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Abstract—This paper presents a holistic approach to saliency-
guided visual attention modeling (SVAM) for use by autonomous
underwater robots. Our proposed model, named SVAM-Net,
integrates deep visual features at various scales and semantics
for effective salient object detection (SOD) in natural underwater
images. The SVAM-Net architecture is configured in a unique way
to jointly accommodate bottom-up and top-down learning within
two separate branches of the network while sharing the same
encoding layers. We design dedicated spatial attention modules
(SAMs) along these learning pathways to exploit the coarse-
level and fine-level semantic features for SOD at four stages
of abstractions. The bottom-up branch performs a rough yet
reasonably accurate saliency estimation at a fast rate, whereas
the deeper top-down branch incorporates a residual refinement
module (RRM) that provides fine-grained localization of the
salient objects. Extensive performance evaluation of SVAM-Net
on benchmark datasets clearly demonstrates its effectiveness for
underwater SOD. We also validate its generalization performance
by several ocean trials’ data that include test images of diverse
underwater scenes and waterbodies, and also images with unseen
natural objects. Moreover, we analyze its computational feasibil-
ity for robotic deployments and demonstrate its utility in several
important use cases of visual attention modeling.

I. INTRODUCTION

Salient object detection (SOD) aims at modeling human

visual attention behavior to highlight the most important and

distinct objects in a scene. It is a well-studied problem in the

domains of robotics and computer vision [8, 27, 39] for its

usefulness in identifying regions of interest (RoI) in an image

for fast and effective visual perception. The SOD capability

is essential for visually-guided robots because they need to

make critical navigational and operational decisions based on

the relative importance of various objects in their field-of-

view (FOV). The autonomous underwater vehicles (AUVs),

in particular, rely heavily on visual saliency estimation for

tasks such as exploration and surveying [13, 30, 26], ship-hull

inspection [27], event detection [12], place recognition [43],

target localization [67], and more.

In the pioneering work on SOD, Itti et al. [23] used local

feature contrast in image regions to infer visual saliency.

Numerous methods have been subsequently proposed [29, 10]

that utilize local point-based features and also global contex-

tual information as reference for saliency estimation. In recent

years, the state-of-the-art (SOTA) approaches have used pow-

erful deep visual models [62] to imitate human visual informa-

tion processing through top-down or bottom-up computational

Fig. 1: The proposed SVAM-Net model identifies salient objects
and interesting image regions to facilitate effective visual attention
modeling by autonomous underwater robots. It also generates abstract
saliency maps (shown in green intensity channel and red object
contours) from an early bottom-up SAM which can be used for fast
processing on single-board devices.

pipelines. The bottom-up models learn to gradually infer high-

level semantically rich features [61]; hence the shallow layers’

structural knowledge drives their multi-scale saliency learning.

Conversely, the the top-down approaches progressively inte-

grate high-level semantic knowledge with low-level features

for learning coarse-to-fine saliency estimation [39]. Moreover,

the contemporary models have introduced techniques to learn

boundary refinement [46, 58], pyramid feature attention [62],

and contextual awareness [39], which significantly boost the

SOD performance on benchmark datasets.

However, the applicability of such powerful learning-based

SOD models in real-time underwater robotic vision has been

rather limited. The underlying challenges and practicalities

are twofold. First, the visual content of underwater imagery

is uniquely diverse due to domain-specific object categories,

background waterbody patterns, and a host of optical dis-

tortion artifacts [3, 22]; hence, the SOTA models trained



on terrestrial data are not transferable off-the-shelf. A lack

of large-scale annotated underwater datasets aggravates the

problem; the existing datasets and relevant methodologies are

tied to specific applications such as coral reef classification

and coverage estimation [6, 4], object detection [47], and

foreground segmentation [68]. Consequently, these do not pro-

vide a comprehensive data representation for effective learning

of underwater SOD. Secondly, learning a generalizable SOD

function demands the extrapolation of multi-scale hierarchical

features by high-capacity deep network models. This results

in a heavy computational load and makes real-time inference

impossible, particularly on single-board robotic platforms.

To this end, traditional approaches based on various feature

contrast evaluation techniques [13, 67] are often practical

choices for saliency estimation by visually-guided underwa-

ter robots. These techniques encode low-level image-based

features (e.g., color, texture, object shapes or contours) into

super-pixel descriptors [32, 24] to subsequently infer saliency

by quantifying their relative distinctness on a global scale.

Such bottom-up approaches are computationally light and are

useful as pre-processing steps for faster visual search [32, 27]

and exploration tasks [13, 43]. However, they do not provide

a standalone generalizable solution for SOD in underwater

imagery. A few recently proposed approaches attempt to ad-

dress this issue by learning more generalizable SOD solutions

from large collection of annotated underwater data [19, 50].

These approaches and other SOTA deep visual models have

reported inspiring results for underwater SOD and relevant

problems [24, 21]. Nevertheless, their utility and performance

margins for real-time underwater robotic applications have not

been explored in-depth in the literature.

In this paper, we formulate a robust and efficient solution

for saliency-guided visual attention modeling (SVAM) by

harnessing the power of both bottom-up and top-down learning

in a novel encoder-decoder model named SVAM-Net. We

design two spatial attention modules (SAMs) named SAMbu

and SAMtd to effectively exploit the coarse-level and fine-level

semantic features along the bottom-up and top-down learning

pathways, respectively. SAMbu utilizes the semantically rich

low-dimensional features extracted by the encoder to per-

form an abstract yet reasonably accurate saliency estimation.

Concurrently, SAMtd combines the multi-scale hierarchical

features of the encoder to progressively decode the information

for robust SOD. A residual refinement module (RRM) further

sharpens the initial SAMtd predictions to provide fine-grained

localization of the salient objects. To balance the high degree

of refined gradient flows from the later SVAM-Net layers,

we deploy an auxiliary SAM named SAMaux that guides the

spatial activations of early encoding layers and ensures smooth

end-to-end learning.

In addition to sketching the conceptual design, we present

a holistic training pipeline of SVAM-Net and its variants. The

end-to-end learning is supervised by six loss functions which

are selectively applied at the final stages of SAMaux, SAMbu,

SAMtd, and RRM. These functions evaluate information loss

and boundary localization errors in the respective SVAM-Net

predictions and collectively ensure effective SOD learning.

In our evaluation, we analyze SVAM-Net’s performance in

standard quantitative and qualitative terms on three benchmark

datasets named UFO-120 [21], MUED [25], and SUIM [19].

We also conduct performance evaluation on USOD, which we

prepare as a new challenging test set for underwater SOD.

Without data-specific tuning or task-specific model adapta-

tion, SVAM-Net outperforms other existing solutions on these

benchmark datasets; more importantly, it exhibits considerably

better generalization performance on random unseen test cases

of natural underwater scenes.

Lastly, we present several design choices of SVAM-Net,

analyze their computational aspects, and discuss the corre-

sponding use cases. The end-to-end SVAM-Net model offers

over 20 frames per second (FPS) inference rate on a single

GPU. Moreover, the decoupled SAMbu branch offers signif-

icantly faster rates, e.g., over 86 FPS on a GPU and over

21 FPS on single-board computers. As illustrated in Fig. 1,

robust saliency estimates of SVAM-Net at such speeds are

ideal for fast visual attention modeling in robotic deployments.

We further demonstrate its usability benefits for important

applications such as object detection, image enhancement, and

image super-resolution by visually-guided underwater robots.

The SVAM-Net model, USOD dataset, and relevant resources

are released at http://irvlab.cs.umn.edu/visual-

attention-modeling/svam.

II. BACKGROUND & RELATED WORK

A. Salient Object Detection (SOD)

SOD is a successor to the human fixation prediction (FP)

problem [23] that aims to identify fixation points that human

viewers would focus on at first glance. While FP originates

from research in cognition and psychology [31, 59], SOD is

more of a visual perception problem explored by the computer

vision and robotics community [8, 27, 39]. The history of SOD

dates back to the work of Liu et al. [40] and Achanta et al. [2],

which make use of multi-scale contrast, center-surround his-

togram, and frequency-domain cues to (learn to) infer saliency

in image space. Other traditional SOD models rely on various

low-level saliency cues such as point-based features [12], local

and global contrast [10, 29], background prior [64], etc. Please

refer to [7] for a more comprehensive overview of non-deep

learning-based SOD models.

Recently, deep convolutional neural network (CNN)-based

models have set new SOTA for SOD [8, 60]. Li et al. [35]

and Zhao et al. [65] use sequential CNNs to extract multi-scale

hierarchical features to infer saliency on global and local con-

texts. Recurrent fully convolutional networks (FCNs) [57, 5]

are also used to progressively refine saliency estimates. In par-

ticular, Wang et al. [59] use multi-stage convolutional LSTMs

for saliency estimation guided by fixation maps. Later in [61],

they explore the benefits of integrating bottom-up and top-

down recurrent modules for co-operative SOD learning. Since

the feed-forward computational pipelines lack a feedback strat-

egy [36, 33], recurrent modules offer more learning capacity

via self-correction. However, they are prone to the vanishing



gradient problem and also require meticulous design choices

in their feedback loops [61]. To this end, top-down models

with UNet-like architectures [39, 38] provide more consistent

learning behavior. These models typically use a powerful

backbone network (e.g., VGG [53], ResNet [15]) to extract a

hierarchical pyramid of features, then perform a coarse-to-fine

feature distillation via mirrored skip-connections. Subsequent

research introduces the notions of short connections [16] and

guided super-pixel filtering [17] to learn to infer compact and

uniform saliency maps.

B. SOD and SVAM by Underwater Robots

The most essential capability of visually-guided AUVs is to

identify interesting and relevant image regions to make effec-

tive operational decisions. The existing systems and solutions

for visual saliency estimation can be categorically discussed

from the perspectives of model adaptation [30, 19], high-level

robot tasks [13, 48], and feature evaluation pipeline [24, 43].

Since we already discussed the particulars of bottom-up and

top-down computational pipelines, our following discussion is

schematized based on the model and task perspectives.

Visual saliency estimation approaches can be termed as

either model-based or model-free, depending on whether the

robot models any prior knowledge of the target salient objects

and features. The model-based techniques are particularly

beneficial for fast visual search [30, 26], enhanced object

detection [67, 50], and monitoring applications [44]. For

instance, Maldonado-Ramı́rez et al. [43] use ad hoc visual

descriptors learned by a convolutional autoencoder to identify

salient landmarks for fast place recognition. Moreover, Kor-

eitem et al. [30] use a bank of pre-specified image patches

(containing interesting objects or relevant scenes) to learn

a similarity operator that guides the robot’s visual search

in an unconstrained setting. Such similarity operators are

essentially spatial saliency predictors which assign a degree

of relevance to the visual scene based on the prior model-

driven knowledge of what may constitute as salient, e.g., coral

reefs [4], companion divers [67], wrecks [19], fish [47], etc.

On the other hand, model-free approaches are more feasible

for autonomous exploratory applications [14, 49]. The early

approaches date back to the work of Edgington et al. [12]

that uses binary morphology filters to extract salient features

for automated event detection. Subsequent approaches adopt

various feature contrast evaluation techniques that encode

low-level image-based features (e.g., color, luminance, tex-

ture, object shapes) into super-pixel descriptors [42, 32, 55].

These low-dimensional representations are then exploited by

heuristics or learning-based models to infer global saliency.

For instance, Girdhar et al. [13] formulate an online topic-

modeling scheme that encodes visible features into a low-

dimensional semantic descriptor, then adopt a probabilistic

approach to compute a surprise score for the current observa-

tion based on the presence of high-level patterns in the scene.

Moreover, Kim et al. [27] introduce an online bag-of-words

scheme to measure intra- and inter-image saliency estimation

for robust key-frame selection in SLAM-based navigation.

Wang et al. [55] encode multi-scale image features into a

topographical descriptor, then apply Bhattacharyya measure

to extract salient RoIs by segmenting out the background.

These bottom-up approaches are effective in pre-processing

raw visual data to identify point-based or region-based salient

features; however, they do not provide a generalizable object-

level solution for underwater SOD.

Nevertheless, several contemporary research [9, 24, 68, 37]

report inspiring results for object-level saliency estimation

and foreground segmentation in underwater imagery. Chen et

al. [9] use a level set-based formulation that exploits various

low-level features for underwater SOD. Moreover, Jian et

al. [24] perform principal components analysis (PCA) in

quaternionic space to compute pattern distinctness and lo-

cal contrast to infer directional saliency. These methods are

also model-free and adopt a bottom-up feature evaluation

pipeline. In contrast, Islam et al. [21] incorporates multi-scale

hierarchical features extracted by a top-down deep residual

model to identify salient foreground pixels for global con-

trast enhancement. In this paper, we formulate a generalized

solution for underwater SOD and demonstrate its utility for

SVAM by visually-guided underwater robots. It combines the

benefits of bottom-up and top-town feature evaluation in a

compact end-to-end pipeline, provides SOTA performance,

and ensures computational efficiency for robotic deployments

in both search-based and exploration-based applications.

III. MODEL & TRAINING PIPELINE

A. SVAM-Net Architecture

As illustrated in Fig. 2, the major components of our SVAM-

Net model are: the backbone encoder network, the top-down

SAM (SAMtd), the residual refinement module (RRM), the

bottom-up SAM (SAMbu), and the auxiliary SAM (SAMaux).

These components are tied to an end-to-end architecture for a

supervised SOD learning.

1) Backbone Encoder Network: We use the first five se-

quential blocks of a standard VGG-16 network [53] as the

backbone encoder in our model. Each of these blocks con-

sist of two or three convolutional (Conv) layers for feature

extraction, which are then followed by a pooling (Pool)

layer for spatial down-sampling. For an input dimension of

256× 256× 3, the composite encoder blocks e1 → e5 learn

128×128×64, 64×64×128, 32×32×256, 16×16×512, and

8×8×512 feature-maps, respectively. These multi-scale deep

visual features are jointly exploited by the attention modules

of SVAM-Net for effective learning.

2) Top-Down SAM (SAMtd): Unlike the existing U-Net-

based architectures, we adopt a partial top-down decoder

d5 → d2 that allows skip-connections from mirrored encoding

layers. We consider the mirrored conjugate pairs as e4 ∼ d5,

e3 ∼ d4, e2 ∼ d3, and e1 ∼ d2. Such asymmetric

pairing facilitates the use of a standalone de-convolutional

(DeConv) layer following d2 rather than using another com-

posite decoder block, which we have found to be redundant

(during ablation experiments). The composite blocks d5 → d2







(a) Spatial saliency learning over e = 100 epochs of backbone pre-
training; outputs of Y td are shown after 5, 30, 60, and 90 epochs.

(b) Snapshots of SVAM-Net output after 40 epochs of subsequent
end-to-end training; notice the spatial attention of early encoding
layers (in Y

aux) and the gradual progression and refinement by the
deeper layers (through Y

bu
→ Y

td
→ Y

tdr).

(c) Results of ablation experiments (for the same input images)
showing contributions of various attention modules and loss func-
tions in the SOD learning: (i) without LBLE (λb = 0, λw = 1),
(ii) without SAMaux and SAMbu (λaux = λbu = 0), (iii) without
SAMtd and RRM (λtd = λtdr = 0), (iv) without RRM (λtdr = 0),
and (v) without backbone pre-training.

Fig. 4: Demonstrations of progressive learning behavior of SVAM-
Net and effectiveness of its learning components.

We demonstrate the progression of SOD learning by SVAM-

Net and visualize the contributions of its learning components

in Fig. 4. The first stage of learning is guided by super-

vised pre-training with over 13.5K instances including both

terrestrial and underwater images. This large-scale training

facilitates effective feature learning in the backbone encoding

layers and by SAMtd. As Fig. 4a shows, the {e1:5 → SAMtd}
pipeline learns spatial attention with a reasonable precision

within 90 epochs. We found that it is crucial to not over-train

the backbone for ensuring a smooth and effective end-to-end

learning with the integration of SAMaux, SAMbu, and RRM.

As illustrated in Fig. 4b, the subsequent end-to-end training

on underwater imagery enables more accurate and fine-grained

saliency estimation by SVAM-Net.

Moreover, we conduct a series of ablation experiments

to visually inspect the effects of various loss functions and

attention modules in the learning. As Fig. 4c demonstrates,

the boundary awareness (enforced by LBLE) and bottom-

up attention modules (SAMaux and SAMbu) are essential to

achieve precise localization and sharp contours of the salient

objects. It also shows that important details are missed when

we incorporate only bottom-up learning, i.e., without SAMtd

and subsequent delicate refinements by RRM. Besides, the

backbone pre-training step is important to ensure generaliz-

ability in the SOD learning and as an effective way to combat

the lack of large-scale annotated underwater datasets.

B. Evaluation Data Preparation and Metrics

For performance evaluation of SVAM-Net and other existing

SOD methods, we use four widely-used metrics [8, 46, 58]: F-

measure (Fβ), S-measure (Sm), Mean absolute error (MAE),

and Precision-recall (PR) curves. We conduct the evaluation on

the test sets of three publicly available datasets: SUIM [19],

UFO-120 [21], and MUED [25]. In addition, we prepare a

challenging test set named USOD to evaluate underwater SOD

methods. It contains 300 natural underwater images which

we exhaustively compiled to ensure diversity in the objects

categories, water-body, optical distortions, and aspect ratio of

the salient objects. More detailed explanations of the data

preparation processes and evaluation metrics are provided in

the supplementary materials.

C. SOD Performance Evaluation

1) Quantitative and Qualitative Analysis: For performance

comparison, we consider the following six methods that are

widely used for underwater SOD and/or saliency estimation:

(i) SOD by Quaternionic Distance-based Weber Descriptor

(QDWD) [24], (ii) saliency estimation by the Segmentation of

Underwater IMagery Network (SUIM-Net) [19], (iii) saliency

prediction by the Deep Simultaneous Enhancement and Super-

Resolution (Deep SESR) model [21], (iv) SOD by a Level

Set-guided Method (LSM) [9], (v) Saliency Segmentation by

evaluating Region Contrast (SSRC) [37], and (vi) SOD by

Saliency-based Adaptive Object Extraction (SAOE) [55]. We

also include the performance margins of four SOTA SOD mod-

els: (i) Boundary-Aware Saliency Network (BASNet) [46], (ii)

Pyramid Attentive and salient edGE-aware Network (PAGE-

Net) [62], (iii) Attentive Saliency Network (ASNet) [59],

and (iv) Cascaded Partial Decoder (CPD) [63]. We use their

publicly released weights (pre-trained on terrestrial imagery)

and further train them on combined SUIM and UFO-120 data

by following the same setup as SVAM-Net (see Table I).

As the results in the first part of Table II suggest, SVAM-Net

outperforms all the underwater SOD models in comparison

with significant margins. Although QDWD and SUIM-Net

perform reasonably well on particular datasets (e.g., SUIM,

and MUED, respectively), their Fmax
β , Sm, and MAE scores

are much lower; in fact, their scores are comparable to and

often lower than those of SVAM-NetLight. The LSM, Deep

SESR, SSRC, and SAOE models offer even lower scores

than SVAM-NetLight. The respective comparisons of PR curves

shown in Fig. 5 and Fig. 6 further validate the superior per-

formance of SVAM-Net and SVAM-NetLight by an area-under-

the-curve (AUC)-based analysis. Moreover, Fig. 7 demon-

strates that SVAM-Net-generated saliency maps are accurate

with precisely segmented boundary pixels in general. Although

not as fine-grained, SVAM-NetLight also generates reasonably





Fig. 7: A few qualitative comparisons of saliency maps generated by the top ten SOD models (based on the results of Table II). From the
top: first four images belong to the test sets of SUIM [19] and UFO-120 [21], the next one to MUED [25], whereas the last three images
belong to the proposed USOD dataset.

tational aspects make SVAM-NetLight ideally suited for single-

board robotic deployments, and justify our design intuition of

decoupling the bottom-up pipeline {e1:5 → SAMbu} from the

SVAM-Net architecture (see §III-C).

B. Practical Use Cases

In the last two sections, we discussed the practicalities

involved in designing a generalized underwater SOD model

and identified several drawbacks of existing solutions such

as QDWD, SUIM-Net, LSM, and Deep SESR. Specifically,

we showed that their predicted saliency maps lack important

details, exhibit improperly segmented object boundaries, and

incur plenty of false-positive pixels (see §IV-C and Fig. 7).

Although such sparse detection of salient pixels can be useful

in specific higher-level tasks (e.g., contrast enhancement [21],

rough foreground extraction [37]), these models are not as

effective for general-purpose SOD. It is evident from our

experimental results that the proposed SVAM-Net model over-

comes these limitations and offers a robust SOD solution for

underwater imagery. For underwater robot vision, in particular,

SVAM-NetLight can facilitate faster processing in a host of

visual perception tasks. As seen in Fig. 8, we demonstrate

its effectiveness for two such important use cases.

TABLE III: Run-time comparison for SVAM-Net and SVAM-NetLight

on a GTX 1080 GPU and on a single-board AGX Xavier device.

SVAM-Net SVAM-NetLight

GTX 1080 49.82 ms (20.07 FPS) 11.60 ms (86.15 FPS)
AGX Xavier 222.2 ms (4.50 FPS) 45.93 ms (21.77 FPS)

1) Salient RoI Enhancement: AUVs and ROVs operating

in noisy visual conditions frequently use various image en-

hancement models to restore the perceptual image qualities for

improved visual perception [54, 51]. However, these models

typically have a low-resolution input reception, e.g., 224×224,

256 × 256, or 320 × 240. Hence, despite the robustness of

SOTA underwater image enhancement models [22, 34], their

applicability to high-resolution robotic visual data is limited.

For instance, the fastest available model, FUnIE-GAN [22],

has an input resolution of 256 × 256, and it takes 20 ms

processing time to generate 256 × 256 outputs (on AGX

Xavier). As a result, it eventually requires 250 ms to enhance

and combine all patches of a 1080× 768 input image, which

is too slow to be useful in near real-time applications.

An effective alternative is to adopt a salient RoI enhance-

ment mechanism to intelligently enhance useful image regions

only. As shown in Fig. 8a, SVAM-NetLight-generated saliency

maps are used to pool salient image RoIs, which are then

reshaped to convenient image patches for subsequent enhance-

ment. Although this process requires an additional 46 ms of

processing time (by SVAM-NetLight), it is still considerably

faster than enhancing the entire image. As demonstrated in

Fig. 8a, we can save over 45% processing time even when the

salient RoI occupies more than half the input image.

2) Effective Image Super-Resolution: Single image super-

resolution (SISR) [20, 41] and simultaneous enhancement

and super-resolution (SESR) [21] techniques enable visually-

guided robots to zoom into interesting image regions for

detailed visual perception. Since performing SISR/SESR on





Fig. 9: SVAM-NetLight-generated saliency maps and respective object contours are shown for a variety of snapshots taken during human-robot
cooperative experiments and oceanic explorations. Further experimental results demonstrating its generalization performance are provided in
the supplementary material; a video demonstration can be seen here: https://youtu.be/SxJcsoQw7KI.

ensures fine-grained saliency estimation through the deeper

top-down pipeline.

In the implementation, we incorporate comprehensive end-

to-end supervision of SVAM-Net by large-scale diverse train-

ing data consisting of both terrestrial and underwater imagery.

Subsequently, we validate the effectiveness of its learning

components and various loss functions by extensive ablation

experiments. In addition to using existing datasets, we release

a new challenging test set named USOD for the benchmark

evaluation of SVAM-Net and other underwater SOD models.

By a series of qualitative and quantitative analyses, we show

that SVAM-Net provides SOTA performance for SOD on

underwater imagery, exhibits significantly better generalization

performance on challenging test cases than existing solutions,

and achieves fast end-to-end inference on single-board devices.

Moreover, we demonstrate that a delicate balance between ro-

bust performance and computational efficiency makes SVAM-

NetLight suitable for real-time use by visually-guided under-

water robots. In the near future, we plan to optimize the end-

to-end SVAM-Net architecture further to achieve a faster run-

time. The subsequent pursuit will be to analyze its feasibility

in online learning pipelines for task-specific model adaptation.

APPENDIX A

DATASET AND CODE REPOSITORY POINTERS

• The SUIM [19], UFO-120 [21], EUVP [22], and USR-

248 [20] datasets: http://irvlab.cs.umn.edu/

resources/

• The UIEB dataset [34]: https://li-

chongyi.github.io/proj_benchmark.html

• Other underwater datasets: https://github.com/

xahidbuffon/underwater_datasets

• BASNet [46] (PyTorch): https://github.com/

NathanUA/BASNet

• PAGE-Net [62] (Keras): https://github.com/

wenguanwang/PAGE-Net

• ASNet [59] (TensorFlow): https://github.com/

wenguanwang/ASNet

• CPD [63] (PyTorch): https://github.com/

wuzhe71/CPD

• SOD evaluation (Python): https://github.com/

xahidbuffon/SOD-Evaluation-Tool-Python
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