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Fast Direct Stereo Visual SLAM
Jiawei Mo , Md Jahidul Islam , and Junaed Sattar

Abstract—We propose a novel approach for fast and accurate
stereo visual Simultaneous Localization and Mapping (SLAM) in-
dependent of feature detection and matching. We extend monocular
Direct Sparse Odometry (DSO) to a stereo system by optimizing
the scale of the 3D points to minimize photometric error for the
stereo configuration, which yields a computationally efficient and
robust method compared to conventional stereo matching. We
further extend it to a full SLAM system with loop closure to re-
duce accumulated errors. With the assumption of forward camera
motion, we imitate a LiDAR scan using the 3D points obtained
from the visual odometry and adapt a LiDAR descriptor for place
recognition to facilitate more efficient detection of loop closures.
Afterward, we estimate the relative pose using direct alignment
by minimizing the photometric error for potential loop closures.
Optionally, further improvement over direct alignment is achieved
by using the Iterative Closest Point (ICP) algorithm. Lastly, we
optimize a pose graph to improve SLAM accuracy globally. By
avoiding feature detection or matching in our SLAM system, we
ensure high computational efficiency and robustness. Thorough
experimental validations on public datasets demonstrate its effec-
tiveness compared to the state-of-the-art approaches.

Index Terms—SLAM, vision-based navigation.

I. INTRODUCTION

S
IMULTANEOUS Localization and Mapping (SLAM) has

been an active research problem in robotics and computer

vision over the past few decades [1], [2]. It deals with estimating

a robot’s instantaneous location by using onboard sensory mea-

surements, e.g., LiDAR (Light Detection and Ranging) sensors,

cameras, and inertial measurement units (IMU). SLAM is par-

ticularly useful where GPS reception is weak such as indoor,

urban, and underwater environments. Hence, it has been an

essential component in AR/VR [3], autonomous driving [4], and

GPS-denied robotics applications [5]. Among existing systems,

visual SLAM [6] is of significant interest because cameras are

low-cost passive sensors and thus consume less energy compared
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to active ones such as sonar or LiDAR. Autonomous mobile

robots operating outdoors benefit greatly from the low power

consumption of cameras in long-term deployments.

Visual SLAM systems can be categorized into feature-based

methods and direct methods. The feature-based methods [7],

[8] detect and match features across frames, and then esti-

mate relative camera motion by minimizing the reprojection

error; whereas direct methods [9], [10] estimate camera mo-

tion by minimizing photometric error directly without feature

correspondences. The direct methods demonstrate higher accu-

racy and robustness over feature-based methods, especially in

poorly-textured (less-textured or repetitively-textured) environ-

ments [11]. As the feature detection and matching algorithms

are computationally expensive, sparse direct methods also have

the potential to run much faster (e.g., ≥ 300 FPS for SVO [11]).

On the other hand, visual SLAM systems can also be categorized

into monocular systems and multi-camera systems. Monocular

systems [7]–[10] cannot estimate the metric scale of the envi-

ronment which multi-camera systems are able to. Multi-camera

systems usually achieve higher accuracy and robustness; among

these, stereo systems [12]–[14] are particularly popular for their

simplicity and accessibility.

Most existing stereo visual systems use the standard stereo

matching algorithm [15] to solve the scale problem, which has

two major shortcomings. First, finding stereo correspondences

by individually searching along the respective epipolar lines is

computationally expensive. Secondly, if multiple points look

similar to the query point, it is challenging to pick the correct

one; this happens when the texture is repetitive (e.g., grass, sand).

We address these two limitations in [16], where the 3D points

in the monocular system are projected into the second camera

and the scale problem is solved by minimizing the photometric

error. We demonstrate that such direct scale optimization is

computationally efficient and more robust to repetitive textures

in the visual scene.

However, even with metric scale, the global camera pose

inevitably deviates from the ground truth as the camera moves,

because it is estimated by accumulating the relative camera

motions incrementally. The loop closure brings non-local pose

constraints to optimize poses globally to address this issue.

The conventional bag-of-word (BoW) approach detects loop

closures by matching features from the current view to the

history. However, the BoW approach does not work out-of-the-

box for direct SLAM systems since direct SLAM systems do

not extract descriptors for features. Alternatively, we propose

a LiDAR descriptor-based place recognition method [17] for

urban driving scenarios. We assume the vehicle is moving in

the forward direction so that we can accumulate 3D points from
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Fig. 1. The estimated trajectory and reconstructed environment by the pro-
posed method on KITTI sequence 00.

the stereo direct SLAM system to imitate LiDAR scans, which

are described by a LiDAR descriptor for place recognition. This

facilitates significantly more efficient loop closure detection and

ensures higher accuracy and robustness.

In this paper, we systematically combine scale optimization

and the LiDAR descriptor-based place recognition approach into

a fully-direct stereo SLAM system termed DSV-SLAM; we

release an open-source implementation at https://github.com/

IRVLab/direct_stereo_slam. We conduct thorough experiments

to validate its state-of-the-art accuracy, superior computational

efficiency, and robustness in visually challenging scenarios.

DSV-SLAM demonstrates the feasibility of a full SLAM sys-

tem without feature detection or matching. In DSV-SLAM, we

adopt the state-of-the-art Direct Sparse Odometry (DSO) [10]

to track camera poses and estimate 3D points. Then, we extend

this to an efficient and accurate stereo visual odometry (VO)

using scale optimization [16]. Subsequently, we use the LiDAR

descriptor-based place recognition approach [17] to efficiently

detect loop closures. The relative poses of potential loop closures

are estimated by direct alignment and optionally, further refined

by the Iterative Closest Point (ICP) method [18]. Finally, we

compose and optimize a pose graph to further improve the

SLAM accuracy globally. Fig. 1 shows the estimated trajectory

and reconstructed environment by DSV-SLAM on sequence 00

of the KITTI dataset [19].

II. RELATED WORK

Visual SLAM has been an active research problem in the

robotics and computer vision literature over the last two decades.

The early approaches relied on various filter-based estimation

methods such as EKF-SLAM [20] and MSCKF [21]. Starting

from PTAM [7], many popular approaches incorporate tech-

niques borrowed from structure-from-motion [15] (e.g., bundle

adjustment) into optimization-based visual SLAM systems. The

optimization-based visual SLAM systems can be categorized as

Fig. 2. An overview of DSV-SLAM: (1) starting from Cam0, the Monocular

VO estimates camera poses and generates 3D points; (2) using the 3D points,
Scale Optimization module estimates and maintains the scale of the VO; (3)
Loop Detection module detects loop closures based on 3D points from VO; (4)
for potential loop closures, Loop Correction module estimates the relative poses
of loop closures and optimizes the poses globally.

either feature-based or direct methods depend on whether feature

matching is used.

ORB-SLAM [8], [12], [22] is one of the most influential and

established feature-based methods. In its stereo version [12], 3D

points are triangulated from stereo matching and then tracked

across frames. Subsequently, bundle adjustment is applied to

jointly optimize the points and camera poses within a local

sliding window by minimizing the reprojection error. In the

back end, BoW is used for loop closure detection and relative

pose estimation. Subsequently, an essential graph is optimized

to improve the global accuracy. Global bundle adjustment is

also executed to further improve the accuracy. Despite the gain

in accuracy, it is computationally expensive.

DSO [10], [14], [23] is the current state-of-the-art for direct

visual odometry. Wang et al. [14] extend DSO to a stereo

system using stereo matching for depth initialization. To in-

corporate BoW into the DSO system for loop closure, Gao et

al. [23] modify DSO’s point selection strategy to flavor trackable

features and compute descriptors for these features. However,

stereo matching and feature detection and description are com-

putationally expensive and lack robustness to poorly-textured

environments.

As discussed in Sec. I, we proposed scale optimization [16]

and LiDAR descriptor-based place recognition [17] as alterna-

tives for stereo matching and BoW approach. They enable a

fast and fully direct visual SLAM system, which we attempt to

address in this paper.

III. METHODOLOGY

Fig. 2 illustrates an outline of the proposed system. There are

four computational components: the monocular VO, the scale

optimization module, the loop detection module, and the loop

correction module.

III. Notations

We use b
aT = [baR, bat] ∈ SE(3) to represent the

Transformation (Rotation and translation) from coordinate
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a to coordinate b. We mark the stereo camera pair as Cam0

and Cam1. For Camk where k ∈ {0, 1}, the corresponding

image is Ik and the camera projection is denoted as Πk. A 3D

point is represented by Π−1
0 (p, dp), where p and dp are the

pixel coordinates and (inverse) depth, respectively, which are

back-projected into 3D space by Π−1
0 .

A. Monocular VO

As mentioned, we choose a direct method over feature-based

methods for its accuracy, computational efficiency, and robust-

ness in poorly-textured environments. The current state-of-the-

art direct VO method is DSO [10], which works by minimiz-

ing the photometric error defined over a sliding window F of

keyframes and points as

E =
∑

i∈F

∑

p∈Pi

∑

j∈obs(p)

Epj (1)

Epj =
∑

p∈Np

wp||(I0[p
′]− bj)−

tje
aj

tieai
(I0[p]− bi)||γ , (2)

p′ = Π0(
j
iTΠ−1

0 (p, dp)). (3)

That is, for each point p ∈ Pi in keyframe i ∈ F , if it is

observed by keyframe j, then Epj denotes the associated photo-

metric error.Epj defined in Eq. 2 is essentially the pixel intensity

difference between a point p in keyframe i and its projection p′

in keyframe j as defined in Eq. 3; the affine brightness terms

(ai/j , bi/j), exposure times ti/j , pixel pattern Np, weight wp,

and Huber norm || · ||γ are included for photometric robustness.

Please refer to [10] for more details. It is worth mentioning that

any monocular VO (preferably direct VO) method can be used

here instead of DSO due to our modular system design.

B. Scale Optimization

As DSO is monocular VO, the scale is unobservable and tends

to drift as time goes on. Stereo VO systems solve this problem by

bringing the metric distance between cameras into the odometry

system. As discussed, stereo matching is the conventional way

to extend monocular VO to stereo VO but it is computationally

expensive and it does not fit well into direct VO. Hence, we

adopt scale optimization [16] in the proposed system to balance

robustness and efficiency.

The main idea of scale optimization is to project the points

from monocular VO on Cam0 to Cam1 and find the optimal

scale that minimizes the photometric error defined as:

E =
∑

p∈P

wp||I1[p
′]− I0[p]||γ , (4)

p′ = Π1(
1
0R · sΠ−1

0 (p, dp) +
1
0t). (5)

For each 3D point Π−1
0 (p, dp), it is re-scaled in Cam0 frame

by current scale s and then projected into Cam1 by [10R, 10t] and

Π1, which are known from the stereo calibration. The photomet-

ric errorE in Eq. 4 is then defined as the pixel intensity difference

between the original point p in I0 and its projection p′ in I1. An

example of such scale optimization is illustrated in Fig. 3. Eq 4

Fig. 3. An example of scale optimization on sequence 06 of the KITTI dataset.
The top image is the projection with the optimal scale, where the projection well
overlaps with the image; the bottom image is the projection with an incorrect
scale (0.1×optimal scale), the green arrows indicate the locations of the correct
projections.

is an analogous formulation of Eq. 2 with two simplifications.

First, there is no affine brightness parameters or exposure times.

It is feasible as validated in the experiments of [16] because a

stereo camera is usually hardware synchronized and triggered.

Secondly, the photometric error is calculated using a single

pixel instead of all pixels in a pattern Np (as in Eq. 2) since

the points remain fixed here. Consequently, the scale s is the

only free parameter to optimize. These simplifications facilitate

a computationally efficient optimization process.

Since we do not have prior knowledge of the scale when

the system starts, we run scale optimization with a series of

initial guesses ranging from 0.1 to 50 (empirically chosen)

to initialize the scale. Following scale optimization, DSO is

adjusted correspondingly by re-scaling the Pose and 3D points.

For the consistency of DSO, we only re-scale the pose of the most

recently created keyframe and reset its evaluation point; we do

not re-scale the other keyframes because of the First Estimate

Jacobians [24], [25], but their scale will be optimized heuris-

tically. As a result, the metric scale of DSO is estimated and

maintained by scale optimization alone. The resulting stereo VO

is computationally efficient and remains fully direct requiring no

feature extraction or matching.

C. Loop Detection

For VO, camera pose drift is inevitable because it is estimated

by accumulating local camera motions. To compensate for this

error, loop closure brings non-local pose constraints for global

pose optimization. BoW [26], [27] is the conventional loop

closure approach, but it does not fit well into direct methods

for reasons discussed previously.

We propose an alternative approach in [17] that fits naturally

into direct SLAM. Instead of 2D features, we focus on the 3D

structure for place recognition. We adapt LiDAR descriptors on

the 3D points from stereo VO to describe a place. However, the

3D points from VO are distributed in a frustum due to the narrow

field-of-view of cameras. The pose of the frustum changes with

that of the camera, which is not desired for place recognition.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 25,2022 at 18:16:45 UTC from IEEE Xplore.  Restrictions apply. 



MO et al.: FAST DIRECT STEREO VISUAL SLAM 781

Fig. 5. When direct alignment fails, ICP finds the optimal pose that aligns
the imitated LiDAR scans of the recognized place (red) and the current place
(green).

Our solution to this is illustrated in Fig. 2(3); with the assumption

that camera motion is predominantly in the forward direction, we

propose to locally accumulate 3D points from VO to get a set of

Local Points, then generate a set of Spherical Points around the

current Pose to imitate a LiDAR scan. This is feasible because

VO is locally accurate. For efficiency, we use Points Filter to

remove redundant points. The Filtered Points make up the final

imitated LiDAR scan (e.g., Fig. 5). To describe the imitated

LiDAR scan, we prefer global LiDAR descriptors over local ones

mainly for two reasons. First, generating and matching global

LiDAR descriptors is usually faster than local ones. Secondly,

the imitated LiDAR scan is neither as consistent nor dense as a

real LiDAR scan, which is not ideal for local LiDAR descriptors.

We are able to use global LiDAR descriptors because the 3D

points generated by the proposed stereo VO (DSO with scale

optimization) have a metric scale. In [17], we validated that

Scan Context [28] is accurate and efficient for datasets recorded

in urban areas. Hence, we use Scan Context as our LiDAR

descriptor and focus on urban driving scenarios.

The main idea of Scan Context is to use height distribution in

urban areas (e.g., buildings) to describe the point cloud generated

by a LiDAR. The original Scan Context aligns the point cloud

with respect to the gravity axis measured by IMU. Since we

do not wish to bring additional sensors (i.e., IMU) to our visual

SLAM system, we align the point cloud using PCA [29] instead.

After alignment, the horizontal plane (the most significant PCA

plane in our case) is divided into multiple bins based on radius

and azimuth. The maximal height in each bin is concatenated

to form a signature for the current place. The authors of Scan

Context also propose to use ring-key [28] for fast preliminary

search before Scan Context, which encodes the occupancy ratio

in each ring determined by radius. An illustration is given in

Fig. 4.

In our system, for each keyframe from the stereo VO, we

imitate a LiDAR scan by the proposed method and generate

its place signature using our modified Scan Context descriptor.

Then we search for potential loop closure in the Signature

Database. We first search by ring-key, which is fast but less

discriminative, so we select the top three place candidates for

Scan Context to make the final decision.

Fig. 4. A simplified illustration of ring-key and Scan Context descriptor on
the imitated LiDAR scan near the place in Fig. 3. We assume the heights of
buildings and trees are 10 meters and 3 meters, respectively (for this illustration
only).

D. Relative Pose Estimation

As Fig. 2(4) shows, for each Recognized Place, we try to

estimate a Loop Constraint (i.e., the relative pose) between the

current place and recognized place. This is achieved by direct

alignment as done in DSO tracking based on the following

equations:

E =
∑

p∈P

wp||(I
c
0 [p

′]− bc)−
tce

ac

trear
(Ir0 [p]− br)||γ , (6)

p′ = Π0(
c
rTΠ−1

0 (p, dp)). (7)

Here, Ic0 and Ir0 are the current and recognized frames,

respectively. We are estimating c
rT, the relative pose from rec-

ognized frame to current frame, which is initialized by the PCA

alignment in Loop Detection. The other variables are same as

the ones in Eqs. 2 and 3. We specifically project points from the

recognized frame to the current frame for memory efficiency,

because we only need to store the sparse points instead of the

entire image for the recognized frame.

Although Eqs. 6 and 7 look similar to the error terms in

DSO (i.e., Eqs. 1-3), there are only two keyframes (i.e., rec-

ognized frame and current frame) in this optimization rather

than a sliding window in DSO, and hence, fewer points and

constraints; additionally, the illumination, occlusion, and even

the scene can vary drastically for loop closures. Consequently,

direct alignment alone is not robust enough for loop closure. For

robustness, we execute ICP [18] to align the imitated LiDAR

scans when direct alignment is not confident (Eqs. 6-7 converge

to a large photometric error). An example of ICP is shown

in Fig. 5. ICP is particularly robust when the visual appear-

ance changes drastically. Although it is computationally more

expensive than direct alignment, the initial relative pose from

PCA in Loop Detection is reasonably accurate and facilitates

a fast convergence. Alternatively, the pose can be estimated by

direct alignment and ICP jointly [30] for improved accuracy and

robustness.

Finally, the Pose Graph composed of the consecutive

keyframes and loop closures is optimized to improve the pose
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accuracy globally. Although not implemented yet, global bundle

adjustment can be done using the 3D points association from

either direct alignment or ICP algorithm for improved map

consistency.

IV. EXPERIMENTAL EVALUATION

To evaluate the accuracy and computational efficiency of

DSV-SLAM system, we include several variants of DSO for

internal comparison. In particular, we compare the scale op-

timization in DSV-SLAM with the stereo matching approach

adopted in the Stereo DSO1 [14]. We also compare the per-

formance of our LiDAR descriptor-based place recognition

module to the conventional BoW approach used in LDSO [23].

Externally, we include the performance evaluations of stereo

ORB-SLAM2 [12] for accuracy and efficiency comparison.

Since the Scan Context used in this system is designed for

the urban driving scenario, we mainly focus on two publicly

available datasets: the KITTI visual odometry dataset [19] and

the Malaga dataset [31]. Our experiments are conducted on an

IntelTM i7-8750H platform having a 2.2 GHz CPU with six

cores and 16 GB RAM. We use the default setting of DSO

with 2000 points located in 5-7 keyframes in the sliding window

for optimization (i.e., in Eq. 1-3). Moreover, when imitating a

LiDAR scan for loop detection, we set the LiDAR range (i.e.,

the radius of Spherical Points in Fig. 2(3)) to 40 meters. In the

current implementation, scale optimization runs sequentially in

the main DSO thread while the loop closure parts (detection,

estimation, and pose optimization) run in a separate thread.

Due to the inherent randomness in DSO and ORB-SLAM2, we

run each algorithm five times and compute the average when

calculating accuracy and efficiency.

A. Evaluation on the KITTI Dataset

The KITTI dataset contains 22 sequences of stereo images.

The ground truths for the first 11 sequences are publicly avail-

able; while the ground truths for the rest are reserved for ranking

VO algorithms. We focus on the first 11 sequences for complete

evaluations.

1) Accuracy: To compute accuracy, we align the estimated

trajectory to the ground truth and compute the root mean square

error of the trajectory as the absolute trajectory error (ATE).

Since the DSO and LDSO are monocular systems and unaware

of scale, the alignment is based on Sim3; Stereo DSO, (stereo)

ORB-SLAM2, and DSV-SLAM are aligned with SE3. Since

the pose graph consists of keyframes only, the comparisons are

based on keyframes.

Table I reports the accuracy of the state-of-the-art visual

SLAM systems on the KITTI dataset. Our results for LDSO

and ORB-SLAM2 agree with the results reported in [23] and

[12], respectively. The ATEs of Stereo DSO are calculated with

the trajectories provided by [14] (they do not provide code); we

also report the results using the 3 rd party implementation in

parenthesis.

1Since no official release of Stereo DSO is available, we use a third-party
implementation in https:// github.com/ JingeTu/ StereoDSO

TABLE I
COMPARISONS FOR ACCURACY BASED ON ABSOLUTE TRAJECTORY ERROR

(ATE) IN METERS ON THE KITTI DATASET. RESULTS WITH LOOP CLOSURES

ARE MARKED WITH ASTERISK (*). FOR STEREO DSO, THE RESULTS ARE

‘OFFICIAL RESULTS (3 RD IMPLEMENTATION)’; FOR DSV-SLAM,
THE RESULTS ARE ‘LOOP ENABLED (NO LOOP)’

Fig. 6. The trajectories estimated by DSO (green), DSV-SLAM (blue), and the
ground truth (red) on KITTI sequence 00, 02, 05, and 06. With scale optimization
and loop closure, the improvement of DSV-SLAM over DSO is significant.

With DSO being monocular VO, its ATEs are large due to

the drifting scale, especially on long sequences like 00, 02, and

08. For LDSO, the ATEs decrease drastically compared to DSO

on sequences with loop closures (i.e., 00, 02, 05, 06, and 07).

The scale drifting problem is solved by all the stereo systems.

Overall, ORB-SLAM2 performs the best on KITTI dataset,

possibly due to the maturity of feature-based methods and the

comprehensive system design (e.g., global bundle adjustment).

For Stereo DSO and DSV-SLAM, although the results on some

sequences (e.g., 04) are not as good as ORB-SLAM2, they

achieve competitive accuracy on more than half of the sequences.

The fast vehicle movement with low camera frame-rate (10 Hz)

in KITTI dataset are not ideal for direct methods (i.e., DSO).

As the results suggest, the accuracy of DSV-SLAM is com-

parable to the state-of-the-art visual SLAM systems. With loop

closure, the accuracy of DSV-SLAM is further improved on

sequences 00, 02, 05, and 06. Fig. 6 shows the trajectories

estimated by DSV-SLAM. Since our stereo VO with scale

optimization is already very accurate, the improvement with
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TABLE II
COMPARISONS FOR RUN-TIME (MEAN × EXECUTION COUNT) ON THE KITTI DATASET. [S.DSO: STEREO DSO; O.-SLAM2: ORB-SLAM2; SM: STEREO

MATCHING; SO: SCALE OPTIMIZATION; SC: SCAN CONTEXT; RK: RING-KEY; D: DIRECT ALIGNMENT; I: ICP]

loop closure is not as drastic as LDSO over DSO. However,

unlike LDSO and ORB-SLAM2, DSV-SLAM does not capture

the loop closure in sequence 07. This is because the overlapped

trajectory is too short to accumulate Local Points and imitate

LiDAR scans for place recognition, whereas BoW works on a

single frame.

2) Efficiency: We investigate the efficiency of each compu-

tational component and report the results of a short sequence

(06) and a comprehensive sequence (00) in Table II.

To enable BoW, the point selection in LDSO is tuned to

prefer features for cross-frame matching, and then a descriptor

is extracted for each feature. Consequently, the time spent on

point selection is increased compared to DSO. However, the

point selection in Stereo DSO and DSV-SLAM is as fast as in

DSO. We find that scale optimization (SO) in DSV-SLAM is

much faster than the stereo matching (SM) in Stereo DSO and

ORB-SLAM2. The stereo matching in ORB-SLAM2 is based

on feature descriptors and it is the slowest. On the contrary, in

Stereo DSO, the points are projected to the stereo frame and the

correspondences are searched around that projection, which is

potentially the reason for its faster performance. Nevertheless,

scale optimization offers the fastest run-time.

For loop closure, generating BoW in LDSO is slower than

generating the Scan Context (SC) descriptor in DSV-SLAM.

Detecting loop closure using BoW is also slower than using

the hierarchical search method (i.e., ring-key and Scan Context

descriptor) in DSV-SLAM. For loop pose estimation, direct

alignment in DSV-SLAM is marginally slower than the PnP

method [15] used in LDSO. Although the ICP in DSV-SLAM

is much slower, it is executed only when the direct alignment

is not confident, which happens less frequently for simple tests

(06). Moreover, the ratio of accepted / proposed loop closures in

DSV-SLAM ( 43.450 and 110
175 ) is much higher than in LDSO ( 37

453
and 277.6

2058 ). This indicates that our LiDAR descriptor-based place

recognition approach in DSV-SLAM achieves higher precision

over the BoW approach (refer to [17] for more detailed vali-

dation). Consequently, the time saved by DSV-SLAM on point

selection and loop detection is more significant than the loss on

loop pose estimation.

Besides, LDSO spends more time on loop pose optimization;

other than consecutive keyframes and loop closures, LDSO also

brings the connection between each keyframe and the very

first keyframe to the pose graph for accuracy and robustness.

Lastly, the loop closure module of ORB-SLAM2 is much slower

overall due to its complex mechanisms to improve accuracy

and robustness. For instance, ORB-SLAM2 searches the lowest

score in its covisibility graph and compares it to the candidate

score for loop detection; a loop candidate is accepted only

when three consistent and consecutive loop candidates are found

in the covisibility graph. Such conservative approaches incur

considerable computational overhead.

B. Evaluation on the Malaga Dataset

To further validate the proposed DSV-SLAM system, we

evaluate its performance on the Malaga dataset [31]. It is more

challenging than the KITTI dataset because it consists of various

test cases with adverse visual conditions. A few challenging

scenarios with poor visibility and direct sunlight are shown

in Fig. 7. In the evaluation, we focus on sequences with loop

closures (i.e., sequence 05, 06, 07, 08, and 10) for testing.

Since there is only GPS data available as ground truth, rather

than conducting quantitative analyses, we show a qualitative

performance comparison in Fig. 7. Our observations from the

experimental results are listed below:
� Overall, the scales of the trajectories by both DSV-SLAM

and ORB-SLAM2 are slightly inaccurate. We suspect the

potential reason is that the structures might be too far for the

short-baseline (12 cm) stereo camera used in the Malaga

dataset.
� In sequence 05, the DSO tracking in DSV-SLAM struggles

at the roundabout (see the red rectangle in Fig. 7) due to

direct sunlight. Scale optimization also fails several times.

However, the shape of DSV-SLAM’s trajectory is still more

accurate than ORB-SLAM2.
� In sequence 06, the DSO tracking in DSV-SLAM also

fails due to traffic and pedestrians when the vehicle stops

for about 40 seconds (see the blue rectangle in Fig. 7). It

takes a few seconds to recover tracking, which leads to an

inconsistent trajectory estimation by DSV-SLAM without

loop closure (denoted by the green trajectory). However,

loop closure finds the failure point and eventually corrects

the trajectory. ORB-SLAM2 is slightly better with a more

accurate scale.
� In sequence 07, the orientation of the trajectory estimated

by ORB-SLAM2 is slightly off, whereas the scale of DSV-

SLAM is slightly off.
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Fig. 7. Results on Malaga dataset. The blue rectangle in the sequence 06 shows where the vehicle stops for about 40 seconds and the underlying DSO in DSV-SLAM
loses tracking due to traffic and pedestrians. DSO tracking is also lost in the red rectangles in the sequence 05 and 08 due to direct sunlight. Nevertheless, loop
closure significantly improves the accuracy of DSV-SLAM in these challenging scenarios.

TABLE III
COMPARISONS FOR RUN-TIME (MEAN MILLISECOND × EXECUTION COUNT) ON

SEQUENCE 10 OF THE MALAGA DATASET. [SM: STEREO MATCHING; SO:
SCALE OPTIMIZATION; SC: SCAN CONTEXT; RK: RING-KEY; D: DIRECT

ALIGNMENT; I: ICP]

� In sequence 08, the DSO tracking in DSV-SLAM fails

at the red rectangle due to the sudden brightness change.

Consequently, the trajectory of DSV-SLAM without loop

closure is off; nevertheless, it can re-localize itself with

loop closure when the vehicle comes back to the start

location. For ORB-SLAM2, the scale of its trajectory is

noticeably smaller than the ground truth.
� Lastly, sequence 10 is a long run with various straights and

turns as well as loop closures, which tests visual SLAM

algorithms comprehensively. The trajectory generated by

DSV-SLAM is slightly more accurate than ORB-SLAM2.

We also notice that the distance between the start and the

end of the trajectory is considerably reduced by the loop

closure (from the green trajectory to the blue one).

Overall, we find that DSV-SLAM’s accuracy is comparable

and often better than ORB-SLAM2 on the Malaga dataset.

However, DSV-SLAM is computationally more efficient with

significant margins as presented in Table III. ICP is executed

more frequently on the Malaga dataset than on the KITTI dataset

since direct alignment is vulnerable to brightness change.

C. Evaluation on the RobotCar Dataset

RobotCar dataset [32] is recorded in different seasons

throughout the year, which we used to validate the robustness of

Fig. 8. Snapshots of the RobotCar dataset. There are many visual appearance
differences including trees and foliage, traffic, pedestrians, and varying bright-
ness.

Fig. 9. The trajectories estimated by DSO, DSV-SLAM with and without
loop closure on RobotCar dataset. While DSO has an increasing scale issue,
DSV-SLAM estimates the scale accurately and consistently, and it is able to
re-localize the robot after being kidnapped using loop closures. [r1: start of
run1; r2: start of run2 where the robot is kidnapped to].

the LiDAR descriptor-based place recognition approach against

visual appearance changes in [17]. Snapshots are given in Fig. 8.

We demonstrate the preliminary result of DSV-SLAM on the

RobotCar dataset in Fig. 9, where we first play the sequence

‘2015-05-19-14-06-38’ (run1), and then we “kidnap” the robot

to sequence ‘2015-08-13-16-02-58’(run2). As Fig. 9 shows, the

DSO scale gets larger throughout; the drifting scale is fixed with

scale optimization (see the green trajectory); with loop closures,

the robot eventually re-localize itself and bring the two runs

together (see the blue trajectory). We also run ORB-SLAM2

using the same setting; however, its tracking fails consistently.
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V. CONCLUSION

In this paper, we propose the first fully-direct visual SLAM

system for driving scenarios, demonstrating the feasibility of

a full SLAM system without feature detection or matching.

We first extend the monocular DSO to a stereo system using

scale optimization; then we integrate a LiDAR descriptor-based

place recognition approach to detect loop closures; for potential

loop closures, we use direct alignment to estimate the relative

pose, which is bolstered by ICP when the direct alignment is

not confident. Validation on public datasets demonstrates that

the proposed system achieves considerably better computational

efficiency while offering comparable accuracy and improved

robustness in challenging scenarios. For future work, we will

look into eliminating the forward-moving camera assumption

when imitating LiDAR scans to expand our potential use cases.

We also intend to extend the system into a stereo-visual-inertial

system by integrating IMU measurements to further improve

robustness.
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