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Abstract

We compute the number of general points through which a general Brill-Noether curve
in P* passes. We also prove an analogous theorem when some points are constrained
to lie in a transverse hyperplane. As explained in [10], these results play an essential
role in the first author’s proof of the Maximal Rank Conjecture [9].

1 Introduction

Interpolation of curves through points is a fundamental problem in algebraic geometry
whose study dates back to antiquity. The first cases that were studied historically were
rational plane curves. Some of these appear in Euclid’s Elements, such as the first
postulate that there exists a line through two points, and Proposition 5 from book IV,
which shows that every triangle may be inscribed in a circle (i.e., that there exists
a circle through any three non-collinear points). Other classical results include the
formula—often attributed to Lagrange, but originally discovered by Waring in 1779
[14]—for the unique degree d polynomial with specified values at d + 1 distinct inputs.

The modern study of interpolation has focused on extensions of these results to
curves of higher genus in higher-dimensional projective spaces. The natural setting
for this problem is to consider Brill-Noether curves. By the Brill-Noether Theorem,
when p(d, g,r) = (r + 1)d —rg — r(r + 1) > 0, there is a unique component
Mg (P, d)° of Kontsevich’s space Mg (P, d) of stable maps dominating Mg, which
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is of dimension
(r+1Dd—(r—=3)(g—-1.

We call curves parameterized by this component Brill-Noether curves (BN-curves).
Since passing through a point in P" is expected to impose r — 1 independent conditions,
BN-curves are expected to interpolate through

Fdgor) = {(r +1d—- @ —3)(g— I)J

r—1

general points. While there are known exceptions in low-dimensional projective
spaces, we expect:

Conjecture 1.1 For all but finitely many tuples (d, g, r), a Brill-Noether curve of
degree d and genus g in P" interpolates through f(d, g, r) general points (and no
more).

This conjecture has historically attracted significant attention. A related question for
plane curves (i.e., r = 2) was investigated using denergation by Hirschowitz in [5].
When r = 3, Perrin [11] investigated Conjecture 1.1 using liason, and Atanasov [2]
proved it when d > g + 3. The conjecture for r = 3 was finally settled by the second
author in [13]. In higher dimensions, asymptotic results when d is large compared
with g and r have been obtained by Ballico [3]. The most complete result for general
r is [1, Theorem 1.3], where the case d > g + r of the conjecture was settled.

The interpolation problem is hardest when the degree is small relative to the genus
and dimension of the projective space. This is for two reasons:

e All known counterexamples occur when the degree is as small as possible given
g and r. Consequently, any techniques which can probe curves where d is small
relative to g and r, must be complicated enough to work in exactly the cases where
the conjecture is true.

e The dimension of the space of maps from a curve of genus g to P” is a increasing
function of the degree. Therefore the map may only be degenerated in limited ways
when the degree is small. In the range d > g + r, a BN-curve can be degenerated
to a union of lines, where each line is attached inductively to general points on
the curve. Such degenerations are only available in this range, so methods of [1]
cannot hope to probe the range d < g + r without new ideas.

Outside of the results of Vogt [13] when r = 3 and Stevens [12] when d = 2r and
g = r + 1, Conjecture 1.1 has remained open in the range d < g + r in higher-
dimensional projective spaces.

Additionally, one can study a variant of the above conjecture where we constrain
points to lie on a hypersurface. In low dimensions (r < 4), the intersection of a
general Brill-Noether curve of degree d and genus g with a transverse hypersurface
S of degree n in P” exhibits behavior that does not appear in higher-dimensional
projective spaces (r > 5). Namely, for exactly five values of (r,n) — (r,n) €
{2,D,(2,2),3,1),3,2), (4, 1)} — this intersection is a general set of dn points
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Interpolation for Brill-Noether curves in P* 237

on S for all but finitely many (d, g) [8]. In these five cases, it is therefore natural to
ask a stronger question: can one pass a general Brill-Noether curve of degree d and
genus g through f(d, g, r) points which are general subject to the constraint that dn
of them lie on a transverse hypersurface of degree n? This question is straightfor-
ward for (r, n) € {(2, 1), (2, 2)}, and work of [8,13] answer this stronger question for
(r,n) = (3, 1) and (r, n) = (3, 2), so the only remaining case is (r, n) = (4, 1).

In this paper, we focus on the case r = 4. This is a natural question because it is
both the smallest unsolved dimension for the interpolation problem and the largest
dimension in which the above phenonmena occur. From our main Theorem 1.4, we
deduce a complete answer to all of the above questions when r = 4:

Corollary 1.2 A general Brill-Noether curve of degree d and genus g in P* passes
through a set of f(d, g, 4) points which are general subject to the constraint that d of
them lie on a transverse hyperplane if and only if

(d.g) ¢1{(8,5).(9,6), (10,7}

Remark 1.3 The geometry of these three cases is as follows:

e In these three cases, the statement fails because the section by a transverse hyper-
plane of the general curve is not a general set of d points in the hyperplane; instead
itis a set of d points which are general subject to the condition that they are distinct
points which lie on a complete intersection of 11 — d quadrics.

e Nevertheless, for (d, g) € {(8,5), (10, 7)}—butnot for (d, g) = (9, 6)—a general
Brill-Noether curve of this degree and genus still passes through f(d, g,4) + 1
points which are general subject to the constraint that d of them lie on a transverse
hyperplane and are distinct points which lie on a complete intersection of 11 — d
quadrics.

e This fails for (d, g) = (9, 6) because a general Brill-Noether curve of this degree
and genus lies on a quartic del Pezzo surface in P*. However, such a curve still
passes through f(d, g, 4) points which are general subject to either the constraint
that d of them lie on a transverse hyperplane and are distinct points which lie on a
complete intersection of 11 — d quadrics, or the constraint that d — 1 of them lie
on a transverse hyperplane.

In addition to being interesting in their own right, these results have already found
applications in other work. As outlined in [10], the proof of the Maximal Rank Con-
jecture revolves around constructing curves through sets of points, some of which are
constrained to lie in hypersurfaces, and the results of the present paper play a key role.

We deduce these results by studying the normal bundle N¢ (respectively the twisted
normal bundle Nc(—1)) for C a general Brill-Noether curve. We say that a vector
bundle E on a curve C satisfies interpolation if it is nonspecial (h'(E) = 0) and for
a general effective divisor D of any degree, either

W (E(=D)) =0, or h'(E(~D)) =0.
The main result is then:
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238 E. Larson, |. Vogt

Theorem 1.4 Let C be a general Brill-Noether curve of degree d and genus g in P*
Then Nc(—1) satisfies interpolation if and only if

(d,g) ¢1{(6,2),(8,5),(9,6), (10, 7)}.

Furthermore, if D is an effective divisor of degree d — 1 supported in a general
hyperplane section, then Nc(— D) satisfies interpolation if and only if

(d,g) #(6,2).

Using Theorem 1.4, some additional work in the cases (d, g) € {(8, 5), (9, 6), (10, 7)}
yields:

Theorem 1.5 Let C be a general Brill-Noether curve of degree d and genus g in P*
Then N satisfies interpolation if and only if

(d,g) #(6,2).
In turn, we deduce an answer to the first question posed earlier for r = 4:

Corollary 1.6 A general Brill-Noether curve of degree d and genus g in P* passes
through a set of f(d, g, 4) general points, with no exceptions.

The main techniques in this paper are related to those in [ 1,8], namely we degenerate to
reducible curves. As interpolation is an open condition, it suffices to find one BN-curve
of each relevant degree and genus whose (twisted) normal bundle satisfies interpola-
tion. We achieve this by specializing to nodal curves in the boundary of Mg P d)°,
where we can relate interpolation for the normal bundle of the union to interpolation
for some modifications of the normal bundles of the components. The degenerations
here, though, are necessarily more complicated than those in [1], as degenerating to
the union of a curve and a 1- or 2-secant line alone cannot hope to apply to special
curves where d < g + r. We employ three primary classes of degenerations.

First, as developed in [8], we degenerate to a BN-curve which is the union of a curve
X C H ~ P3 in a hyperplane and a nonspecial curve Y, transverse to H, meeting X
transversely at a finite set of specified points. This allows us to leverage the known
interpolation results in the nonspecial range [1] and in P3 [13] to inductively prove
interpolation for all BN-curves from a finite set of base cases. Resolving these base
cases consumes the remainder of the paper.

The second type of degeneration is to a connected nodal curve containing a canon-
ical curve D C P* as well as three 2-secant lines to D. Using the geometry of the
canonical curve, in particular the fact that Np(—1) ~ K %ﬁ, we prove a delicate degen-
eration lemma to reduce to the problem of interpolation for the normal bundle of the
union to interpolation for a simple modification of the normal bundle of the remainder.

The final specialization is to the union of a degenerate rational normal quartic curve
meeting the other component in six points. The rational normal quartic curve is the
union of three 2-secant lines, and the unique fourth line meeting all three. We hope
that this technique is robust, and that some variant may be useful for related problems.
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Interpolation for Brill-Noether curves in P* 239

The paper is organized as follows. In Sect. 2 we briefly recall basic facts about mod-
ifications of vector bundles on curves and the technique of degenerating to reducible
curves to prove interpolation. In Sect. 3 we employ the first degeneration to the union
of a curve in a hyperplane and a curve transverse to the hyperplane to reduce to check-
ing a finite set of cases. The canonical curve degeneration lemma is in Sect. 4 and
the degeneration with the rational quartic curve is in Sect. 5. At this point all of the
difficult work has been done, and we collect loose ends in Sect. 6 to prove the main
theorems.

2 Preliminaries
2.1 Notation

In this paper, we deal with the Kontsevich space compactification of Brill-Noether
curves of degree d and genus g in P, In particular, for the remainder of the paper, a
curve C — P" is shorthand for a stable map f: C — P". In all of our computations,
we will assume that the map f is unramified, so that the normal sheaf of the map,
which we will denote by N¢ when the map f is implicit, or N7 to draw attention to
the map, is a vector bundle and its cohomology controls the deformation theory of
f. A general such map is an embedding of a smooth curve, and so N is isomorphic
to the normal bundle of the embedded smooth curve. The only subtlety arises when
degenerating such curves.

Suppose that f: C — P" and g: D — P” are curves of degree and genus (d, g)
and (d, g') respectively, and {p;}ic; € C and {g;};c; € D are points such that

f(pi) =g(g;), forall iel.

Write I' = f({pi}) = g({¢:}). Let C Ur D denote the nodal curve obtained by gluing
pi € Ctog; € D, mapped to P" via the stable map

fUg:CUrD — P,

If C > P" and D — P are curves passing through a finite set of points I' C P,
then we use C Ur D to denote the same construction for some choice of {p;} and {g;}
mapping isomorphically onto I under f and g respectively.

Note that the curve C Ur D is of degree d + d’ and genus g + g’ +# 1 — 1 even if
f(C) and g(D) meet away from I". This is our primary interest in using the Kontsevich
space compactification.

2.2 Modifications of vector bundles
In this section we recall some basic facts about modifications of vector bundles on

curves to streamline the coming computations. For a more detailed exposition, see [1,
Sections 2-3].
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240 E. Larson, |. Vogt

Definition 2.1 Let E be a vector bundle on a variety X and let D C X be an effective
Cartier divisor. Suppose that U C X is an open subset containing D and that ' C E|y
is a subbundle defined on U. Then the modification of E at D towards F, denoted
E[D — F], is defined by the exact sequence

0— E[D—F]— E — (E/F)|p — 0.

The reason for the terminology is that sections of the modification E[D — F] “point
towards F”” when restricted to the divisor D:

HY%E[D— F)) ={0 € HYE) :o|p € H*(F|p)}.

The modified bundle E[D — F]isisomorphic to E whenrestricted to X \. D. Therefore
given another divisor D’ C X ~. D and another subbundle F’' C E, we may form the
multiple modification

E[D— F][D'— F']
taking our open set U = X ~. D. In this setting
E[D— F][D'— F'l~ E[D'— F'l[D— FJ;

however we will need multiple modifications in a stronger setting in which D and D’
are allowed to meet. For that reason, we have the following definition:

Definition 2.2 Let {F; € E|y,}icr be a finite collection of subbundles of E defined
on open neighborhoods U; of a point x € X. We say that this collection is tree-like at
x € X if for all index subsets I’ C I, either

o the fibers {Fj|,};e;r C E|, are linearly independent, or
o there are distinct indices i, j € I, and an open U C U; N U; containing x such
that Fi|ly C Fjly.

Definition 2.3 A modification datum M for a vector bundle E is a finite collection of
tuples {(D;, U;, Fi)}icr, where D; is an effective Cartier divisor on X, and U; C X is
an open subset containing D;,and F; C E|y, is asubbundle. We say that a modification
datum is tree-like if for all x € X, the collection of subbundles { F; C E|y, : x € D;}
is tree-like at x.

The key result is then the following:
Proposition 2.4 ([1, Proposition 2.17]) There is a bijection ¢ between modification
data M for E such that (D, U, F) U M is tree-like and modification data M’ for

E[D — F] such that (D, U, F) U M’ is tree-like. This bijection is compatible with
pullbacks and restricts to the identity when D = @.
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Interpolation for Brill-Noether curves in P* 241

We may therefore recursively define E[M], for M = (D, U, F) U N by
E[M]:= E[D— F]lp(N)].
For simplicity, when M = {(D;, U;, F;)}1<i<n, we will write
E[M] = E[Di— Fi]---[Dy— Fy].

We have the following nice properties of tree-like modifications:

Proposition 2.5 ([1, Propositions 2.20, 2.21, 2.23]) Let E be a vector bundle on X
and let M be a tree-like modification datum. Then we have

o (Commuting modifications) If M’ is any reordering of M, then E[{M] ~ E[M'].

e (Commuting with twists) If D is any effective Cartier divisor, we have E[M](D) ~
E(D)[M].

o (Combining modifications to the same bundle) If D and D’ are effective Cartier
divisors, we have

E[D— F][D'— F]~ E[D + D'— F].
e (Combining modifications at the same divisor) If F| and F, are independent, then
E[D— F|][D— F;] ~ E[D— F1® F;](—D).

Remark 2.6 By the curve-to-projective extension theorem, vector subbundles of a vec-
tor bundle E on a curve C are naturally in bijection with vector subbundles of E|c-_p
for any divisor D disjoint from Cging. Since E|c< p >~ E[D— Fl|c< p, vector sub-
bundles of E are thus in bijection with vector subbundles of E[D — F]. This implies
the analog of Proposition 2.4 for arbitrary collections of modifications (i.e., if we drop
the tree-like assumption on both sides).

However, we still need the language of tree-like modifications for two reasons. First,
the properties of Proposition 2.5 will not, in general, hold when the modifications are
not tree-like.

Second, we need the more general formalism of modifications on arbitrary varieties
in order to “limit” various modifications together by considering vector bundles on the
total space of a family of curves, see Proposition 2.8 below for an illustrative example.
Compatibility with base-change guarantees that the results agrees with the expected
result on each curve.

We will deal primarily with modifications of the normal bundles of curves C — P”

towards pointing bundles N¢c_, 5, for A C P alinear space of dimension y. To recall,
suppose that the locus

Uen={peC:T,CNA=a}
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242 E. Larson, |. Vogt

is dense and contains the singular locus of C. Then on Uc A, we suggestively define
Nc—aluc. s to be the kernel of the map

Nclven = Naaly s

where 7 denotes the map of projection from A, and Ny, Ve is the normal sheaf of

TAlUC 4 -

By our assumptions on Uc, 5, the curve-to-projective extension theorem implies that
there is a unique vector subbundle Nc—. o € N agreeing on Uc, a with Ncaluc -
When modifying towards a pointing bundle, we will write

Nc[D— A]l .= Nc[D— Nc_pl.

These modifications naturally arise when computing the restrictions of normal bundles
of nodal curves to the irreducible factors, as in the following fundamental result of
Hartshorne and Hirschowitz.

Lemma 2.7 ([4, Corollary 3.2]) Let C{Ur Cy be a nondegenerate nodal curve in P,
with T' = {p1, ..., pa}. For each i, let p. be a choice of point on the tangent line
T, C1 and let p}' be a choice of point on the tangent line Ty, C2. Then we have

Neyureley = Ney(D)p1— pil-- - [pa— Pyl
NC] U[‘C2|C2 x~ NCg(F)[P1_>P/1] e [Pnﬁpil]

As indicated above, we will make ample use of the fact that the semicontinuity theorem
guarantees that interpolation for a vector bundle E on C follows from interpolation
for some specialization of E. We make this precise in the following example, but will
omit these details in the future.

Proposition 2.8 Let C — P be a curve, and py and p; distinct points on C. Let g1
and q be distinct points in P".

() If p2 is general and Ty, C, q1, q2 span a IP3, interpolation for

Nclpi— qillpi— q21 =~ Nc(—=pDIp1 — q1 + q2]

implies interpolation for Nc[p1— q11[p2— q2].
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Interpolation for Brill-Noether curves in P* 243

(i) If g2 is general and T,,C, q1 span a P2 interpolation for

Nclpi— qillp2—q1] = Nclpi + p2 — q1]

implies interpolation for Nc[p1— q11[p2— q2].

Proof For part (i), let B = C and let A C B x C denote the diagonal. Write P; for the
divisor B x{p;} C BxC.Letm: BxC — Bandm,: BxC — C denote the two
projections. Then we have inclusions of vector bundles on B x C:

ﬂ;NC—n]l - N;Nc, H;Nc_mz - ﬂ;Nc.

By our assumption that T, C, q1, g2 are in linear general position, the modification
datum

M = {(P;, BxC,myNc—q,), (A, BxC,myNcy,)}

istree-like at ANP; = (p1, p1) € B x C and hence is tree-like. Therefore the multiple
modification

3 Nc[M] = w5 Ne[Pi— qi1[A — ¢2]

is a vector bundle on B x C, which restricts to Nc[p1— q11[p2— ¢2] on the fiber
nf](pz) and Nc[p1— q1l[p1— q1] on the fiber ﬂf](pl). By the semicontinuity
theorem, interpolation for the second implies interpolation for the first with p, general,
proving part (i).

For part (ii), let B = P". It is shown in [1, Section 5] that as the linear space g2
varies in B, the open subsets Uc 4, C C fit together into an open set Ugxc,g, C
B x C. Furthermore, over this open subset the pointing bundles N¢_,4, fit together
into a vector bundle, which we will abusively also denote Nc—4,, on Ugxc,4,- By
assumption, T, C Ng1 = &, s0 (g1, p2) € Upxc,q,, and therefore after shrinking B
we may assume that the divisor P> C Upxc,q,. Therefore

(P21 UCXB,qz: NC—)qz)
is a modification datum for 7} N¢, and the modification data
M = {(Pl, BxC, JTQ*NC—>q1), (Pz, Uxc.q» Nc—m)}

is vacuously tree-like. Therefore the multiple modification nik Nc[M]isavector bundle
on Upxc,q, Which restricts to

Nelpi—>qillp2—q1]
over the special point ¢; € B and to Nc[p1— q1][p2— ¢2] for general g5 in a neigh-

borhood of g; in B. Interpolation for the second therefore follows from interpolation
for the first by the semicontinuity theorem. O
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244 E. Larson, |. Vogt

In the above proof, the generality assumptions on the points in C and linear subspaces
in P guaranteed that the necessary modifications on the total space of the family of
curves were well-defined and tree-like. In the remainder of the paper, when we wish to
specialize either points or linear spaces to prove interpolation, we will indicate what
genericity assumptions we are using, but leave the reader to fill in the details of the
argument with the above example as a guide.

2.3 Interpolation for vector bundles

In the course of the proof, we will make use of the following lemma, which allows
us to prove interpolation by finding a single divisor such that the twist of our vector
bundle by that divisor has a vanishing cohomology group. As in [13], if the Euler
characteristic x (E) is divisible by the rank r of E, it suffices to find a single effective
divisor of degree x (E)/r such that hY(E(=D)) = 0,0r equivalently hY(E(=D)) =0.
The following generalization covers all remaining possibilities for a vector bundle of
rank 3.

Lemma 2.9 Let E be a nonspecial vector bundle of rank r on a curve. Assume that
x(E) = 1(modr) (respectively x(E) = —1 (modr)). If there exists an effective
divisor D of degree | x (E)/r] (respectively [x(E)/r1) such that W(E(=D)) =0
(respectively hO(E(=D)) = 0), then E satisfies interpolation.

Proof By [1, Proposition 4.6] it suffices to find one effective divisor D of degree
[x(E)/r] such that i°(E(—D4)) = 0 and one effective divisor D_ of degree
Lx(E)/r] such that k' (E(D_)) = 0. By assumption we have one of these; we will
show that we can construct the other by adding or subtracting a point.

Let D be the effective divisor on C specified in the statement of the lemma. As E
is assumed to be nonspecial, the following sequence:

0> H°(E(-D)) > HYE) > E|p —» HY(E(-D)) > 0

1S exact.

Suppose firstthat x (E) = 1 (mod r),sowecantake D_ = D.Wetake Dy = D+p
for p € C general. As hY(E(=D)) = 0, we must have that h°(E(=D)) = 1, and so
E(—D) has a unique global section. As such a section does not vanish at a general
point p € C, the twist hO(E(=D — p)) = 0 as desired.

Suppose next that we are in the case x (E) = —1 (mod r), so we can take D4 = D.
Then

HYE) — E|lp ~ P El,
peD

is the inclusion of a hyperplane in a vector space of dimension x (E) + 1. As the
subspaces E|, for p € D generate E|p, thereis some p € D suchthat E|, ¢ HY(E).
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Interpolation for Brill-Noether curves in P* 245

If V is any vector space, H C V any codimension 1 subspace, and A C V any
subspace not contained in H, the composition with the projection map

H—V—>V/A

is surjective. Applying this with V = E|p, and H = HY(E), and A = El,, we
conclude that the composition with the projection map

HY(E) - E|p — Elp,

is surjective, and hence hW(E(-D+ p)) =0. O

In the course of the proof of Theorem 1.4, we will need the following more general
definition of interpolation for the space of sections of a vector bundle.

Definition 2.10 Let E be a vector bundle of rank » onacurve C andlet V ¢ H(C, E)

be some subspace of its space of global sections. For points py, ..., p, € C, we will
abbreviate
V—pi == pp)={oeViol, = =0, =0}
Then we say that V satisfies interpolation if for general points py, ..., p, € C,
dmV(—p; — -+ — pp) = max (0,dimV —rn).

Remark 2.11 With this definition, a vector bundle E satisfies interpolation if and only
if x(E) = h°(E) and its space of global sections H O(E) satisfies interpolation.

Lemma 2.12 Let C = X UrY be a reducible nodal curve and let E be a vector bundle
on C. Suppose the restriction map

resx r: HO(E|X) — E|r
is injective. If the space of sections
V.= {o € HO(E|y) 1olr € Im(resx’p)},

has dimension x (E) and satisfies interpolation, then E satisfies interpolation as well.

Proof By assumption we have that restriction to Y gives an isomorphism
HY(C,E) = V. ey

For any divisor D C Y ~ T, the isomorphism (1) restricts to an isomorphism
HY(E(—D)) — V(—D); therefore interpolation for E follows from interpolation
for V and the fact that x (E) = dim V. O
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246 E. Larson, |. Vogt

Corollary 2.13 With the setup of Lemma 2.12, if there exists a vector bundle F on Y
with

HYF)=V, x(F)=x(E), tk(F)=rtk(E),

then if F satisfies interpolation as a vector bundle on Y, we have that E satisfies
interpolation as a vector bundle on C.

The main techniques in Sects. 4-5 will be degeneration to nodal curves containing
lines which are 1-, 2-, or 3-secant to the remainder of the curve. We give here some
results on the bundle F of Corollary 2.13 which will be used there.

In order to deal with modified normal bundles we will set up the following notation.
Suppose that X — P is a nodal curve, and L is a secant line to X meeting X in a set
S.Let N Sfus ;. be a vector bundle on the union X Ug L that is isomorphic to NxugL
on some open subset U C X Ug L containing all of L. Then we will write N for the
bundle on X which is N&USL |x~s glued along U to Nxugr|x.-

Lemma2.14 Let X — P be a curve and p € X a smooth point. Let L C P" be a
line through p distinct from the tangent line to X at p, and denote by C = X U, L the
nodal curve which is the union. Let x € L be another point and suppose that x' € P
is a point not contained in the tangent plane to C at p. Then if the bundle

Ny (=D(P)p — xllp — x +x']

satisfies interpolation (as a vector bundle on X), then N’C(—l)[x — x'] satisfies
interpolation on C.

Proof This follows from [1, Lemma 8.5] taking p; = x and A; = x’; and taking
p2 = 0c(1)|L and Ar = @. O

We now consider the case r = 4, and prove three different degeneration results for the
normal bundle N¢ and the twisted normal bundle N¢(—1).

Lemma2.15 Let X — P* be a curve, p and q be smooth points of X, and x' be a
point in P*. Suppose that the tangent lines to X at p and q, together with x', span P*
Let L C P* be a 2-secant line through p and q. Let x and y be points on L distinct
Sfrom p and q. Denote by C the union X Up, 4 L. If the bundle

Nx(=D[p = qllg — p]

satisfies interpolation, then the bundle Ni.(—1)(=y)[x — x'], and hence N (—1)
[x — x', satisfies interpolation.

Proof Write p’ and ¢’ for choices of points on 7,C and T, C distinct from p and ¢
respectively. By assumption p, ¢, p’, ¢’ and x’ span P*; we may therefore choose three
independent hyperplanes Hi, H», and H3 from the net defining the line L such that
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p'€ HyNHs,q'€ H N Hs, and x’ € H; N Hy. With the choice of the H;, the normal
bundle of L is simply
Nip >~ Nl ® N, |t ® Ny |1 (2)

By Lemma 2.7, we have
Ne(=D (=[x = X1l @ N.(=D)(p +q9 — »Ip = P'llg = ¢'1[x — x'].

As p’ € Hy N Hj, with respect to the decomposition in (2), the modification at p
towards p’ is simply a modification towards N, |1 at p. Therefore this modification
is the simple twist

Nilp — p'1 >~ Nu LD Nu, |1 (—p)® Nis L (—p).

If we use the analogous expressions for the modifications at ¢ and x, we obtain the
isomorphism

Ne(=1D) (=[x = x'1|L
~Nple(=D(p+qg—y—q—x)
ONm L(-D(p+q—y—p—x)®Nm|IL(-D(p+g—y—p—q)
~0L(p—y—x)®0L(q@—y—x)®0L(-y)
~ 0L (—1)®3.

As the bundle O(—1) on P! has no global sections, the restriction map to p and ¢ is
trivially injective and the desired bundle F' from Corollary 2.13 is therefore

Ne(=1) (=[x = x'lIx(=p — q) = Ny(=DI[p = qllg — p].
which has the correct rank and Euler characteristic. O

Lemma 2.16 Let X be a curve in P* and let L be a 3-secant line meeting X at smooth
points o, p, q such that the tangent lines T,X, Ty X, and T, X span P* Let C =
X Uoy prq L. If N |x satisfies interpolation, then N, satisfies interpolation.

Proof Write o', p’, and ¢’ for points on 7, X, T, X, and T, X respectively, distinct from
0, p, and g respectively. By our assumption on the tangent directions, we have

Nele = Ni(o+ p+@lo—0lip— plllg—¢'1= 0.
Restriction to the three points 0 + p + ¢ yields an isomorphism on global sections
HY(0L2)% - 00,201 p1q.

Therefore the bundle F of Corollary 2.13 is simply N(|x, which is of the correct rank
and Euler characteristic. O
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Lemma 2.17 Let X be a curve in P* and let L be a 3-secant line meeting X at smooth
points o, p, q such that the tangent lines T,X, T, X, and T, X span P* Let C =
X Uoy ptq L. Let x and y be points on L disjoint from o, p, and q. If N(.(—=1)|x (—o —
p — q) satisfies interpolation, then N/C (=D (—=x — y), and hence N/C(—l), satisfies
interpolation.

Proof Analogously as in Lemma 2.16, our assumptions give
Ne (=Dl = 0L,

and so N’C(—l)(—x — Wz ~ O (=1)®3, which has no global sections. Therefore,
the bundle F of Corollary 2.13 is simply N (—=1)(—=x — y)Ix(—0o — p — q) =~
N’C(—1)| x(—o — p — g), which has the correct rank and Euler characteristic. O

3 Reduction to finite list

In this section we reduce the proof of Theorem 1.4 to a finite set of cases. To make
the notation less burdensome, we make the following definition:

Definition 3.1 A pair of integers (d, g) is called a Brill-Noether pair (BN-pair) if
p(d, g,4) > 0. Furthermore, we say that a BN-pair (d, g) is good if for a general
BN-curve C of degree d and genus g, the twisted normal bundle Nc(—1) satisfies
interpolation.

The main result is the following lemma:

Lemma3.2 Let (d, g) be a BN-pair which is not in {(6, 2), (8,5), (9, 6), (10, 7)}.
Then (d, g) is good provided that all pairs {(9, 5), (11, 8), (12, 10), (13, 10), (13, 11),
(14, 12)} are good.

In order to prove this result, we will leverage the interpolation result in P3 [ 13, Theorem
1.1] and in the nonspecial range in P* [ 1]. More specifically, we specialize to a reducible
curve X UrY, where X is contained in a hyperplane H ~ P3 and Y is transverse to
the hyperplane and meets X in a finite set of points I" which are general in H. The
key result here is the following:

Lemma 3.3 Let s be a positive integer, and X C H be a BN-curve of degree d” > s+1
and genus g":= 2s +1—d" ina hyperplane H C P* Let T be a finite set of s general
points on X. Let Y be a BN-curve of degree and genus (d', g') passing through T
with tangent direction transverse to the hyperplane H. Let C = X Ur Y (which by
construction is of degree d = d' +d" and genus g = g’ +3s —d"). If both Nx ;i (—1)
and Ny (—1) satisfy interpolation, then so does Nc(—1).

Proof Note that

Nc(—1 2d +1— 2d'+1—-¢
XWNe(=1) _2d+1-g _, - 2d'+1-g

= >d’ —s.
K(Ne(—1)) 3 3
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Let E and F be general effective divisors on Y and X respectively, of degrees e and f =
d” —s respectively. We will show thatife < (2d’ + 1 — g’)/3,then h! (N¢(—1)(—E —
F)) =0;andife > (2d' + 1 — g’)/3, then h®(Nc(=1)(—E — F)) = 0.

By [8, Lemma 2.7], to show the appropriate vanishing of &’ it suffices to check the
three vanishings

R (Nx/u(=1)(=T = F)) =0, h'(Ox(T — F)) =0, h'(Ny(=1)(—=E)) =0.

In the first case, Nx, g (—1) satisfies interpolation by assumption, and so Ny, g (—1)
(=T — F) has no cohomology as I + F is general of degree d”. In the second case,
Ox(C — F) is a general line bundle of degree g” — 1 (since d” > s + 1 implies
s+(d"—s) > 2s+1—d" = g”), and so also has no cohomology by Riemann—Roch.
Finally, the last vanishing is exactly the statement that Ny (—1) satisfies interpolation.O0

To find suitable X and Y as above, we use the following elementary lemma, which
follows from the fact that if the degree of a line bundle L is at least d + g, then L(—1)
is effective.

Lemma 3.4 Let E be a vector bundle of rank k satisfying interpolation on a curve
C C P of degree d and genus g. If

X(E) > k(d+g),

then E(—1) also satisfies interpolation.

Corollary 3.5 If C is a general BN-curve in P (respectively P*) of degree d and genus
g withd > g (respectively d > 2g), then

Nc satisfies interpolation <= Nc(—1) satisfies interpolation.
We will now inductively prove Lemma 3.2 by attaching curves X C P3 to curves

Y C P4 for which Ny(—1) is already known to satisfy interpolation. We will only
use the following curves for X:

d" g’ s p(XUY)—p(Y)
9 6 7 -3
3 0 1 15
6 3 4 6
7 4 5 3
8 5 6 0

In order to conclude from Lemma 3.3 that for a general C — P* of degree d’ + d”
and genus g’ + 3s — d”, the bundle N¢ (—1) satisfies interpolation, we must show that
X Ur Y is a BN-curve. In all of our cases this ends up being easily deduced from
previous results.
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First we use this construction with X a curve of degree 9 and genus 6 to reduce to
checking small genus:

Lemma 3.6 If a BN-pair (d', g') is good and d' > 7, then the pair (d' +9, g’ + 12) is
good (when it is BN).

Proof Let Y — PP* be a general BN-curve of degree d’ and genus g/, and H be
a general hyperplane. Since (d’, g’) is good by assumption, the hyperplane section
Y N H is general; in particular, since d’ > 7, it contains a set I" of seven general points
which satisfies 2! (Ny (—=I")) = 0. Let X be a general curve of degree 9 and genus
6 in H passing through I' (again possible as X satisfies interpolation). Let C be the
reducible curve X Ur Y, which is of degree d = d’ + 9 and genus g = g’ + 12. It
suffices to show that C is a BN-curve.

For this, it suffices to show C admits a specialization C° with h(N¢o) = 0such that
C° is a BN-curve; indeed, A1 (N¢o) = 0 guarantees the smoothness of the Kontsevich
space at [C°], which implies [C°] lies in a unique component of the Kontsevich space.

We shall degenerate C to C° = X°UrY where X°= X| Ua X» is a degeneration
of X to a reducible curve which still passes through I', with A and I" disjoint; write
'=r1Uhwithl' € Xyand I, C X5. Letx € X1 ~\ I'; be arbitrary.

I' A I

From the exact sequences

0 — Ncelx,up,v(=I"2 = A) = Nco — Neolx, = 0,
0 = Nx,up,v(=T2 = A —x) = Neolx,up, (-T2 = A) > C;&Cr,&Ca — 0,
0 — Nx,yu — Ncolx, = Ox,(1)(I2) — 0,

where C2 @ Cr, @ C, denotes a punctual sheaf supported at A U I’ U {x}, which in
particular satisfies /! ((C)% @ Cr,@Cxa) = 0, we see that to check K (Neo) = 0, it
suffices to check A (N, /i) = h1(Ox,(1)(I'2)) = hl(leUr] y(=T2—A—x)) =0.

We shall consider the specialization where X is a rational normal curve, and
X5 is a canonical curve of genus 4, which meet at a set A of three points. We do
this so that #I";y = 4 and #I'; = 3; this can be done because X passes through
four general points, while X, passes through six general points, by [1, Corollary
1.4]. By inspection, 2! (Nx, ) = h'(Ox,(1)(I'2)) = 0, so it remains to check
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hl(NX1Url y(—I'2 — A — x)) = 0. This follows from the exact sequences

0 — Nx,up, vly(=I') = Nx,ur, v (=T2 — A —x) = Nx,up, vIx, (=A —x) = 0,
0 — Nx/u(=A —x) = Nxyup,vlx; (=A —x) = Ox, (DT — A —x) = 0,
0 — Ny(=TI') = Nx,up, vy (=T) - Cr; — 0,

where Cr, denotes a punctual sheaf supported at I'1, which in particular satisfies
h'(Cr,) = 0.

It thus remains to show C°= (X1 Ua X2)UrY = (X1 Ur, Y) Ur,ua) X2 is a BN-
curve. For this, we can apply [7, Theorem 1.9] twice, first to conclude that X; Ur, Y
is a BN-curve, and second to conclude that C° is a BN-curve as desired — provided
that X| Ur, Y admits a deformation which continues to pass through I') U A and is
transverse to H along I'y U A.

Since X Ur, Y is already transverse to H along I'y, this reduces by deformation
theory to checking h! (NXlurl y(—=T'1—A—x)) =0forany x € A, which was shown
above. O

Corollary 3.7 If for all (d, g) satisfying g < 14 and p(d, g,4) > 3, a general BN-
curve Y of degree d and genus g satisfies interpolation for the twist Ny(—1), then a
general BN-curve of any genus g > 14 does as well.

Proof If (d, g) is BN and g > 15, thend > 16. Hence d — 9 > 7, and we can apply
Lemma 3.6 to inductively reduce to a curve of smaller genus with p > 3. O

Note that all the counterexamples appearing in Theorem 1.4 have p < 2, so it suffices
to prove Theorem 1.4 for g < 14. We now deal with these remaining cases. First by
attaching twisted cubics at a single point, we show that it suffices to consider three
BN-pairs for each g < 14.

Lemma 3.8 If a BN-pair (d', g') is good, then the pair (d’' + 3, g') is also good.

Proof Attach a general BN-curve Y of degree d’ and genus g’ at a single point to a
general twisted cubic X C H. The union has degree d’ + 3 and genus g’, and lies in
the correct component of M, (IP’4, d’ + 3) by [7, Theorem 1.6]. O

Proof of Lemma 3.2 Corollary 3.5 provides plenty of base cases for the induction: all
curves withd > 2g.If g < 5and (d, g) # (8,5) or (9, 5), thend > 2g. So, using the
result of Corollary 3.7 we will only consider 6 < g < 14. For each such g, let dmin
be the minimal d such that (d, g) is BN and (d, g) ¢ {(6, 2), (8,5), (9, 6), (10, 7)}.
By Lemma 3.8, it suffices to prove that (dmin, &), (dmin + 1, &), and (dmin + 2, g) are
good. We do this using Lemma 3.3 with curves X = (6, 3), (7, 4), and (8, 5):

In each of these cases, X UrY is a BN-curve by [7, Theorem 1.9]. O

In the remainder of the paper we show that the (d, g) pairs
{9,5), (11, 8), (12, 10), (13, 10), (13, 11), (14, 12)}

are good; and furthermore, we show interpolation for the untwisted normal bundle in
the cases (d, g) € {(8,5), (9, 6), (10, 7)}.
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g dmin certificate for (dmin, &) certificate for (dpyin + 1, ) certificate for (dpmin + 2, )
6 10 X =1(6,3),Y =40 X =1(6,3),Y=(50) 12>2-6

7 11 X=(6,3),Y=(1 X =(6,3),Y=(6,1) X=(6,3),Y=(,1

8 11 by assumption X=(7,4),Y=(5,0 X =1(6,3),Y=(,2

9 12 X=1,4,Y=5,1 X =(6,3),Y=(7,3) X =1(6,3),Y=(8,3)

10 12 by assumption by assumption X =(6,3),Y =(8,4)

11 13 by assumption X=01,4,Y=(,3) X=(6,3),Y =95

12 14 by assumption X=(,4),Y =@8,4 X =(6,3),Y =(10,6)

13 15 X =(@8,5,Y=(,3) X=(1,4,Y=(,5) X=1(6,3),Y=117
14 16 X =(,5),Y =84 X =(6,3),Y=(1,8) X =(6,3),Y =(2,8)

4 Degeneration with a canonical curve

The key argument for (d, g) € {(12,10), (13, 10), (13, 11), (14, 12)} consists of
degenerating to the union of a canonical curve D C P* of degree 8 and genus 5,
and another nodal curve.

Setup. Let D be a general canonical curve ((d,g)=(8,5)), and let pi,qi,
P2, q2, P3,q3 be six general points. Let ' = p; 4+ q1 + - -+ + ¢3 denote the sum
of these points on D. For each i, let p. € T}, D be a choice of point on the tangent
line. Denote by L; the line p;, g;. Suppose that C O L; U L, U L3 is a connected
nodal BN-curve containing the lines L1, L, and L3. Let Y = CUr D be the nodal
curve obtained from gluing C and D along I'; this is a BN-curve by [7, Theorem 1.6].

Lemma4.1 If Nc(—1)[p1— pillp2— p5llps— p5l satisfies interpolation, then
Ny (—1) satisfies interpolation as well.

Proof The canonical curve D is the complete intersection of a net of quadrics in P4
Note that no quadric in the net contains all 2-secant lines to D, as the secant variety is
of degree (8; 1) —5 = 16. Since it is one condition on a quadric containing D to contain
a 2-secant line to D, we may choose three independent quadrics from the net such that

each contains exactly two of the three lines L1, L», and L3. This gives an isomorphism

Ny(=D|p = Kp(p1 +q1)®Kp(p2 +q2) ®Kp(p3 + q3).

Let w be a general point on D. The line bundle F; := Kp(p; + g — w) on D is
of degree 9 and has a 5-dimensional space of global sections, which correspond to
meromorphic differentials on D that vanish at w and have at most poles at p; and g;
with opposite residues.

Since we may compute that H 0(F;(=T)) = 0, the restriction map

res

HYF) =5 Filp @ Fily ® Filpy ® Filgy® Fil ps® Filgs.

is an isomorphism onto a 5-dimensional subspace of F;|r ~ C9 which can be
described as the preimage of the antidiagonal (i.e., the two coordinates negatives
of eachother) in the 2-dimensional F;|, ® Fjly,, under the restriction map Fi|r —
Fi|pi@Fi|q,~-
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The bundle F;(—p1 — p2 — p3) = Kp(gi — w — p; — pr) on D satisfies
hO(Fi(=p1 = p2 = p3)) = 2and h' (Fi(=p1 — p2 — p3)) = 0, as '*(Kp(g1)) =5
and w, p;, and py are general points on D. For points (x, y, z) in some neighborhood
U C D x D x D of the point (p1, p2, p3), the bundle F; (—x — y — z) therefore also
has two global sections by semicontinuity. Let F; denote the bundle on D x U which
specialized to F;(—x — y — z) on the fiber D x {(x, y, z)}. Let

m:DxU— D, m:DxU—U
denote the two projections.

By the theorem on cohomology and base change, the pushforward 7, J; is a rank
2 vector subbundle of a rank 5 trivial bundle:

12.3; € My Fy) = HY(F) ® Oy
Composing with the restriction map above yields a map
rit m.5; > HY(F)®0y — (FiIr ~CH®0y,
whose fiber over (x, y, z) extracts the image
Styz = ri(2.Fil . y,0) = res (H(Fi(—x — y = 2))) C Filr

for each point (x, y, z) € U. Write Sy, = sl @S2 oS3

xXyz xXyz xXyz*
By Lemma 2.12, in order to prove interpolation for Ny (—1)(—x —y —z — w), with

X, ¥y, z, w general points, it suffices to prove interpolation for the space of sections
Viyz = {0 € H'Ny(=Dlc) 1 olr € Suyz € Ny(=D)(=x —y =z = w)|r = C'®},
provided that it has the correct dimension. Furthermore as satisfying interpolation and

having the correct dimension is an open condition, it suffices to prove that for the
specialization (p1, p2, p3) of the general points (x, y, z) € U, the space of sections

Voipaps = {‘7 e HO(Ny(=Dlc) : olr € Smpzps}’
is of the correct dimension and satisfies interpolation. In this case,

St paps =T1es(H(Kp(qi —w — pj — p)) = Filg;® Filg, C Filr. i.j #k.
When viewed as meromorphic sections N¢(—1), the sections of Ny(—1)|c whose
restrictions to I lie in the subspace S, p, p; therefore vanish at the p; and are regular
at the g;. Therefore, it suffices to prove that

Vpipaps = {0 € HY(Ny(=Dlc) : ], =0, o is regular at g; }

= {a € HO(Ny(—1)|C(—p] — p2 — p3)) . o preserves the node at qj}
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is of the correct dimension and satisfies interpolation. This subspace is the space of
global sections of the vector bundle

Nc(=DIp1— pilipa— palips— p3l,

which has the same rank and Euler characteristic as Ny (—1)(—x — y — z — w).
Therefore it suffices to prove that this vector bundle satisfies interpolation. O

We now deal with each of the cases (d, g) € {(12, 10), (13, 10), (13, 11), (14, 12)}
separately.

4.1 Degree 12, genus 10

In this case we take C in the setup above to be the union of the three general lines
L1 ULy U L3 and a line M meeting all three lines, which is a BN-curve by [7,
Theorem 1.6]. Let m; := L; N M be the points of intersection so that the curve C is
precisely the nodal union

C = (L1ULyVUL3)Upitmytms M.

By Lemma 4.1, it suffices to prove interpolation for the modified normal bundle

Ne(=Dlp1— pillp2— p3llps— p3l.
By Lemma 2.14, we may pull off each of the 1-secant lines L; in turn to reduce to
proving interpolation for the bundle

Ny (=1)(my + my + m3)[mi— pillmi— pi + pi]
[ma— pallma— pa + phllmz— p3llm3z— p3 + p5l,

or, by limiting p to pz, and p} to p3, and pj to p; (and using the properties in
Proposition 2.5) for the bundle

Ny (—1)(2my + 2my + 2m3)[2m— p1llm1— pa]
[2my— pallma— p3l[2m3— p3llms— p1l.

Limiting m>, m3— m is tree-like, as the points pi, p2, and p3 are general in P
Therefore, it suffices to prove interpolation for

Ny (=1)(6m1)[3m1— p1][3m1— p2][3m1— p3]
~ Ny(=D[3mi— p1 + p2 + p3] = Ny(—1).

The result now follows from the fact that Nys(—1) ~ O®3 satisfies interpolation.
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4.2 Degree 13, genus 10

We continue with the notation of the setup above. In this case we take M to be a
general line meeting L1 and L, and N to be a general line meeting L, and L3. Call
MNL; =m;and NN L; = nj. Let

C=(NUM) Um1+n12+n2+n3 (Lt ULy UL3)
be the union, which is a BN-curve by [7, Theorem 1.6]. So by Lemma 4.1 it suffices to

prove interpolation for N¢ (=1)[p1— pj1[p2— p51[p3— p3]. By Lemma 2.14, this
follows from interpolation for the bundle

N1 = NNU,, LyUp, M (= 1) (m1 4 n3)[p2— pylimi— pi]
[m1— p1 + piln3— p3llnz— p3 + ps3l.
By Lemma 2.9, it suffices to show the vanishing of h°(N’) where N’ := Ni(—x — y)

where x and y are general points on N and M respectively.
Restricting to M we have

NIy = Ny (=1)(=y +m1 +ma)[mi— pilimi— p1 + pi1lma— p2l
>~ Ny[mi— pillmi— pi + pillma— pal.
As the points pi, p> and p] are independent, we may make a choice of the three

hyperplanes H; defining M = H; N Hy N Hz sothat p; € HyN H3, p» € Hy N H3 and
P}y € Hi N H,. Then the modifications towards these points become simple twists:

NIyt = Niy |l (—m2) @ Ny | (—2m1) @ Ny [y (—my — ma) = O @ Opr (=12
This restriction has a unique global section, coming from the factor Ny, | (—m2) of
normal directions pointing to p;. Therefore, applying the argument of Lemma 2.12,
it suffices to show the vanishing of 4° of the subbundle of N'| NUy, L, Whose sections
at my point towards pp:

NnU,, L, (=D (=x +n3 + mo)[pr— pllma— myllma— pilln3— p3llnz— p3 + p3l.

We may apply the same argument to N to reduce to showing there are no sections of

N, (=1)(n2 + m)[p2— p5llna— n3llna— p3llma— mi1[ma— pil
~ Nz, (=D[p2— p3llna = n3 + p3llma — my + pil.

Limiting p, to na, which is tree-like as p) is general, it suffices to show the vanishing
of h° for

Np,(—=1)(=n2)[ny — n3 + p3 + pyllma — my + pil
> Np,(=1)(=n3)[my — m1 + p1],
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and as m1 and pj are in general directions, we have
Np, (=) (=n))[ma—>m1 + p1] 2 Oy (=2) @Oy (=1) B0y (-1),

which has no global sections, as desired.

4.3 Degree 13, genus 11
As in the setup above, we choose C to contain the lines L1, Ly, L3 as well as two
further lines M and N, where M meets each L; at a single point m; and N meets L
and L, at points n] and ny respectively. As the lines L1, Lo, and L3 are general, the
lines can be assumed to satisfy various genericity conditions: N U M U L; span a P3
fori =1, 2.

Then the resulting union

C:= (N ) M) Um1+m2+m3+n1+nz (Ll UL, U L%)

is a nodal connected curve of degree 5 and arithmetic genus 2, which is a BN-curve
by [7, Theorem 1.6]. By Lemma 4.1, it suffices to show that

N¢ = Nc(=DIp1— pillp2— p5lip3— pil
satisfies interpolation. By Lemma 2.15, it suffices to show that
N(NUM)Upiy sty (L2UL3) (— D [P2— Py llp3— p5lini— millmi— nil
satisfies interpolation. By Lemma 2.14, this reduces in turn to showing that
NMU,py sy LauLs (=D (m2)[p2— Pollp3— p3llmi— nillna— nillng — ny +mil

satisfies interpolation. Again by Lemma 2.14, this further reduces to proving interpo-
lation for

NMumsz(—l)(nz+m3)[p2—>p/2][m1—>n1][n2—>n1]
[n2 — ni +mil[mz— p3llmsz — p3 + pjl.

We may limit p, — nj, since pé is disjoint from 771, m and so this is tree-like. We
are therefore reduced to proving interpolation for the vector bundle

NMUy, 1, (=D (12 + m3)[n2— pyllmi— nillny— ni]
[n2 — ny +myllm3— p3lims — p3 + pjl
>~ Nmu,, L, (=D (m3)[m1— ni][ny— ni]

[n2 — ni +my + phllm3— p3llms — p3 + pil.
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As p’2 is general and my, ny, and L, span a IP3, the linear space pé, mi,ny, Ly = P4,
Therefore the above bundle is isomorphic to

Nmu,, L, (=D (m3)[m— nilln2— ni]lm3— p3llm3 — p3 + Pl
We may now apply Lemma 2.14 a final time to reduce to showing interpolation for
Ny (—=1)(my + m3)[ma— nallmay—> na + nyllmy— nillmz— p3lims— p3 + p3l.

Limit pé to n1. Then we may limit m, and m3 tom1, as n1, np and p3 are independent
so this is tree-like. The resulting vector bundle is

Ny (=D)@2my)[m1— nal[my — ny +nil[m— nillmi— p3llm; — p3 +n1]
>~ Ny (=D @mp)[my— ni][2m— n1][2m1— nz][2m— p3]
~ Ny(=D[m;—ni12m; — n; +my + p3l.

Asni,mj and p3 are independent, and so span all of P we have that this is isomorphic
to

Nu(=Dmi—ni] =~ Oy @Oy (=12,

which satisfies interpolation by inspection.

4.4 Degree 14, genus 12
Continuing in the setup above, let M be a general line meeting each L; at m; and let
N be a general conic meeting each L; at n;. Pick points n; # n; on T,; N, and a point
m € M distinct from m1, my, and m3. Let C denote the union

C:=(MUN) Um1+m2+m3+n1+nz+n3 (L1 ULy U L3),
which is a BN-curve by [7, Theorem 1.6]. It then suffices to prove interpolation for
N = Ne(=D[p1— pillp2— p5llp3— p5]. This vector bundle has Euler charac-

teristic 5. So by Lemma 2.9, it suffices to show that for two points x 4 y, the twist
down satisfies

W (Ne (=D (=x = »p1— pillp2— pylip3— p5l) = 0. 3

We will choose x and y to be general points on M, so that Né (—x—y)|m =~ O(=1)%3.
Therefore to show the vanishing of (3), it suffices to show that

hO(Né|NUnl+n2+n3L1uL2UL3(—ml —my —m3)) =0,
as in the proof of Lemma 2.17. This bundle restricts to each L; to be
Ni, (=D )lni = n{lpi— p{imi— m] = O, (=),
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as L;, n;, plf , and m are linearly independent. Therefore as in Lemma 2.12, it suffices
to show that

h°(Nn(=Diny— pilina— p2linz— p3l) = 0,

where the p; are in general directions. By the semicontinuity theorem it suffices to
prove this vanishing after specializing p1, p»> and p3. Fix a quadric Q and hyperplanes
Hp and H; such that N is the complete intersection Q N H; N H>. We have

Ny(=1) = No(=DIy ® N, (=D |y ® Niy (= Dy = On(D@OF. (4)

Specialize p; and py so that they are general in T,,(Q N Hp) and T,,(Q N Hp)
respectively, and p3 so thatitis generalin 7;,; (QNH ). Then the negative modifications
are towards specific factors in the decomposition (4), and so become simple twists:

Ny (=D[n1— pillna— p2llnz— p3l
>~ O (=p1 — p2 — P3)BON(=p3)DON(—p1 — P2),
~ OPI (_1)®OP1(—1)®OP1 (—2)

under an isomorphism M ~ P!, which has no global sections, as desired.

5 Degeneration with a rational quartic curve

Let X be a nondegenerate curve of degree d and genus g in P Let (p1, q1), (P2, 92),
(p3, g3) be three pairs of general pointson X. LetI" := p; + p2 + p3 +q1 + g2 + g3.
Denote by L; the 2-secant line through p; and g;. There is a unique fourth line M
meeting each of the L; (by, for example, intersection theory in the Grassmannian of
lines in P*). Call L; N M = m;. As X is nondegenerate, the union L1 U L, U L3 UM
spans P*. Call this union

Y := XUr ((L1 + L2 + L3) Uy 4mytmy M),
which is a BN-curve by [7, Theorem 1.6]. We will use this particular degeneration to

prove interpolation for Ny (—1) when Y is a curve of degree 11 and genus 8, and for
Ny when Y is a curve of degree 9 and genus 6 (respectively degree 10 and genus 7).

Lemma 5.1 With notation as above,

(1) Ny(—1) satisfies interpolation if

Ny(=D|x(=p1 —q1 — p2 —q2 — p3 — q3)
>~ Nx(=Dlp1— qillg1— pillp2— q21lg2— p21lp3— q31lg3— p3]

satisfies interpolation.
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(i) Ny satisfies interpolation if

Nylx = Nx(p1 +q1 + p2 +q2 + p3 + q3)[p1—> q1llg1— pi1l
[p2— q21lg2— p21lp3— q31[93— p3]

satisfies interpolation. This vector bundle satisfies interpolation if the modified
normal bundle

N% = Nxlq1 + q2 + g3 — pi]

satisfies interpolation.

Proof As Li U L, U L3 U M spans P4 the three directions of the L; at the points m;
are independent.

By Lemma 2.17 (respectively Lemma 5.1), it suffices to prove interpolation for
Ny (=DIxur @z uL,uLy) (—m1 — my — m3) (respectively Ny|xur (L uL,UL3)) in order
to deduce interpolation for Ny (—1) (respectively Ny).

For each of the L;, the three lines T, X, T;; X and M span P* and so we similarly
have that Ny|., >~ Oy, (2)693. To prove interpolation for Ny (—1) and Ny, we are free
to pick our general points to include a choice of general point x; on each of the L;.
Twisting down by this point for each L;, we have

Nyl (=x) = O, ()P, Ny (=D, (=m; — x;) = O, (= 1),

To prove interpolation for Ny (—1), by Lemma 2.15, we may peel off each line L; in
turn to reduce to proving interpolation for

Ny(=D|x(=p1 —q1 — p2 — q2 — p3 — q3).

To prove interpolation for Ny, note that evaluation at the two points p;, g; € L; ~ P!
is an isomorphism

HOOp1 (1)® =5 0p1 (D] 14,

Hence sections of Ny (—x; — x2 —x3) on X extend uniquely to X N L1 N Ly N L3 and
then to all of Y. Therefore by Corollary 2.13, interpolation for Ny (—x; — x> —x3) (and
hence for Ny) follows from interpolation for Ny|x. The formula for Ny|yx follows
directly from Lemma 2.7.

Now limit p; and p3 to pi; the corresponding modification is tree-like as g1, g2,
and g3 are independent. By the properties of Proposition 2.5, the resulting bundle is
therefore

Nx(GBp1 +q1 + g2 + g3)[p1— q1llg1 — p1llp1— q21lg2— p1llp1— g3llg3— p1]
>~ Nx(p1+q1+q2+¢g3)p1 = q1 +q2 +q3llg1 + g2 + g3 — pi1]
>~ Nx(p1+q1 +q2+g3)lq1 +q2 + g3 — p1l.
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Interpolation for this bundle therefore follows from interpolation for
Nxlg1 + g2+ g3 — pil. o

5.1 Degree 11, genus 8

By Lemma 5.1, we may reduce interpolation for the twisted normal bundle of a gen-
eral BN-curve of degree 11 and genus 8 to interpolation for the modified normal
bundle Nx (=D[p1— qi1llg1— p1llp2— q21lg2— p21[p3— q31[g3— p3], where X
is a BN-curve of degree 7 and genus 3.

We will further degenerate using the following. As before, N denotes some mod-
ification of Ny, which is isomorphic to Nx over some open containing all of L. N,
is then the bundle on C obtained by gluing N 3( |c~.cnL to N¢ along this open.

Lemma 5.2 Let C be a BN-curve. Let L be a 2-secant line meeting C at two general
points x and y; write X for the union X := C Uy, L. Suppose that p1 and p, are
general points on L and q| and q; are general points on C, and D1 and D; are divisors
on C. If the bundle

Ne(=1)(0)[x = yl[2y = x]1[D1— x][D2— x]
on C satisfies interpolation, then the bundle
Ny = Ny(—=D[p1— q11lD1— pillp2— q21[D2— p2] 5)

on X satisfies interpolation.

Proof Let x" € TC and y’ € T, C be choices of points on the tangent lines distinct
from x and y respectively. If we restrict the bundle N} of (5) to L, we have

N¥%l = No(=D(x + »Ix =21y = ¥ 1lp1— q1llp2— q2] = 0, ® O (=12,

which has one global section. We will do a calculation in local coordinates to more
precisely understand the behavior of this section at x and y as a meromorphic section
of Np(—1).

The twisted normal bundle Ny (—1) >~ V®QOp is trivial of rank 3 on L (with
V ~ HO(Ny(—1)). We may therefore assign, to points of P* \ L, the corresponding
normal direction to L in PV. Choose appropriate coordinates for V so that

x' = [1:0:0], y' +— [0:1:0], g1+ [1:0:1], go > [0:1:1].
In addition let ¢ be an affine coordinate on L ~ P! so that x correspondstor =0, y

corresponds tot = 1, and p; and p; correspond to = a and t = b respectively. Then
the unique section of N |7 up to scaling is given by (scalar multiples of) the tuple

o — a(t—=>b) (1-=>b)(t—a) a—b
e t t—1 ’
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as a meromorphic function valued in V. The image of this section under the restriction
map to x (i.e.,t = 0)is

oo = [—ab,a(l —b),a — b]
and under restriction to y (i.e., t = 1) is
o1 =[a(l=b),(1 —a)(1—=b),a—Db].

By Lemma 2.12, it suffices to prove interpolation for the space of sections of N%|c
whose values at x and y are in the 1-dimensional subspace given by (op, o1) in
N/cuxﬂ. 1 (=D|x+y. As interpolation is an open condition, we may limit p; and p>
to x, in which case op and o7 limit to

oy =10,0,0], of =[0,1,0].

Therefore the sections of Ny |, must vanish at x and point towards y’ at y. By [,
Lemma 8.4], the bundle Ny |7 [y — x] glues to N§ |, [y — y'] at the point y. Therefore
it suffices to prove interpolation for the vector bundle

Ney,,, 1 (CDID1 = x1[D2— x]lc (=) [y — x]
~ NG (=D (0)[x = yl12y = x][D1— x][ D2 — x]

on C. O

By [7, Theorem 1.6], we may degenerate our BN-curve of degree 7 and genus 3
to the union of a BN-curve of degree 6 and genus 2 and a 2-secant line L meeting
C at points x and y. Do this so the points p; and p; specialize on to L and the
remainder of the marked points specialize to C. Then we apply Lemma 5.2 with
Ng( = Nx[p3— q3llgz— p3l and D = g and D, = g>. We thus reduce to proving
interpolation for the bundle

Ne(=D(Wx = y1[2y = x1lg1 = x1lg2— x1[p3 = g31lg3— p3].
By [7, Theorem 1.6], we may further degenerate C to the union of a curve D of degree
5 and genus 1 and a 2-secant line M, meeting D at points z and w. Let the points p3
and g specialize to general points on L, and x, g3, ¢, and y specialize to general
points on D. Again we apply Lemma 5.2 with p; = p3, p2 = q1,91 = g3, 92 = X,
D1 = g2 and D, = &. It therefore suffices to prove interpolation for the bundle
Np(=D(y + w)lx — yl[2y = x]lg2— x1[g3 — z][2w — z][z > w]
on D. We may limit w to x, to obtain the bundle

Np == Np(=1)(x + y)[x = yl[2y = x][g2— x][g3— z][2x — z][z— x],
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which has Euler characteristic 0. This bundle sits in a balanced exact sequence

0 — Npox(=D(y —¢3—2x) > Np
= TxlpNrp (=D =y — g2 — Dx = yllgz— zl[2x — z] — 0.
Therefore by [1, Proposition 4.16] and the fact that as a nonspecial line bundle

Np_p(=1)(y — g3 — 2x) satisfies interpolation [1, Propsition 4.7], it suffices to
prove that

x| pNaylp (=D (x — y — g2 — 2)[x = yllgz— z][2x — 2]
>~ e pNay1p (=D (=y —q2 — Dg3 + x = z][x = y + 2]
~ |y Ny | p (=D (=y — g2 — 2)[g3 + x — z]

satisfies interpolation as a vector bundle on D. As 7, |7, O (1) (y+¢2+z) is a general line
bundle on D, it suffices to show that 7, |}, Ny, |, [g3 + x — z] satisfies interpolation.
This is verified by publicly available code in [1, Appendix B] to prove interpolation
for certain modifications of normal bundles of nonspecial curves:

>>> good(Curve(4,1,3).add(P100,2))
True

5.2 Degree 9, genus 6

By Lemma 5.1, interpolation for the normal bundle of a general curve of degree 9 and
genus 6 follows from interpolation for the modified normal bundle

N¢ = Nclgi + g2 + g3 — pl

of a curve C of degree 5 and genus 1 in P This is verified by publicly available code
in [1, Appendix B]:

>>> good(Curve(5,1,4).add(pP100,3))
True

5.3 Degree 10, genus 7

As above, by Lemma 5.1, it suffices to show that for a BN-curve X — P* of degree
6 and genus 2, and p, q1, g2, g3 general points of X, the modified normal bundle

N% = Nxlq1 + g2 + g3 — p]

satisfies interpolation. This is verified by publicly available code in [1, Appendix B]:

>>> good(Curve(6,2,4).add(pP100,3))
True
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6 Proofs of the main theorems

In this section we wrap up the preceding computations to prove the theorems and
corollaries quoted in the introduction.

6.1 Proof of Theorem 1.4

As interpolation is an open condition [2, Theorem 5.8], it suffices to find one BN-
curve C of every possible degree d and genus g (with p(d, g, 4) > 0) whose twisted
normal bundle N¢(—1) satisfies interpolation. By Proposition 3.2, this follows for
all BN-pairs (d, g) ¢ {(6,2),(8,5), (9, 6), (10, 7)} from checking interpolation for
BN-curves with d and g in the following finite list:

{(9,5), (11, 8), (12, 10), (13, 10), (13, 11), (14, 12)}.

For (d, g) € {(12,10), (13, 10), (13, 11), (14, 12)}, this was proved in Sects. 4.1—
4.4 using a degeneration containing a canonical curve. For (d, g) = (11, 8), this was
proved in Sect. 5.1 using a degeneration with a rational quartic curve as well as several
2-secant degenerations. Let us show that the twisted normal bundle N¢c(—1) of a
general BN-curve C of degree 9 and genus 5 satisfies interpolation. As x (Nc(—1)) =

14 = —1 (mod 3), it suffices by Lemma 2.9 to show that for five general points
P1, - .., Ps, the twist down satisfies
W (Ne(=1)(=p1 — -+ = ps)) = 0.

As the genus of C is 5, the line bundle O¢ (1) (p1 + - - - + ps) is general of degree 14.
Therefore this vanishing follows from interpolation for the untwisted normal bundle
Nc, which is a special case of [1, Theorem 1.3].

For the converse, we note that 1! (N¢c(—1)) # 0 if C — P* is a BN-curve of
degree and genus in {(8, 5), (9, 6), (10, 7)} by [8, Theorem 1.6]. Moreover, N¢ does
not satisfy interpolation if C — P* is a BN-curve of degree 6 and genus 2. O

6.2 Proof of Theorem 1.5

For any BN-curve C, if the twisted normal bundle N¢ (—1) satisfies interpolation, then
the untwisted normal bundle N¢ does as well [1, Proposition 4.11]. Therefore for all
BN-pairs (d, g) ¢ {(6,2), (8,5), (9,6), (10, 7)}, this is a corollary of Theorem 1.4.
If C is of degree 6 and genus 2, then C is nonspecial and N¢ was already observed
to fail to satisfy interpolation in [1]. In Sects. 5.2 and 5.3 we proved interpolation for
d, g) = (9, 6) (respectively (d, g) = (10, 7)).

A BN-curve C of degree 8 and genus 5 in P* is a canonical curve, which is a
complete intersection of three quadrics; its normal bundle is therefore

Ne =~ (KEH®,
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Interpolation for N¢ thus reduces to interpolation for K| ©2 which holds since K ?2 is
nonspecial [1, Proposition 4.7]. O

6.3 Proof of Corollaries 1.2 and 1.6

When p(d, g,4) > 0, write M, , (P d)° for the unique component dominating M, of
the Kontsevich space of n-marked genus g curves of degree d in P* If n < f(d, g, 4),
and pi,..., p, are general points on C, then x(Nc(—p1 — --- — pn)) = 0 and
interpolation for N¢ implies that hY(Ne(— p1— -+ — pn)) = 0. But the obstruction
to smoothness of the map extracting the image of the n marked points

Mg (P d)°— (P4)"

lies in H'(Nc(=p1 — -+ — pp)); thus this map is smooth at the point (f: C —
P4, P1s---, Pn), and hence generically smooth. Therefore the map is dominant. For
degree 6 and genus 2, even though the normal bundle does not satisfy interpolation;
however it is still true that for 9 = f(6, 2, 4) general points p1, ..., pg on C, the twist
h' (N¢(— p1—---— p9)) = 0. Therefore, the above evaluation map is still generically
smooth and a general curve of this degree and genus still passes through nine general
points [1, Corollary 1.4].

Similarly, fix a hyperplane H C P*; then interpolation for N¢ (—1) implies that the
map extracting the section by H (when it is transverse) and the image of the n points

Mg (P4 d)° ——» H x (P,
defined by

(f: C— P pi, . p) > (FONH, f(p1), ..y fF(Pa)),

is smooth, and hence dominant, forn < f(d, g,4) — d. In the case (d, g) = (6, 2), if
P1, P2, p3 are general points on C, then as 3 > 2, we have that Oc(1)(p1 + p2 + p3)
is a general line bundle of degree 9 = f(6, 2, 4). Therefore the fact that C passes
through nine general points implies that its hyperplane section is general and it passes
through three independently general points.

We conclude with the three cases (d, g) € {(8,5), (9, 6), (10, 7)}. In these cases
h'(Ne(—1)) # 0, and hence the hyperplane section is not a general collection of d
points in P3; however d — 1 of these points are general, and all d points are general
subject to the condition that they are distinct points on the complete intersection of
11 — d quadrics [8, Theorem 1.6].
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6.4 Degree 8, genus 5

Let D = p1+-- -4 p7 be acollection of d — 1 points in a general hyperplane section,
then we will show that N¢(— D) satisfies interpolation. We have,

X (Nc(=D)) =15 = genus(C) - tk(N¢).

Therefore interpolation follows from interpolation for N¢ as in [1, Proposition 4.12].
As above this suffices to show that a general curve of degree 8 and genus 5 passes
through £ (8, 5,4) = 12 points that are general subject to the constrain that seven of
them lie in a hyperplane.

In fact, something a priori stronger follows. The hyperplane section of a curve of
degree 8 and genus 5 (which is the complete intersection of three quadrics in P*) is the
complete intersection of three quadrics in P3: thus, some subset D of seven of them
determines the 8th. Therefore any canonical curve in P* passing through these seven
general points D in a hyperplane passes through the 8th point automatically. In this
way, the previous result implies that one may pass a curve of degree 8 and genus 5
through f(d, g,4) + 1 points that are general subject to the constraint that d lie in a
hyperplane and are distinct points on the complete intersection of 11 — d quadrics.

6.5 Degree 9, genus 6

We first show that for D = p; + --- + pg a collection of d — 1 general points in
a hyperplane, N¢ (— D) satisfies the property of interpolation. As above this implies
the corollary about passing a general such curve through f(d, g, 4) points subject
to the constraint that d — 1 lie in a hyperplane. When (d, g) = (9, 6), we have
X (Nc(—D)) = 16. It suffices, therefore, (by Lemma 2.9) to show that for a general
divisor I' of degree 5, the twist down has no higher cohomology:

W' (Nc(=T — D)) = 0.

As D = Oc(1)(—p), with p general on C, the above twist Nc(—I' — D) =~
Nc(—1D(p — D). If T is a general collection of five points, then Oc(p — D), and
hence Oc(—1)(p — D), is a general line bundle. The result therefore follows from
Theorem 1.5.

In a slightly different direction, we show that a curve of degree 9 and genus 6 in
IP* passes through f (9, 6, 4) = 13 points that are general subject to the constrain that
d = 9 of them lie in a hyperplane and lie on the complete intersection of two quadrics,
i.e., an elliptic normal curve. Note that an elliptic normal curve in P3 passes through
eight general points and is determined by eight general points on the curve.

Fix nine general points py, ..., po on an elliptic normal curve E C H ~ P3 and
five other general points ¢y, ..., g5 in P* We will show that there exists a curve of
degree 9 and genus 6 through the first 13 points p; + - - -+ p9 + g1 + - - - + g4 but not
through all 14 = f(9, 6, 4) + 1 points.
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Let L be a line in P* which is general relative to p1, ..., p7 and 1, g2, ¢3 (and so
in particular disjoint from p1, ..., p7, 91, q2, 43).

Lemma 6.1 The subscheme
q1UqaUqzUp U---Upy UL CP*

lies on a smooth del Pezzo surface of degree 4.

Proof We will show that if S is some del Pezzo surface, L is aline on S, and ¢1, q2, g3
are general points on S and pq, ..., p7 are general points in a hyperplane section of
S, then

H°(Ns) — HO(NS|q1UqZUq3Up.U~-Up7UL)

is surjective, and hY(Ng) = 0, so that these points and line are general by deformation
theory. As Ng >~ O $(2)®2 we see from Kodaira vanishing that h'(Ns) = 0. As the
points g; are general on S and so impose independent conditions on sections of a line
bundle, it suffices to show that

H%(05(2)) = HY(OQ@)|pyu--uprut)
is surjective, for which it suffices to show the composition
HO(0p+(2) = HO(Ops1,(2)) = HO(OQ)]pyu.0py) @ HO(OL(2))

is surjective. Consider the second map first; the map evidently surjects onto
H°(O1(2)), so it suffices to check that the kernel surjects onto HO(OI,,UA..UP7 2)).
Write p = L N H. Note that any quadric on H vanishing at p can be extended to a
quadric on P* vanishing on L (for example by pullback under the projection map from
some point on L ~\ {p}). The restriction of the kernel to H is therefore isomorphic
to H O(OPS (2) ® J), where J, is the ideal sheaf of the point p, which surjects onto
HO(OPIU.A.UP7 (2)) as the eight points py, ..., p7, p are general in P>, O

To complete the proof, define a point p on E by the relation

Oe(p1+---+ po)(=2) = Oe(p).

Note that p is general in H independent from py, ..., p7, 91, 92, g3, q4. Let L be the
line in P* joining p and g4. Then by Lemma 6.1 above, there exists a smooth del Pezzo
surface S through g; U gy U g3 U py U--- U p7 U L. The hyperplane section S N H
is an elliptic normal curve containing the 8§ points pi, ..., p7 and p on E, and hence
must be equal to E. It therefore contains the 13 points py, ..., pgand q1, ..., g4.

The curve class 2H + L is base-point-free of degree 9 and arithmetic genus g
satisfying

2¢0—2=(H+L)-QH+L)=843-1=10 — g=6.

@ Springer



Interpolation for Brill-Noether curves in P* 267

The general member of this linear system on S is therefore a smooth (hence BN by [6])
curve of degree 9 and genus 6 in P* It suffices only to show that such a curve can be
passed through 4 general points on S and 8 general points in a hyperplane section. By

deformation theory, it suffices to show that ! (Ncys(=p1—---—ps—qi1—---—q4)) =
0. We have
W' (Nejs(=p1 == ps —q1 = -+ — q))
=h' (OcQH +L)(=p1 — - —ps —q1 — - — qa))
=h'(Oc(H +L)(p9 — g1 — - = q4))
= h' (Kc(po)(—q1 — -+ — q4)).

Ash! (Kc(p9)) =0,and qq, ..., g4 are general points, the twist K¢ (p9)(—q1 —- - —
q4) is still nonspecial as desired.

Finally let us show that there does not exist a curve of degree 9 and genus 6 passing
through all 14 points py, ..., p9 and q1, .. ., g5. The strategy will be similar to the
constructive method above, however we will find a smooth del Pezzo containing the
first eight (general) points p1, ..., ps,and q1, ..., gs; using the fact that any curve of
degree 9 and genus 6 containing these points must lie on this surface, we show that
such a curve cannot pass through pg.

Lemma 6.2 There is a unique smooth del Pezzo surface of degree 4 through the points

pla"-vpqula"-’q57
that are general subject to the constraint that the p; lie in a general hyperplane.

Proof First, we show that there is a unique pencil of quadrics passing through
Pls---,P8,q1,---,qs5. As there is a 14-dimensional projective space of quadrics in
P4, this amounts to asserting that the 13 points above impose independent conditions
on sections of Op4(2). Consider the surjective restriction map to P3

H(0ps(2)) = HO(Op3(2)).

Astheeight points py, ..., pg are general in P3, they impose independent conditions on
sections H O(O]Pﬁ (2)) and thus sections of Ops(2). The points ¢, . . ., g5 then impose
independent conditions on sections vanishing at pp, ..., pg as they are general points
in P

Next, let S be a (smooth) del Pezzo surface and let pq, ..., pg be a general collection
of points on S N H = E a general hyperplane section. Let ¢y, ..., g5 be five other
general points on S. Denote by I" the 0-dimensional subscheme of the points p1+- - -+
ps +q1 - - - + gs5. We will show that the map from such marked del Pezzo surfaces to
H?®x (P*)’ is dominant, by deformation theory, by observing that N /p+ has no higher
cohomology and that the restriction map

H°(Ns) — H°(Ns|r)
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is surjective. Indeed, Ns >~ Os(2) @ Os(2) is nonspecial as Og(2) is ample and so
has no higher cohomology by Kodaira vanishing. To show the surjectivity, note that
the restriction map H 0(05(2)) — HYOgQ)) is surjective, again for example by
Kodaira vanishing, as E is in the class Og(1). Since the points py, ..., pg are general
on E, they impose independent conditions on H%(O g (2)); therefore they also impose
independent conditions on sections of Og(2). The points ¢y, ..., g5, being general,
impose independent conditions on sections of Og(2) vanishing at p1, ..., ps. O

Now consider any curve C of degree 9 and genus 6 in P* passing through I' (by
Corollary 1.2 there exist such curves). By Riemann—Roch, hO(OC 2)=184+1-6=
13, and so C lies on at least a pencil of quadrics in P*. As the points of I" lie on a
unique, and general, such pencil, C must also lie on a unique such pencil, and so be
contained in the base locus S, a del Pezzo surface of degree 4. As the Picard group of
S is countable, C is in one of countably many possible curve classes on S. Therefore
C N H C E is in one of only countably many linear equivalence classes of degree
9 divisors on E. This necessarily contains p; + --- 4+ pg, and so the 9th point of
intersection is in one of only countably many classes on E. In particular, it cannot be
a general point on E.

6.6 Degree 10, genus 7

Let D = p; + --- + po be a collection of points on a general hyperplane section
of a curve C of degree 10 and genus 7 in P*. We will show that N¢(—D) satisfies
interpolation, therefore deducing that C passes through f(10, 7, 4) = 14 points that
are general subject to the constraint that nine of them lie in a hyperplane. In this case
we have

Xx(Nc(—D)) =17= -1 (mod 3).
Therefore it suffices to show that for a general divisor I of degree 6,
h’(N¢(—=D —T)) = 0.

Asbefore writing D = O¢ (1) (—p), with p general on C, we have that Oc (—1)(p— D)
is general. Therefore this result again follows from Theorem 1.5.

In [8] it was shown that the hyperplane section H N C of a curve C of degree
10 and genus 7 is a general collection of 10 points on a quadric in H ~ P3 We
show here that there exists a curve of degree 10 and genus 7 through a collection of
f(10,7,4) + 1 = 15 points that are general subject to the condition that 10 lie on a
quadric in H.

We begin in a similar way to our approach for (9, 6). Fix general points p1, ..., pio
on a quadric Q in H ~ IP?, and five more general points g1, ..., g5 in P*

Lemma 6.3 There exists a unique smooth quadric through the 14 points
plﬂ"'7p97q17"‘7q57
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that are general subject to the constraint that the p; lie in a hyperplane. (Equivalently
through the 15 points p1, ..., p1o, 41, - - - , g5 that are general subject to the constraint
that the p; lie in a quadric in a hyperplane.)

Proof As there is a 14-dimensional projective space of quadrics in P4, it suffices to
show that these 14 points impose independent conditions on sections of H 0(0]1174 2)).
The points p1, ..., pg impose independent conditions on H O(Opa (2)), being general
on 3, Furthermore, restriction is a surjection

HY(0p(2)) — H(0p3(2))

so the points pip, ..., pg impose at least as many conditions on H O(OP4 (2)). The
general points g1, . .., g5 impose independent conditions on sections of Op4(2) van-
ishing at p1, ..., p9, and so the whole collection imposes independent conditions on
quadrics.

Now we show that this quadric is general. As above, let S be a general quadric in P*
and let g1, ..., g5 be general points on S and py, ..., pg be general points on H N S.
Then it suffices by deformation theory to verify that N p+ has no higher cohomology
and that

HO(Ng) — HO(Ns|pyUpsu--UpoUgiU--Ugs)

is surjective. To show Ng ~ Og(2) has no higher cohomology, we use the exact
sequence of sheaves

0— Opsa(n —2) - Opa(n) = Ns(n) ~ Os(n) — O,

and the vanishing of the higher cohomology of Op4(n) and Ops(n — 2) forn > 1,
which shows that O g(r) has no higher cohomology forn > 1 (in particular forn = 2).

To show that these 14 points impose independent conditions on sections of O5(2),
we first note that the restriction map H°(O5(2)) — H®(Osny(2)) is surjective
(since A'(O5(1)) = 0 by the above). Since p1, pa, ..., po are general on S N H,
and h°(Osnp (2)) = hO(OPl «p1(2,2)) =9, they impose independent conditions on
sections of Osny(2) and thus on sections of Og(2). Since g1, q2, . . ., g5 are general,
they impose independent conditions on

ker (H*(0s5(2)) — H°(O5nn(2))) ~ H(Os5(1)).

Combining this, our 14 points impose independent conditions on sections of Og(2),
as desired. O

We showed above that there exists a curve C of degree 10 and genus 7 through
Pls---sP9,4q1,---,q95. AS hO(Oc(Z)) =20+ 1—7 = 14, the curve C lies on a
quadric. As the 14 points lie on a unique quadric S (which is smooth if the points are
general), C lies on this quadric.

Finally we claim that the rank 2 bundle N¢,s(—1) satisfies interpolation — this is
sufficient to prove the desired result as the points pq, ..., p1o are general points in a
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hyperplane section of this quadric and ¢y, ..., g5 are general points on this quadric.
From

0 — N¢ys(=1) - Nc(=1) - Oc(1) — 0,

we have x(Nc;s(—1)) = 10. It suffices to show that after twisting down by five
general points ¢1, ..., g5 on C, we have hO(NC/S(—l)(—ql —--+—gqs5)) = 0. By the
above exact sequence, it suffices to show that

O (Ne(=1)(—q1 — --- —g5)) = 0.

To show this, we will degenerate C to the union of a curve X of degree 6 and genus 2 and
a degenerate rational normal curve M Uy, 4ny4-my (L1UL2UL3), where L; "M = m;
and L; N C = z; + w; is a 2-secant line as in the setup of Sect. 5. Specialize the points
gi so that two lie on M and one lies on each of the L;. By [7, Theorem 1.6] this is a
BN-curve and as in Lemma 5.1 (using Lemma 2.17) we have that on global sections

WO (Ne(=D(=q1 = -+ = g5))
= 1 (Nx (= Dlz1 = willwi = z1][z2 = w2llwa— 22][z3—> w3l[w3 — z31).
Further degenerate X as in Lemma 5.2 to the union of a curve Y of degree 5 and genus
1 and a 2-secant line L meeting Y at points x and y. The points x; and x, specialize
onto L and the remainder specialize onto Y. The union is a BN-curve and the global

sections glue to give that

RO (Ny (=D (0)[x — y1[2y — x1[w1 = x1[wa— x1[z3— w3l[w3 — z3])
= h®(Nx(=Dlzi = willwi— z1llz2— wallwa— z2][z3—> w3l[ws — z3])
=" (Ne(=1)(=q1 — -~ — g5)).

The bundle
Ny = Ny(=D[x = yl[2y = x][wi — x][wz — x][z3 = w3][w3 — z3]
sits in an exact sequence

0= Ny xy(=D(@y —x—2z3 —w3) — Nj//
— Ny y (=D(=y —wi — w2)[x — yllzz3— w3][wz—z3]—>0

Nysx(=1)(y—x—z3—w3) =~ Oy(x +y—z3 —w3) is a general line bundle of degree
0 on an elliptic curve, and hence has no global sections. It thus remains to show

B (Nz 1y (=D (=y — wi — wo)[x — yllz3— w3llws— z3]) = 0.

Since X (Np, |y (=D(=y — w1 — w2)[x — yllzz—> w3llwz—z3]) = —1 and
Oc()(y + w1 + wy) is a general line bundle of degree 2 on an elliptic curve, it
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suffices to show Ny |, [x — yllz3— w3][w3— z3] satisfies interpolation. Limiting y
to ws, it suffices to show interpolation for the bundle

Ny, y[x = w3llz3— w3][ws— z3].

This is verified by publicly available code in [1, Appendix B]:

>>> good(Curve(4,1,3).add(P101) .add(P100))
True
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