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Abstract

An important challenge in big data is identification of important variables. For
this purpose, methods of discovering variables with non-standard univariate
marginal distributions are proposed. The conventional moments based sum-
mary statistics can be well-adopted, but their sensitivity to outliers can lead
to selection based on a few outliers rather than distributional shape such as
bimodality. To address this type of non-robustness, the L-moments are con-
sidered. Using these in practice, however, has a limitation since they do not
take zero values at the Gaussian distributions to which the shape of a marginal
distribution is most naturally compared. As a remedy, Gaussian Centered L-
moments are proposed, which share advantages of the L-moments but have zeros
at the Gaussian distributions. The strength of Gaussian Centered L-moments
over other conventional moments is shown in theoretical and practical aspects
such as their performances in screening important genes in cancer genetics data.
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1. Introduction

Data quality is an issue that is currently not receiving as much attention as it
deserves in the age of big data. Traditional analysis of small data sets involves a
study of marginal distributions, which easily finds data quality challenges such
as skewness and suggests remedies such as the Box-Cox transformation (Box
and Cox, 1964). Direct implementation of this type of operation is challenging
with high dimensional data, as there are too many marginal distributions to
individually visualize. This hurdle can be overcome by using summary statistics
to screen a representative set for visualization and potential remediation.
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Conventional summaries such as the sample skewness 41 and sample kurtosis
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respectively, can be very useful for this screening process. However, as studied
in Brys et al. (2004, 2006) and Kim and White (2004), those have limitations
for the purpose, e.g. they can strongly be influenced by outliers. In some
situations, outliers are well worth finding. But in other cases, summaries that
are dominated by outliers can miss important distributional features such as
skewness and bimodality. Variables with such features can be of keen interest
in cancer research.

In this paper, the limitation of conventional summary statistics is demon-
strated using a modern high dimensional data set from cancer research. These
data are part of the TCGA project (Weinstein et al., 2013), and the precise
version of the data here was used in Feng et al. (2016). The data include
gene expression profiles of 16,615 genes and 817 breast cancer patients, each
of whom is classified according to five cancer subtypes of major importance in
cancer treatment. While much is known about this data, as discussed in Feng
et al. (2016), the sheer data size means that there have only been cursory studies
of the marginal, or individual gene, distributions. In this study, we conduct a
much deeper search for genes with unexpected marginal structure such as skew-
ness and kurtosis. This can yield relationships between genes and biologically
meaningful features such as breast cancer subtypes.

The top two rows of Figure 1 show the marginal distributions of seven vari-
ables, i.e. genes, with the smallest conventional sample skewness values. The
upper left plot shows the sample quantile curve of these summary values as
a function of their ranks. The left arrow in the plot indicates that the seven
marginal distribution plots have the smallest sample skewness values. The re-
maining plots are sorted in an ascending order of the sample skewness values
that are given near the top of each plot. Each symbol of a different color rep-
resents a breast cancer patient by subtypes; see Table 1. The black solid lines
are kernel density estimates of marginal distributions and colored solid lines are
sub-densities corresponding to different subtypes. As detailed in Section 5.1 of
Marron and Dryden (2021), the combination of data overlays with sub-density
estimates provides particularly useful general insights into marginal distribu-
tions, and especially here, emphasizes data features such as outliers.

Figure 1 shows that even though the genes with the smallest sample skewness

Subtype LumA LumB Her2 Basal Normal-like
Symbol + X <

Table 1: The symbols and colors corresponding to the five breast cancer subtypes in the
marginal distribution plots.
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Figure 1: The marginal distribution plots of seven genes with the smallest conventional sample
skewness (top two rows) and sample L-skewness values (bottom two rows). Each of the
seven genes in the top two rows is driven by a few strong outliers that tend to obscure
distributional shapes, while the seven genes in the bottom two rows seem to appear because
of their distributional structure.

values were screened, the genes such as CSTF2T, Clorf172 and BET1L have a
couple of outliers on their left sides rather than distributional skewness to the
left. The sample skewness seems inadequate for effectively screening interest-
ing genes in terms of distributional skewness. This challenge is well addressed
using the sample L-skewness proposed in Hosking (1990) as shown in the bot-
tom two rows of Figure 1. All the genes screened by the sample L-skewness
except GSTT1 have clusters of Basal-type samples (blue triangles). These show
that the sample L-skewness screens genes with distributional skewness especially
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coming from cancer subtypes, which is desirable since the former is clinically
much more important than the latter.

Investigation about distributional shape is often performed relative to the
Gaussian distributions, since many data are aggregations of small and inde-
pendent errors which approximately follow the Gaussian distributions by the
Central Limit Theorem. However, as discussed in Hosking (1990), the popu-
lation L-moments have zero values at the uniform distributions, making their
signs and absolute values measure directions and magnitude of departure from
the uniform distributions, respectively. The paper proposed using the sample
L-skewness to perform the goodness-of-fit test for Gaussianity against skewed
distributions, but did not consider the L-kurtosis against kurtotic alternative
distributions.

These ideas motivate development of improved Gaussian centered versions
of the L-moments. The unpublished results Decurninge (2014) discovered a
variant of the L-moments called the Hermite L-moments. While the Hermite
L-moments were shown to have strength in multivariate analysis, no attention
was paid to their potential for univariate summaries, nor was their distributional
center at the Gaussian distributions mentioned. In this paper, we comprehen-
sively investigate possibilities of the HL-moments as univariate summaries. To
further study their usefulness, we investigate their theoretical robustness and
consistent estimators.

Another simple approach to shift the center of the L-moments is to subtract
the population L-kurtosis (Hosking, 1990) value at the Gaussian distributions
from itself. However, this can result in the loss of theoretical soundness of the
definition of the L-moments since they are no longer differences of expected
order statistics as in Equation (2.1) of Hosking (1990). We propose an alter-
native definition of the L-moments by which the numerical subtraction can be
understood as a theoretically principled shift of the zeros of the L-moments to
the Gaussian distributions.

These Gaussian Centered L-moments are developed in Section 3 as new
univariate summaries. Their theoretical properties such as consistency and ro-
bustness are studied in Sections 4 and 5, respectively. Their abilities to screen
variables with interesting marginal distributions are quantitatively analyzed in
Section 6. A computational study that shows strength of a proposed estimator
is given in Section 7. Section 8 summarizes our findings and presents potential
future considerations.

2. Mathematical preliminaries

Assume that a random variable X follows a cumulative distribution function
F with a probability density function f. We denote the distribution of a X +
b for a # 0 and b € R by F,;. Also, a random sample X;, X, -+, X, is
assumed to be generated from F, and X;., denotes the i-th order statistic of
the random sample. In this paper we consider only an absolutely continuous
and strictly increasing cumulative distribution function, in the sense that it is
strictly increasing on its support S(F) = {z]|0 < F(x) < 1} where A indicates




100

105

110

115

120

125

the closure of a set A C R. Let F be the class of such distribution functions
and the quantile function F~1 : (0,1) — R be the inverse of F' € F. It is always
assumed that the composition of G=! and F, G~' o F, where G € F, is defined
on S(F). When F is symmetric, we denote its point of symmetry (Doksum,
1975) by m(F).

Various kinds of orthogonal polynomials are used throughout this paper.
One is the shifted Legendre polynomials { P*|r = 1,2, - } which have been com-
prehensively investigated in Chapter 4 of Szego (1959). The shifted Legendre
polynomials are orthogonal to each other on the unit interval (0, 1) with respect
to the weight function w(xz) = 1. Other orthogonal polynomials are the Hermite
polynomials {H,|r = 1,2,-- -} presented in Chapter 5 of Szegd (1959), which are
orthogonal to each other on the real line R with respect to the weight function
w(z) = e /2.

2.1. L-statistics and L-moments

The term L-statistic is used to indicate a statistic in the form of a linear
combination of order statistics, which is generally expressed as

. 1 —
en = - § Cn,iXi:ny (1)
n
=1

where ¢, ; is a function of the sample size n and the rank 7 of the order statistic
Xi.n. Section 11.4 of David and Nagaraja (2003) surveyed the literature on
various sets of conditions on the coefficients {c, ;|n > 1,1 <i < n} and the dis-
tribution function F which ensure that 6, almost surely converges in the limit
as n — oo to the quantity

0,(F) = / " o @) () dx = /0 P () (u)du, @)

— 00

where J : (0,1) — R is a measurable function. We call a functional in the form
of Equation (2) an L-functional, the term used in Necir and Meraghni (2010).

A connection between L-statistics and location, scale, skewness and kurtosis
of a distribution has been made by Hosking (1990). The population L-moments
were defined in Hosking (1990) as

0o 1
n= [ at@p (P = [ F WP, 3)
—0o0 0
which shows that the L-moments are L-functionals. Regarding computation of
these population L-moments, very useful methods were presented in Dutang
(2017). The population L-skewness and L-kurtosis are defined as A5 = Ag/A2
and \; = Ay/)g, respectively. Based on the sample L-moments /A\nm in Equa-
tion (3.1) of Hosking (1990), the sample L-skewness and sample L-kurtosis are
defined as 5\23 = S\n,g/j\n,g and 5\:74 = Xn74/5\n72, respectively.
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2.2. Oja’s criteria

When defining new measures of location, scale, skewness and kurtosis, a
challenge is to ensure that the new measures reflect the intuitive meaning of
those distributional properties. This challenge is addressed by Oja (1981) using
stochastic dominance ideas, whose third and fourth criteria regarding skewness
and kurtosis are presented here.

Definition 2.1 (Oja (1981)). The functional 6 : F — R is a

a. measure of skewness in F if 0(F, ;) = sign(a)d(F) foralla # 0,b € R, F €
F and §(F) < 0(GQ) whenever G~! o F is convex (of order 2).

b. measure of kurtosis in a family of symmetric distributions F, C F if
O(Fap) = O(F) for all a # 0,b € R, F € Fs and 0(F) < 6(G) whenever
F,G € Fs, G™1 o F is concave on {z|z < m(F)} and convex on {z|z >
m(F)}. In this case, we say F does not have more kurtosis than G. M

For the definitions of measures of location and scale, refer to Oja (1981).
Note from the paper that distributional kurtosis connects heavy-tailedness and
bimodality. More kurtosis implies being peaked at its central region and heavy-
tailed, while less kurtosis implies heavy shoulders near the center yielding bi-
modality.

3. Gaussian Centered L-moments

As mentioned in Section 1, a search for non-Gaussianity is an important
subject of exploratory data analysis. This motivates introducing the following
definition.

Definition 3.1. A sequence of functionals {6,|r =1,2,---} is centered at the
family of distributions F when it satisfies 0,.(F) = 0 for all » = 3,4,--- and
FeF. |

Important functionals centered at the Gaussian distributions are the cumu-
lants; see Feller (1968) and Marcinkiewicz (1939). For developing moments
centered at the Gaussian distributions, we introduce the following definition.

Definition 3.2. We call functionals {6, : F — R|r = 1,2,---} Gaussian Cen-
tered L-moments (GCL-moments) in F if they are L-functionals and centered
at the Gaussian distributions. ]

The letter ‘L’ generally referred to the linear combination of expected order
statistics, but here it refers to any L-functionals in the form of Equation (2).
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3.1. Hermite L-moments

The fact that the L-moments are centered at the uniform distributions results
from the orthogonality of the shifted Legendre polynomials. This motivates us
to adopt the Hermite polynomials to locate the center of L-functionals at the
Gaussian distributions. This results in the Hermite L-moments ( HL-moments)
defined as

1

w= [ af@ e @7 @) de= [P (07 W) du (@

—o00 0

Note that 7, are L-functionals and 7, (®(-|u,0?)) = 0 for all 4 € R,o > 0 and
r =3,4,--- by the orthogonality of the Hermite polynomials

Recall from Definition 2.1.a and b that a measure of skewness or kurtosis
should be invariant under linear transformation of a random variable. This
motivates us to define the Hermite L-moment ratios defined as 0} = n,. /1 for
r = 3,4,---. The Hermite L-skewness (HL-skewness) and Hermite L-kurtosis
(HL-kurtosis) are defined as 0% and 7}, respectively. A central issue is whether
the HL-skewness and kurtosis actually measure the skewness and kurtosis of a
distribution in the sense of Definition 2.1.

Theorem 3.1. The HL-moments-based measures 71, 172,13 and 1 satisfy Oja’s
criteria for measures of location, scale, skewness and kurtosis, respectively.

Proof. See Proof of Theorem 2.1 in Page 70 of An (2017). u

This theorem shows that estimators of the HL-moments can actually be used
as univariate summary statistics.

Note that the HL-moments are closely related to the inverse Edgeworth
expansion (Hall, 1983)

Flu) = p+ 0 (u) +o Z %Hr_l (@ (u)) (5)
r=3 :

where p and o are the mean and standard deviation of the random variable X ~
FandY = (X — p)/o is a standardized random variable. Note that the terms
H, (<I>_1 (u)) in this expansion also appear in the definition of the HL-moments
in Equation (4). Based on Equation (5), Brown and Hettmansperger (1996)
proposed the following estimators as indicators of departure from Gaussianity

o) = /1Fn_1(u)Hr1 (@ '(u)) du, (6)
0

for r =1,2,--- where F,(z) = £ 3" | I (X; < ). We call this estimator the
Brown-Hettmansperger (BH) estimator. Replacing F,, by F' in Equation (6)
yields the population HL-moments 7,., which was not elaborated in Brown and

Hettmansperger (1996).
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3.2. Rescaled L-moments

Additional insights come from another view of why the L-moments are cen-
tered at the uniform distributions. Note that the fourth population L-moment
is

1
Ay = 1 {E (X414 — X3:4) — 2B (X34 — Xoua) + E (X2 — X1:4) }-

This expression indicates that if F' has equally spaced expected order statistics,
then its fourth L-moment is zero. However, for the standard Gaussian distribu-
tion, the space between the inner pair of expected order statistics (/= 0.5940) is
smaller than the spaces between the two outer pairs (= 0.7324).

This motivates us to rescale the spacing between expected order statistics by
the corresponding spacing of the standard Gaussian distribution. The following
theorem shows that another expression of the L-moments can be derived in
terms of spacing between expected order statistics.

Theorem 3.2. The r-th L-moment A, can be expressed as

13 r—2
Ar = ; (_1)k ( k ) E (X(r—k):r - X(r—k—l):r) )
k=0
forr=2,3,---.
Proof. See Section 1 of the Supplementary Material. |

We first show that when the standard Gaussian distribution is used for
rescaling, the resulting measures of scale, skewness and kurtosis are linear func-
tions of the corresponding measures based on the L-moments. Let §; ;.5 (F) =
E(Xjr—Xix) for 1 < i < j < k be the space between the i-th and j-th
expected order statistics of F. Then we define the Rescaled L-moments (RL-
moments) as

r—2
1 (—=1)k (r - 2)

Pr =~ E(Xp—r)r — Xp—t—1):r) > 7
rkzzo(s(r—k—l),(r—k):r (@) k (K- (r—k-1yr) @)

forr =2,3,--- and p; = A;. The corresponding Rescaled L-moment ratios are
defined as pf = p,./pa for r =3,4,---.
Theorem 3.3. We have

P1 = )‘la P2 = 51’2:12@;.) )‘Qa

w _ 01,2:2(P) yx % _ 01,2:2(®) *
p5 = e, ph = {52,;2(@) + 5@ } A (8)

_ 331,2:2(®) 1 _ 1
5 02,3:4(P) 03,4:4(®) [ *

These four measures satisfy Oja’s criteria for a measure of location, scale, skew-
ness and kurtosis, respectively.

Proof. See Section 2 of the Supplementary Material. |
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Theorem 3.3 shows that subtracting the L-kurtosis value of the standard
Gaussian distribution from the L-kurtosis itself is actually equivalent to rescaling
based on the spacing between expected order statistics of the standard Gaussian
distribution. It can easily be shown that the RL-moments are L-functionals such
that

00 1
po= [ of@Ra(Pa)de = [ PR () du
oo

where R, : (0,1) — R is an r-th degree polynomial that satisfies

Re(u) =) Py (u), (9)
k=1

for 0 < u < 1 with constants o, ; € R for j = 1,2,--- ,r. For example, we
have as1 = 0 and g2 = 1/61 2.2 (P). Equation (7) also implies that the RL-
moments are centered at the Gaussian distributions. These enable us to use the
RL-moments, or equivalently the L-moments, as one of the GCL-moments in
Section 6.

The RL-moment ratios of higher orders than 4 are not necessarily linear
functions of the L-moment ratios of the same orders. For example, we have
p5 = @i 5 A5 + ai 3 A3 where

" 51 2:2 (@) { 6 1 }
Qg g = — + ,
5,5 7 93,4:5 (B) 0455 (D)

. 65172:2(<I>){ L }
53 7 0345 (®) 0455 () J 7

whose proof follows the same steps of derivation as the proof of Theorem (3.3).
This implies that even though the RL-moments have essentially the same first
four moments as the L-moments, their high order moments can exhibit different
behavior.

4. Estimation of the Gaussian Centered L-moments

This section contains details of derivation of the estimators used in this
paper. One of the main strengths of the GCL-moments is their interpretability
in terms of departure from the Gaussianity. For such a strength to be effective
in real data analysis, estimators of the GCL-moments should converge to their
theoretical parallels yielding the desired interpretability.

4.1. Sample Hermite L-moments

There are multiple ways to estimate L-functionals in Equation (2) by L-
statistics in Equation (1). For the HL-moments, our estimator starts from the
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following approximation
1
= B (Hy—1 (27Y(F(X))) X) ~ - ZHH (@71 (F (X)) X,

_ % ST H 1 (@7 (F (Xin))) Xins  (10)

i=1

where the approximation can be replaced by the almost sure convergence as
n — oo when suitable assumptions are made on the distribution F. For the last
expression in Equation (10) to actually play the role of an estimator, the terms
including F' should be estimated. A typical L-statistic can be derived from the
following approximation

%zn:Hrq (‘1’71 (F (in)>) Xim = %zn:Hr—l (‘I’fl (E (F(in)))> Xiin
i=1 =1

1 n .
==Y H,, (fbl( : ))X (11)
n n+1

where the underlined expressions present approximated (left) and approximat-
ing (right) terms and U;., is the i-th uniform order statistic. It was seen in
Example 1b of Shorack (1972) that the approximation here can be substituted
for by the almost sure convergence when X;’s follow the standard Gaussian
distribution.

Another estimator can be obtained from an approximation in Equation (11)

as

=
0
K
e
s
g
s
3

¢

< ISP 0 )X
i=1

%ZE(Hr—l (Zi:n))Xiin’ (12)

where Z;.,, is the i-th standard Gaussian order statistic. The key idea is that
careful choice of location of the expectation can increase accuracy of approx-
imation of an L-functional by an L-statistic. Since the quantile function ®~!
is a highly nonlinear function, taking expectation outside ® ! can yield better
approximation to the HL-moments. We call the L-statistic of the last expression
the r-th sample HL-moment, and denote it by #,.. The sample HL-moments can
be understood as inner products between the order statistics X;.,, and expected
polynomials of the standard Gaussian order statistics.

In the same way as the population HL-moments in Section 3.1, we define
the sample HL-moment ratios as ﬁ;’r = fpr/fn,2 for r = 3,4,---. The sample
HL-skewness and sample HL-kurtosis are defined as 7, 3 and 7, 4, respectively.
Theorem 4.1 shows that the sample HL-moments and their ratios are consistent
estimators of their theoretical parallels.

10
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Theorem 4.1. Suppose that E |X1\1+6 < oo for some € > 0. Then we have
finr =50 as n — oo for r = 1,2,---. As a result, we have 7, . —*%n" as
n— oo forr=3,4,---

Proof. See Subsection 5 of the Supplementary Material. |

4.2. Advanced sample Hermite L-moments

The sample HL-moments can be improved by the linear regression theory in
the spirit of LaBrecque (1977). We use the sample HL-skewness as an exam-
ple. Note that the third sample HL-moment is proportional to the regression
coefficient estimator of the following linear regression model,

Xion = BsE (Hy (Zin)) + 2207, (13)

where X;.,, is the response, 85 is the slope parameter, E (Hy (Z;.,)) is the pre-
dictor, and Z(Bl’ﬂz) is the random error, which is the i-th order statistic of the
random Sample of size n from N (51, 52) The ordinary least squares (OLS)
estimator for n3 in this regression model is

,@(OLS) ;T (5;2))TX,L — +ﬁn,3; (14)
(62) & (62) &2
where € = (E (H, (Z1n)) -+, E(Hy (Zyn)))" and Xy, = (X1, 5 X)) -
forr =1,2,---. While this may not be an optimal estimator for §3 since Zi(:il’ﬁ”
for i = 1,2,--- ,n are not independent nor distributed as the same Gaussian
distribution, it is still useful because of the consistency of 7, ;.

To improve the estimator BSL%LS), we modify the regression model in Equa-

tion (13) so that the random errors have zero means as follows,

Xin = 01+ BB (Zin) + BB (Hyr (Zin) + (257 = BB (Zin)) , (15)

where (; is the intercept, (2 is the coefficient of the predictor F (Z;.,) and
( 0.52) _ g, E(Z; n)) is the centered random error. Note that these random

errors have zero means but have a non-identical variance-covariance matrix. In
vector notation, this equation is written as follows,

X =11+ € + 5D + (2079 - gl (16)

where 1 = (1,---,1)7 and Z{*%2) = (Zf?,’fm? o ,Zy(l?hm)). A similar equation
with this model was shown in Subsection 2.2 of LaBrecque (1977).

The paper LaBrecque (1977) considered the regression model of the Shapiro-
Wilk statistic (Shapiro and Wilk, 1965) as the starting point, and developed
goodness-of-fit statistics of Gaussianity in the directions of distributional skew-
ness and kurtosis. They included powers of expected standard Gaussian order

11
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statistics as predictors in this model, and applied the Gram-Schmidt orthogo-
nalization and generalized least squares (GLS) method to obtain

~(La 1 r—1)x T —
U%%,-B) = T (C; 1 ) Vn 1Xn7 (17)
(Cg«—n*) Vil

where ¢\") = (H, (E(Zyn)) -+ Hy (E (Zny)))" for r = 3,4. This inspires us
to improve the OLS estimator in Equation (16) in the same way. The paper
LaBrecque (1977) took polynomials outside of the expected order statistics since
they based their starting point in Shapiro-Wilk’s model, and we start from our
predictors in Equation (16).

To obtain an optimal estimator by utilizing the covariances among the ran-
dom errors in Equation (16), we apply the Gram-Schmidt orthogonalization and
GLS method to obtain the following residual vector,

€D =€ - (1Tv; )T (1T D) 1,

where V,, is the variance-covariance matrix of Z;., for ¢ = 1,2,--- 'n, and the
fact that V711 = 1 shown in Lloyd (1952) is used. The third advanced sample
HL-moment is obtained by regressing X, on 5512)*. The fourth sample HL-
moment can be improved in the same way, yielding the third and fourth advanced
sample HL-moments as

%y = (§512)*>T2Vn1£§l2)* (‘55?)*)T VX,
S S L a9

(5513)*>T Vn—1£$l3)*

respectively. The numerators 2 and 6 are needed to make these estimators have
approximately the same scale with the corresponding sample HL-moments in
data analysis.

Note that the meanings of the words ‘optimal’ and ‘advanced’ are limited
to the Gaussianity assumption. When F ~ N(0,1), the standard errors of
the third and fourth sample HL-moments, LaBrecque estimators and advanced
sample HL-moments are calculated as Table 2. The sample sizes n = 817 and
20 in the first column are those of our TCGA data analysis in Section 6 and
computational study in Section 7. The second column shows the order of the
moments, and the remaining columns show the standard errors. The sample HL-
moments used in this table are based on Equation (14). Overall, the advanced
sample HL-moments have smaller standard errors than the other two estimators.

Performances of these estimators in real and non-Gaussian data should be
carefully analyzed. To this end, we practically show in Section 6.3 that the ad-
vanced sample HL-moments outperform other estimators including the sample
HL-moments. This presents a different view of the suggestion in Subsection

12
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Size (n) Order Sample LaB Advanced

817 3rd  1.4362 x 1072  1.4417 x 1072  1.4357 x 1072
817 4th 73244 x 1073 7.4909 x 1073 7.3074 x 1073
20 3rd 0.1055 0.1110 0.1052
20 4th 0.0678 0.0810 0.0670

Table 2: The standard errors of the third and fourth HL-moments related estimators in
Section 4 under the Gaussianity assumption. Overall, the advanced sample HL-moments
have the smallest standard errors and the LaB estimators have the largest errors.

2.2 of Brown and Hettmansperger (1996) that ignoring the covariance matrix
V., has little impacts on estimation of scale. In the directions of skewness and
kurtosis, existence of V,, has an impact on performance.

A scale estimator can be obtained by focusing on the estimator of £y in
Equation (16) by the GLS method. Since the predictors 1, !;“511), and 522)*
satisfy orthogonality properties that an_l.ﬁ?(ll) = 0 and {S)Vn_lﬁg)* = 0, the
scale estimator is obtained as the L-statistic,

T
W= () v,

n

The paper (LaBrecque, 1977) did not specify random errors in their model and
used the sample standard deviation of X,, as a scale estimator. Here we notice
that the parameter that determines distributional scale of X,, is shared with

the coefficient of the predictor ES). Hence, the second advanced sample HL-
(A)

n,2-

moment is defined as 7, 5, which more naturally aligns with the third and fourth

~

advanced sample HL-moments. We call néA)* = ﬁflAg / ﬁflAQ) and ﬁiA)* = ﬁfﬁf / ﬁfLA?))
the advanced sample HL-skewness and -kurtosis, respectively.

Note that LaBrecque (1977) did not show the almost sure convergence of
their estimator, while Brown and Hettmansperger (1996) showed the asymptotic
Gaussianity of their estimators only under the Gaussianity assumption. The
paper Leslie (1984) proved that we have

as n — oo where |- || is the Euclidean norm. If it can be shown that substituting
55;") for SS) still makes the limit valid, the result can be combined with Theorem
4.1 to yield consistency of the advanced sample HL-moments.

vt -2l > o,

4.8. Estimation of the Rescaled L-moments

Since the r-th RL-moment is a linear combination of the L-moments as
shown in Subsection 3.2, the r-th sample RL-moment is naturally derived as a
linear combination of the sample L-moments. From Equation (9), we define the
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350

355

360

365

r-th sample RL-moment as p, 1 = 5\n,1 and

r
pAn,r = § ak,r)\n,ra
k=1

for r = 2,3,---. As a result, the first two sample RL-moments, sample RL-
skewness, sample RL-urtosis are derived as follows,

~ ~

A A 1

pn,h == A?’L,l pn,z == 512;2(@) >\n,2)

A 01.2:2(P) {x Ax _ 01,2:2(9P) 3 2 NG
pn73 - 51,2:3(4)) An)?” pn74 - 5 52,3:4(q>) + 5374:4(119) n,4

_301,2:2(2) 1 _ 1
5 02,3:4(®) 03,4:4(®) [ °

The fact that these estimators are consistent estimators of the RL-moments
easily follow from consistency of the sample L-moments.

5. Robustness

We carefully study the relative robustness of the methods explained in Sec-
tion 3. We use the influence function (Huber and Ronchetti, 2009) as a primary
tool for robustness analysis , which is defined as

IF(3; F, ) = lim 0 Fer) =00 (19)

el0 €

where F, ;, = (1 — €)F + €, and 0, is a degenerate distribution putting mass 1
at the point . The influence function measures the effect of contamination of a
distribution by a point x on the functional #. Hence, if a functional is sensitive
to an outlier, its influence function should have large values for large absolute
values of z. In this paper, we compare the robustness of various measures of
skewness and kurtosis based on their influence functions evaluated at a family
of distributions.

The papers Groeneveld (1991) and Ruppert (1987) compared various mea-
sures of skewness and kurtosis, respectively, using the influence function. As
a criterion of comparison, both the papers compared the degrees of polynomi-
als that are asymptotic tight bounds of the influence functions. Suppose that
Ji,J2 : R — Ry are two functions where Ry = {x € R|xz > 0}. We write
Ji(z) = © (J2(z)) to mean that there exist aj,az > 0 and 2’ > 0 such that

a1Jo(z) < Ji(x) < asJa(x),

for all |#] > 2’. This roughly means that asymptotic behavior of both the
functions J; and J> is the same. In those two papers, if two functionals 64
and 6y satisfy [IF (z; F,01)| = ©(|z]) and [IF (z; F,62)| = © (2?), then 6; was
considered to be more robust than 6 for the distribution F'.
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An interesting family of distributions for evaluation of influence functions is
Tukey’s g and h distributions (Martinez and Iglewicz, 1984) which contain all
the transformed random variables of the form

(e92—1> [hZQ}
exp -,
g 2

where g € R, h > 0 and 7 is the standard Gaussian random variable. We denote
the distribution function of Tukey’s g and h distribution by T} . As shown in
Brys et al. (2004, 2006), ® does not have more kurtosis than Ty (Definition
2.1.b) if g = 0 and A > 0. This implies that Tukey’s h distributions have
heavier tails than the Gaussian distributions in Oja’s sense. Note that heavier
tails of a distribution indicate a higher chance of existence of extreme outliers.
This motivates us to adopt Tukey’s h distributions as grounds for comparison
between different measures of skewness and kurtosis.

Before we derive the influence functions of the GCL-moments, we introduce
the previous results for the conventional skewness and kurtosis defined as

E(X — EX)® E(X — EX)*
2 3/27 2= 2 2 37

{E(X—EX) } {E(X—EX) }

M=

respectively. Note that Ruppert (1987) used the notion of symmetric influence
function defined as

O(F.,+F._.)/2)—0(F
SIF(z; F, 0) = lim (Few + Fema) /2) ( )
el0 €
The symmetric influence function measures the sensitivity of a functional to
symmetric contamination by points —z and z so it is suitable for comparison of
kurtosis measures.

Theorem 5.1 (Groeneveld (1991),Ruppert (1987)). Suppose that F is a sym-
metric distribution such that u(F) =0 and o?(F) = 1. Then we have

IF (z; F,v1) = 2® — 32 = Hs(x), SIF (z; F,v2) = 2* — 622 +3 = Hy(x). W
Now we show the relationships between the influence functions and symmet-
ric influence functions of the Gaussian Centered L-moments.
Theorem 5.2. If F is a symmetric distribution, we have
SIF (z; F,\}) =IF (x; F, \;), SIF (z; F, p}) =1F (z; F, p}) ,
SIF (z; Fynp) = IF (z; F,nj) -
Proof. See Section 3 of the Supplementary Material. |

In addition to the conventional and GCL-moments, we consider some quan-
tile based measures, which are known to be robust, as baseline measures. Bow-
ley’s skewness measure (Bowley, 1920) is a typically used quantile-based measure
of skewness defined as

FY(1—p)—F1(1/2) = {F'(1/2) - F'(p)}
F1(1-p)—F~1(p)

Tp =
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where p is usually set to 0.25, which results in v, being based on quartiles. On
the other hand, Ruppert’s interfractile range ratio (Ruppert, 1987) is frequently
used as a measure of kurtosis and defined as

P (A —p) - F (p1)
e T T (= pa) — F ()

where the parameters p; and p, were set to 0.1 and 0.3, respectively, in that pa-
per. Note that Bowley’s skewness measure is zero at the Gaussian distributions,
but Ruppert’s kurtosis measure is not zero there. Both Bowley’s and Ruppert’s
measures were shown to satisfy Oja’s criteria for measures of skewness and kur-
tosis, respectively, in those papers. In this paper, we use sample quantile based
estimators defined in those papers to estimate the measures.

The main result is given as the following theorem.

Theorem 5.3. We have
[IF (23 To,n, Y0.25)| = [IF (23 To,n,Y0.1,03)| =
‘IF (Z‘, TO,ha )‘:) = |IF (.f, TO,ha Py ‘

)l =0e),
")
|IF x; TO,hu 77*)‘
)|
)|

SIE
(1o frog(Jal + 1)} 17),
(
(

T

[*)
%),

( ©
IF (2; To,n, 1) = ©
[IF (z; To,p, V2 ©

forallh >0and r=3,4,---
Proof. See Section 4 of the Supplementary Material. ]

Theorem 5.3 implies that the GCL-moments are more robust than the con-
ventional skewness and kurtosis on Tukey’s h distributions. Note that the influ-
ence function of n}, IF (z; Ty 1, n), does not depend on the parameter h. This
indicates that even slightly heavier tails than the standard Gaussian distribution
result in better robustness of the HL-moments than the conventional moments.
Note that the L-moments are more robust than the HL-moments even though
the uniform center of the L-moments has lighter tails than the Gaussian center
of the HL-moments. This shows that heavier tails of the distributional center of
L-functionals do not always imply their more robustness. The bounded influence
functions of Bowley’s and Ruppert’s measures, vp.25 and 7p.1,0.3, were obtained
from the results of Ruppert (1987) and Groeneveld (1991). This justifies the
use of quantile based measures as baseline robust estimators in our TCGA data
analysis given in Section 6.

6. TCGA data analysis

The goal of our TCGA data analysis is to discover biologically meaningful
genes out of 16,615 genes based on their expression profiles of 817 breast cancer
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patients. As mentioned in Section 1, there are many biological features of im-
portance in cancer research and genes with strong such features seem to have
non-standard distributions of expression profiles. Hence, we focus on departure
from Gaussianity in the directions of skewness and kurtosis as a measure of
screening genes in the TCGA data.

Note that skewness and bimodality of a distribution are not totally inde-
pendent concepts. It was shown in Pearson (1916) and Hosking (1990) that the
conventional population moments and L-moments satisfy the following relation-
ships

1
A2 2 <, Z(5(x?§)2—1) <A<l

This implies that a skewness or kurtosis measure alone is not enough to describe
skewness and bimodality of a distribution. Bimodal distributions should have
low kurtosis estimates when they are symmetric, but this does not hold for asym-
metric bimodal distributions. Hence, we check both of the ranked lists of genes
generated by skewness and kurtosis estimators and comprehensively diagnose
performances of different estimators. Joint use of skewness and kurtosis esti-
mators such as the Jarque-Bera statistic (Jarque and Bera, 1980) cannot imply
whether the departure mainly comes from skewness, kurtosis or a combination
of both. Hence, we do not proceed that way.

6.1. Gene Set Enrichment Analysis

We conjecture that genes with non-Gaussian distributional shape can be
related to biological features, and confirm this based on Gene Set Enrichment
Analysis (GSEA, Subramanian et al. (2005)). A basic goal of GSEA is to assess
goodness of a ranked list of genes in terms of how well the list places biologically
meaningful genes near its top or bottom, i.e. how well the list screens meaningful
genes. Since a measure of skewness or kurtosis provides an order of the genes, its
screening ability can be assessed by applying GSEA to the ranked lists generated
by the measure. In our GSEA, we study performances of various measures over
gene sets published by the Broad Institute. A collection of 16,107 such gene
sets, with a minimum of 15 and maximum of 10,000 genes, is available in the
public database MSigDB v.7.0. Each of those gene sets has a specific scientific
meaning, so we regard them as biologically meaningful gene sets.

Main output of GSEA for each ranked list of genes is the estimated False
Discovery Rate (FDR), which is the proportion of randomly permuted lists of
genes and gene sets with larger enrichment scores than the enrichment score of
the given ranked list of genes and gene set. Refer to Subramanian et al. (2005)
for detailed discussion of the enrichment score and FDR. One difference of our
analysis from the conventional GSEA is that different estimators of skewness and
kurtosis have different scales. Based on suggestions of Subramanian et al. (2005),
we use the classic scoring scheme given in the paper. Also based on the rec-
ommendations of the GSEA User Guide (http://software.broadinstitute.
org/gsea/doc/GSEAUserGuideFrame.html), we perform 1,000 times of gene
permutations and set the FDR level at 0.05, which were recommended for the
classic scoring scheme.
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6.2. Comparison among skewness and kurtosis estimators

Table 3 shows the results of comparison between different skewness estima-
tors when the FDR level is fixed at 0.05. The title row shows the names of
the skewness estimators and the numbers of respective screened gene sets. For
example, the ranked list of genes generated by the L-skewness screened 3,295
biologically meaningful gene sets, i.e. the FDR’s of those gene sets were less
than 0.05. The title column shows the skewness estimators in the same order
with the last estimator removed. The other columns show, from left to right,
the best to worst performing skewness estimators by the numbers of meaningful
gene sets screened by them. We do a pairwise comparison of the performances
of estimators in terms of the number of gene sets that are flagged as screened
and assess statistical significance using McNemar’s test (Section 14.5 of Gibbons
and Chakraborti (2010)). McNemar’s test assumes that each object is tested
by two procedures, and compares success probabilities of the two procedures
while considering correlations between each object’s paired outcomes. In our
GSEA comparison, each gene set is screened by two ranked lists of genes, which
justifies use of the test.

The values given in the middle of the table are the p-values. For example,
the p-value 0.0097 in the first row and the second column is the significance of
the difference in the numbers of screened gene sets by the L-skewness (3,295)
and HL-skewness (3,222). Since each pair of skewness estimators needs only one
comparison, we color cells corresponding to repetitive comparisons gray. The
boldfaced numbers indicate that the corresponding p-values are significant after
Bonferroni’s correction for the six comparisons in the table.

It can be seen in Table 3 that, generally, the GCL-moments based estimators
better capture meaningful departures from Gaussianity in the direction of skew-
ness. The L-skewness performs significantly better than all the other estimators
except the HL-skewness as shown in the second row of Table 3. The comparison
between the L- and HL-skewness is hard to conclude, since the p-value of the
comparison is not significant after considering multiplicity. The HL-skewness
performs better than the conventional and Bowley’s skewness, and the degrees
of the differences are statistically significant. This coincides with our observa-
tions made in Section 1 that the conventional skewness is driven by outliers
too much to screen subtype-driven genes. Bowley’s skewness is not successful in
screening meaningful genes. Its inferiority to the other estimators is statistically
significant as seen in the last column. The TCGA data have 5 subtypes, and
consideration of only the first and third sample quartiles by Bowley’s skewness
seems to result in a strong loss of subtype information.

Table 4 shows the comparison results among kurtosis estimators. The HL-
kurtosis dominates all the other estimators with p-values close to zero. Rup-
pert’s kurtosis performs significantly worse than the other estimators, which
strengthens our observation made for Table 3 that Bowley’s skewness is not
efficient in screening biologically meaningful genes. The conventional kurtosis
performs better than the L-kurtosis, but the degree of superiority is not statisti-
cally significant (p-value ~ 0.9766), which implies that the comparison between
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Skewness L HL Conventional  Bowley’s

(# of screened genes) (3,295) (3,222) (3,092) (1,989)
L (3,205) 0.0097 < 0.0001 < 0.0001
HL (3,222) < 0.0001 < 0.0001

Conventional (3,092) < 0.0001

Table 3: The numbers of gene sets screened by different skewness estimators with the FDR
level 0.05 and the significances of their differences based on McNemar’s test. All differences
are statistically significant after Bonferroni’s adjustment except the difference between the
L- and HL-skewness. The GCL-moments based estimators perform the best and Bowley’s
skewness performs the worst.

Kurtosis HL Conventional L Ruppert’s

(# of screened genes)  (1,998) (1,506) (1,504) (762)
HL (1,998) < 0.0001 < 0.0001 < 0.0001
Conventional (1,506) 0.9766 < 0.0001
L (1,504) < 0.0001

Table 4: The numbers of screened gene sets by kurtosis estimators. The HL-kurtosis performs
the best and Ruppert’s kurtosis performs the worst. The superiority of the HL-kurtosis over
the other estimators is statistically significant.

the conventional kurtosis and L-kurtosis is inconclusive. Overall, these results
show that the HL-kurtosis is particularly useful in screening meaningful genes
in the direction of distributional kurtosis.

To comprehensively compare measures of skewness and kurtosis that are
based on different types of statistics, we combine comparison results in Tables
3 and 4. If a gene set is screened by either the HL-skewness or HL-kurtosis, we
say that the gene set is screened by the measures based on the HL-moments.
Otherwise, we say the gene set is not screened. This joint amount of gene set
screening gives a quantitative summary of performance of a pair of skewness
and kurtosis measures.

Table 5 shows the comparison results of combined skewness and kurtosis esti-
mators. The abbreviation ‘Q’ stands for quantiles and indicates the combination
of Bowley’s skewness and Ruppert’s kurtosis. It is seen that all the differences
in the table are statistically significant even after Bonferroni’s adjustment. The
HL-moments based measures dominate all the other measures, and the quantile
based measures perform significantly worse than the other measures. These re-
sults imply that the HL-moments are particularly good at screening biologically
meaningful genes based on departure of their marginal distributions from the
Gaussian distributions.

6.3. Comparisons among different HL-moments based estimators

As mentioned in Subsections 3.1, 4.1 and 4.2, various estimators of the HL-
moments can be suggested. In this subsection, we compare the performances of
those estimators by GSEA. The four HL-moments based estimators considered
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Union HL Conventional L Q

(# of screened genes)  (4,642) (4,300) (4,160) (2,493)
HL (4,642) < 0.0001 < 0.0001 < 0.0001

Conventional (4,300) 0.0004 < 0.0001
L (4,160) < 0.0001

Table 5: The numbers of gene sets screened by different pairs of skewness and kurtosis mea-
sures and the significances of their differences. The HL-moment based estimators perform the
best, while the sample quantile based estimators perform the worst. All the differences are
statistically significant even after Bonferroni’s adjustment.

Union Advanced LaB BH Sample

(# of screened genes) (4,716) (4,699) (4,693) (4,642)
Advanced (4,716) 0.1839  0.191  0.0002
LaB (4,699) 0.7489 0.0016

BH (4,693) 0.0033

Table 6: The numbers of gene sets enriched by different HL-moments based estimators at
the FDR level 0.05 and the significance of their differences based on McNemar’s test. The
advanced sample HL-moments perform better than all the other estimators.

herein are the LaB estimators in Equation (17), BH estimators in Equation
(6), the advanced sample HL-moments in Equation (18), and the sample HL-
moments in Equation (12). Note that the variance-covariance matrix V,, cannot
be precisely calculated for n = 817. Hence, we use the method of David and
Johnson (1954) as in LaBrecque (1977) to approximate the variance-covariance
matrix Vg7 to calculate LaB estimators and the advanced sample HL-moments.
For calculation of E (H, (Z;.,)), we use numerical integration for both the es-
timators. The skewness and kurtosis estimators are the ratios of the third and
fourth estimators to the scale estimators in the definitions of both the estimators.
For the comparisons in this subsection, se only present combined comparison
results of the skewness and kurtosis estimators.

The comparison results are given in Table 6. Among the estimators, the ad-
vanced sample HL-moments perform the best, but its superiority over the LaB
estimator is statistically nonsignificant. This seems to result from similarities
between the advanced sample HL-moments and LaB estimators explained in
Subsection 4.2. The sample HL-moments perform worse than the other esti-
mators. Especially, significance of the difference between the advanced sample
HL-moments and the sample HL-moments is very significant. This supports
our claim in Subsection 4.2 that existence of V,, has an impact on performances
of skewness and kurtosis estimators. In our GSEA, the advanced HL-moments
best achieve a balance between sensitivity to departure from Gaussianity and
robustness to outliers.
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Abbreviation Distribution name Density function

Gumbel Standard Gumbel exp (— (z+e77))
Location MoG  Location-mixture of Gaussian = 0.9¢(z) 4+ 0.1¢(z — 1)
Scale MoG Scale-mixture of Gaussian 0.9¢(x) + 0.1¢(x/3)

Table 7: The four alternative hypothetical distributions in the goodness-of-fit test of Gaus-
sianity used in Section 7. Skewness estimators are compared for the Gumbel and Location
MoG distributions, and kurtosis estimators are compared for the Scale MoG distributions.

7. Goodness-of-fit test for Gaussianity

Section 6 of Brown and Hettmansperger (1996) performed the goodness-of-fit
test of Gaussianity to show superiority of their estimators over the LaB esti-
mators. We perform a similar experiment to compare performances of the BH
estimator, LaB estimator, advanced sample HL-moments (advanced estimator)
and sample L-moments (L-estimator), or equivalently sample RL-moments, to
gain a deeper insight about their relative performances. The test assumes the
following composite null and alternative hypotheses,

Hy: F=9® (-|u,02) for some u € R0 >0, H;y:not Hy.

The alternative hypothetical distributions used in Brown and Hettmansperger
(1996) are summarized in Table 7. The paper pointed out that skewness estima-
tors are most appropriate for the Gumbel and Location MoG distributions and
kurtosis estimators are most appropriate for the Cauchy and the Scale MoG
distributions. The Cauchy distribution is removed from our study since the
simulated p-values of the four estimators on the distribution are mostly zero,
which seems to result from the non-finite mean of the Cauchy distribution. The
sample HL-moments are removed from our study as well since their relative per-
formances to the other estimators were random and inconclusive. For the LaB
and advanced estimators, we perform numerical integration to directly calculate
the variance-covariance matrix of the standard Gaussian order statistics.

To compare their estimators with LaBrecque (1977), the paper Brown and
Hettmansperger (1996) compared p-value intervals that the BH and LaB esti-
mates belong to. We improve this method by directly simulating p-values from
estimates generated by the Monte Carlo method on the null standard Gaussian
distribution. To illustrate, we generate ny = 50,000 random samples, each of
which has the size n = 20, from the standard Gaussian distribution to obtain ng
test statistic values called null values. Next, we generate n, = 10,000 random
samples of the size n from an alternative distribution to obtain n, values of
the test statistic called alternative values. For each alternative value, we count
the number of greater null values. The ratio of that number to n, becomes a
simulated p-value. For each pair of simulated p-values of two estimators, there
are three categories of comparison results; the first or second simulated p-value
is lower, or their values are the same. We calculate the final likelihood ratio test
(LRT) p-value of comparison between the two estimators based on the n,, trial
results of the three-outcome multinomial experiment.
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1st 2nd 1st Ties 2nd value
est. est. better better pv

LaB BH 4,953 219 4828  0.2063
LaB Adv. 4,057 225 5,718 < 0.0001
BH Adv. 4259 303 5,438 < 0.0001
LaB L 4733 99 5,168 < 0.0001
BH L 4728 80 5,192 < 0.0001
Adv. L 4843 69 5,088  0.0139
LaB BH 4,936 26 5,038  0.3071
LaB Adv. 5,056 32 4912  0.1492
BH Adv. 5,055 16 4,929  0.2073
LaB L 4975 1 5,024  0.6241
BH L 4974 1 5,025  0.6100
Adv. L 4970 1 5,029  0.5552
LaB BH 4,074 151 5,775 < 0.0001
LaB Adv. 4,201 144 5,655 < 0.0001
BH Adv. 4,650 292 4,998  0.0004

Standard Gumbel

Location MoG

Scale MoG IaB L 5,516 57 4427 < 0.0001
BH L 5,687 77 4236 < 0.0001
Adv. L 5,620 81 4299 < 0.0001

Table 8: The numbers of times that one estimator has a lower simulated p-value than the
other. The boldfaced counts in the third to fifth columns indicate that the corresponding
estimators perform better. The boldfaced LRT p-values in the last column indicate that they
are statistically significant after Bonferroni’s adjustment.

The comparison results are given in Table 8. There are three sub-tables in the
table, each of which presents comparison results for an alternative distribution.
The title column shows the abbreviated names of alternative distributions given
in Table 7. The first and second columns show the estimator names. The third
to fifth columns show the numbers of times that the first estimator’s simulated
p-values are lower, both of the simulated p-values are the same, and the second
estimator’s simulated p-values are lower. The boldfaced numbers indicate that
the corresponding estimator performs better in comparison, and boldfaced LRT
p-values in the last column indicate that the LRT p-values are statistically
significant after Bonferroni’s adjustment for the same alternative distribution.

It is seen in Table 8 that the BH estimators perform better than the LaB
estimators except for the standard Gumbel distribution, which coincides with
Brown and Hettmansperger (1996). When compared with the LaB estimators,
the advanced estimators perform significantly better on the standard Gumbel
and Scale MoG. This result is reversed on the Location MoG, but the difference
is not significant. Compared with the BH estimators, the advanced estimators
perform significantly better on the standard Gumbel and Scale MoG distribu-
tions, but non-significantly worse on the Location MoG. Overall, the advanced
estimators overcome the weakness of the LaB estimators against the BH esti-
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mators. Comparison between the L-estimators and either of the LaB and BH
estimators is inconclusive since the L-estimator performs better on the standard
Gaussian, worse on the Scale MoG, and the differences are non-significant on the
Location MoG. Comparison between the L-estimators and advanced estimators
are inconclusive on the standard Gumbel and Location MoG, but the advanced
estimator performs significantly better on the Scale MoG. These imply that the
advanced estimators generally perform the best in our computational study.

8. Conclusion

In this paper, we developed robust measures of skewness and kurtosis that
are centered at the Gaussian distributions and share the strengths of the L-
moments. We showed that our measures indeed represent their desired distri-
butional properties based on Oja’s criteria, and analyzed their robustness based
on the influence functions. Their consistent estimators were shown to be ef-
fective in screening non-Gaussian variables in high dimensional cancer research
data, especially in the directions of distributional skewness and kurtosis.

Locating L-functionals at a different family of distributions than the Gaus-
sian has been studied elsewhere. The theory of trimmed L-moments (TL-
moments) was proposed by Elamir and Seheult (2003) as a more robust version
of the L-moments, and Hosking (2007) showed that the TL-moments are ac-
tually centered at the logistic distributions. Consideration of other important
distributions in data analysis such as t-distributions and mixtures of the Gaus-
sian distributions as distributional centers remains as a future research topic.

References

An, H., 2017. Gaussian Centered L-moments. Ph.D. thesis. The University of
North Carolina at Chapel Hill.

Bowley, A.L., 1920. Elements of Statistics, 4th Edition. New York: Scribner’s.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. (With discussion).
J. Roy. Statist. Soc. Ser. B 26, 211-252.

Brown, B.M., Hettmansperger, T.P., 1996. Normal scores, normal plots, and
tests for normality. J. Amer. Statist. Assoc. 91, 1668-1675. doi:10.2307/
2291594.

Brys, G., Hubert, M., Struyf, A., 2004. A robust measure of skewness. J.
Comput. Graph. Statist. 13, 996-1017. do0i:10.1198/106186004X12632.

Brys, G., Hubert, M., Struyf, A., 2006. Robust measures of tail weight. Comput.
Statist. Data Anal. 50, 733-759. do0i:10.1016/j.csda.2004.09.012.

David, F., Johnson, N., 1954. Statistical treatment of censored data part I.
fundamental formulae. Biometrika 41, 228-240.

23


http://dx.doi.org/10.2307/2291594
http://dx.doi.org/10.2307/2291594
http://dx.doi.org/10.2307/2291594
http://dx.doi.org/10.1198/106186004X12632
http://dx.doi.org/10.1016/j.csda.2004.09.012

650

655

660

665

670

675

680

David, H.A., Nagaraja, H.N., 2003. Order statistics. Wiley Series in Probability
and Statistics. third ed., Wiley-Interscience John Wiley & Sons, Hoboken, NJ.
doi:10.1002/0471722162.

Decurninge, A., 2014. Multivariate quantiles and multivariate L-moments. arXiv
preprint arXiv:1409.6013 .

Doksum, K.A., 1975. Measures of location and asymmetry. Scand. J. Statist.
2, 11-22.

Dutang, C., 2017. Theoretical L-moments and TL-moments using combinato-
rial identities and finite operators. Communications in Statistics-Theory and
Methods 46, 3801-3828.

Elamir, E.A., Seheult, A.H., 2003. Trimmed l-moments. Computational Statis-
tics & Data Analysis 43, 299-314.

Feller, W., 1968. An introduction to probability theory and its applications.
Vol. I. Third edition, John Wiley & Sons, Inc., New York-London-Sydney.

Feng, Q., Hannig, J., Marron, J.S.,; 2016. A note on automatic data transfor-
mation. Stat 5, 82-87.

Gibbons, J.D., Chakraborti, S., 2010. Nonparametric statistical inference. Fifth
edition, Chapman and Hall/CRC. doi:10.1201/9781439896129.

Groeneveld, R.A., 1991. An influence function approach to describing the skew-
ness of a distribution. Amer. Statist. 45, 97-102. doi:10.2307/2684367.

Hall, P., 1983. Inverting an Edgeworth expansion. Ann. Statist. 11, 569-576.
do0i:10.1214/a0s/1176346162

Hosking, J.R.M., 1990. L-moments: analysis and estimation of distributions
using linear combinations of order statistics. J. Roy. Statist. Soc. Ser. B 52,
105-124.

Hosking, J.R.M., 2007. Some theory and practical uses of trimmed L-moments.
J. Statist. Plann. Inference 137, 3024-3039. doi:10.1016/j.jspi.2006.12.
002.

Huber, P.J., Ronchetti, E.M., 2009. Robust statistics. Wiley Series in Prob-
ability and Statistics. second ed., John Wiley & Sons, Inc., Hoboken, NJ.
doi:10.1002/9780470434697.

Jarque, C.M., Bera, A.K., 1980. Efficient tests for normality, homoscedasticity
and serial independence of regression residuals. Econom. Lett. 6, 255-259.
d0i:10.1016/0165-1765(80)90024-5.

Kim, T.H., White, H., 2004. On more robust estimation of skewness and kur-
tosis. Finance Research Letters 1, 56-73. doi:https://doi.org/10.1016/
51544-6123(03)00003-5.

24


http://dx.doi.org/10.1002/0471722162
http://dx.doi.org/10.1201/9781439896129
http://dx.doi.org/10.2307/2684367
http://dx.doi.org/10.1214/aos/1176346162
http://dx.doi.org/10.1016/j.jspi.2006.12.002
http://dx.doi.org/10.1016/j.jspi.2006.12.002
http://dx.doi.org/10.1016/j.jspi.2006.12.002
http://dx.doi.org/10.1002/9780470434697
http://dx.doi.org/10.1016/0165-1765(80)90024-5
http://dx.doi.org/https://doi.org/10.1016/S1544-6123(03)00003-5
http://dx.doi.org/https://doi.org/10.1016/S1544-6123(03)00003-5
http://dx.doi.org/https://doi.org/10.1016/S1544-6123(03)00003-5

685

690

695

700

705

710

715

720

LaBrecque, J., 1977. Goodness-of-fit tests based on nonlinearity in probability
plots. Technometrics 19, 293-306.

Leslie, J.R., 1984. Asymptotic properties and new approximations for both the
covariance matrix of normal order statistics and its inverse, in: Colloquia
Mathematica Societatis Janos Bolyai, Goodness-of-Fit Debrecen,, Hungry.

Lloyd, E., 1952. Least-squares estimation of location and scale parameters using
order statistics. Biometrika 39, 88-95.

Marcinkiewicz, J., 1939. Sur une propriété de la loi de Gaufl. Math. Z. 44,
612—618. doi:10.1007/BF01210677.

Marron, J.S., Dryden, L.L., 2021. Object Oriented Data Analysis. Chapman
and Hall/CRC.

Martinez, J., Iglewicz, B., 1984. Some properties of the Tukey g and h family
of distributions. Comm. Statist. A—Theory Methods 13, 353-369. doi:10.
1080/03610928408828687.

Necir, A., Meraghni, D., 2010. Estimating L-functionals for heavy-tailed distri-
butions and application. J. Probab. Stat. 2010, Art. ID 707146, 34.

Oja, H., 1981. On location, scale, skewness and kurtosis of univariate distribu-
tions. Scand. J. Statist. 8, 154-168.

Pearson, K., 1916. Mathematical contributions to the theory of evolution. XIX.
Second supplement to a memoir on skew variation. Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathemat-
ical or Physical Character 216, 429-457.

Ruppert, D., 1987. What is kurtosis? An influence function approach. Amer.
Statist. 41, 1-5. do0i:10.2307/2684309.

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality
(complete samples). Biometrika 52, 591-611.

Shorack, G.R., 1972. Functions of order statistics. Ann. Math. Statist. 43,
412-427. doi:10.1214/aoms/1177692622.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,
Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.,
Mesirov, J.P., 2005. Gene set enrichment analysis: a knowledge-based ap-

proach for interpreting genome-wide expression profiles. Proc. Natl. Acad.
Sci. U.S.A. 102, 15545-15550.

Szegd, G., 1959. Orthogonal polynomials. American Mathematical Society Col-
loquium Publications, Vol. 23. Revised ed, American Mathematical Society,
Providence, R.I.

Weinstein, J.N., - - -, Stuart, J.M., 2013. The Cancer Genome Atlas Pan-Cancer
analysis project. Nat. Genet. 45, 1113-1120.

25


http://dx.doi.org/10.1007/BF01210677
http://dx.doi.org/10.1080/03610928408828687
http://dx.doi.org/10.1080/03610928408828687
http://dx.doi.org/10.1080/03610928408828687
http://dx.doi.org/10.2307/2684309
http://dx.doi.org/10.1214/aoms/1177692622

	Introduction
	Mathematical preliminaries
	L-statistics and L-moments
	Oja's criteria

	Gaussian Centered L-moments
	Hermite L-moments
	Rescaled L-moments

	Estimation of the Gaussian Centered L-moments
	Sample Hermite L-moments
	Advanced sample Hermite L-moments
	Estimation of the Rescaled L-moments

	Robustness
	TCGA data analysis
	Gene Set Enrichment Analysis
	Comparison among skewness and kurtosis estimators
	Comparisons among different HL-moments based estimators

	Goodness-of-fit test for Gaussianity
	Conclusion

