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Fast Direct Stereo Visual SLAM

Jiawei Mo

Abstract—We propose a novel approach for fast and accurate
stereo visual Simultaneous Localization and Mapping (SLAM) in-
dependent of feature detection and matching. We extend monocular
Direct Sparse Odometry (DSO) to a stereo system by optimizing
the scale of the 3D points to minimize photometric error for the
stereo configuration, which yields a computationally efficient and
robust method compared to conventional stereo matching. We
further extend it to a full SLAM system with loop closure to re-
duce accumulated errors. With the assumption of forward camera
motion, we imitate a LiDAR scan using the 3D points obtained
from the visual odometry and adapt a LiDAR descriptor for place
recognition to facilitate more efficient detection of loop closures.
Afterward, we estimate the relative pose using direct alignment
by minimizing the photometric error for potential loop closures.
Optionally, further improvement over direct alignment is achieved
by using the Iterative Closest Point (ICP) algorithm. Lastly, we
optimize a pose graph to improve SLAM accuracy globally. By
avoiding feature detection or matching in our SLAM system, we
ensure high computational efficiency and robustness. Thorough
experimental validations on public datasets demonstrate its effec-
tiveness compared to the state-of-the-art approaches.

Index Terms—SLAM, vision-based navigation.

I. INTRODUCTION

IMULTANEOUS Localization and Mapping (SLAM) has

been an active research problem in robotics and computer
vision over the past few decades [1], [2]. It deals with estimating
a robot’s instantaneous location by using onboard sensory mea-
surements, e.g., LIDAR (Light Detection and Ranging) sensors,
cameras, and inertial measurement units (IMU). SLAM is par-
ticularly useful where GPS reception is weak such as indoor,
urban, and underwater environments. Hence, it has been an
essential component in AR/VR [3], autonomous driving [4], and
GPS-denied robotics applications [5]. Among existing systems,
visual SLAM [6] is of significant interest because cameras are
low-cost passive sensors and thus consume less energy compared
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to active ones such as sonar or LIDAR. Autonomous mobile
robots operating outdoors benefit greatly from the low power
consumption of cameras in long-term deployments.

Visual SLAM systems can be categorized into feature-based
methods and direct methods. The feature-based methods [7],
[8] detect and match features across frames, and then esti-
mate relative camera motion by minimizing the reprojection
error; whereas direct methods [9], [10] estimate camera mo-
tion by minimizing photometric error directly without feature
correspondences. The direct methods demonstrate higher accu-
racy and robustness over feature-based methods, especially in
poorly-textured (less-textured or repetitively-textured) environ-
ments [11]. As the feature detection and matching algorithms
are computationally expensive, sparse direct methods also have
the potential to run much faster (e.g., > 300 FPS for SVO [11]).
On the other hand, visual SLAM systems can also be categorized
into monocular systems and multi-camera systems. Monocular
systems [7]-[10] cannot estimate the metric scale of the envi-
ronment which multi-camera systems are able to. Multi-camera
systems usually achieve higher accuracy and robustness; among
these, stereo systems [12]—[14] are particularly popular for their
simplicity and accessibility.

Most existing stereo visual systems use the standard stereo
matching algorithm [15] to solve the scale problem, which has
two major shortcomings. First, finding stereo correspondences
by individually searching along the respective epipolar lines is
computationally expensive. Secondly, if multiple points look
similar to the query point, it is challenging to pick the correct
one; this happens when the texture is repetitive (e.g., grass, sand).
We address these two limitations in [16], where the 3D points
in the monocular system are projected into the second camera
and the scale problem is solved by minimizing the photometric
error. We demonstrate that such direct scale optimization is
computationally efficient and more robust to repetitive textures
in the visual scene.

However, even with metric scale, the global camera pose
inevitably deviates from the ground truth as the camera moves,
because it is estimated by accumulating the relative camera
motions incrementally. The loop closure brings non-local pose
constraints to optimize poses globally to address this issue.
The conventional bag-of-word (BoW) approach detects loop
closures by matching features from the current view to the
history. However, the BoW approach does not work out-of-the-
box for direct SLAM systems since direct SLAM systems do
not extract descriptors for features. Alternatively, we propose
a LiDAR descriptor-based place recognition method [17] for
urban driving scenarios. We assume the vehicle is moving in
the forward direction so that we can accumulate 3D points from
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Fig. 1. The estimated trajectory and reconstructed environment by the pro-
posed method on KITTI sequence 00.

the stereo direct SLAM system to imitate LiDAR scans, which
are described by a LiDAR descriptor for place recognition. This
facilitates significantly more efficient loop closure detection and
ensures higher accuracy and robustness.

In this paper, we systematically combine scale optimization
and the LiDAR descriptor-based place recognition approach into
a fully-direct stereo SLAM system termed DSV-SLAM; we
release an open-source implementation at https://github.com/
IRVLab/direct_stereo_slam. We conduct thorough experiments
to validate its state-of-the-art accuracy, superior computational
efficiency, and robustness in visually challenging scenarios.
DSV-SLAM demonstrates the feasibility of a full SLAM sys-
tem without feature detection or matching. In DSV-SLAM, we
adopt the state-of-the-art Direct Sparse Odometry (DSO) [10]
to track camera poses and estimate 3D points. Then, we extend
this to an efficient and accurate stereo visual odometry (VO)
using scale optimization [16]. Subsequently, we use the LIDAR
descriptor-based place recognition approach [17] to efficiently
detect loop closures. The relative poses of potential loop closures
are estimated by direct alignment and optionally, further refined
by the Iterative Closest Point (ICP) method [18]. Finally, we
compose and optimize a pose graph to further improve the
SLAM accuracy globally. Fig. 1 shows the estimated trajectory
and reconstructed environment by DSV-SLAM on sequence 00
of the KITTI dataset [19].

II. RELATED WORK

Visual SLAM has been an active research problem in the
robotics and computer vision literature over the last two decades.
The early approaches relied on various filter-based estimation
methods such as EKF-SLAM [20] and MSCKF [21]. Starting
from PTAM [7], many popular approaches incorporate tech-
niques borrowed from structure-from-motion [15] (e.g., bundle
adjustment) into optimization-based visual SLAM systems. The
optimization-based visual SLAM systems can be categorized as
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Fig. 2. An overview of DSV-SLAM: (1) starting from Cam0, the Monocular
VO estimates camera poses and generates 3D points; (2) using the 3D points,
Scale Optimization module estimates and maintains the scale of the VO; (3)
Loop Detection module detects loop closures based on 3D points from VO; (4)
for potential loop closures, Loop Correction module estimates the relative poses
of loop closures and optimizes the poses globally.

either feature-based or direct methods depend on whether feature
matching is used.

ORB-SLAM [8], [12], [22] is one of the most influential and
established feature-based methods. In its stereo version [12], 3D
points are triangulated from stereo matching and then tracked
across frames. Subsequently, bundle adjustment is applied to
jointly optimize the points and camera poses within a local
sliding window by minimizing the reprojection error. In the
back end, BoW is used for loop closure detection and relative
pose estimation. Subsequently, an essential graph is optimized
to improve the global accuracy. Global bundle adjustment is
also executed to further improve the accuracy. Despite the gain
in accuracy, it is computationally expensive.

DSO [10], [14], [23] is the current state-of-the-art for direct
visual odometry. Wang et al. [14] extend DSO to a stereo
system using stereo matching for depth initialization. To in-
corporate BoW into the DSO system for loop closure, Gao et
al. [23] modify DSO’s point selection strategy to flavor trackable
features and compute descriptors for these features. However,
stereo matching and feature detection and description are com-
putationally expensive and lack robustness to poorly-textured
environments.

As discussed in Sec. I, we proposed scale optimization [16]
and LiDAR descriptor-based place recognition [17] as alterna-
tives for stereo matching and BoW approach. They enable a
fast and fully direct visual SLAM system, which we attempt to
address in this paper.

III. METHODOLOGY

Fig. 2 illustrates an outline of the proposed system. There are
four computational components: the monocular VO, the scale
optimization module, the loop detection module, and the loop
correction module.

IIl. Notations

We use ’T=[_R,%t]cSE(3) to represent the
Transformation (Rotation and translation) from coordinate
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a to coordinate b. We mark the stereo camera pair as Camg
and Cam;. For Camy, where k € {0,1}, the corresponding
image is I, and the camera projection is denoted as II;. A 3D
point is represented by IIy Y(p, dp), where p and dp, are the
pixel coordinates and (inverse) depth, respectively, which are
back-projected into 3D space by I L

A. Monocular VO

As mentioned, we choose a direct method over feature-based
methods for its accuracy, computational efficiency, and robust-
ness in poorly-textured environments. The current state-of-the-
art direct VO method is DSO [10], which works by minimiz-
ing the photometric error defined over a sliding window F of
keyframes and points as

E=Y>" Y E, (1

i€F pEP; jeobs(p)

l tje
Bpj= > wpl|(lo[p']) — bj) — ;Zai (Lo[p] = bi)lly, @)
PEND '
p' = Iy ({ T, (p, dp)). )

That is, for each point p € P; in keyframe i € F, if it is
observed by keyframe j, then I, ; denotes the associated photo-
metric error. I, ; defined in Eq. 2 is essentially the pixel intensity
difference between a point p in keyframe 4 and its projection p’
in keyframe j as defined in Eq. 3; the affine brightness terms
(s b; /3)» €xposure times t; /5> pixel pattern Np, weight w,
and Huber norm || - || are included for photometric robustness.
Please refer to [10] for more details. It is worth mentioning that
any monocular VO (preferably direct VO) method can be used
here instead of DSO due to our modular system design.

B. Scale Optimization

As DSO is monocular VO, the scale is unobservable and tends
to drift as time goes on. Stereo VO systems solve this problem by
bringing the metric distance between cameras into the odometry
system. As discussed, stereo matching is the conventional way
to extend monocular VO to stereo VO but it is computationally
expensive and it does not fit well into direct VO. Hence, we
adopt scale optimization [16] in the proposed system to balance
robustness and efficiency.

The main idea of scale optimization is to project the points
from monocular VO on Camg to Cam; and find the optimal
scale that minimizes the photometric error defined as:

E =Y wp||L[p'] - L[p]ll )
peP
p =R syt (p,dp) + t). ®)

For each 3D point IT; * (p, dp,), it is re-scaled in Camn frame
by current scale s and then projected into Cam; by [JR, {t] and
II;, which are known from the stereo calibration. The photomet-
ricerror F/ in Eq. 4 is then defined as the pixel intensity difference
between the original point p in Iy and its projection p’ in I;. An
example of such scale optimization is illustrated in Fig. 3. Eq 4
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Fig.3.  Anexample of scale optimization on sequence 06 of the KITTI dataset.
The top image is the projection with the optimal scale, where the projection well
overlaps with the image; the bottom image is the projection with an incorrect
scale (0.1 xoptimal scale), the green arrows indicate the locations of the correct
projections.

is an analogous formulation of Eq. 2 with two simplifications.
First, there is no affine brightness parameters or exposure times.
It is feasible as validated in the experiments of [16] because a
stereo camera is usually hardware synchronized and triggered.
Secondly, the photometric error is calculated using a single
pixel instead of all pixels in a pattern NV, (as in Eq. 2) since
the points remain fixed here. Consequently, the scale s is the
only free parameter to optimize. These simplifications facilitate
a computationally efficient optimization process.

Since we do not have prior knowledge of the scale when
the system starts, we run scale optimization with a series of
initial guesses ranging from 0.1 to 50 (empirically chosen)
to initialize the scale. Following scale optimization, DSO is
adjusted correspondingly by re-scaling the Pose and 3D points.
For the consistency of DSO, we only re-scale the pose of the most
recently created keyframe and reset its evaluation point; we do
not re-scale the other keyframes because of the First Estimate
Jacobians [24], [25], but their scale will be optimized heuris-
tically. As a result, the metric scale of DSO is estimated and
maintained by scale optimization alone. The resulting stereo VO
is computationally efficient and remains fully direct requiring no
feature extraction or matching.

C. Loop Detection

For VO, camera pose drift is inevitable because it is estimated
by accumulating local camera motions. To compensate for this
error, loop closure brings non-local pose constraints for global
pose optimization. BoW [26], [27] is the conventional loop
closure approach, but it does not fit well into direct methods
for reasons discussed previously.

We propose an alternative approach in [17] that fits naturally
into direct SLAM. Instead of 2D features, we focus on the 3D
structure for place recognition. We adapt LiDAR descriptors on
the 3D points from stereo VO to describe a place. However, the
3D points from VO are distributed in a frustum due to the narrow
field-of-view of cameras. The pose of the frustum changes with
that of the camera, which is not desired for place recognition.
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Fig. 5. When direct alignment fails, ICP finds the optimal pose that aligns
the imitated LiDAR scans of the recognized place (red) and the current place
(green).

Our solution to this is illustrated in Fig. 2(3); with the assumption
that camera motion is predominantly in the forward direction, we
propose to locally accumulate 3D points from VO to get a set of
Local Points, then generate a set of Spherical Points around the
current Pose to imitate a LIDAR scan. This is feasible because
VO is locally accurate. For efficiency, we use Points Filter to
remove redundant points. The Filtered Points make up the final
imitated LiDAR scan (e.g., Fig. 5). To describe the imitated
LiDAR scan, we prefer global LiDAR descriptors over local ones
mainly for two reasons. First, generating and matching global
LiDAR descriptors is usually faster than local ones. Secondly,
the imitated LiDAR scan is neither as consistent nor dense as a
real LIDAR scan, which is not ideal for local LIDAR descriptors.
We are able to use global LiDAR descriptors because the 3D
points generated by the proposed stereo VO (DSO with scale
optimization) have a metric scale. In [17], we validated that
Scan Context [28] is accurate and efficient for datasets recorded
in urban areas. Hence, we use Scan Context as our LiDAR
descriptor and focus on urban driving scenarios.

The main idea of Scan Context is to use height distribution in
urban areas (e. g., buildings) to describe the point cloud generated
by a LiDAR. The original Scan Context aligns the point cloud
with respect to the gravity axis measured by IMU. Since we
do not wish to bring additional sensors (i.e., IMU) to our visual
SLAM system, we align the point cloud using PCA [29] instead.
After alignment, the horizontal plane (the most significant PCA
plane in our case) is divided into multiple bins based on radius
and azimuth. The maximal height in each bin is concatenated
to form a signature for the current place. The authors of Scan
Context also propose to use ring-key [28] for fast preliminary
search before Scan Context, which encodes the occupancy ratio
in each ring determined by radius. An illustration is given in
Fig. 4.

In our system, for each keyframe from the stereo VO, we
imitate a LiDAR scan by the proposed method and generate
its place signature using our modified Scan Context descriptor.
Then we search for potential loop closure in the Signature
Database. We first search by ring-key, which is fast but less
discriminative, so we select the top three place candidates for
Scan Context to make the final decision.
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Fig. 4. A simplified illustration of ring-key and Scan Context descriptor on
the imitated LiDAR scan near the place in Fig. 3. We assume the heights of
buildings and trees are 10 meters and 3 meters, respectively (for this illustration
only).

D. Relative Pose Estimation

As Fig. 2(4) shows, for each Recognized Place, we try to
estimate a Loop Constraint (i.e., the relative pose) between the
current place and recognized place. This is achieved by direct
alignment as done in DSO tracking based on the following
equations:

/ tee .
B= Y wpll(I5lp) — be) = - (G5p) = )l (6)
peP r
P = (FTIL, (p, dp)). )

Here, I§ and I are the current and recognized frames,
respectively. We are estimating .'T', the relative pose from rec-
ognized frame to current frame, which is initialized by the PCA
alignment in Loop Detection. The other variables are same as
the ones in Eqgs. 2 and 3. We specifically project points from the
recognized frame to the current frame for memory efficiency,
because we only need to store the sparse points instead of the
entire image for the recognized frame.

Although Eqgs. 6 and 7 look similar to the error terms in
DSO (i.e., Egs. 1-3), there are only two keyframes (i.e., rec-
ognized frame and current frame) in this optimization rather
than a sliding window in DSO, and hence, fewer points and
constraints; additionally, the illumination, occlusion, and even
the scene can vary drastically for loop closures. Consequently,
direct alignment alone is not robust enough for loop closure. For
robustness, we execute ICP [18] to align the imitated LiDAR
scans when direct alignment is not confident (Eqs. 6-7 converge
to a large photometric error). An example of ICP is shown
in Fig. 5. ICP is particularly robust when the visual appear-
ance changes drastically. Although it is computationally more
expensive than direct alignment, the initial relative pose from
PCA in Loop Detection is reasonably accurate and facilitates
a fast convergence. Alternatively, the pose can be estimated by
direct alignment and ICP jointly [30] for improved accuracy and
robustness.

Finally, the Pose Graph composed of the consecutive
keyframes and loop closures is optimized to improve the pose
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accuracy globally. Although not implemented yet, global bundle
adjustment can be done using the 3D points association from
either direct alignment or ICP algorithm for improved map
consistency.

IV. EXPERIMENTAL EVALUATION

To evaluate the accuracy and computational efficiency of
DSV-SLAM system, we include several variants of DSO for
internal comparison. In particular, we compare the scale op-
timization in DSV-SLAM with the stereo matching approach
adopted in the Stereo DSO' [14]. We also compare the per-
formance of our LiDAR descriptor-based place recognition
module to the conventional BoW approach used in LDSO [23].
Externally, we include the performance evaluations of stereo
ORB-SLAM?2 [12] for accuracy and efficiency comparison.
Since the Scan Context used in this system is designed for
the urban driving scenario, we mainly focus on two publicly
available datasets: the KITTI visual odometry dataset [19] and
the Malaga dataset [31]. Our experiments are conducted on an
Inte]™ {7-8750H platform having a 2.2 GHz CPU with six
cores and 16 GB RAM. We use the default setting of DSO
with 2000 points located in 5-7 keyframes in the sliding window
for optimization (i.e., in Eq. 1-3). Moreover, when imitating a
LiDAR scan for loop detection, we set the LiDAR range (i.e.,
the radius of Spherical Points in Fig. 2(3)) to 40 meters. In the
current implementation, scale optimization runs sequentially in
the main DSO thread while the loop closure parts (detection,
estimation, and pose optimization) run in a separate thread.
Due to the inherent randomness in DSO and ORB-SLAM2, we
run each algorithm five times and compute the average when
calculating accuracy and efficiency.

A. Evaluation on the KITTI Dataset

The KITTI dataset contains 22 sequences of stereo images.
The ground truths for the first 11 sequences are publicly avail-
able; while the ground truths for the rest are reserved for ranking
VO algorithms. We focus on the first 11 sequences for complete
evaluations.

1) Accuracy: To compute accuracy, we align the estimated
trajectory to the ground truth and compute the root mean square
error of the trajectory as the absolute trajectory error (ATE).
Since the DSO and LDSO are monocular systems and unaware
of scale, the alignment is based on Sim3; Stereo DSO, (stereo)
ORB-SLAM?2, and DSV-SLAM are aligned with SE3. Since
the pose graph consists of keyframes only, the comparisons are
based on keyframes.

Table I reports the accuracy of the state-of-the-art visual
SLAM systems on the KITTI dataset. Our results for LDSO
and ORB-SLAM?2 agree with the results reported in [23] and
[12], respectively. The ATEs of Stereo DSO are calculated with
the trajectories provided by [14] (they do not provide code); we
also report the results using the 3 rd party implementation in
parenthesis.

ISince no official release of Stereo DSO is available, we use a third-party
implementation in https:// github.com/ JingeTu/ StereoDSO
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TABLE I
COMPARISONS FOR ACCURACY BASED ON ABSOLUTE TRAJECTORY ERROR
(ATE) IN METERS ON THE KITTI DATASET. RESULTS WITH LOOP CLOSURES
ARE MARKED WITH ASTERISK (¥). FOR STEREO DSO, THE RESULTS ARE
‘OFFICIAL RESULTS (3 RD IMPLEMENTATION)’; FOR DSV-SLAM,
THE RESULTS ARE ‘LOOP ENABLED (NO LooP)’

Seq.|| DSO LDSO Stereo DSO DSV-SLAM ORB-
(Sim3) | (Sim3) SLAM2

00 102.21 | 6.51* 3.73 (4.19) 2.59* (5.27) 1.19*
01 122.67 | 7.32 4.07 (5.64) 5.73 9.59
02 101.48 | 15.08* || 6.99 (4.56) 4.18% (5.61) | 5.35*%
03 1.94 2.07 1.22 (1.16) 2.47 0.64
04 0.82 0.95 0.83 (0.82) 1.09 0.19
05 46.63 4.48* 1.99 (2.36) 3.83* (3.92) 0.72%
06 54.21 11.64* 1.78 (23.57) | 0.80* (1.04) 0.75*
07 14.60 13.60%* 1.15 (2.97) 4.37 0.48%*
08 95.83 100.02 || 2.70 (3.26) 4.77 3.23
09 58.31 60.37 3.63 (2.95) 5.32 2.85
10 10.94 13.71 0.77 (1.04) 1.78 1.05
00 w02

=05 206

=0 DSO
. o - DSV-SLAM
Fig.6. The trajectories estimated by DSO (green), DSV-SLAM (blue), and the

ground truth (red) on KITTI sequence 00, 02, 05, and 06. With scale optimization
and loop closure, the improvement of DSV-SLAM over DSO is significant.

With DSO being monocular VO, its ATEs are large due to
the drifting scale, especially on long sequences like 00, 02, and
08. For LDSO, the ATEs decrease drastically compared to DSO
on sequences with loop closures (i.e., 00, 02, 05, 06, and 07).
The scale drifting problem is solved by all the stereo systems.
Overall, ORB-SLAM?2 performs the best on KITTI dataset,
possibly due to the maturity of feature-based methods and the
comprehensive system design (e.g., global bundle adjustment).
For Stereo DSO and DSV-SLAM, although the results on some
sequences (e.g., 04) are not as good as ORB-SLAM2, they
achieve competitive accuracy on more than half of the sequences.
The fast vehicle movement with low camera frame-rate (10 Hz)
in KITTI dataset are not ideal for direct methods (i.e., DSO).

As the results suggest, the accuracy of DSV-SLAM is com-
parable to the state-of-the-art visual SLAM systems. With loop
closure, the accuracy of DSV-SLAM is further improved on
sequences 00, 02, 05, and 06. Fig. 6 shows the trajectories
estimated by DSV-SLAM. Since our stereo VO with scale
optimization is already very accurate, the improvement with
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TABLE II
COMPARISONS FOR RUN-TIME (MEAN x EXECUTION COUNT) ON THE KITTI DATASET. [S.DSO: STEREO DSO; O.-SLAM2: ORB-SLAM2; SM: STEREO
MATCHING; SO: SCALE OPTIMIZATION; SC: SCAN CONTEXT; RK: RING-KEY; D: DIRECT ALIGNMENT; I: ICP]

Time(ms) Sequence 06 (short) Sequence 00 (comprehensive)

Methods DSO | LDSO S.DSO| DSV-SLAM 0.-SLAM2 || DSO | LDSO S.DSO| DSV-SLAM 0.-SLAM2

Point Sel. || 4.45 | 7.16 435 | 4.43 22.8 472 | 8.07 472 | 477 21.2

SM/SO - E 10.5 | 2.09 17.6 B B 10.8 | 2.19 18.7

BoW/SC T.71x 828 | - 0.46 x 625 7.44 X 506 1.89 x 3461 | - 0.49 x 2321 7.37 % 1380

Loop - 0.33x828 | - 0.05 x 625K | 6.95 x 504 1.74 x 3461 0.06 x 232177K] 8.70x 1378

Det. 0.01 x 3705¢ 0.01 x 19155¢

Loop Est. 0.44x 453 0.68 x 507 0.77 x 258 0.81x2058 0.96 x 1757 1.19 x 367
8.25 x 141 8.10 x 100!

Pose Opt. 200 x 28 35.9 x 43.4 589 x 1 1796 x 34 125 x 110 917 x 4

Full BA - - - 9600 x 1 - - 4793 X 4

Loop # - 37.0 35.40 +8.07 | 1.0 277.6 750 4357 4.0

loop closure is not as drastic as LDSO over DSO. However,
unlike LDSO and ORB-SLAM2, DSV-SLAM does not capture
the loop closure in sequence 07. This is because the overlapped
trajectory is too short to accumulate Local Points and imitate
LiDAR scans for place recognition, whereas BoW works on a
single frame.

2) Efficiency: We investigate the efficiency of each compu-
tational component and report the results of a short sequence
(06) and a comprehensive sequence (00) in Table II.

To enable BoW, the point selection in LDSO is tuned to
prefer features for cross-frame matching, and then a descriptor
is extracted for each feature. Consequently, the time spent on
point selection is increased compared to DSO. However, the
point selection in Stereo DSO and DSV-SLAM is as fast as in
DSO. We find that scale optimization (SO) in DSV-SLAM is
much faster than the stereo matching (SM) in Stereo DSO and
ORB-SLAM?2. The stereo matching in ORB-SLAM?2 is based
on feature descriptors and it is the slowest. On the contrary, in
Stereo DSO, the points are projected to the stereo frame and the
correspondences are searched around that projection, which is
potentially the reason for its faster performance. Nevertheless,
scale optimization offers the fastest run-time.

For loop closure, generating BoW in LDSO is slower than
generating the Scan Context (SC) descriptor in DSV-SLAM.
Detecting loop closure using BoW is also slower than using
the hierarchical search method (i.e., ring-key and Scan Context
descriptor) in DSV-SLAM. For loop pose estimation, direct
alignment in DSV-SLAM is marginally slower than the PnP
method [15] used in LDSO. Although the ICP in DSV-SLAM
is much slower, it is executed only when the direct alignment
is not confident, which happens less frequently for simple tests
(06). Moreover, the ratio of accepted / proposed loop closures in
DSV-SLAM (%24 and 119) is much higher than in LDSO (2%

277 6 . 5.0 . 175 . . ﬁ
and £5=2). This indicates that our LIDAR descriptor-based place

recoég?gon approach in DSV-SLAM achieves higher precision
over the BoW approach (refer to [17] for more detailed vali-
dation). Consequently, the time saved by DSV-SLAM on point
selection and loop detection is more significant than the loss on
loop pose estimation.

Besides, LDSO spends more time on loop pose optimization;
other than consecutive keyframes and loop closures, LDSO also
brings the connection between each keyframe and the very

first keyframe to the pose graph for accuracy and robustness.

Lastly, the loop closure module of ORB-SLAM?2 is much slower
overall due to its complex mechanisms to improve accuracy
and robustness. For instance, ORB-SLAM?2 searches the lowest
score in its covisibility graph and compares it to the candidate
score for loop detection; a loop candidate is accepted only
when three consistent and consecutive loop candidates are found
in the covisibility graph. Such conservative approaches incur
considerable computational overhead.

B. Evaluation on the Malaga Dataset

To further validate the proposed DSV-SLAM system, we
evaluate its performance on the Malaga dataset [31]. It is more
challenging than the KITTI dataset because it consists of various
test cases with adverse visual conditions. A few challenging
scenarios with poor visibility and direct sunlight are shown
in Fig. 7. In the evaluation, we focus on sequences with loop
closures (i.e., sequence 05, 06, 07, 08, and 10) for testing.
Since there is only GPS data available as ground truth, rather
than conducting quantitative analyses, we show a qualitative
performance comparison in Fig. 7. Our observations from the
experimental results are listed below:

e Qpverall, the scales of the trajectories by both DSV-SLAM
and ORB-SLAM?2 are slightly inaccurate. We suspect the
potential reason is that the structures might be too far for the
short-baseline (12 cm) stereo camera used in the Malaga
dataset.

¢ Insequence 05, the DSO tracking in DSV-SLAM struggles
at the roundabout (see the red rectangle in Fig. 7) due to
direct sunlight. Scale optimization also fails several times.
However, the shape of DSV-SLAM’s trajectory is still more
accurate than ORB-SLAM?2.

¢ In sequence 06, the DSO tracking in DSV-SLAM also
fails due to traffic and pedestrians when the vehicle stops
for about 40 seconds (see the blue rectangle in Fig. 7). It
takes a few seconds to recover tracking, which leads to an
inconsistent trajectory estimation by DSV-SLAM without
loop closure (denoted by the green trajectory). However,
loop closure finds the failure point and eventually corrects
the trajectory. ORB-SLAM?2 is slightly better with a more
accurate scale.

¢ In sequence 07, the orientation of the trajectory estimated
by ORB-SLAM?2 is slightly off, whereas the scale of DSV-
SLAM is slightly off.
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Results on Malaga dataset. The blue rectangle in the sequence 06 shows where the vehicle stops for about 40 seconds and the underlying DSO in DSV-SLAM

loses tracking due to traffic and pedestrians. DSO tracking is also lost in the red rectangles in the sequence 05 and 08 due to direct sunlight. Nevertheless, loop
closure significantly improves the accuracy of DSV-SLAM in these challenging scenarios.

TABLE III
COMPARISONS FOR RUN-TIME (MEAN MILLISECOND X EXECUTION COUNT) ON
SEQUENCE 10 OF THE MALAGA DATASET. [SM: STEREO MATCHING; SO:
SCALE OPTIMIZATION; SC: SCAN CONTEXT; RK: RING-KEY; D: DIRECT
ALIGNMENT; I: ICP]

DSV-SLAM ORB-SLAM?2
Select Point || 7.50 x 5053 28.7 x 17310
SM/SO 4.06 x 5050 24.6 x 17310
BoW/SC 0.64 x 3890 7.76 x 3072
Gen.

Loop Det. 0.07 x 38907 10.04x3369°C | 15.3 x 3070
Loop Est. 1.91 x 8547 +11.98 x 7557 2.09 x 1129
Pose Opt. 164.2 x 215 4202 x 11
Full BA B 90578 x 11
FPS 27.5 14.0

Loop Count || 990 4+ 116.47 11.6

® In sequence 08, the DSO tracking in DSV-SLAM fails
at the red rectangle due to the sudden brightness change.
Consequently, the trajectory of DSV-SLAM without loop
closure is off; nevertheless, it can re-localize itself with
loop closure when the vehicle comes back to the start
location. For ORB-SLAM?2, the scale of its trajectory is
noticeably smaller than the ground truth.
® Lastly, sequence 10 is a long run with various straights and
turns as well as loop closures, which tests visual SLAM
algorithms comprehensively. The trajectory generated by
DSV-SLAM is slightly more accurate than ORB-SLAM?2.
We also notice that the distance between the start and the
end of the trajectory is considerably reduced by the loop
closure (from the green trajectory to the blue one).
Overall, we find that DSV-SLAM'’s accuracy is comparable
and often better than ORB-SLAM?2 on the Malaga dataset.
However, DSV-SLAM is computationally more efficient with
significant margins as presented in Table III. ICP is executed
more frequently on the Malaga dataset than on the KITTI dataset
since direct alignment is vulnerable to brightness change.

C. Evaluation on the RobotCar Dataset

RobotCar dataset [32] is recorded in different seasons
throughout the year, which we used to validate the robustness of

Fig. 8. Snapshots of the RobotCar dataset. There are many visual appearance
differences including trees and foliage, traffic, pedestrians, and varying bright-
ness.

Map rotated

|einieN 4O m‘u-l
unoio AyiSJONIUM PIOPX( r
5
neasoay
10~ 1011eS

DSO DSV-SLAM w/o loop

DSV-SLAM

Fig. 9. The trajectories estimated by DSO, DSV-SLAM with and without
loop closure on RobotCar dataset. While DSO has an increasing scale issue,
DSV-SLAM estimates the scale accurately and consistently, and it is able to
re-localize the robot after being kidnapped using loop closures. [rl: start of
runl; r2: start of run2 where the robot is kidnapped to].

the LiDAR descriptor-based place recognition approach against
visual appearance changes in [17]. Snapshots are given in Fig. 8.
We demonstrate the preliminary result of DSV-SLAM on the
RobotCar dataset in Fig. 9, where we first play the sequence
2015-05-19-14-06-38’ (runl), and then we “kidnap” the robot
to sequence ‘2015-08-13-16-02-58’(run2). As Fig. 9 shows, the
DSO scale gets larger throughout; the drifting scale is fixed with
scale optimization (see the green trajectory); with loop closures,
the robot eventually re-localize itself and bring the two runs
together (see the blue trajectory). We also run ORB-SLAM?2
using the same setting; however, its tracking fails consistently.
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V. CONCLUSION

In this paper, we propose the first fully-direct visual SLAM
system for driving scenarios, demonstrating the feasibility of
a full SLAM system without feature detection or matching.
We first extend the monocular DSO to a stereo system using
scale optimization; then we integrate a LIDAR descriptor-based
place recognition approach to detect loop closures; for potential
loop closures, we use direct alignment to estimate the relative
pose, which is bolstered by ICP when the direct alignment is
not confident. Validation on public datasets demonstrates that
the proposed system achieves considerably better computational
efficiency while offering comparable accuracy and improved
robustness in challenging scenarios. For future work, we will
look into eliminating the forward-moving camera assumption
when imitating LiDAR scans to expand our potential use cases.
We also intend to extend the system into a stereo-visual-inertial
system by integrating IMU measurements to further improve
robustness.
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