only if

(d, g) /∈ {(6, 2), (8, 5), (9, 6), (10, 7)}.

Furthermore, if D is an effective divisor of degree d − 1 supported in a general

hyperplane section, then NC (−D) satisfies interpolation if and only if

(d, g) �= (6, 2).

Using Theorem 1.4, some additional work in the cases (d, g) ∈ {(8, 5), (9, 6), (10, 7)}

yields:

Theorem 1.5 Let C be a general Brill–Noether curve of degree d and genus g in P4.

Then NC satisfies interpolation if and only if

(d, g) �= (6, 2).

In turn, we deduce an answer to the first question posed earlier for r = 4:

Corollary 1.6 A general Brill–Noether curve of degree d and genus g in P
4 passes

through a set of f (d, g, 4) general points, with no exceptions.

The main techniques in this paper are related to those in [1,8], namely we degenerate to

reducible curves. As interpolation is an open condition, it suffices to find one BN-curve

of each relevant degree and genus whose (twisted) normal bundle satisfies interpola-

tion. We achieve this by specializing to nodal curves in the boundary of Mg(P
4, d)◦,

where we can relate interpolation for the normal bundle of the union to interpolation

for some modifications of the normal bundles of the components. The degenerations

here, though, are necessarily more complicated than those in [1], as degenerating to

the union of a curve and a 1- or 2-secant line alone cannot hope to apply to special

curves where d < g + r . We employ three primary classes of degenerations.

First, as developed in [8], we degenerate to a BN-curve which is the union of a curve

X ⊂ H � P3 in a hyperplane and a nonspecial curve Y , transverse to H , meeting X

transversely at a finite set of specified points. This allows us to leverage the known

interpolation results in the nonspecial range [1] and in P
3 [13] to inductively prove

interpolation for all BN-curves from a finite set of base cases. Resolving these base

cases consumes the remainder of the paper.

The second type of degeneration is to a connected nodal curve containing a canon-

ical curve D ⊂ P
4 as well as three 2-secant lines to D. Using the geometry of the

canonical curve, in particular the fact that ND(−1) � K ⊕3
D , we prove a delicate degen-

eration lemma to reduce to the problem of interpolation for the normal bundle of the

union to interpolation for a simple modification of the normal bundle of the remainder.

The final specialization is to the union of a degenerate rational normal quartic curve

meeting the other component in six points. The rational normal quartic curve is the

union of three 2-secant lines, and the unique fourth line meeting all three. We hope

that this technique is robust, and that some variant may be useful for related problems.
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The paper is organized as follows. In Sect. 2 we briefly recall basic facts about mod-

ifications of vector bundles on curves and the technique of degenerating to reducible

curves to prove interpolation. In Sect. 3 we employ the first degeneration to the union

of a curve in a hyperplane and a curve transverse to the hyperplane to reduce to check-

ing a finite set of cases. The canonical curve degeneration lemma is in Sect. 4 and

the degeneration with the rational quartic curve is in Sect. 5. At this point all of the

difficult work has been done, and we collect loose ends in Sect. 6 to prove the main

theorems.

2 Preliminaries

2.1 Notation

In this paper, we deal with the Kontsevich space compactification of Brill–Noether

curves of degree d and genus g in P
r. In particular, for the remainder of the paper, a

curve C → P
r is shorthand for a stable map f : C → P

r. In all of our computations,

we will assume that the map f is unramified, so that the normal sheaf of the map,

which we will denote by NC when the map f is implicit, or N f to draw attention to

the map, is a vector bundle and its cohomology controls the deformation theory of

f . A general such map is an embedding of a smooth curve, and so N f is isomorphic

to the normal bundle of the embedded smooth curve. The only subtlety arises when

degenerating such curves.

Suppose that f : C → P
r and g : D → P

r are curves of degree and genus (d, g)

and (d ′, g′) respectively, and {pi }i∈I ∈ C and {qi }i∈I ∈ D are points such that

f (pi ) = g(qi ), for all i ∈ I .

Write � = f ({pi }) = g({qi }). Let C ∪� D denote the nodal curve obtained by gluing

pi ∈ C to qi ∈ D, mapped to P
r via the stable map

f ∪ g : C ∪� D → P
r .

If C → P
r and D → P

r are curves passing through a finite set of points � ⊂ P
r,

then we use C ∪� D to denote the same construction for some choice of {pi } and {qj }

mapping isomorphically onto � under f and g respectively.

Note that the curve C ∪� D is of degree d + d ′ and genus g + g′ + # I − 1 even if

f (C) and g(D) meet away from �. This is our primary interest in using the Kontsevich

space compactification.

2.2 Modifications of vector bundles

In this section we recall some basic facts about modifications of vector bundles on

curves to streamline the coming computations. For a more detailed exposition, see [1,

Sections 2–3].
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240 E. Larson, I. Vogt

Definition 2.1 Let E be a vector bundle on a variety X and let D ⊂ X be an effective

Cartier divisor. Suppose that U ⊂ X is an open subset containing D and that F ⊆ E |U
is a subbundle defined on U . Then the modification of E at D towards F , denoted

E[D → F], is defined by the exact sequence

0 → E[D → F] → E → (E/F)|D → 0.

The reason for the terminology is that sections of the modification E[D → F] “point

towards F” when restricted to the divisor D:

H0(E[D → F]) = {σ ∈ H0(E) : σ |D ∈ H0(F |D)}.

The modified bundle E[D → F] is isomorphic to E when restricted to X�D. Therefore

given another divisor D′ ⊂ X � D and another subbundle F ′ ⊆ E , we may form the

multiple modification

E[D → F][D′→ F ′]

taking our open set U = X � D. In this setting

E[D → F][D′→ F ′] � E[D′→ F ′][D → F];

however we will need multiple modifications in a stronger setting in which D and D′

are allowed to meet. For that reason, we have the following definition:

Definition 2.2 Let {Fi ⊆ E |Ui
}i∈I be a finite collection of subbundles of E defined

on open neighborhoods Ui of a point x ∈ X . We say that this collection is tree-like at

x ∈ X if for all index subsets I ′ ⊆ I , either

• the fibers {Fi |x }i∈I ′ ⊂ E |x are linearly independent, or

• there are distinct indices i, j ∈ I ′, and an open U ⊂ Ui ∩ Uj containing x such

that Fi |U ⊂ Fj |U .

Definition 2.3 A modification datum M for a vector bundle E is a finite collection of

tuples {(Di , Ui , Fi )}i∈I , where Di is an effective Cartier divisor on X , and Ui ⊂ X is

an open subset containing Di , and Fi ⊆ E |Ui
is a subbundle. We say that a modification

datum is tree-like if for all x ∈ X , the collection of subbundles {Fi ⊆ E |Ui
: x ∈ Di }

is tree-like at x .

The key result is then the following:

Proposition 2.4 ([1, Proposition 2.17]) There is a bijection ϕ between modification

data M for E such that (D, U , F) ∪ M is tree-like and modification data M ′ for

E[D → F] such that (D, U , F) ∪ M ′ is tree-like. This bijection is compatible with

pullbacks and restricts to the identity when D = ∅.
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We may therefore recursively define E[M], for M = (D, U , F) ∪ N by

E[M] ..= E[D → F][ϕ(N )].

For simplicity, when M = {(Di , Ui , Fi )}1�i�n , we will write

E[M] = E[D1→ F1] · · · [Dn → Fn].

We have the following nice properties of tree-like modifications:

Proposition 2.5 ([1, Propositions 2.20, 2.21, 2.23]) Let E be a vector bundle on X

and let M be a tree-like modification datum. Then we have

• (Commuting modifications) If M ′ is any reordering of M, then E[M] � E[M ′].

• (Commuting with twists) If D is any effective Cartier divisor, we have E[M](D) �

E(D)[M].

• (Combining modifications to the same bundle) If D and D′ are effective Cartier

divisors, we have

E[D → F][D′→ F] � E[D + D′→ F].

• (Combining modifications at the same divisor) If F1 and F2 are independent, then

E[D → F1][D → F2] � E[D → F1⊕ F2](−D).

Remark 2.6 By the curve-to-projective extension theorem, vector subbundles of a vec-

tor bundle E on a curve C are naturally in bijection with vector subbundles of E |C�D

for any divisor D disjoint from Csing. Since E |C�D � E[D → F]|C�D , vector sub-

bundles of E are thus in bijection with vector subbundles of E[D → F]. This implies

the analog of Proposition 2.4 for arbitrary collections of modifications (i.e., if we drop

the tree-like assumption on both sides).

However, we still need the language of tree-like modifications for two reasons. First,

the properties of Proposition 2.5 will not, in general, hold when the modifications are

not tree-like.

Second, we need the more general formalism of modifications on arbitrary varieties

in order to “limit” various modifications together by considering vector bundles on the

total space of a family of curves, see Proposition 2.8 below for an illustrative example.

Compatibility with base-change guarantees that the results agrees with the expected

result on each curve.

We will deal primarily with modifications of the normal bundles of curves C → P
r

towards pointing bundles NC→�, for � ⊂ P
r a linear space of dimension γ . To recall,

suppose that the locus

UC,�
..= { p ∈ C : TpC ∩ � = ∅}
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242 E. Larson, I. Vogt

is dense and contains the singular locus of C . Then on UC,�, we suggestively define

NC→�|UC,�
to be the kernel of the map

NC |UC,�
→ Nπ�|UC,�

,

where π� denotes the map of projection from �, and Nπ�|UC,�
is the normal sheaf of

π�|UC,�
.

•�

NC→�|UC,�

UC,�

By our assumptions on UC,�, the curve-to-projective extension theorem implies that

there is a unique vector subbundle NC→� ⊆ NC agreeing on UC,� with NC→�|UC,�
.

When modifying towards a pointing bundle, we will write

NC [D →�] ..= NC [D → NC→�].

These modifications naturally arise when computing the restrictions of normal bundles

of nodal curves to the irreducible factors, as in the following fundamental result of

Hartshorne and Hirschowitz.

Lemma 2.7 ([4, Corollary 3.2]) Let C1 ∪� C2 be a nondegenerate nodal curve in P
r,

with � = {p1, . . . , pn}. For each i , let p′
i be a choice of point on the tangent line

Tpi
C1 and let p′′

i be a choice of point on the tangent line Tpi
C2. Then we have

NC1 ∪� C2 |C1 � NC1(�)[p1→ p′′
1 ] · · · [pn → p′′

n ],

NC1 ∪� C2 |C2 � NC2(�)[p1→ p′
1] · · · [pn → p′

n].

As indicated above, we will make ample use of the fact that the semicontinuity theorem

guarantees that interpolation for a vector bundle E on C follows from interpolation

for some specialization of E . We make this precise in the following example, but will

omit these details in the future.

Proposition 2.8 Let C → P
r be a curve, and p1 and p2 distinct points on C. Let q1

and q2 be distinct points in P
r.

(i) If p2 is general and Tp1C, q1, q2 span a P
3, interpolation for

NC [p1→q1][p1→q2] � NC (−p1)[p1 → q1 + q2]

implies interpolation for NC [p1→q1][p2→q2].
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(ii) If q2 is general and Tp2C, q1 span a P
2, interpolation for

NC [p1→q1][p2→q1] � NC [p1 + p2 → q1]

implies interpolation for NC [p1→q1][p2→q2].

Proof For part (i), let B = C and let 	 ⊂ B ×C denote the diagonal. Write Pi for the

divisor B ×{pi } ⊂ B ×C . Let π1 : B ×C → B and π2 : B ×C → C denote the two

projections. Then we have inclusions of vector bundles on B ×C :

π∗
2 NC→q1 ⊆ π∗

2 NC , π∗
2 NC→q2 ⊆ π∗

2 NC .

By our assumption that Tp1C, q1, q2 are in linear general position, the modification

datum

M = {(P1, B ×C, π∗
2 NC→q1), (	, B ×C, π∗

2 NC→q2)}

is tree-like at 	∩P1 = (p1, p1) ∈ B ×C and hence is tree-like. Therefore the multiple

modification

π∗
2 NC [M] = π∗

2 NC [P1→q1][	→q2]

is a vector bundle on B ×C , which restricts to NC [p1→q1][p2→q2] on the fiber

π−1
1 (p2) and NC [p1→q1][p1→q1] on the fiber π−1

1 (p1). By the semicontinuity

theorem, interpolation for the second implies interpolation for the first with p2 general,

proving part (i).

For part (ii), let B = P
r. It is shown in [1, Section 5] that as the linear space q2

varies in B, the open subsets UC,q2 ⊂ C fit together into an open set UB×C,q2 ⊂

B ×C . Furthermore, over this open subset the pointing bundles NC→q2 fit together

into a vector bundle, which we will abusively also denote NC→q2 , on UB×C,q2 . By

assumption, Tp2C ∩ q1 = ∅, so (q1, p2) ∈ UB×C,q2 , and therefore after shrinking B

we may assume that the divisor P2 ⊂ UB×C,q2 . Therefore

(

P2, UC×B,q2 , NC→q2

)

is a modification datum for π∗
2 NC , and the modification data

M =
{(

P1, B ×C, π∗
2 NC→q1

)

,
(

P2, UB×C,q2 , NC→q2

)}

is vacuously tree-like. Therefore the multiple modificationπ∗
2 NC [M] is a vector bundle

on UB×C,q2 which restricts to

NC [p1→q1][p2→q1]

over the special point q1 ∈ B and to NC [p1→q1][p2→q2] for general q2 in a neigh-

borhood of q1 in B. Interpolation for the second therefore follows from interpolation

for the first by the semicontinuity theorem. ��
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In the above proof, the generality assumptions on the points in C and linear subspaces

in P
r guaranteed that the necessary modifications on the total space of the family of

curves were well-defined and tree-like. In the remainder of the paper, when we wish to

specialize either points or linear spaces to prove interpolation, we will indicate what

genericity assumptions we are using, but leave the reader to fill in the details of the

argument with the above example as a guide.

2.3 Interpolation for vector bundles

In the course of the proof, we will make use of the following lemma, which allows

us to prove interpolation by finding a single divisor such that the twist of our vector

bundle by that divisor has a vanishing cohomology group. As in [13], if the Euler

characteristic χ(E) is divisible by the rank r of E , it suffices to find a single effective

divisor of degree χ(E)/r such that h0(E(−D)) = 0, or equivalently h1(E(−D)) = 0.

The following generalization covers all remaining possibilities for a vector bundle of

rank 3.

Lemma 2.9 Let E be a nonspecial vector bundle of rank r on a curve. Assume that

χ(E) ≡ 1 (mod r) (respectively χ(E) ≡ −1 (mod r)). If there exists an effective

divisor D of degree �χ(E)/r� (respectively �χ(E)/r�) such that h1(E(−D)) = 0

(respectively h0(E(−D)) = 0), then E satisfies interpolation.

Proof By [1, Proposition 4.6] it suffices to find one effective divisor D+ of degree

�χ(E)/r� such that h0(E(−D+)) = 0 and one effective divisor D− of degree

�χ(E)/r� such that h1(E(D−)) = 0. By assumption we have one of these; we will

show that we can construct the other by adding or subtracting a point.

Let D be the effective divisor on C specified in the statement of the lemma. As E

is assumed to be nonspecial, the following sequence:

0 → H0(E(−D)) → H0(E) → E |D → H1(E(−D)) → 0

is exact.

Suppose first that χ(E) ≡ 1 (mod r), so we can take D− = D. We take D+ = D+p

for p ∈ C general. As h1(E(−D)) = 0, we must have that h0(E(−D)) = 1, and so

E(−D) has a unique global section. As such a section does not vanish at a general

point p ∈ C , the twist h0(E(−D − p)) = 0 as desired.

Suppose next that we are in the case χ(E) ≡ −1 (mod r), so we can take D+ = D.

Then

H0(E) ↪→ E |D �
⊕

p∈D

E |p

is the inclusion of a hyperplane in a vector space of dimension χ(E) + 1. As the

subspaces E |p for p ∈ D generate E |D , there is some p ∈ D such that E |p �⊂ H0(E).
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If V is any vector space, H ⊂ V any codimension 1 subspace, and � ⊂ V any

subspace not contained in H , the composition with the projection map

H ↪→ V → V /�

is surjective. Applying this with V = E |D , and H = H0(E), and � = E |p, we

conclude that the composition with the projection map

H0(E) → E |D → E |D�p

is surjective, and hence h1(E(−D + p)) = 0. ��

In the course of the proof of Theorem 1.4, we will need the following more general

definition of interpolation for the space of sections of a vector bundle.

Definition 2.10 Let E be a vector bundle of rank r on a curve C and let V ⊂ H0(C, E)

be some subspace of its space of global sections. For points p1, . . . , pn ∈ C , we will

abbreviate

V (−p1 − · · · − pn)
..= {σ ∈ V : σ |p1 = · · · = σ |pn = 0}.

Then we say that V satisfies interpolation if for general points p1, . . . , pn ∈ C ,

dim V (−p1 − · · · − pn) = max (0, dim V − rn).

Remark 2.11 With this definition, a vector bundle E satisfies interpolation if and only

if χ(E) = h0(E) and its space of global sections H0(E) satisfies interpolation.

Lemma 2.12 Let C = X ∪� Y be a reducible nodal curve and let E be a vector bundle

on C. Suppose the restriction map

resX ,� : H0(E |X ) → E |�

is injective. If the space of sections

V ..=
{

σ ∈ H0(E |Y ) : σ |� ∈ Im(resX ,�)
}

,

has dimension χ(E) and satisfies interpolation, then E satisfies interpolation as well.

Proof By assumption we have that restriction to Y gives an isomorphism

H0(C, E)
�

−→ V . (1)

For any divisor D ⊂ Y � �, the isomorphism (1) restricts to an isomorphism

H0(E(−D)) → V (−D); therefore interpolation for E follows from interpolation

for V and the fact that χ(E) = dim V . ��
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Corollary 2.13 With the setup of Lemma 2.12, if there exists a vector bundle F on Y

with

H0(F) = V , χ(F) = χ(E), rk(F) = rk(E),

then if F satisfies interpolation as a vector bundle on Y , we have that E satisfies

interpolation as a vector bundle on C.

The main techniques in Sects. 4–5 will be degeneration to nodal curves containing

lines which are 1-, 2-, or 3-secant to the remainder of the curve. We give here some

results on the bundle F of Corollary 2.13 which will be used there.

In order to deal with modified normal bundles we will set up the following notation.

Suppose that X → Pr is a nodal curve, and L is a secant line to X meeting X in a set

S. Let N ′
X∪S L be a vector bundle on the union X ∪S L that is isomorphic to NX∪S L

on some open subset U ⊂ X ∪S L containing all of L . Then we will write N ′
X for the

bundle on X which is N ′
X∪S L |X�S glued along U to NX∪S L |X .

Lemma 2.14 Let X → Pr be a curve and p ∈ X a smooth point. Let L ⊂ Pr be a

line through p distinct from the tangent line to X at p, and denote by C = X ∪p L the

nodal curve which is the union. Let x ∈ L be another point and suppose that x ′ ∈ P
r

is a point not contained in the tangent plane to C at p. Then if the bundle

N ′
X (−1)(p)[p → x][p → x + x ′]

satisfies interpolation (as a vector bundle on X ), then N ′
C (−1)[x → x ′] satisfies

interpolation on C.

Proof This follows from [1, Lemma 8.5] taking p1 = x and �1 = x ′; and taking

p2 = OC (1)|L and �2 = ∅. ��

We now consider the case r = 4, and prove three different degeneration results for the

normal bundle NC and the twisted normal bundle NC (−1).

Lemma 2.15 Let X → P
4 be a curve, p and q be smooth points of X, and x ′ be a

point in P
4. Suppose that the tangent lines to X at p and q, together with x ′, span P

4.

Let L ⊂ P
4 be a 2-secant line through p and q. Let x and y be points on L distinct

from p and q. Denote by C the union X ∪p,q L. If the bundle

N ′
X (−1)[p → q][q → p]

satisfies interpolation, then the bundle N ′
C (−1)(−y)[x → x ′], and hence N ′

C (−1)

[x → x ′], satisfies interpolation.

Proof Write p′ and q ′ for choices of points on TpC and TqC distinct from p and q

respectively. By assumption p, q, p′, q ′ and x ′ span P
4; we may therefore choose three

independent hyperplanes H1, H2, and H3 from the net defining the line L such that
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p′ ∈ H2 ∩ H3, q ′ ∈ H1 ∩ H3, and x ′ ∈ H1 ∩ H2. With the choice of the Hi , the normal

bundle of L is simply

NL � NH1 |L ⊕ NH2 |L ⊕ NH3 |L . (2)

By Lemma 2.7, we have

N ′
C (−1)(−y)[x → x ′]|L � NL(−1)(p + q − y)[p → p′][q → q ′][x → x ′].

As p′ ∈ H2 ∩ H3, with respect to the decomposition in (2), the modification at p

towards p′ is simply a modification towards NH1 |L at p. Therefore this modification

is the simple twist

NL [p → p′] � NH1 |L ⊕ NH2 |L(−p)⊕ NH3 |L(−p).

If we use the analogous expressions for the modifications at q and x , we obtain the

isomorphism

N ′
C (−1)(−y)[x → x ′]|L

� NH1 |L(−1)(p + q − y − q − x)

⊕ NH2 |L(−1)(p + q − y − p − x)⊕ NH3 |L(−1)(p + q − y − p − q)

� OL(p − y − x)⊕OL(q − y − x)⊕OL(−y)

� OL(−1)⊕3.

As the bundle O(−1) on P
1 has no global sections, the restriction map to p and q is

trivially injective and the desired bundle F from Corollary 2.13 is therefore

N ′
C (−1)(−y)[x → x ′]|X (−p − q) � N ′

X (−1)[p → q][q → p],

which has the correct rank and Euler characteristic. ��

Lemma 2.16 Let X be a curve in P
4 and let L be a 3-secant line meeting X at smooth

points o, p, q such that the tangent lines To X , Tp X, and Tq X span P
4. Let C ..=

X ∪o+p+q L. If N ′
C |X satisfies interpolation, then N ′

C satisfies interpolation.

Proof Write o′, p′, and q ′ for points on To X , Tp X , and Tq X respectively, distinct from

o, p, and q respectively. By our assumption on the tangent directions, we have

N ′
C |L � NL(o + p + q)[o→o′][p→ p′][q →q ′] � OL(2)⊕3.

Restriction to the three points o + p + q yields an isomorphism on global sections

H0(OL(2))⊕3 → OL(2)⊕3|o+p+q .

Therefore the bundle F of Corollary 2.13 is simply N ′
C |X , which is of the correct rank

and Euler characteristic. ��
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Lemma 2.17 Let X be a curve in P
4 and let L be a 3-secant line meeting X at smooth

points o, p, q such that the tangent lines To X , Tp X, and Tq X span P
4. Let C ..=

X ∪o+p+q L. Let x and y be points on L disjoint from o, p, and q. If N ′
C (−1)|X (−o−

p − q) satisfies interpolation, then N ′
C (−1)(−x − y), and hence N ′

C (−1), satisfies

interpolation.

Proof Analogously as in Lemma 2.16, our assumptions give

N ′
C (−1)|L � OL(1)⊕3,

and so N ′
C (−1)(−x − y)|L � OL(−1)⊕3, which has no global sections. Therefore,

the bundle F of Corollary 2.13 is simply N ′
C (−1)(−x − y)|X (−o − p − q) �

N ′
C (−1)|X (−o − p − q), which has the correct rank and Euler characteristic. ��

3 Reduction to finite list

In this section we reduce the proof of Theorem 1.4 to a finite set of cases. To make

the notation less burdensome, we make the following definition:

Definition 3.1 A pair of integers (d, g) is called a Brill–Noether pair (BN-pair) if

ρ(d, g, 4) � 0. Furthermore, we say that a BN-pair (d, g) is good if for a general

BN-curve C of degree d and genus g, the twisted normal bundle NC (−1) satisfies

interpolation.

The main result is the following lemma:

Lemma 3.2 Let (d, g) be a BN-pair which is not in {(6, 2), (8, 5), (9, 6), (10, 7)}.

Then (d, g) is good provided that all pairs {(9, 5), (11, 8), (12, 10), (13, 10), (13, 11),

(14, 12)} are good.

In order to prove this result, we will leverage the interpolation result in P
3 [13, Theorem

1.1] and in the nonspecial range in P4 [1]. More specifically, we specialize to a reducible

curve X ∪� Y , where X is contained in a hyperplane H � P
3, and Y is transverse to

the hyperplane and meets X in a finite set of points � which are general in H . The

key result here is the following:

Lemma 3.3 Let s be a positive integer, and X ⊂ H be a BN-curve of degree d ′′ � s +1

and genus g′′ ..= 2s +1−d ′′ in a hyperplane H ⊂ P
4. Let � be a finite set of s general

points on X. Let Y be a BN-curve of degree and genus (d ′, g′) passing through �

with tangent direction transverse to the hyperplane H. Let C = X ∪� Y (which by

construction is of degree d = d ′ +d ′′ and genus g = g′ +3s −d ′′). If both NX/H (−1)

and NY (−1) satisfy interpolation, then so does NC (−1).

Proof Note that

χ(NC (−1))

rk(NC (−1))
=

2d + 1 − g

3
= d ′′ − s +

2d ′ + 1 − g′

3
� d ′′ − s.
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Let E and F be general effective divisors on Y and X respectively, of degrees e and f =

d ′′−s respectively. We will show that if e � (2d ′ + 1 − g′)/3, then h1(NC (−1)(−E−

F)) = 0; and if e � (2d ′ + 1 − g′)/3, then h0(NC (−1)(−E − F)) = 0.

By [8, Lemma 2.7], to show the appropriate vanishing of hi it suffices to check the

three vanishings

hi (NX/H (−1)(−� − F)) = 0, hi (OX (� − F)) = 0, hi (NY (−1)(−E)) = 0.

In the first case, NX/H (−1) satisfies interpolation by assumption, and so NX/H (−1)

(−� − F) has no cohomology as � + F is general of degree d ′′. In the second case,

OX (� − F) is a general line bundle of degree g′′ − 1 (since d ′′ � s + 1 implies

s + (d ′′ − s) � 2s +1−d ′′ = g′′), and so also has no cohomology by Riemann–Roch.

Finally, the last vanishing is exactly the statement that NY (−1) satisfies interpolation.��

To find suitable X and Y as above, we use the following elementary lemma, which

follows from the fact that if the degree of a line bundle L is at least d + g, then L(−1)

is effective.

Lemma 3.4 Let E be a vector bundle of rank k satisfying interpolation on a curve

C ⊂ P
r of degree d and genus g. If

χ(E) � k(d + g),

then E(−1) also satisfies interpolation.

Corollary 3.5 If C is a general BN-curve in P
3 (respectively P

4) of degree d and genus

g with d � g (respectively d � 2g), then

NC satisfies interpolation ⇐⇒ NC (−1) satisfies interpolation.

We will now inductively prove Lemma 3.2 by attaching curves X ⊂ P
3 to curves

Y ⊂ P
4, for which NY (−1) is already known to satisfy interpolation. We will only

use the following curves for X :

d ′′ g′′ s ρ(X ∪ Y ) − ρ(Y )

9 6 7 − 3

3 0 1 15

6 3 4 6

7 4 5 3

8 5 6 0

In order to conclude from Lemma 3.3 that for a general C → P
4 of degree d ′ + d ′′

and genus g′ + 3s − d ′′, the bundle NC (−1) satisfies interpolation, we must show that

X ∪� Y is a BN-curve. In all of our cases this ends up being easily deduced from

previous results.
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First we use this construction with X a curve of degree 9 and genus 6 to reduce to

checking small genus:

Lemma 3.6 If a BN-pair (d ′, g′) is good and d ′ � 7, then the pair (d ′ + 9, g′ + 12) is

good (when it is BN).

Proof Let Y → P
4 be a general BN-curve of degree d ′ and genus g′, and H be

a general hyperplane. Since (d ′, g′) is good by assumption, the hyperplane section

Y ∩ H is general; in particular, since d ′ � 7, it contains a set � of seven general points

which satisfies h1(NY (−�)) = 0. Let X be a general curve of degree 9 and genus

6 in H passing through � (again possible as X satisfies interpolation). Let C be the

reducible curve X ∪� Y , which is of degree d = d ′ + 9 and genus g = g′ + 12. It

suffices to show that C is a BN-curve.

For this, it suffices to show C admits a specialization C◦ with h1(NC◦) = 0 such that

C◦ is a BN-curve; indeed, h1(NC◦) = 0 guarantees the smoothness of the Kontsevich

space at [C◦], which implies [C◦] lies in a unique component of the Kontsevich space.

We shall degenerate C to C◦ = X◦ ∪� Y where X◦ = X1 ∪	 X2 is a degeneration

of X to a reducible curve which still passes through �, with 	 and � disjoint; write

� = �1 ∪ �2 with �1 ⊂ X1 and �2 ⊂ X2. Let x ∈ X1 � �1 be arbitrary.

X2X1
H

Y

x
�2�1 	

From the exact sequences

0 → NC◦ |X1∪�1
Y (−�2 − 	) → NC◦ → NC◦ |X2 → 0,

0 → NX1∪�1
Y (−�2 − 	 − x) → NC◦ |X1∪�1

Y (−�2 − 	) → C
2
x ⊕C�2⊕C	 → 0,

0 → NX2/H → NC◦ |X2 → OX2(1)(�2) → 0,

where C
2
x ⊕C�2⊕C	 denotes a punctual sheaf supported at 	 ∪ �2 ∪ {x}, which in

particular satisfies h1(C2
x ⊕C�2⊕C	) = 0, we see that to check h1(NC◦) = 0, it

suffices to check h1(NX2/H ) = h1(OX2(1)(�2)) = h1(NX1∪�1
Y (−�2 −	− x)) = 0.

We shall consider the specialization where X1 is a rational normal curve, and

X2 is a canonical curve of genus 4, which meet at a set 	 of three points. We do

this so that # �1 = 4 and # �2 = 3; this can be done because X1 passes through

four general points, while X2 passes through six general points, by [1, Corollary

1.4]. By inspection, h1(NX2/H ) = h1(OX2(1)(�2)) = 0, so it remains to check
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h1(NX1∪�1
Y (−�2 − 	 − x)) = 0. This follows from the exact sequences

0 → NX1∪�1
Y |Y (−�) → NX1∪�1

Y (−�2 − 	 − x) → NX1∪�1
Y |X1(−	 − x) → 0,

0 → NX1/H (−	 − x) → NX1∪�1
Y |X1(−	 − x) → OX1(1)(�1 − 	 − x) → 0,

0 → NY (−�) → NX1∪�1
Y |Y (−�) → C�1 → 0,

where C�1 denotes a punctual sheaf supported at �1, which in particular satisfies

h1(C�1) = 0.

It thus remains to show C◦ = (X1 ∪	 X2)∪� Y = (X1 ∪�1 Y )∪(�2∪	) X2 is a BN-

curve. For this, we can apply [7, Theorem 1.9] twice, first to conclude that X1 ∪�1 Y

is a BN-curve, and second to conclude that C◦ is a BN-curve as desired — provided

that X1 ∪�1 Y admits a deformation which continues to pass through �1 ∪ 	 and is

transverse to H along �1 ∪ 	.

Since X1 ∪�1 Y is already transverse to H along �1, this reduces by deformation

theory to checking h1(NX1∪�1
Y (−�1 −	− x)) = 0 for any x ∈ 	, which was shown

above. ��

Corollary 3.7 If for all (d, g) satisfying g � 14 and ρ(d, g, 4) � 3, a general BN-

curve Y of degree d and genus g satisfies interpolation for the twist NY (−1), then a

general BN-curve of any genus g > 14 does as well.

Proof If (d, g) is BN and g � 15, then d � 16. Hence d − 9 � 7, and we can apply

Lemma 3.6 to inductively reduce to a curve of smaller genus with ρ � 3. ��

Note that all the counterexamples appearing in Theorem 1.4 have ρ � 2, so it suffices

to prove Theorem 1.4 for g � 14. We now deal with these remaining cases. First by

attaching twisted cubics at a single point, we show that it suffices to consider three

BN-pairs for each g � 14.

Lemma 3.8 If a BN-pair (d ′, g′) is good, then the pair (d ′ + 3, g′) is also good.

Proof Attach a general BN-curve Y of degree d ′ and genus g′ at a single point to a

general twisted cubic X ⊂ H . The union has degree d ′ + 3 and genus g′, and lies in

the correct component of Mg′(P4, d ′ + 3) by [7, Theorem 1.6]. ��

Proof of Lemma 3.2 Corollary 3.5 provides plenty of base cases for the induction: all

curves with d � 2g. If g � 5 and (d, g) �= (8, 5) or (9, 5), then d � 2g. So, using the

result of Corollary 3.7 we will only consider 6 � g � 14. For each such g, let dmin

be the minimal d such that (d, g) is BN and (d, g) /∈ {(6, 2), (8, 5), (9, 6), (10, 7)}.

By Lemma 3.8, it suffices to prove that (dmin, g), (dmin + 1, g), and (dmin + 2, g) are

good. We do this using Lemma 3.3 with curves X = (6, 3), (7, 4), and (8, 5):

In each of these cases, X ∪� Y is a BN-curve by [7, Theorem 1.9]. ��

In the remainder of the paper we show that the (d, g) pairs

{(9, 5), (11, 8), (12, 10), (13, 10), (13, 11), (14, 12)}

are good; and furthermore, we show interpolation for the untwisted normal bundle in

the cases (d, g) ∈ {(8, 5), (9, 6), (10, 7)}.
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g dmin certificate for (dmin, g) certificate for (dmin + 1, g) certificate for (dmin + 2, g)

6 10 X = (6, 3), Y = (4, 0) X = (6, 3), Y = (5, 0) 12 � 2 · 6

7 11 X = (6, 3), Y = (5, 1) X = (6, 3), Y = (6, 1) X = (6, 3), Y = (7, 1)

8 11 by assumption X = (7, 4), Y = (5, 0) X = (6, 3), Y = (7, 2)

9 12 X = (7, 4), Y = (5, 1) X = (6, 3), Y = (7, 3) X = (6, 3), Y = (8, 3)

10 12 by assumption by assumption X = (6, 3), Y = (8, 4)

11 13 by assumption X = (7, 4), Y = (7, 3) X = (6, 3), Y = (9, 5)

12 14 by assumption X = (7, 4), Y = (8, 4) X = (6, 3), Y = (10, 6)

13 15 X = (8, 5), Y = (7, 3) X = (7, 4), Y = (9, 5) X = (6, 3), Y = (11, 7)

14 16 X = (8, 5), Y = (8, 4) X = (6, 3), Y = (11, 8) X = (6, 3), Y = (12, 8)

4 Degeneration with a canonical curve

The key argument for (d, g) ∈ {(12, 10), (13, 10), (13, 11), (14, 12)} consists of

degenerating to the union of a canonical curve D ⊂ P
4 of degree 8 and genus 5,

and another nodal curve.

Setup. Let D be a general canonical curve ((d, g)= (8, 5)), and let p1, q1,

p2, q2, p3, q3 be six general points. Let � = p1 + q1 + · · · + q3 denote the sum

of these points on D. For each i , let p′
i ∈ Tpi

D be a choice of point on the tangent

line. Denote by L i the line pi , qi . Suppose that C ⊃ L1 ∪ L2 ∪ L3 is a connected

nodal BN-curve containing the lines L1, L2 and L3. Let Y = C ∪� D be the nodal

curve obtained from gluing C and D along �; this is a BN-curve by [7, Theorem 1.6].

Lemma 4.1 If NC (−1)[p1→ p′
1][p2→ p′

2][p3→ p′
3] satisfies interpolation, then

NY (−1) satisfies interpolation as well.

Proof The canonical curve D is the complete intersection of a net of quadrics in P
4.

Note that no quadric in the net contains all 2-secant lines to D, as the secant variety is

of degree
(

8−1
2

)

−5 = 16. Since it is one condition on a quadric containing D to contain

a 2-secant line to D, we may choose three independent quadrics from the net such that

each contains exactly two of the three lines L1, L2, and L3. This gives an isomorphism

NY (−1)|D � K D(p1 + q1)⊕ K D(p2 + q2)⊕ K D(p3 + q3).

Let w be a general point on D. The line bundle Fi
..= K D(pi + qi − w) on D is

of degree 9 and has a 5-dimensional space of global sections, which correspond to

meromorphic differentials on D that vanish at w and have at most poles at pi and qi

with opposite residues.

Since we may compute that H0(Fi (−�)) = 0, the restriction map

H0(Fi )
res

−−→ Fi |p1⊕ Fi |q1⊕ Fi |p2 ⊕ Fi |q2⊕ Fi |p3⊕ Fi |q3,

is an isomorphism onto a 5-dimensional subspace of Fi |� � C
6, which can be

described as the preimage of the antidiagonal (i.e., the two coordinates negatives

of eachother) in the 2-dimensional Fi |pi
⊕ Fi |qi

, under the restriction map Fi |� →

Fi |pi
⊕ Fi |qi

.
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The bundle Fi (−p1 − p2 − p3) = K D(qi − w − pj − pk) on D satisfies

h0(Fi (−p1 − p2 − p3)) = 2 and h1(Fi (−p1 − p2 − p3)) = 0, as h0(K D(qi )) = 5

and w, pj , and pk are general points on D. For points (x, y, z) in some neighborhood

U ⊂ D × D × D of the point (p1, p2, p3), the bundle Fi (−x − y − z) therefore also

has two global sections by semicontinuity. Let Fi denote the bundle on D ×U which

specialized to Fi (−x − y − z) on the fiber D ×{(x, y, z)}. Let

π1 : D ×U → D, π2 : D ×U → U

denote the two projections.

By the theorem on cohomology and base change, the pushforward π2∗Fi is a rank

2 vector subbundle of a rank 5 trivial bundle:

π2∗Fi ⊆ π2∗(π
∗
1 Fi ) = H0(Fi )⊗OU .

Composing with the restriction map above yields a map

ri : π2∗Fi → H0(Fi )⊗OU → (Fi |� � C
6)⊗OU ,

whose fiber over (x, y, z) extracts the image

Si
xyz

..= ri (π2∗Fi |(x,y,z)) = res(H0(Fi (−x − y − z))) ⊂ Fi |�

for each point (x, y, z) ∈ U . Write Sxyz
..= S1

xyz ⊕ S2
xyz ⊕ S3

xyz .

By Lemma 2.12, in order to prove interpolation for NY (−1)(−x − y − z −w), with

x, y, z, w general points, it suffices to prove interpolation for the space of sections

Vxyz
..=

{

σ ∈ H0(NY (−1)|C ) : σ |� ∈ Sxyz ⊆ NY (−1)(−x − y − z − w)|� � C
18

}

,

provided that it has the correct dimension. Furthermore as satisfying interpolation and

having the correct dimension is an open condition, it suffices to prove that for the

specialization (p1, p2, p3) of the general points (x, y, z) ∈ U , the space of sections

Vp1 p2 p3 =
{

σ ∈ H0(NY (−1)|C ) : σ |� ∈ Sp1 p2 p3

}

,

is of the correct dimension and satisfies interpolation. In this case,

Si
p1 p2 p3

= res(H0(K D(qi − w − pj − pk))) = Fi |qj
⊕ Fi |qk

⊂ Fi |�, i, j �= k.

When viewed as meromorphic sections NC (−1), the sections of NY (−1)|C whose

restrictions to � lie in the subspace Sp1 p2 p3 therefore vanish at the pi and are regular

at the qi . Therefore, it suffices to prove that

Vp1 p2 p3 =
{

σ ∈ H0(NY (−1)|C ) : σ |pi
= 0, σ is regular at qj

}

=
{

σ ∈ H0(NY (−1)|C (−p1 − p2 − p3)) : σ preserves the node at qj

}
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is of the correct dimension and satisfies interpolation. This subspace is the space of

global sections of the vector bundle

NC (−1)[p1→ p′
1][p2→ p′

2][p3→ p′
3],

which has the same rank and Euler characteristic as NY (−1)(−x − y − z − w).

Therefore it suffices to prove that this vector bundle satisfies interpolation. ��

We now deal with each of the cases (d, g) ∈ {(12, 10), (13, 10), (13, 11), (14, 12)}

separately.

4.1 Degree 12, genus 10

In this case we take C in the setup above to be the union of the three general lines

L1 ∪ L2 ∪ L3 and a line M meeting all three lines, which is a BN-curve by [7,

Theorem 1.6]. Let mi
..= L i ∩ M be the points of intersection so that the curve C is

precisely the nodal union

C ..= (L1 ∪ L2 ∪ L3) ∪m1+m2+m3 M .

By Lemma 4.1, it suffices to prove interpolation for the modified normal bundle

NC (−1)[p1→ p′
1][p2→ p′

2][p3→ p′
3].

By Lemma 2.14, we may pull off each of the 1-secant lines L i in turn to reduce to

proving interpolation for the bundle

NM (−1)(m1 + m2 + m3)[m1→ p1][m1→ p1 + p′
1]

[m2→ p2][m2→ p2 + p′
2][m3→ p3][m3→ p3 + p′

3],

or, by limiting p′
1 to p2, and p′

2 to p3, and p′
3 to p1 (and using the properties in

Proposition 2.5) for the bundle

NM (−1)(2m1 + 2m2 + 2m3)[2m1→ p1][m1→ p2]

[2m2→ p2][m2→ p3][2m3→ p3][m3→ p1].

Limiting m2, m3→m1 is tree-like, as the points p1, p2, and p3 are general in P4.

Therefore, it suffices to prove interpolation for

NM (−1)(6m1)[3m1→ p1][3m1→ p2][3m1→ p3]

� NM (−1)[3m1→ p1 + p2 + p3] � NM (−1).

The result now follows from the fact that NM (−1) � O
⊕3 satisfies interpolation.
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4.2 Degree 13, genus 10

We continue with the notation of the setup above. In this case we take M to be a

general line meeting L1 and L2 and N to be a general line meeting L2 and L3. Call

M ∩ L i =.. mi and N ∩ L j =.. n j . Let

C = (N ∪ M) ∪m1+m2+n2+n3 (L1 ∪ L2 ∪ L3)

be the union, which is a BN-curve by [7, Theorem 1.6]. So by Lemma 4.1 it suffices to

prove interpolation for NC (−1)[p1→ p′
1][p2→ p′

2][p3→ p′
3]. By Lemma 2.14, this

follows from interpolation for the bundle

N1
..= NN∪n2

L2∪m2
M (−1)(m1 + n3)[p2→ p′

2][m1→ p1]

[m1→ p1 + p′
1][n3→ p3][n3→ p3 + p′

3].

By Lemma 2.9, it suffices to show the vanishing of h0(N ′) where N ′ ..= N1(−x − y)

where x and y are general points on N and M respectively.

Restricting to M we have

N ′|M � NM (−1)(−y + m1 + m2)[m1→ p1][m1→ p1 + p′
1][m2→ p2]

� NM [m1→ p1][m1→ p1 + p′
1][m2→ p2].

As the points p1, p2 and p′
1 are independent, we may make a choice of the three

hyperplanes Hi defining M = H1 ∩ H2 ∩ H3 so that p1 ∈ H2 ∩ H3, p2 ∈ H1 ∩ H3 and

p′
1 ∈ H1 ∩ H2. Then the modifications towards these points become simple twists:

N ′|M � NH1 |M (−m2)⊕ NH2 |M (−2m1)⊕ NH3 |M (−m1 − m2) � OM ⊕OM (−1)⊕2.

This restriction has a unique global section, coming from the factor NH1 |M (−m2) of

normal directions pointing to p1. Therefore, applying the argument of Lemma 2.12,

it suffices to show the vanishing of h0 of the subbundle of N ′|N∪n2
L2 whose sections

at m2 point towards p1:

NN∪n2
L2(−1)(−x + n3 + m2)[p2→ p′

2][m2→m1][m2→ p1][n3→ p3][n3→ p3 + p′
3].

We may apply the same argument to N to reduce to showing there are no sections of

NL2(−1)(n2 + m2)[p2→ p′
2][n2→n3][n2→ p3][m2→m1][m2→ p1]

� NL2(−1)[p2→ p′
2][n2 → n3 + p3][m2 → m1 + p1].

Limiting p2 to n2, which is tree-like as p′
2 is general, it suffices to show the vanishing

of h0 for

NL2(−1)(−n2)[n2 → n3 + p3 + p′
2][m2 → m1 + p1]

� NL2(−1)(−n2)[m2 → m1 + p1],

123



256 E. Larson, I. Vogt

and as m1 and p1 are in general directions, we have

NL2(−1)(−n2)[m2→m1 + p1] � OM (−2)⊕OM (−1)⊕OM (−1),

which has no global sections, as desired.

4.3 Degree 13, genus 11

As in the setup above, we choose C to contain the lines L1, L2, L3 as well as two

further lines M and N , where M meets each L i at a single point mi and N meets L1

and L2 at points n1 and n2 respectively. As the lines L1, L2, and L3 are general, the

lines can be assumed to satisfy various genericity conditions: N ∪ M ∪ L i span a P3

for i = 1, 2.

Then the resulting union

C ..= (N ∪ M) ∪m1+m2+m3+n1+n2 (L1 ∪ L2 ∪ L3)

is a nodal connected curve of degree 5 and arithmetic genus 2, which is a BN-curve

by [7, Theorem 1.6]. By Lemma 4.1, it suffices to show that

N ′
C

..= NC (−1)[p1→ p′
1][p2→ p′

2][p3→ p′
3]

satisfies interpolation. By Lemma 2.15, it suffices to show that

N(N∪M)∪m2+m3+n2
(L2∪L3)(−1)[p2→ p′

2][p3→ p′
3][n1→m1][m1→n1]

satisfies interpolation. By Lemma 2.14, this reduces in turn to showing that

NM∪m2+m3
L2∪L3(−1)(n2)[p2→ p′

2][p3→ p′
3][m1→n1][n2→n1][n2 → n1 + m1]

satisfies interpolation. Again by Lemma 2.14, this further reduces to proving interpo-

lation for

NM∪m2
L2(−1)(n2 + m3)[p2→ p′

2][m1→n1][n2→n1]

[n2 → n1 + m1][m3→ p3][m3 → p3 + p′
3].

We may limit p2 → n2, since p′
2 is disjoint from n1, m1 and so this is tree-like. We

are therefore reduced to proving interpolation for the vector bundle

NM∪m2
L2(−1)(n2 + m3)[n2→ p′

2][m1→n1][n2→n1]

[n2 → n1 + m1][m3→ p3][m3 → p3 + p′
3]

� NM∪m2
L2(−1)(m3)[m1→n1][n2→n1]

[n2 → n1 + m1 + p′
2][m3→ p3][m3 → p3 + p′

3].
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As p′
2 is general and m1, n1, and L2 span a P3, the linear space p′

2, m1, n1, L2 = P4.

Therefore the above bundle is isomorphic to

NM∪m2
L2(−1)(m3)[m1→n1][n2→n1][m3→ p3][m3 → p3 + p′

3].

We may now apply Lemma 2.14 a final time to reduce to showing interpolation for

NM (−1)(m2 + m3)[m2→n2][m2→n2 + n1][m1→n1][m3→ p3][m3→ p3 + p′
3].

Limit p′
3 to n1. Then we may limit m2 and m3 to m1, as n1, n2 and p3 are independent

so this is tree-like. The resulting vector bundle is

NM (−1)(2m1)[m1→n2][m1 → n2 + n1][m1→n1][m1→ p3][m1 → p3 + n1]

� NM (−1)(4m1)[m1→n1][2m1→n1][2m1→n2][2m1→ p3]

� NM (−1)[m1→n1][2m1 → n1 + m1 + p3].

As n1, m1 and p3 are independent, and so span all of P
4, we have that this is isomorphic

to

NM (−1)[m1→n1] � OM ⊕OM (−1)⊕2,

which satisfies interpolation by inspection.

4.4 Degree 14, genus 12

Continuing in the setup above, let M be a general line meeting each L i at mi and let

N be a general conic meeting each L i at ni . Pick points n′
i �= ni on Tni

N , and a point

m ∈ M distinct from m1, m2, and m3. Let C denote the union

C ..= (M ∪ N ) ∪m1+m2+m3+n1+n2+n3 (L1 ∪ L2 ∪ L3),

which is a BN-curve by [7, Theorem 1.6]. It then suffices to prove interpolation for

N ′
C

..= NC (−1)[p1→ p′
1][p2→ p′

2][p3→ p′
3]. This vector bundle has Euler charac-

teristic 5. So by Lemma 2.9, it suffices to show that for two points x + y, the twist

down satisfies

h0
(

NC (−1)(−x − y)[p1→ p′
1][p2→ p′

2][p3→ p′
3]

)

= 0. (3)

We will choose x and y to be general points on M , so that N ′
C (−x − y)|M � O(−1)⊕3.

Therefore to show the vanishing of (3), it suffices to show that

h0
(

N ′
C |N∪n1+n2+n3

L1∪L2∪L3(−m1 − m2 − m3)
)

= 0,

as in the proof of Lemma 2.17. This bundle restricts to each L i to be

NL i
(−1)(ni )[ni →n′

i ][pi → p′
i ][mi →m] � OL i

(−1)⊕3,
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as L i , n′
i , p′

i , and m are linearly independent. Therefore as in Lemma 2.12, it suffices

to show that

h0
(

NN (−1)[n1→ p1][n2→ p2][n3→ p3]
)

= 0,

where the pi are in general directions. By the semicontinuity theorem it suffices to

prove this vanishing after specializing p1, p2 and p3. Fix a quadric Q and hyperplanes

H1 and H1 such that N is the complete intersection Q ∩ H1 ∩ H2. We have

NN (−1) � NQ(−1)|N ⊕ NH1(−1)|N ⊕ NH2(−1)|N � ON (1)⊕O
⊕2
N . (4)

Specialize p1 and p2 so that they are general in Tn1(Q ∩ H2) and Tn2(Q ∩ H2)

respectively, and p3 so that it is general in Tn3(Q∩H1). Then the negative modifications

are towards specific factors in the decomposition (4), and so become simple twists:

NN (−1)[n1→ p1][n2→ p2][n3→ p3]

� ON (1)(−p1 − p2 − p3)⊕ON (−p3)⊕ON (−p1 − p2),

� OP1(−1)⊕OP1(−1)⊕OP1(−2)

under an isomorphism M � P
1, which has no global sections, as desired.

5 Degeneration with a rational quartic curve

Let X be a nondegenerate curve of degree d and genus g in P
4. Let (p1, q1), (p2, q2),

(p3, q3) be three pairs of general points on X . Let � ..= p1 + p2 + p3 + q1 + q2 + q3.

Denote by L i the 2-secant line through pi and qi . There is a unique fourth line M

meeting each of the L i (by, for example, intersection theory in the Grassmannian of

lines in P
4). Call L i ∩ M = mi . As X is nondegenerate, the union L1 ∪ L2 ∪ L3 ∪ M

spans P
4. Call this union

Y ..= X ∪�

(

(L1 + L2 + L3) ∪m1+m2+m3 M
)

,

which is a BN-curve by [7, Theorem 1.6]. We will use this particular degeneration to

prove interpolation for NY (−1) when Y is a curve of degree 11 and genus 8, and for

NY when Y is a curve of degree 9 and genus 6 (respectively degree 10 and genus 7).

Lemma 5.1 With notation as above,

(i) NY (−1) satisfies interpolation if

NY (−1)|X (−p1 − q1 − p2 − q2 − p3 − q3)

� NX (−1)[p1→q1][q1→ p1][p2→q2][q2→ p2][p3→q3][q3→ p3]

satisfies interpolation.
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(ii) NY satisfies interpolation if

NY |X = NX (p1 + q1 + p2 + q2 + p3 + q3)[p1→q1][q1→ p1]

[p2→q2][q2→ p2][p3→q3][q3→ p3]

satisfies interpolation. This vector bundle satisfies interpolation if the modified

normal bundle

N ′
X

..= NX [q1 + q2 + q3 → p1]

satisfies interpolation.

Proof As L1 ∪ L2 ∪ L3 ∪ M spans P
4, the three directions of the L i at the points mi

are independent.

By Lemma 2.17 (respectively Lemma 5.1), it suffices to prove interpolation for

NY (−1)|X ∪� (L1∪L2∪L3)(−m1 − m2 − m3) (respectively NY |X ∪� (L1∪L2∪L3)) in order

to deduce interpolation for NY (−1) (respectively NY ).

For each of the L i , the three lines Tpi
X , Tqi

X and M span P4, and so we similarly

have that NY |L i
� OL i

(2)⊕3. To prove interpolation for NY (−1) and NY , we are free

to pick our general points to include a choice of general point xi on each of the L i .

Twisting down by this point for each L i , we have

NY |L i
(−xi ) � OL i

(1)⊕3, NY (−1)|L i
(−mi − xi ) � OL i

(−1)⊕3.

To prove interpolation for NY (−1), by Lemma 2.15, we may peel off each line L i in

turn to reduce to proving interpolation for

NY (−1)|X (−p1 − q1 − p2 − q2 − p3 − q3).

To prove interpolation for NY , note that evaluation at the two points pi , qi ∈ L i � P
1

is an isomorphism

H0(OP1(1))⊕3 ev
−→ OP1(1)⊕3|pi +qi

.

Hence sections of NY (−x1 − x2 − x3) on X extend uniquely to X ∩ L1 ∩ L2 ∩ L3 and

then to all of Y . Therefore by Corollary 2.13, interpolation for NY (−x1 −x2 −x3) (and

hence for NY ) follows from interpolation for NY |X . The formula for NY |X follows

directly from Lemma 2.7.

Now limit p2 and p3 to p1; the corresponding modification is tree-like as q1, q2,

and q3 are independent. By the properties of Proposition 2.5, the resulting bundle is

therefore

NX (3p1 + q1 + q2 + q3)[p1→q1][q1→ p1][p1→q2][q2→ p1][p1→q3][q3→ p1]

� NX (p1 + q1 + q2 + q3)[p1 → q1 + q2 + q3][q1 + q2 + q3 → p1]

� NX (p1 + q1 + q2 + q3)[q1 + q2 + q3 → p1].
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Interpolation for this bundle therefore follows from interpolation for

NX [q1 + q2 + q3 → p1]. ��

5.1 Degree 11, genus 8

By Lemma 5.1, we may reduce interpolation for the twisted normal bundle of a gen-

eral BN-curve of degree 11 and genus 8 to interpolation for the modified normal

bundle NX (−1)[p1→q1][q1→ p1][p2→q2][q2→ p2][p3→q3][q3→ p3], where X

is a BN-curve of degree 7 and genus 3.

We will further degenerate using the following. As before, N ′
X denotes some mod-

ification of NX , which is isomorphic to NX over some open containing all of L . N ′
C

is then the bundle on C obtained by gluing N ′
X |C�C∩L to NC along this open.

Lemma 5.2 Let C be a BN-curve. Let L be a 2-secant line meeting C at two general

points x and y; write X for the union X ..= C ∪x+y L. Suppose that p1 and p2 are

general points on L and q1 and q2 are general points on C, and D1 and D2 are divisors

on C. If the bundle

N ′
C (−1)(y)[x → y][2y → x][D1→ x][D2→ x]

on C satisfies interpolation, then the bundle

N ′′
X

..= N ′
X (−1)[p1→q1][D1→ p1][p2→q2][D2→ p2] (5)

on X satisfies interpolation.

Proof Let x ′ ∈ Tx C and y′ ∈ TyC be choices of points on the tangent lines distinct

from x and y respectively. If we restrict the bundle N ′
X of (5) to L , we have

N ′′
X |L � NL(−1)(x + y)[x → x ′][y → y′][p1→q1][p2→q2] � OL ⊕OL(−1)⊕2,

which has one global section. We will do a calculation in local coordinates to more

precisely understand the behavior of this section at x and y as a meromorphic section

of NL(−1).

The twisted normal bundle NL(−1) � V ⊗OL is trivial of rank 3 on L (with

V � H0(NL(−1)). We may therefore assign, to points of P
4

� L , the corresponding

normal direction to L in PV . Choose appropriate coordinates for V so that

x ′ �→ [1:0:0], y′ �→ [0:1:0], q1 �→ [1:0:1], q2 �→ [0:1:1].

In addition let t be an affine coordinate on L � P
1 so that x corresponds to t = 0, y

corresponds to t = 1, and p1 and p2 correspond to t = a and t = b respectively. Then

the unique section of N ′
X |L up to scaling is given by (scalar multiples of) the tuple

σt =

[

a(t − b)

t
,
(1 − b)(t − a)

t − 1
, a − b

]
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as a meromorphic function valued in V . The image of this section under the restriction

map to x (i.e., t = 0) is

σ0 = [−ab, a(1 − b), a − b]

and under restriction to y (i.e., t = 1) is

σ1 = [a(1 − b), (1 − a)(1 − b), a − b].

By Lemma 2.12, it suffices to prove interpolation for the space of sections of N ′′
X |C

whose values at x and y are in the 1-dimensional subspace given by (σ0, σ1) in

N ′
C∪x+y L(−1)|x+y . As interpolation is an open condition, we may limit p1 and p2

to x , in which case σ0 and σ1 limit to

σ ′
0 = [0, 0, 0], σ ′

1 = [0, 1, 0].

Therefore the sections of N ′′
X |L must vanish at x and point towards y′ at y. By [1,

Lemma 8.4], the bundle N ′′
X |L [y → x] glues to N ′′

X |L [y → y′] at the point y. Therefore

it suffices to prove interpolation for the vector bundle

N ′
C∪x+y L(−1)[D1 → x][D2→ x]|C (−x)[y → x]

� N ′
C (−1)(y)[x → y][2y → x][D1→ x][D2→ x]

on C . ��

By [7, Theorem 1.6], we may degenerate our BN-curve of degree 7 and genus 3

to the union of a BN-curve of degree 6 and genus 2 and a 2-secant line L meeting

C at points x and y. Do this so the points p1 and p2 specialize on to L and the

remainder of the marked points specialize to C . Then we apply Lemma 5.2 with

N ′
X = NX [p3→q3][q3→ p3] and D1 = q1 and D2 = q2. We thus reduce to proving

interpolation for the bundle

NC (−1)(y)[x → y][2y → x][q1→ x][q2→ x][p3→q3][q3→ p3].

By [7, Theorem 1.6], we may further degenerate C to the union of a curve D of degree

5 and genus 1 and a 2-secant line M , meeting D at points z and w. Let the points p3

and q1 specialize to general points on L , and x , q3, q2, and y specialize to general

points on D. Again we apply Lemma 5.2 with p1 = p3, p2 = q1, q1 = q3, q2 = x ,

D1 = q2 and D2 = ∅. It therefore suffices to prove interpolation for the bundle

ND(−1)(y + w)[x → y][2y → x][q2→ x][q3→ z][2w→ z][z →w]

on D. We may limit w to x , to obtain the bundle

N ′
D

..= ND(−1)(x + y)[x → y][2y → x][q2→ x][q3→ z][2x → z][z → x],
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which has Euler characteristic 0. This bundle sits in a balanced exact sequence

0 → ND→x (−1)(y − q3 − 2x) → N ′
D

→ πx |
∗
D Nπx |D

(−1)(x − y − q2 − z)[x → y][q3→ z][2x → z] → 0.

Therefore by [1, Proposition 4.16] and the fact that as a nonspecial line bundle

ND→p(−1)(y − q3 − 2x) satisfies interpolation [1, Propsition 4.7], it suffices to

prove that

πx |
∗
D Nπx |D

(−1)(x − y − q2 − z)[x → y][q3→ z][2x → z]

� πx |
∗
D Nπx |D

(−1)(−y − q2 − z)[q3 + x → z][x → y + z]

� πx |
∗
D Nπx |D

(−1)(−y − q2 − z)[q3 + x → z]

satisfies interpolation as a vector bundle on D. As πx |
∗
DO(1)(y+q2+z) is a general line

bundle on D, it suffices to show that πx |
∗
D Nπx |D

[q3 + x → z] satisfies interpolation.

This is verified by publicly available code in [1, Appendix B] to prove interpolation

for certain modifications of normal bundles of nonspecial curves:

>>> good(Curve(4,1,3).add(P100,2))

True

5.2 Degree 9, genus 6

By Lemma 5.1, interpolation for the normal bundle of a general curve of degree 9 and

genus 6 follows from interpolation for the modified normal bundle

N ′
C

..= NC [q1 + q2 + q3 → p]

of a curve C of degree 5 and genus 1 in P
4. This is verified by publicly available code

in [1, Appendix B]:

>>> good(Curve(5,1,4).add(P100,3))

True

5.3 Degree 10, genus 7

As above, by Lemma 5.1, it suffices to show that for a BN-curve X → P
4 of degree

6 and genus 2, and p, q1, q2, q3 general points of X , the modified normal bundle

N ′
X = NX [q1 + q2 + q3 → p]

satisfies interpolation. This is verified by publicly available code in [1, Appendix B]:

>>> good(Curve(6,2,4).add(P100,3))

True
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6 Proofs of themain theorems

In this section we wrap up the preceding computations to prove the theorems and

corollaries quoted in the introduction.

6.1 Proof of Theorem 1.4

As interpolation is an open condition [2, Theorem 5.8], it suffices to find one BN-

curve C of every possible degree d and genus g (with ρ(d, g, 4) � 0) whose twisted

normal bundle NC (−1) satisfies interpolation. By Proposition 3.2, this follows for

all BN-pairs (d, g) /∈ {(6, 2), (8, 5), (9, 6), (10, 7)} from checking interpolation for

BN-curves with d and g in the following finite list:

{(9, 5), (11, 8), (12, 10), (13, 10), (13, 11), (14, 12)}.

For (d, g) ∈ {(12, 10), (13, 10), (13, 11), (14, 12)}, this was proved in Sects. 4.1–

4.4 using a degeneration containing a canonical curve. For (d, g) = (11, 8), this was

proved in Sect. 5.1 using a degeneration with a rational quartic curve as well as several

2-secant degenerations. Let us show that the twisted normal bundle NC (−1) of a

general BN-curve C of degree 9 and genus 5 satisfies interpolation. As χ(NC (−1)) =

14 ≡ −1 (mod 3), it suffices by Lemma 2.9 to show that for five general points

p1, . . . , p5, the twist down satisfies

h0(NC (−1)(−p1 − · · · − p5)) = 0.

As the genus of C is 5, the line bundle OC (1)(p1 + · · · + p5) is general of degree 14.

Therefore this vanishing follows from interpolation for the untwisted normal bundle

NC , which is a special case of [1, Theorem 1.3].

For the converse, we note that h1(NC (−1)) �= 0 if C → P
4 is a BN-curve of

degree and genus in {(8, 5), (9, 6), (10, 7)} by [8, Theorem 1.6]. Moreover, NC does

not satisfy interpolation if C → P4 is a BN-curve of degree 6 and genus 2. ��

6.2 Proof of Theorem 1.5

For any BN-curve C , if the twisted normal bundle NC (−1) satisfies interpolation, then

the untwisted normal bundle NC does as well [1, Proposition 4.11]. Therefore for all

BN-pairs (d, g) /∈ {(6, 2), (8, 5), (9, 6), (10, 7)}, this is a corollary of Theorem 1.4.

If C is of degree 6 and genus 2, then C is nonspecial and NC was already observed

to fail to satisfy interpolation in [1]. In Sects. 5.2 and 5.3 we proved interpolation for

(d, g) = (9, 6) (respectively (d, g) = (10, 7)).

A BN-curve C of degree 8 and genus 5 in P
4 is a canonical curve, which is a

complete intersection of three quadrics; its normal bundle is therefore

NC � (K ⊗2
C )⊕3.
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Interpolation for NC thus reduces to interpolation for K ⊗2
C , which holds since K ⊗2

C is

nonspecial [1, Proposition 4.7]. ��

6.3 Proof of Corollaries 1.2 and 1.6

When ρ(d, g, 4) � 0, write Mg,n(P4, d)◦ for the unique component dominating Mg of

the Kontsevich space of n-marked genus g curves of degree d in P
4. If n � f (d, g, 4),

and p1, . . . , pn are general points on C , then χ(NC (−p1 − · · · − pn)) � 0 and

interpolation for NC implies that h1(NC (−p1 − · · · − pn)) = 0. But the obstruction

to smoothness of the map extracting the image of the n marked points

Mg,n(P4, d)◦ → (P4)n

lies in H1(NC (−p1 − · · · − pn)); thus this map is smooth at the point ( f : C →

P4, p1, . . . , pn), and hence generically smooth. Therefore the map is dominant. For

degree 6 and genus 2, even though the normal bundle does not satisfy interpolation;

however it is still true that for 9 = f (6, 2, 4) general points p1, . . . , p9 on C , the twist

h1(NC (−p1 −· · ·− p9)) = 0. Therefore, the above evaluation map is still generically

smooth and a general curve of this degree and genus still passes through nine general

points [1, Corollary 1.4].

Similarly, fix a hyperplane H ⊂ P
4; then interpolation for NC (−1) implies that the

map extracting the section by H (when it is transverse) and the image of the n points

Mg,n(P4, d)◦ ��� Hd ×(P4)n,

defined by

( f : C → P
4, p1, . . . , pn) �→ ( f (C) ∩ H , f (p1), . . . , f (pn)),

is smooth, and hence dominant, for n � f (d, g, 4) − d. In the case (d, g) = (6, 2), if

p1, p2, p3 are general points on C , then as 3 > 2, we have that OC (1)(p1 + p2 + p3)

is a general line bundle of degree 9 = f (6, 2, 4). Therefore the fact that C passes

through nine general points implies that its hyperplane section is general and it passes

through three independently general points.

We conclude with the three cases (d, g) ∈ {(8, 5), (9, 6), (10, 7)}. In these cases

h1(NC (−1)) �= 0, and hence the hyperplane section is not a general collection of d

points in P
3; however d − 1 of these points are general, and all d points are general

subject to the condition that they are distinct points on the complete intersection of

11 − d quadrics [8, Theorem 1.6].
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6.4 Degree 8, genus 5

Let D = p1 +· · ·+ p7 be a collection of d −1 points in a general hyperplane section,

then we will show that NC (−D) satisfies interpolation. We have,

χ(NC (−D)) = 15 � genus(C) · rk(NC ).

Therefore interpolation follows from interpolation for NC as in [1, Proposition 4.12].

As above this suffices to show that a general curve of degree 8 and genus 5 passes

through f (8, 5, 4) = 12 points that are general subject to the constrain that seven of

them lie in a hyperplane.

In fact, something a priori stronger follows. The hyperplane section of a curve of

degree 8 and genus 5 (which is the complete intersection of three quadrics in P4) is the

complete intersection of three quadrics in P
3; thus, some subset D of seven of them

determines the 8th. Therefore any canonical curve in P
4 passing through these seven

general points D in a hyperplane passes through the 8th point automatically. In this

way, the previous result implies that one may pass a curve of degree 8 and genus 5

through f (d, g, 4) + 1 points that are general subject to the constraint that d lie in a

hyperplane and are distinct points on the complete intersection of 11 − d quadrics.

6.5 Degree 9, genus 6

We first show that for D = p1 + · · · + p8 a collection of d − 1 general points in

a hyperplane, NC (−D) satisfies the property of interpolation. As above this implies

the corollary about passing a general such curve through f (d, g, 4) points subject

to the constraint that d − 1 lie in a hyperplane. When (d, g) = (9, 6), we have

χ(NC (−D)) = 16. It suffices, therefore, (by Lemma 2.9) to show that for a general

divisor � of degree 5, the twist down has no higher cohomology:

h1(NC (−� − D)) = 0.

As D = OC (1)(−p), with p general on C , the above twist NC (−� − D) �

NC (−1)(p − D). If � is a general collection of five points, then OC (p − D), and

hence OC (−1)(p − D), is a general line bundle. The result therefore follows from

Theorem 1.5.

In a slightly different direction, we show that a curve of degree 9 and genus 6 in

P
4 passes through f (9, 6, 4) = 13 points that are general subject to the constrain that

d = 9 of them lie in a hyperplane and lie on the complete intersection of two quadrics,

i.e., an elliptic normal curve. Note that an elliptic normal curve in P
3 passes through

eight general points and is determined by eight general points on the curve.

Fix nine general points p1, . . . , p9 on an elliptic normal curve E ⊂ H � P
3 and

five other general points q1, . . . , q5 in P
4. We will show that there exists a curve of

degree 9 and genus 6 through the first 13 points p1 + · · · + p9 + q1 + · · · + q4 but not

through all 14 = f (9, 6, 4) + 1 points.
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Let L be a line in P
4 which is general relative to p1, . . . , p7 and q1, q2, q3 (and so

in particular disjoint from p1, . . . , p7, q1, q2, q3).

Lemma 6.1 The subscheme

q1 ∪ q2 ∪ q3 ∪ p1 ∪ · · · ∪ p7 ∪ L ⊂ P
4

lies on a smooth del Pezzo surface of degree 4.

Proof We will show that if S is some del Pezzo surface, L is a line on S, and q1, q2, q3

are general points on S and p1, . . . , p7 are general points in a hyperplane section of

S, then

H0(NS) → H0(NS|q1∪q2∪q3∪p1∪···∪p7∪L)

is surjective, and h1(NS) = 0, so that these points and line are general by deformation

theory. As NS � OS(2)⊕2, we see from Kodaira vanishing that h1(NS) = 0. As the

points qi are general on S and so impose independent conditions on sections of a line

bundle, it suffices to show that

H0(OS(2)) → H0(O(2)|p1∪···∪p7∪L)

is surjective, for which it suffices to show the composition

H0(OP4(2)) → H0(OP3∪L(2)) → H0(O(2)|p1∪···∪p7)⊕ H0(OL(2))

is surjective. Consider the second map first; the map evidently surjects onto

H0(OL(2)), so it suffices to check that the kernel surjects onto H0(Op1∪···∪p7(2)).

Write p = L ∩ H . Note that any quadric on H vanishing at p can be extended to a

quadric on P
4 vanishing on L (for example by pullback under the projection map from

some point on L � {p}). The restriction of the kernel to H is therefore isomorphic

to H0(OP3(2) ⊗ Ip), where Ip is the ideal sheaf of the point p, which surjects onto

H0(Op1∪···∪p7(2)) as the eight points p1, . . . , p7, p are general in P3. ��

To complete the proof, define a point p on E by the relation

OE (p1 + · · · + p9)(−2) = OE (p).

Note that p is general in H independent from p1, . . . , p7, q1, q2, q3, q4. Let L be the

line in P
4 joining p and q4. Then by Lemma 6.1 above, there exists a smooth del Pezzo

surface S through q1 ∪ q2 ∪ q3 ∪ p1 ∪ · · · ∪ p7 ∪ L . The hyperplane section S ∩ H

is an elliptic normal curve containing the 8 points p1, . . . , p7 and p on E , and hence

must be equal to E . It therefore contains the 13 points p1, . . . , p9 and q1, . . . , q4.

The curve class 2H + L is base-point-free of degree 9 and arithmetic genus g

satisfying

2g − 2 = (H + L) · (2H + L) = 8 + 3 − 1 = 10 �⇒ g = 6.
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The general member of this linear system on S is therefore a smooth (hence BN by [6])

curve of degree 9 and genus 6 in P
4. It suffices only to show that such a curve can be

passed through 4 general points on S and 8 general points in a hyperplane section. By

deformation theory, it suffices to show that h1(NC/S(−p1−· · ·− p8−q1−· · ·−q4)) =

0. We have

h1
(

NC/S(−p1 − · · · − p8 − q1 − · · · − q4)
)

= h1
(

OC (2H + L)(−p1 − · · · − p8 − q1 − · · · − q4)
)

= h1(OC (H + L)(p9 − q1 − · · · − q4))

= h1(KC (p9)(−q1 − · · · − q4)).

As h1(KC (p9)) = 0, and q1, . . . , q4 are general points, the twist KC (p9)(−q1 −· · ·−

q4) is still nonspecial as desired.

Finally let us show that there does not exist a curve of degree 9 and genus 6 passing

through all 14 points p1, . . . , p9 and q1, . . . , q5. The strategy will be similar to the

constructive method above, however we will find a smooth del Pezzo containing the

first eight (general) points p1, . . . , p8, and q1, . . . , q5; using the fact that any curve of

degree 9 and genus 6 containing these points must lie on this surface, we show that

such a curve cannot pass through p9.

Lemma 6.2 There is a unique smooth del Pezzo surface of degree 4 through the points

p1, . . . , p8, q1, . . . , q5,

that are general subject to the constraint that the pi lie in a general hyperplane.

Proof First, we show that there is a unique pencil of quadrics passing through

p1, . . . , p8, q1, . . . , q5. As there is a 14-dimensional projective space of quadrics in

P
4, this amounts to asserting that the 13 points above impose independent conditions

on sections of OP4(2). Consider the surjective restriction map to P
3

H0(OP4(2)) → H0(OP3(2)).

As the eight points p1, . . . , p8 are general in P
3, they impose independent conditions on

sections H0(OP3(2)) and thus sections of OP4(2). The points q1, . . . , q5 then impose

independent conditions on sections vanishing at p1, . . . , p8 as they are general points

in P
4.

Next, let S be a (smooth) del Pezzo surface and let p1, . . . , p8 be a general collection

of points on S ∩ H = E a general hyperplane section. Let q1, . . . , q5 be five other

general points on S. Denote by � the 0-dimensional subscheme of the points p1+· · ·+

p8 + q1 · · · + q5. We will show that the map from such marked del Pezzo surfaces to

H8×(P4)5 is dominant, by deformation theory, by observing that NS/P4 has no higher

cohomology and that the restriction map

H0(NS) → H0(NS|�)
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is surjective. Indeed, NS � OS(2)⊕OS(2) is nonspecial as OS(2) is ample and so

has no higher cohomology by Kodaira vanishing. To show the surjectivity, note that

the restriction map H0(OS(2)) → H0(OE (2)) is surjective, again for example by

Kodaira vanishing, as E is in the class OS(1). Since the points p1, . . . , p8 are general

on E , they impose independent conditions on H0(OE (2)); therefore they also impose

independent conditions on sections of OS(2). The points q1, . . . , q5, being general,

impose independent conditions on sections of OS(2) vanishing at p1, . . . , p8. ��

Now consider any curve C of degree 9 and genus 6 in P
4 passing through � (by

Corollary 1.2 there exist such curves). By Riemann–Roch, h0(OC (2)) = 18+1−6 =

13, and so C lies on at least a pencil of quadrics in P
4. As the points of � lie on a

unique, and general, such pencil, C must also lie on a unique such pencil, and so be

contained in the base locus S, a del Pezzo surface of degree 4. As the Picard group of

S is countable, C is in one of countably many possible curve classes on S. Therefore

C ∩ H ⊂ E is in one of only countably many linear equivalence classes of degree

9 divisors on E . This necessarily contains p1 + · · · + p8, and so the 9th point of

intersection is in one of only countably many classes on E . In particular, it cannot be

a general point on E .

6.6 Degree 10, genus 7

Let D = p1 + · · · + p9 be a collection of points on a general hyperplane section

of a curve C of degree 10 and genus 7 in P
4. We will show that NC (−D) satisfies

interpolation, therefore deducing that C passes through f (10, 7, 4) = 14 points that

are general subject to the constraint that nine of them lie in a hyperplane. In this case

we have

χ(NC (−D)) = 17 ≡ −1 (mod 3).

Therefore it suffices to show that for a general divisor � of degree 6,

h0(NC (−D − �)) = 0.

As before writing D = OC (1)(−p), with p general on C , we have that OC (−1)(p−D)

is general. Therefore this result again follows from Theorem 1.5.

In [8] it was shown that the hyperplane section H ∩ C of a curve C of degree

10 and genus 7 is a general collection of 10 points on a quadric in H � P
3. We

show here that there exists a curve of degree 10 and genus 7 through a collection of

f (10, 7, 4) + 1 = 15 points that are general subject to the condition that 10 lie on a

quadric in H .

We begin in a similar way to our approach for (9, 6). Fix general points p1, . . . , p10

on a quadric Q in H � P
3, and five more general points q1, . . . , q5 in P

4.

Lemma 6.3 There exists a unique smooth quadric through the 14 points

p1, . . . , p9, q1, . . . , q5,
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that are general subject to the constraint that the pi lie in a hyperplane. (Equivalently

through the 15 points p1, . . . , p10, q1, . . . , q5 that are general subject to the constraint

that the pi lie in a quadric in a hyperplane.)

Proof As there is a 14-dimensional projective space of quadrics in P
4, it suffices to

show that these 14 points impose independent conditions on sections of H0(OP4(2)).

The points p1, . . . , p9 impose independent conditions on H0(OP3(2)), being general

on P
3. Furthermore, restriction is a surjection

H0(OP4(2)) → H0(OP3(2))

so the points p1, . . . , p9 impose at least as many conditions on H0(OP4(2)). The

general points q1, . . . , q5 impose independent conditions on sections of OP4(2) van-

ishing at p1, . . . , p9, and so the whole collection imposes independent conditions on

quadrics.

Now we show that this quadric is general. As above, let S be a general quadric in P
4

and let q1, . . . , q5 be general points on S and p1, . . . , p9 be general points on H ∩ S.

Then it suffices by deformation theory to verify that NS/P4 has no higher cohomology

and that

H0(NS) → H0(NS|p1∪p2∪···∪p9∪q1∪···∪q5
)

is surjective. To show NS � OS(2) has no higher cohomology, we use the exact

sequence of sheaves

0 → OP4(n − 2) → OP4(n) → NS(n) � OS(n) → 0,

and the vanishing of the higher cohomology of OP4(n) and OP4(n − 2) for n � 1,

which shows that OS(n) has no higher cohomology for n � 1 (in particular for n = 2).

To show that these 14 points impose independent conditions on sections of OS(2),

we first note that the restriction map H0(OS(2)) → H0(OS∩H (2)) is surjective

(since h1(OS(1)) = 0 by the above). Since p1, p2, . . . , p9 are general on S ∩ H ,

and h0(OS∩H (2)) = h0(OP1 ×P1(2, 2)) = 9, they impose independent conditions on

sections of OS∩H (2) and thus on sections of OS(2). Since q1, q2, . . . , q5 are general,

they impose independent conditions on

ker
(

H0(OS(2)) → H0(OS∩H (2))
)

� H0(OS(1)).

Combining this, our 14 points impose independent conditions on sections of OS(2),

as desired. ��

We showed above that there exists a curve C of degree 10 and genus 7 through

p1, . . . , p9, q1, . . . , q5. As h0(OC (2)) = 20 + 1 − 7 = 14, the curve C lies on a

quadric. As the 14 points lie on a unique quadric S (which is smooth if the points are

general), C lies on this quadric.

Finally we claim that the rank 2 bundle NC/S(−1) satisfies interpolation — this is

sufficient to prove the desired result as the points p1, . . . , p10 are general points in a
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hyperplane section of this quadric and q1, . . . , q5 are general points on this quadric.

From

0 → NC/S(−1) → NC (−1) → OC (1) → 0,

we have χ(NC/S(−1)) = 10. It suffices to show that after twisting down by five

general points q1, . . . , q5 on C , we have h0(NC/S(−1)(−q1 − · · · − q5)) = 0. By the

above exact sequence, it suffices to show that

h0(NC (−1)(−q1 − · · · − q5)) = 0.

To show this, we will degenerate C to the union of a curve X of degree 6 and genus 2 and

a degenerate rational normal curve M ∪m1+m2+m3 (L1 ∪ L2 ∪ L3), where L i ∩ M = mi

and L i ∩C = zi +wi is a 2-secant line as in the setup of Sect. 5. Specialize the points

qi so that two lie on M and one lies on each of the L i . By [7, Theorem 1.6] this is a

BN-curve and as in Lemma 5.1 (using Lemma 2.17) we have that on global sections

h0(NC (−1)(−q1 − · · · − q5))

= h0
(

NX (−1)[z1→w1][w1→ z1][z2→w2][w2→ z2][z3→w3][w3→ z3]
)

.

Further degenerate X as in Lemma 5.2 to the union of a curve Y of degree 5 and genus

1 and a 2-secant line L meeting Y at points x and y. The points x1 and x2 specialize

onto L and the remainder specialize onto Y . The union is a BN-curve and the global

sections glue to give that

h0
(

NY (−1)(y)[x → y][2y → x][w1→ x][w2→ x][z3→w3][w3→ z3]
)

= h0
(

NX (−1)[z1→w1][w1→ z1][z2→w2][w2→ z2][z3→w3][w3→ z3]
)

= h0(NC (−1)(−q1 − · · · − q5)).

The bundle

N ′
Y

..= NY (−1)(y)[x → y][2y → x][w1 → x][w2 → x][z3 → w3][w3 → z3]

sits in an exact sequence

0 → NY→x (−1)(y − x − z3 − w3) → N ′
Y

→ Nπx |Y (−1)(−y − w1 − w2)[x → y][z3→w3][w3→ z3]→0

NY→x (−1)(y−x −z3 −w3) � OY (x + y−z3 −w3) is a general line bundle of degree

0 on an elliptic curve, and hence has no global sections. It thus remains to show

h0
(

Nπx |Y (−1)(−y − w1 − w2)[x → y][z3→w3][w3→ z3]
)

= 0.

Since χ(Nπx |Y (−1)(−y − w1 − w2)[x → y][z3→w3][w3→ z3]) = −1 and

OC (1)(y + w1 + w2) is a general line bundle of degree 2 on an elliptic curve, it
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suffices to show Nπx |Y [x → y][z3→w3][w3→ z3] satisfies interpolation. Limiting y

to w3, it suffices to show interpolation for the bundle

Nπx |Y [x → w3][z3→w3][w3→ z3].

This is verified by publicly available code in [1, Appendix B]:

>>> good(Curve(4,1,3).add(P101).add(P100))

True
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