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Abstract—Synthetic biology constructs often rely upon
the introduction of “circuit” genes into host cells, in order
to express novel proteins and thus endow the host with a
desired behavior. The expression of these new genes “con-
sumes” existing resources in the cell, such as ATP, RNA
polymerase, amino acids, and ribosomes. Ribosomal com-
petition among strands of mRNA may be described by a
system of nonlinear ODEs called the Ribosomal Flow Model
(RFM). The competition for resources between host and cir-
cuit genes can be ameliorated by splitting the ribosome
pool by use of orthogonal ribosomes, where the circuit
genes are exclusively translated by mutated ribosomes. In
this letter, the RFM system is extended to include orthog-
onal ribosome competition. This Orthogonal Ribosomal
Flow Model (ORFM) is proven to be stable through the use
of Robust Lyapunov Functions. The optimization problem
of maximizing the weighted protein translation rate by
adjusting allocation of ribosomal species is formulated.

Index Terms—Synthetic biology, orthogonal ribosome
flow model, robust Lyapunov functions, translation rate
optimization.

I. INTRODUCTION

THE PROCESS of protein expression is mediated by ribo-
somes. After a gene in DNA has been transcribed into

messenger RNA (mRNA), a ribosome binds to the mRNA
and begins protein translation. The mRNA is divided into a
set of 3-nucleotide segments called codons, and each codon
corresponds to an amino acid or a stop instruction. The ribo-
some attracts a tRNA carrying an amino acid which matches
the currently read codon, and appends it to a growing polypep-
tide chain. Once the ribosome hits a stop codon, it falls off
the mRNA and releases the amino acid chain as a polypep-
tide, which is subsequently post-translationally processed into
a final protein product. The mRNAs remain in the cell until
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they are degraded or destroyed (such as by small interfering
RNA). Intact mRNAs continually attract ribosomes and pro-
duce protein, and all mRNAs in the cell compete for a finite
pool of resources which includes ribosomes. A substantial
literature exists on the problem of gene expression burden
including ribosome competition; see for example the many
references reviewed in [1]. When new (circuit) genes are
implanted into a cell, the circuit genes compete for ribosomes
with the original (host) genes. One way to decouple host and
circuit genes is to split the pool of resources via orthogo-
nal ribosomes [2], [3], [4]. Orthogonal ribosomes are mutated
ribosomes which only translate specifically modified circuit
genes. One such construction replaces the 16S-rRNA (com-
ponent of small ribosomal subunit) in E. coli with a synthetic
version. The circuit’s mRNAs binding sites are designed so
that only mutated ribosomes will translate circuit mRNAs;
host ribosomes are not attracted to the circuit mRNAs [5].
Orthogonal ribosomes may be able to decrease competition
and increase protein throughput by splitting the pool.

We present the Orthogonal Ribosomal Flow Model (ORFM)
extending existing RFM network models with ribosome com-
petition. Global asymptotic stability of the ORFM is certified
by means of Robust Lyapunov Functions. A simple bisection
algorithm is detailed to compute the unique ORFM steady
state. The protein throughput of the system can be changed by
adjusting the production rate of different species of ribosomes.

The structure of this letter is as follows: Section II reviews
existing models for protein translation and ribosome competi-
tion. Section III introduces the ORFM. Section IV presents
an optimization problem to maximize protein throughput.
Section V adds a feedback controller to regulate production
of ribosomes. Section VI concludes this letter. The stability of
the ORFM is proved in the Appendix.

II. RIBOSOMAL FLOW MODELS (RFMS)
A. Single-Strand Translation Models

The RFM [6] is a deterministic mean-field approxima-
tion to lattice models of steady-state ribosome distribution on
mRNAs [7], [8]. Each codon on the length-n mRNA has a
normalized ribosomal density xj(t) ∈ [0, 1] for j = 1, . . . , n,
which one may think of as the probability that a ribosome is
present on codon j at time t. Transition rates between codons
are denoted here as λj. The initiation rate λ0 is the rate at
which the mRNA attracts the ribosome to begin translation,
while the λj<n are elongation rates and represent the amount of
time required for the ribosome to attract the codon’s respective
tRNA. Finally, λn is the rate at which ribosomes separate from
the mRNA and release the completed polypeptide chain. The
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Fig. 1. A pictorial representation of the inflow, outflow, and densities of
a 5-codon RFMIO at times t = 2 and ∞.

Algorithm 1: RFMIO Steady State (From [9])
input : Rates λ, Constant Input u
output: Codon Steady States ej
μj = 1/

√
λj for j = 0, . . . , n

J = tridiag(0n+2, μ)

σ = σmax(J), ζ = vmax(J)

ej = μj
σ

ζj+2
ζj+1

for j = 1 . . . n

quantity y = λnxn is the rate (protein/time) at which protein
is produced by the mRNA. An RFMIO (input/output) is a
tridiagonal polynomial single-input single-output system

ẋ1 = λ0u(1 − x1) − λ1x1(1 − x2)

ẋj = λj−1xj−1(1 − xj) − λjxj(1 − xj+1), 1 < j < n

ẋn = λn−1xn−1(1 − xn) − λnxn

y = λnxn. (1)

The output y is the translation rate, and the input u is the rate at
which new ribosomes become available. The probability that
codon j is empty is xj, and the probability that codon j + 1
is empty is 1 − xj+1. The likelihood that ribosomes flow from
codons j to j + 1 is proportional to xj(1 − xj+1), which is the
density relation times the elongation rate in (1).

For a constant input u > 0, there is a unique steady-state in
[0, 1]n for system (1), which we denote as e. Figure 1 shows
the steady state of an 5-codon RFM. Each codon is a black
box, and xj is the filled proportion of each codon. Ribosomes
flow from left to right, and the bars between codons show
the flux rates λjxj(1 − xj+1) (which must be all equal, as is
clear from the equations). The steady state codon occupancies
ej and output y = λnen may be computed by solving a finite
continued fraction, which results in a polynomial equation of
degree (n+1)/2 [6]. A spectral formulation for the constant u
was presented by Poker et al., and is reviewed in Algorithm 1.
The operator tridiag(α, β) for α ∈ R

b, β ∈ R
b−1 produces a

symmetric b × b tridiagonal matrix with main diagonal α and
1-off-diagonals β. For a square symmetric matrix M, σmax(M)
and vmax(M) are its largest eigenvalue and respective eigenvec-
tor. The vector ζ is the Perron-Frobenius eigenvector of the
Jacobi matrix formed by the rates λ (dominant eigenvector
with nonnegative entries).

The RFM system is a monotone control system. The set
of admissible controls u ∈ U is the set of bounded and
measurable functions u ∈ R+→ R+. The RFM is state and
output-controllable, and desired translation rates and patterns
can be achieved by proper choice of u and λ [10].

B. Ribosomal Competition
In real genetic systems, all mRNA’s in the cell compete

for a finite (and possibly time-varying) number of ribosomes.
Particularly slow transition rates λ on codons can lead to
strands of mRNA hoarding ribosomes, reducing the availabil-
ity of ribosomes in the pool for all other mRNA’s and leading
to a globally depressed translation rate.

Fig. 2. RFM competition at steady state.

Raveh et al. introduced a ribosomal flow model network
with a pool (RFMNP) to abstractly describe the impact of
ribosomal competition with multiple strands of mRNA [11].
Each of the s strands of mRNA is modeled by a RFMIO
(xi

j for codon j of mRNA i), and all RFMIO are connected
to a common pool z. The total number of ribosomes in the
system N = z(t)+∑

i,j xi
j(t) is conserved. The input u of each

mRNA is an increasing saturation function Gi(z) (commonly
z or tanh(z)), which describes the likelihood that a ribosome
from the pool will attach itself to strand i. The translation rate
yi = λi

nxi
n is the output, and ribosomes leaving xi return to the

pool. The pool dynamics are therefore

ż =
∑

i

λi
nxi

n −
∑

i

λi
0Gi(z)(1 − xi

1). (2)

The RFMNP is a closed loop system. The number of ribo-
somes N defines a stoichiometric class, and RFMNP has a
globally asymptotic equilibrium point with all ei

j ∈ (0, 1)

and z ∈ (0, N) for each N. Stability can be proven by con-
traction, where the weighted L1 norm between trajectories is
non-expanding over time [11].

Competition effects can be observed by perturbing param-
eters λi

j and analyzing resultant steady states. If λi
j changes

for a specific strand of mRNA xi, then the protein translation
rate yi will change in that same direction (increasing λi

j will
increase yj). The translation rate of all other mRNA in the
network will change uniformly: an increase in λi

j will raise yi

and will either raise or lower all yk �=i. Further discussion on
competition effects can be found in [11, Sec. 4.2].

Fig. 2 shows two examples of competition effects in
RFMNPs where each of the three strands of mRNA have five
codons each. When all strands have homogenous transition
rates of λi

j = 5 and saturation functions Gi(z) = tanh(z),
each mRNA has a protein translation rate of y1:3

ss = 1.15
with N = 5 ribosomes. In Fig. 2(a), ribosomes cannot easily
pass from codons 4 to 5 because λ1

3 = 0.05. This bottleneck
drops the translation efficiency of strand 1 to y1

ss = 0.049
and the others to y2:3

ss = 0.789. Fig. 2(b) modifies strand 1
to λ1

2 = 40. Ribosomes quickly exit strand 1 and enter the
pool again for use in further translation. This improves the
translation efficiency of all strands, raising y1

ss = 1.33 and
y2:3

ss = 1.18.

III. ORTHOGONAL RIBOSOMAL FLOW MODEL

Orthogonal ribosomes can be added to the RFM scheme
(ORFM) by splitting the ribosome pool z. Code for ORFM
simulation and visualization is publicly available online at
https://gitlab.com/jarmill/Ribosomes.

A. ORFM Formulation
The proposed model of ribosome translation has M species

of ribosomes. Each ribosome species has a pool zp for
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Algorithm 2: ORFM Steady State

input : λpi, N, Gpi, Kp, ε

output: Steady States zE, zp, epi
j

N̄min = 0, N̄max = N
repeat

N̄mid = (N̄max + N̄min)/2

zE = N̄mid
1+∑

p Kp
zp = KpN̄mid

1+∑
p Kp

epi = RFMIO SS(λpi, Gpi(zp)) (Algorithm 1 ∀p, i)

Ncurr = N̄mid + ∑
p,i,j epi

j
if Ncurr ≤ N then

N̄min → N̄mid
else

N̄max → N̄mid
end

until |Ncurr − N| ≤ ε;

p = 1, . . . , M of available ribosomes. Strands of mRNA that
use ribosome type p form an RFMNP with pool zp.

Ribosomes of type p are formed by the combination of
a 16S-rRNA of type p and the remaining ribosome compo-
nents. The protein backbone and large ribosomal subunit are
treated as an ‘Empty’ ribosome E, which has no translation
capacity on its own. Empty ribosomes bind with rRNA at the
rate k+

p , and the ribosomal complex dissociates at the rate k−
p ,

assuming rRNA’s abundance. These kinetics are inspired by
Darlington et al.’s mass-action model of protein translation
and cell metabolism [12]. The M pools of translating ribo-
somes zp are each connected to the pool of empty ribosomes
zE. Each of the sp strands of mRNA that obtain ribosomes
from pool zp will have a corresponding length npi. Copies
of mRNA with identical initial conditions are represented as
a single strand with multiplicity mpi. The codon at location
j ∈ 0, . . . , npi − 1 of RNA strand i ∈ 1, . . . , sp coming from
pool p is xpi

j . The constants of this system are the N ribo-

somes, binding rates k+
p and k−

p , and transition rates λ
pi
j . The

total number of ribosomes N is a conserved quantity

N = zE +
∑M

p=1
zp +

∑M

p=1

∑sp

i=1

(
mpi

∑npi

j=1
xpi

j

)
. (3)

The translation dynamics are

żE =
∑

p
k−

p zp −
∑

p
k+

p zE (4a)

żp = k+
p zE − k−

p zp +
∑

i
mpiλ

pi
npix

pi
npi

−
∑

i
mpiλ

pi
0 (1 − xpi

1 )Gpi(zp) (4b)

ẋpi
1 = λ

pi
0 (1 − xpi

1 )Gpi(zp) − λ
pi
1 (1 − xpi

2 )xpi
1 (4c)

ẋpi
j = λ

pi
j−1(1 − xpi

j )xpi
j−1 − λ

pi
j (1 − xpi

j+1)x
pi
j (4d)

ẋpi
npi = λ

pi
npi−1(1 − xpi

npi−1)x
pi
npi − λ

pi
npix

pi
npi . (4e)

Let N̄ = zE + ∑
p zp be the number of the pool ribosomes at

steady state. For a fixed N̄, the steady state pool occupancies
zp, zE can be obtained by solving the linear system 0 =
żp + ∑

ij mpiẋpi
j , p = 1, . . . , Np where Kp = k+

p /k−
p

zp = Kp zE, N̄ = zE +
∑

p
zp, (5)

Algorithm 2 computes an approximation to the steady-state
of the general model by bisection on N̄. It converges faster
than numerical integration, which is a significant difference in

Fig. 3. Orthogonal RFM visualizations.

Fig. 4. ORFM with 3 ribosomal subspecies.

the optimization routine. A built-in MATLAB solver (fzero)
may find a point that is outside the valid region.

Fig. 3 shows examples of mRNA competing for N = 10
ribosomes, where each mRNA may take ribosomes from either
the host pool (p = 1, blue) or the circuit pool (p = 2, red).
The ‘empty’ ribosomes are displayed in purple in the third
pool. In this network, k+

p = k−
p = 1, so at steady state, the

pool quantities z1 = z2 = zE. In Figure 3(a) no mRNA takes
ribosomes from the circuit pool z2, so the ribosomes in z2
induce deadweight loss for the system.

Fig. 4 illustrates a general model orthogonal ribosomal
system with pool across three ribosomal subspecies and N
= 20. Now k+

p = k−
p = 0.1, p = 1, 2, 3, so all pools will have

an equal number of ribosomes at equilibrium (z = 0.286).

B. Stability of the ORFM
The RFM has recently been studied by constructing explicit

Robust Lyapunov Functions (RLFs) [13] via writing it as
a Chemical Reaction Network (CRN) and utilizing relevant
methods [14], [15]. Such techniques provide explicit formu-
lae of Lyapunov functions for general kinetics (not limited to
Mass-Action), and have an easy-to-use software package. In
this subsection, we derive the stability of the ORFM model
(4a)–(4e) via an RLF. Let x =: [xpi

j ]i,j,p ∈ [0, 1]Nc be the vec-
tor of all codon occupancies, and Nc be the total number of
codons. Let z := [z1, . . . , zM, zE]T ∈ [0, N]M+1 be the vector
of all pool occupancies. We therefore have:

Theorem 1: Consider the system (4a)–(4e). Then,
(1) The function:

V(x, z) =
∑

p,i

mpi
∑

j

|ẋpi
j | +

∑

p

|żp| + |żE|,
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Fig. 5. Optimize the total protein output (w = 1).

is a (non-strict) Lyapunov function for any choice of {λp,i
j } > 0

and monotone functions Gpi, and
(2) For any fixed total number of ribosomes in the system

Nr > 0, there exists a unique positive globally asymptotically
stable steady-state (xe, ze) for (4a)-(4e).

A proof of Theorem 1 is given in the Appendix.
Alternatively, the system (4a)–(4e) can be transformed into a
CRN, and Theorem 1 can be verified via the software package
LEARN [16] for a fixed number of pools, strands, and codons.

IV. OPTIMIZATION

This section poses an optimization problem to maximize the
weighted sum of protein production by mRNA. Optimization
of protein throughput in a single strand of mRNA has
previously been treated by Poker et al. in [9]. Given an n-
codon mRNA with allowable choices of λj in a convex set,
finding rates λ∗ that maximize the throughput y = λnen is
a concave optimization problem. This section adjusts rates
K with constant λ to maximize a weighted-sum objective is
yw = ∑

p,i wpimpiypi. Appropriate selection of the weights w
can specify particular proteins as desirable. As a problem set-
ting, consider an ORFM with M species and N ribosomes.
There will be M +1 pools: zE for the empty ribosomes and zp
for the translating species. If there exists sufficient flexibility to
adjust k+

p ∈ [k+,min
p , k+,max

p ] > 0 and k−
p ∈ [k−,min

p , k−,max
p ] >

0, then Kp ∈ [Kmin
p , Kmax

p ] =
[

k+,min
p

k−,max
p

,
k+,max

p

k−,min
p

]
. It is assumed

that 0 < Kmin
p ≤ Kmax

p < ∞ for each species p. For each
point K = {Kp}M

p=1, the weighted protein output yw(K) can
be obtained by finding the ORFM steady state with respect to
K using Algorithm 2 and then evaluating yw = ∑

wpimpiypi.
An optimization problem to maximize yw at steady state can
therefore be formulated:

y∗
w = max

K

∑

p,i

wpimpiypi, (6)

subject to: Kp ∈ [Kmin
p , Kmax

p ] ∀p = 1, . . . , M

Steady state of dynamics in (4a)–(4e).

The search variables of problem (6) are Kp, and the steady
states (zE, zp, epi

j ) are derived quantities of Kp.
Fig. 5 shows an ORFM with s1 = 6 and s2 = 3 strands

with an objective of maximizing total protein output (w = 1).
If all mRNA were connected to a common pool of ribosomes
(RFMNP), the resultant output is yw = 3.18. When K = [5, 5],
then y2 = 3.11 as shown in Fig. 5(a). Solving the optimization
problem in (6) with a grid search for Kmin = 1

5 and Kmax =
5 results in the optimum rates K∗ = [5, 0.734] and protein
output y∗

w = 3.38 in Fig. 5(b). The optimization landscape of
yw vs. (log10(K1), log10(K2)) is displayed in Fig. 6.

Fig. 6. Contours of total protein output (protein/sec).

A. Parameter Effects
This subsection analyzes the effects on properties of the

ORFM steady state by incrementally changing a rate Kp. For
a single strand xpi taking ribosomes from pool zp, the effective
intake rate from Eq. (1) is λ0Gpi(z). Define the throughput
ypi(zp) as the protein output in strand pi given pool occu-
pancy zp, and Npi(zp) = ∑

ij epi
j as the ribosome occupancy of

strand pi given zp. Since Gpi(z) is monotonically increasing
and through results in [9], the functions ypi and Npi are both
nonnegative increasing functions of zp. Let the weighted out-
put ywp(zp) = ∑

i wpimpiypi(zp), and the number of ribosomes
of species p be Np(zp) = zp +∑

i mpiNpi(zp) across all strands
of species p. The total weighted output is yw = ∑

p ywp(zp),
and the occupancy is

N = zE +
∑

p
zp +

∑

p,i,j
mpieij

j = zE +
∑

p
Np(zp). (7)

As a shorthand let ∂ = ∂Kp for a chosen species p, N′
p =

dN′
p/dz, and y′

wp = dywp/dz. From Eqs. (5) and (7)

0 = ∂(KpzE − zp) = zE + Kp∂zE − ∂zp (8a)

0 = ∂(Kp′zE − zp′) = Kp′∂zE − ∂zp′, ∀p′ �= p (8b)

0 = ∂N = ∂zE +
∑M

p′=1
∂Np′(zp′). (8c)

By the chain rule, ∂Np(zp) = N′
p(zp)∂zp. The quantity ∂zE can

be found from Eqs. (8a), (8b), and (8c)

0 = ∂zE +
∑M

p′=1
∂zpN′

p(zp) (9a)

= ∂zE + zEN′
p(zp) +

∑M

p′=1
Kp′N′

p′(zp′)∂zE (9b)

∂zE = −zEN′
p(zp)

1 + ∑M
p′=1 Kp′N′

p′(zp′)
< 0. (9c)

The change ∂zE < 0 because all values zE, Kp′ , N′
p(zp) > 0

over the valid range of K. Likewise ∂zp′ = Kp′∂zE < 0 for
p �= p′. In contrast,

∂zp = zE

(
1 − KpN′

p(zp)

1 + ∑M
p′=1 Kp′N′

p′(zp′)

)
> 0. (10)

Plugging back into the chain rule, ∂Np(zp) = N′
p(zp)∂zp′ >

0 and ∂Np′(zp′) = N′
p′(zp′)∂zp′ < 0 for p′ �= p. This is an

intuitive conclusion: increasing the production rate of species p
will increase the number of ribosomes of type p at the expense
of all other species (including zE).
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The change in objective yw by increasing Kp is

∂yw = zEy′
wp(zp′) + ∂zE

∑M

p′=1
∂Kp′y′

wp(zp′). (11)

The zE term of (11) is > 0 while the ∂zE term is < 0. The sign
of ∂yw may change over the valid region of K. Problem (6)
is generically a non-concave problem in terms of K, and may
feature more than one local maximum depending on the choice
of w. Standard approaches of global optimization such as Grid
Search, Bayesian Optimization, and Basin Hopping can be
used to approximate K∗, where the cost function yw(K) at
each K is evaluated by Algorithm 2.

V. SELF-INHIBITING FEEDBACK CONTROLLER

The introduced optimization framework adjusts the ribo-
somal production rates K to maximize the weighted protein
output yw (6) assuming perfect knowledge of systems and
parameters. However, if the transition rates and the number
of mRNA strands per pool are subject to changes or are not
known a priori, we propose a controller inspired by [12] to
regulate the expression of ribosomes by self-inhibiting feed-
back. For instance, the system in Fig. 3(b) with high circuit
demand can be optimized by (6) to maximize the total amount
of protein (w = 1). If the circuit demand drops as shown in
Fig. 3(a), circuit ribosomes will be maintained without being
used in translating protein (high K2). Changing the system
demand would require re-optimization of K.

Alternatively, a feedback controller can be introduced to
dynamically adjust the previously constant K, only produc-
ing ribosomes of species p when there exists corresponding
demand. This can be accomplished by creating one distin-
guished mRNA with codon occupancies xpF per species p.
The new mRNA is translated into a protein Fp. The dynamics
of the protein Fp with a degradation rate δp is

Ḟp = λpF
n xpF

n − δpFp. (12)

A Hill-like inhibition term can be used to suppress the creation
of new ribosomes (based on [12, S1-(18)]). For a nominal
ribosome creation rate k+0

p , exponent γp, and constant F0
p , the

suppressed k+
p is: k+

p = k+0
p /(1 + Fp/F0

p)γp . In summary, zp
activates Fp while Fp inhibits zp.

The controller is deemed to perform as desired if the number
of circuit ribosomes adjusts according to the circuit demand.
For instance, if the circuit is removed from the system, then
Fp’s expression goes initially up, which represses k+

p strongly
and hence reduces the number of circuit ribosomes. If cir-
cuit genes are introduced, the new genes will compete with
the inhibitor mRNA and the number of circuit ribosomes will
increase.

Fig. 7 shows an example of an ORFM with 10 ribosomes,
where the circuit pool has a feedback controller. The inhibitor
protein F2 is translated from the golden two-codon mRNA
with occupancies x2F and rates λ2F = [0.005, 5, 5]. The low
initiation rate λF

0 = 0.005 allows other mRNA if present to
take ribosomes from z2 first. The inhibitor parameters are
F0

2 = 1.5, γ2 = 4, and δ2 = 0.01. The golden sheath in Fig. 7
between z2 and zE represents the nominal rate k+0

2 zE, com-
pared to the purple core’s inhibited k+

2 zE. With no circuit
demand, the circuit ribosome creation rate in Fig. 7(a) falls
from 1.393 to 0.669 as desired.

Let N1 = z1 + ∑
i,j x1i

j be the number of host ribosomes
(species 1), and yw be the total non-inhibitory protein out-
put (excluding F2). With no inhibitor and no circuit mRNA,
the system in Fig. 3(a) has an expected N1 =7.63 and

Fig. 7. ORFM with inhibitor protein F2, at t = 5000.

yw = 3.89. With the inhibitor in Fig. 7(a), the expected total
number of host ribosomes rises to N1 = 7.97, yw = 3.96.
Fig. 3(b) has a high circuit demand and no inhibitor, and
N1 = 3.94, yw =4.98. With an inhibitor in Fig. 7(b), N1 =
4.41, yw =5.06. At no circuit demand the steady state F2 =
0.292 units of inhibiting protein, and at high circuit demand
F2 =0.138 units.

VI. CONCLUSION

Competition for finite resources are inevitable in protein
translation. Orthogonal ribosomes have been developed to
boost protein throughput by decoupling circuit genes from the
host pool of ribosomes. We extended the existing RFM to
orthogonal ribosomes, and generalized the system to an arbi-
trary number of ribosomal species. Stability results through
RLFs and a simple algorithm to compute steady states were
presented. Maximizing the weighted sum of protein throughput
can be formulated as an optimization problem. A self inhibit-
ing feedback controller can adjust ribosomal production as
needed. Future work includes matching results with lab experi-
ments and further development of the feedback controller. The
problem of cross-talk in translation is discussed in an extended
version of this letter [17].

APPENDIX

PROOF OF THEOREM 1
For simplicity, assume that sp = s, np,i = n, for all p, i.

Also, assume mp,i = 1, for all p, i. The argument for the
general case will be the similar. Denote σ(x) := sgn(x).

To use the techniques in [13], [15], we lift (4a)-(4e) to a
higher-dimensional space by defining the vacancy wp,i

j := 1 −
xpi

j , for all j, i, p. Hence, terms of the form (1 − xpi
j−1)x

pi
j take

the familiar Mass-Action form: wpi
j−1xpi

j . We will generalize
this further by considering arbitrary monotone functions of
the form R(wpi

j−1, xpi
j ). Hence, we write (4a)-(4e) as:

żE =
∑

p
R−

p (zp) −
∑

p
R+

p (zE)

żp = R+
p (zE) − R−

p (zp) +
∑

i
(Rpi

n (xpi
n ) − Rpi

0 (wpi
1 , zp))

ẋpi
1 = Rpi

0 (wpi
1 , zp) − Rpi

1 (wpi
2 , xpi

1 )

ẋpi
j = Rpi

j−1(w
pi
j , xpi

j−1) − Rpi
j (wpi

j+1, xpi
j ) (13)

ẋpi
n = Rpi

n−1(w
pi
n , xpi

n−1) − Rpi
n (xpi

n ).

We only assume that the rates Rp,i
j , R±

p are monotone w.r.t
their reactants, see [13] for the full assumptions.

Consider V(x, z) = ∑
i,p,j |ẋpi

j | + ∑
p |żp| + |żE|. We show

that V is non-increasing. Using (13), note that the space can be
partitioned into regions, and V is linear in rates on each region.
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Fix an open region W and write V = ∑
p,i,j α

pi
j Rpi

j (x, z) +∑
p βp(R−

p (zp) − R+
p (zE)) on W .

Note V is differentiable on W , and the signs of the currents
ẋpi

j , żp, żE are constant on W . We claim that the derivative of

each term in V is non-positive. We show first that α
pi
j Ṙpi

j ≤ 0
for all p, i, j. We study three cases: j = 0, n, 0 < j < n. If
j �= 0, n, then Rpi

j appears in ẋpi
j , ẋpi

j+1. If both have the same

sign on W , then (13) implies α
pi
j = 0. Therefore, α

pi
j �= 0

implies σ(α
pi
j ) = −σ(ẋpi

j ) = σ(ẋpi
j+1) = −σ(ẇpi

j+1). Hence,

α
pi
j Ṙpi

j = α
pi
j (

∂Rpi
j

∂xpi
j

ẋpi
j + ∂Rpi

j

∂wpi
j+1

ẇpi
j+1) ≤ 0 as claimed, where non-

negativity of the partial derivatives follows from monotonicity.
Next, consider the case j = 0 where Rpi

0 appears in two currents
ẋpi

1 , żp. Similar to the previous case, we conclude that if α
pi
0 �=

0 then σ(α
pi
0 ) = −σ(zp) = −σ(ẇpi

1 ). Since Rpi
0 is a monotone

function of wpi
1 , zpi

1 , then α
pi
0 Ṙpi

0 ≤ 0 as claimed. Finally, if
j = n, similar analysis can be repeated to conclude that if
α

pi
n �= 0 then σ(αn) = −σ(xpi

n ) and αnṘpi
n ≤ 0 as claimed.

Next, we want to show that βpṘ−
p ≤ 0. Fix p. Note that R−

p
appears in two currents: żp, żE. If they have the same sign then
βp = 0. If they have different signs then (13) implies that
σ(βp) = −σ(żp) = σ(żE). Since R−

p is a function of zp, then
βpṘ−

p ≤ 0. A similar argument can be replicated to show that
−βpṘ+

p ≤ 0. Since W and p, i, j were arbitrary, we conclude
that V̇ ≤ 0 over the interior of all regions. The boundaries
between the regions can be dealt with via the definition of the
upper Dini’s derivative, see [15]. This concludes the proof of
the first statement of Theorem 1.

We proceed to prove part 2. The RLF utilized is non-
strict, hence it cannot yield Global Asymptotic Stability (GAS)
directly. The LaSalle argument proposed in [15] can be used,
but it is long. Alternatively, we will show that the Jacobian
of (13) (reduced to the invariant space for a fixed Nr) is
robustly non-degenerate. This, coupled with the RLF, implies
the GAS of any steady-state [13], [18].

To prove non-degeneracy, it has been shown in [13], [14]
that the Jacobian J of (13) at any point in the space can
be written as J = ∑L

�=1 ρ�Q� for some ρ� ≥ 0, rank-one
matrices Q� and some L. Here, L = M(2 + s(2n + 1)). The
coefficients {ρ�} correspond to the partial derivatives of the
rates {Rpi

j }, {R±
p }, while {Q�} correspond to the network struc-

ture and are independent of the rates. Furthermore, it has been
shown also [13] that the existence of an RLF implies that it
sufficient to find one positive point ρ∗ = (ρ∗

1 , . . . , ρ∗
L) for

which the (reduced) Jacobian is non-degenerate to show that
is non-degenerate for all ρ� > 0. We will find that point next
by studying the structure of the Jacobian.

Similar to a single pool [11, SI], it can be easily seen that
J has non-negative off-diagonals and strictly negative diag-
onals (i.e., J is Metzler). In addition, conservation of the
number of ribosomes implies that 1TJ = 0. By the definition
of the Jacobian, all the entries in each column contain only
the partial derivatives with respect to the state variable associ-
ated to the column. Hence, we can choose the corresponding
ρ�’s such the diagonal entry in each column is scaled to −1.
Therefore, we consider the Jacobian evaluated at the chosen
point ρ∗ such that J∗ = P − I, where I is the identity matrix
and P a nonnegative irreducible column-stochastic matrix. By
Perron-Frobenius Theorem, P has a maximal eigenvalue 1 with
algebraic multiplicity 1. Therefore, J∗ has a single eigenvalue

at 0 and the remaining eigenvalues have strictly negative real-
parts. Hence, the reduced Jacobian at ρ∗ is non-degenerate.
Robust non-degeneracy and GAS follows.

The existence of a steady-state follows from Brouwer’s fixed
point theorem since (13) evolves in a compact space (for a
fixed Nr > 0), and uniqueness follows from non-degeneracy
and GAS. The positivity of the steady-state follows from per-
sistence of the ORFM which can be shown graphically by the
absence of critical siphons [19]. �
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