
Post-Fabrication Microarchitecture
Chanchal Kumar∗
ckumar2@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Anirudh Seshadri
aseshad2@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Aayush Chaudhary∗
achaudh6@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Shubham Bhawalkar∗
spbhawal@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Rohit Singh
rsingh25@ncsu.edu

North Carolina State University
Raleigh, NC, USA

Eric Rotenberg
ericro@ncsu.edu

North Carolina State University
Raleigh, NC, USA

ABSTRACT
Microarchitectural enhancements that improve performance gener-
ally, across many workloads, are favored in superscalar processor
design. Targeting general performance is necessary but it also con-
strains some microarchitecture innovation. We explore relieving
this constraint, via a new paradigm called Post-Fabrication Microar-
chitecture (PFM). A high-performance superscalar core is coupled
with a reconfigurable logic fabric, RF. A programmable interface,
or Agent, allows for RF to observe and microarchitecturally inter-
vene at key pipeline stages of the superscalar core. New microar-
chitectural components, specific to applications, are synthesized
on-demand to RF. All instructions still flow through the superscalar
pipeline, as usual, but their execution is streamlined (better instruc-
tions per cycle (IPC)) through microarchitectural intervention by
RF. Our research shows that one can achieve large speedups of in-
dividual applications, by analyzing their bottlenecks and providing
customized microarchitectural solutions to target these bottlenecks.
Examples of PFM use-cases explored in this paper include custom
branch predictors and data prefetchers.

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures.

KEYWORDS
instruction-level parallelism (ILP), superscalar processor, branch
prediction, prefetching, pre-execution, reconfigurable logic, field-
programmable gate array (FPGA)
ACM Reference Format:
Chanchal Kumar, Anirudh Seshadri, Aayush Chaudhary, Shubham
Bhawalkar, Rohit Singh, and Eric Rotenberg. 2021. Post-Fabrication Microar-
chitecture. In MICRO-54: 54th Annual IEEE/ACM International Symposium

∗Author contributed to this work while at NCSU. Kumar is currently at ARM Inc.,
Austin, TX, USA. Chaudhary is currently at Samsung Austin Semiconductor, L.L.C.,
San Jose, CA, USA. Bhawalkar is currently at Qualcomm, Austin, TX, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480119

on Microarchitecture (MICRO ’21), October 18–22, 2021, Virtual Event, Greece.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3466752.3480119

1 INTRODUCTION
Improvement in single-thread performance of superscalar proces-
sors has slowed owing to technology limitations and power con-
straints. With stagnating frequency, continued performance im-
provement depends on microarchitectural improvements to un-
lock and harvest more instructions-per-cycle (IPC) from workloads.
With generational increases in superscalar widths and structure
sizes, devising new and better branch predictors, instruction and
data prefetchers, value predictors, and other microarchitectural
components, is of critical importance. Unfortunately, this effort,
of devising new and better components, is severely hamstrung
by the need for generality across workloads. Thus, generational
performance improvements tend to be incremental.

In this paper, we first make a case that, by examining the code
for a given application, it is possible to conceive of custom mi-
croarchitectural components that enable the superscalar core to
extract large performance gains on that application. Our examples
showcase specialized branch predictors and data prefetchers, but
the idea may extend to other modular features. Second, to support
post-fabrication deployment of custom microarchitectural compo-
nents, we propose coupling a reconfigurable logic fabric (RF) with
a superscalar core, on the same chip (see Figure 1). RF could be
FPGA and/or CGRA, or a reconfigurable fabric specially designed
with this paradigm in mind. The interface is comprised of three
“agents”. The Retire Agent interfaces with the core’s retire stage to
observe specified retired instructions. The Fetch Agent interfaces
with the core’s fetch stage to stream custom conditional branch
predictions. The Load Agent interfaces with the core’s load/store
execution lanes, to issue prefetches and loads. It is important to
note that, the superscalar core still fetches and executes the original
dynamic instruction stream (i.e., we are not intervening architec-
turally such as by offloading work to accelerators); the difference is
that instruction fetching and execution is more streamlined due to
microarchitectural intervention by components programmed into
RF. We call this novel paradigm Post-Fabrication Microarchitecture
(PFM), or Post-Fab Microarchitecture for short.

The agents in Figure 1 are designed as integral parts of the super-
scalar core and operate at the core’s frequency. A custom microar-
chitectural component synthesized in RF operates at a slower fre-
quency. Effective PFM use-cases compensate for slower frequency
in two ways: (1) they only observe a fraction of retired instructions

1270

https://doi.org/10.1145/3466752.3480119
https://doi.org/10.1145/3466752.3480119


Figure 1: Substrate for Post-Fabrication Microarchitecture
(PFM).

and intervene for a fraction of fetched instructions, (2) they can
efficiently process multiple instruction-equivalents per cycle (the
custom component’s “width”) owing to parallelism in their internal
design.

1.1 Motivation for custom microarchitectural
components

Figure 2 shows speedups that are possible with custom microarchi-
tectural components. The astar benchmark has frequent mispre-
dicted branches. The bfs benchmark has both frequent mispredicted
branches and cache-missed loads. We chose these two motivating
examples because they are the two custom branch predictor use-
cases in this paper. Speedups are also shown for Slipstream 2.0
[20], the most recent state-of-art load and branch pre-execution
architecture.

Figure 2: Speedups of PFM and Slipstream 2.0.

Consider the region-of-interest (ROI) in astar (a pathfinding
benchmark), shown in Figure 3. Both branches 1 and 2 are highly
mispredicted by a state-of-art 64KB TAGE-SC-L branch predictor
[17], as they are data-dependent on input worklist bound1p (line 4)
that changes with each call to this function. Slipstream automati-
cally pre-executes branch 1 by pruning its control-dependent (CD)
region (lines 8–21) from the leading thread. By removing branch 1’s
CD region, the leading thread is not slowed by branch 1’s would-be

mispredictions and supplies pre-executed outcomes to the trailing
thread. As Srinivasan et al. explained in their paper (Sect. IV.A.1, Fig.
6 [20]), the automated technique is limited: (1) branch 2 cannot also
be pre-executed because it is skipped-over, (2) a non-negligible frac-
tion of branch 1’s dynamic instances are pre-executed incorrectly
owing to omitting the loop-carried memory dependency between
the store at line 13 and future instances of branch 1, leading to
frequent restarts of the leading thread. Consequently, slipstream
achieves only 18% IPC improvement, and this speedup is qualified
by two tailored optimizations. First, we used a priori knowledge of
the ROI to hardwire the leading thread’s pruning predictor, circum-
venting the training time for its automated machinery. Second, for
case (2) above, we optimized slipstream’s speedup by not restarting
the leading thread and instead only locally squashing the trailing
thread (leveraging unique knowledge of the ROI); the speedup is
substantially lower with restarts, even assuming single-cycle roll-
back of the leading thread.

Figure 3: astar: slipstream challenges.

In contrast, our custom branch predictor for astar achieves 154%
IPC improvement, close to the 162% IPC improvement of perfect
branch prediction for this benchmark. By using custom knowl-
edge of the ROI, we are able to pre-execute both branches 1 and
2 and infer the effect of the omitted store. The custom design un-
derstands that the meaning of the store is to prevent revisiting a
given index1; so it compares the current index1with recently visited
index1’s (those that have not been retired by the core yet), and on
a match infers the updated value of waymap[index1].fillnum. Ad-
ditionally, the custom branch predictor decouples loading indices
from the input worklist (line 4), the loads that feed branches 1 and 2
(waymap[index1].fillnum and maparp[index1]), and computation of
the predicates of branches 1 and 2. This decoupling achieves high
memory-level parallelism (MLP).

1271



1.2 Paper Outline
The paper is organized as follows. Section 2 describes the Fetch, Re-
tire, and Load Agents that interface the reconfigurable fabric to the
superscalar core. Section 3 describes methodology: the simulator,
superscalar core and memory hierarchy configuration, and nota-
tion for parameters of the custom component and Agents. Section 4
presents the PFM use-cases and performance results. Section 5
presents FPGA results to estimate cost, power, and frequency of
some of the custom components. Section 6 discusses related work.
We conclude the paper and discuss future work (automating or
assisting design generation) in Section 7.

2 PFM AGENTS
Sections 2.1, 2.2, and 2.3, describe the Retire, Fetch, and Load Agents,
respectively.

Figure 4 shows the Fetch and Retire Agents. A configuration
bitstream shipped with the executable synthesizes the custom mi-
croarchitecture component in the FPGA and configures the Fetch
Snoop Table (FST) and Retire Snoop Table (RST) in the Fetch and
Retire Agents, respectively.

2.1 Retire Agent
The Retire Agent is between the core’s Retire Unit and FPGA. It im-
plements two basic observation functions: detect the beginning/end
of a region-of-interest (ROI) and construct observation packets for
the FPGA. Both are triggered by matching program counters (PCs)
of instructions in the retire bundle against PCs in the RST.

Initially, the Fetch and Retire Agents are idle, until a PC hits in
the RST that corresponds to a beginning of a ROI. At this point, the
Retire Agent’s controller: (1) signals the core to squash its pipeline
so that the core and custom component are logically at the same
point in the dynamic instruction stream, (2) signals the Fetch Agent
to enable itself, and (3) sends a beginning-of-ROI packet to the
FPGA via the Observation Queue at Retire (ObsQ-R), thus enabling
the custom component.

After observing the beginning of ROI, a PC that hits in the RST
causes the Retire Agent’s controller to construct and send an ob-
servation packet to the FPGA. Depending on the configuration of
the RST entry that hits, the controller will construct one of three
types of observation packets: (1) a destination value packet (for an
instruction with a destination register), (2) a store value packet (for
a store instruction), and (3) a branch outcome packet (for a branch
instruction). In this paper, we assume a contemporary superscalar
core design based on a Physical Register File (PRF) and Active List
(control-only variant of reorder buffer). Thus, to construct a destina-
tion value packet, the Retire Agent’s controller shares one or more
ports to the PRF (we sweep port-sharing options in results) with
the execution lanes that own those ports. The controller applies the
retiring instruction’s destination tag to one input of a 2:1 MUX at
the address input of the shared read port, until the tag is selected.
The select for this MUX is a busy signal in the register read stage of
the execution lane. To construct a store value packet, the controller
references the store value that is being committed from the head
of the Store Queue (SQ) to the data cache unit’s write buffer. Our
fetch unit maintains a branch queue for all in-flight branches (to
train branch prediction tables at retirement and checkpoint/restore

global branch history), thus, the retiring branch’s outcome is avail-
able from the head of the branch queue, for constructing branch
outcome packets.

On a pipeline squash, the Retire Agent sends a squash packet
to the FPGA, so that the custom component has the option of
rolling back as needed to ensure that its subsequent predictions
realignwithwhere the core is in the dynamic instruction stream. For
example, in this paper’s PFM use-cases that stream custom branch
predictions, various internal queue indices are rolled back. The
Retire Agent stalls the core’s Retire Unit until a squash-done packet
is received from the custom component. A squash-done packet is
sent from the FPGA to the Fetch Agent via the Intervention Queue
at Fetch (IntQ-F), and the Fetch Agent’s controller signals the Retire
Agent’s controller that the squash is done.

2.2 Fetch Agent
The Fetch Agent is between the core’s Fetch Unit and FPGA. Once
enabled by the Retire Agent (at beginning of ROI), the Fetch Agent
matches PCs of instructions in the fetch bundle against PCs in the
Fetch Snoop Table (FST). A hit causes the Fetch Agent’s controller
to override the Fetch Unit’s conditional branch predictor with a
conditional branch prediction (0:not-taken/1:taken) popped from
the Intervention Queue at Fetch (IntQ-F). If IntQ-F is empty, owing
to the custom component running late, the Fetch Agent stalls the
core’s Fetch Unit until the packet arrives. Section 2.4 discusses
breaking or avoiding deadlocks of buggy custom components under
development or after deployment.

2.3 Load Agent
The Load Agent is shown in Figure 5. It is between the core’s
load/store execution lane and FPGA. The Load Agent pops a
prefetch or load packet from the Intervention Queue at Issue (IntQ-
IS) and issues the prefetch/load to one of the core’s load/store
execution lanes when the corresponding issue port is not busy.

The core handles custom component loads differently than regu-
lar loads. They do not search the Store Queue and do not participate
in the core’s wakeup and bypass logic. They only get translated by
the TLB and access the data cache, and the load’s result is steered
to the Load Agent.

If an injected load misses, the Load Agent buffers the missed
load in its missed load buffer. The Load Agent periodically replays
missed loads until they hit.

The Load Agent returns load values to the custom component
via the Observation Queue at Execute (ObsQ-EX). Load values may
be returned out-of-order owing to hit-under-miss of loads from
IntQ-IS. So that the custom component can reorder loads internally,
it attaches a unique identifier to each load that it pushes into IntQ-IS.
The Load Agent and core’s load/store lane both retain this identifier
with the load, up to and including when the load value is pushed
into ObsQ-EX.

2.4 Security and Debug
A custom component cannot modify architectural state of the run-
ning program. The only interventions permitted by the Agents are
microarchitectural. A custom component’s predictions are the same
as the core’s predictions: they are eventually verified by execution

1272



Figure 4: Fetch Agent (top, middle) and Retire Agent (bottom, middle).

Figure 5: Load Agent.

and overturned if mispredicted. The Load Agent interprets received
packets solely as loads or prefetches, not stores. Moreover, the Load
Agent and core handle these loads specially: no wakeup, bypass, or
write into the PRF, and no search of speculative store values in the
store queue. Both prefetches and loads go through translation in
the load/store execution lane.

One must consider impact on microarchitectural state in the
context of speculation-based side channels. The custom compo-
nent does not train any of the branch predictor structures. It does

impact the cache by way of prefetches and loads, similar to other
prefetchers.

The system must not allow one context’s custom component in
RF to observe another context in the core. This can be enforced by
removing a context’s custom component from RF and the Agents
when that context is swapped out of the core. To support simulta-
neous multithreading, the Agents and custom components must be
augmented with context ids.

A bug in a custom component may cause the Fetch Agent to stall
the fetch unit indefinitely as it waits for a prediction that never
arrives. The Fetch Agent can be augmented with a watchdog timer
and a chicken-switch to disable the custom component. Alterna-
tively, we have considered a different Fetch Agent design that does
not stall if a prediction is late, but rather proceeds with the core’s
predictor and keeps count of how many late packets to drop when
they eventually arrive.

3 METHODOLOGY
We use an in-house, RISC-V [21], execution-driven, cycle-level,
execute-at-execute simulator to model the superscalar core, agents,
and custom components. The superscalar core and memory hier-
archy configuration is shown in Table 1. We use the top-weighted
SimPoint [18] (100 million instructions) for each SPEC benchmark
use-case. For the bfs use-case, from the GAP graph benchmark
suite [3], we skip the graph setup phase and run 100 million in-
structions of the breadth-first search (roadNet-CA graph [12]) or

1273



less if it completes in under 100 million instructions (com-Youtube
graph [12]). In all results, performance of the core with the custom
component is normalized to performance of just the core (which is
at 0%).

branch predictor 64KB TAGE-SC-L [17]
pipeline depth 10 stages (fetch to retire)
fetch/retire width 4 instr./cycle
issue/execute width 8 instr./cycle
execution lanes 4 simple ALU, 2 load/store, 2

FP/complex ALU
ROB/IQ/LDQ/STQ/PRF 224/100/72/72/288
L1I cache 32KB, 8-way
L1D cache 32KB, 8-way, 3 cycles (1 agen, 2 hit)
L1D prefetcher next-N-line (N=2)
L2 cache 256KB, 8-way, 12 cycles
L3 cache 8 MB, 16-way, 42 cycles
L2/L3 prefetcher VLDP (5.5 Kb) [19]
DRAM 250 cycles

Table 1: Superscalar core and memory hierarchy configura-
tion.

In the experiments, various parameters of the custom compo-
nent (C, W, and D, below) and Agents (Q and P, below) are varied
to explore their performance impact. These parameters and their
notation are described below.

• clkC_wW : C is the factor by which the RF-synthesized cus-
tom component’s clock frequency is slower than that of the
core (CLKCORE / CLKRF).W is the custom component’s su-
perscalar width. The custom component can generate up to
W predictions and push/pop up to W packets into/from the
communication queues, in a given CLKRF cycle.

• delayD: D is the pipelined execution latency of the RF-
synthesized custom component, in CLKRF cycles (e.g., for
configuration clk4_w4, delay8 would mean 8 CLKRF cycles
or 32 CLKCORE cycles).

• queueQ: Q is the size of the Observation and Intervention
queues in the Agents.

• portP : P describes which Physical Register File (PRF) ports
the Retire Agent can contend on (e.g., portLS means the
Retire Agent can opportunistically use the PRF ports owned
by the two load/store execution lanes, while portLS1 limits
sharing to only one load/store execution lane’s PRF ports).

The Load Agent’s missed load buffer (MLB) is fixed at 64 entries.

4 PFM USE-CASES AND PERFORMANCE
RESULTS

4.1 Astar
4.1.1 Astar Region of Interest (ROI). Figure 6 shows the ROI for as-
tar. Wayobj::fill() calls wayobj::makebound2() repeatedly. On even
calls (line 5), bound1p and bound2p are the input and output work-
lists, respectively. On odd calls, the worklists swap roles (line 9).
The loop in wayobj::makebound2() (line 17) iterates through the
input worklist. Each iteration obtains the next index from the input
worklist (line 19), which corresponds to a cell in a grid. Then, eight
indices, all using variable index1, are computed, corresponding to

the neighboring cells of the cell at index. The nested-if template
between lines 22–36 repeats seven more times with a different
neighboring cell, i.e., index1. Line 21 is the first instance of index1.
As the 2D grid is linearized, the index1 of neighbors in rows above
or below the cell at index are computed by subtracting or adding a
fixed value yoffset from index. The hard-to-predict branches for the
first index1 are at lines 22 and 23, referred to as the waymap and
maparp branches (16 difficult branches in all). These branches are
heavily mispredicted because the input worklist is very dynamic
(recall, the output worklist of this call to wayobj::makebound2()
is the input worklist to the next call to wayobj::makebound2()).
The waymap branch tests if the neighboring cell at index1 has al-
ready been visited since invoking wayobj::fill(). Notice wayobj::fill()
sets a new fillnum at line 1 and this is the sentinel value to de-
termine if a cell has already been visited over repeated calls to
wayobj::makebound2(). If index1 has not been visited yet and if
the maparp condition at line 23 also holds, then index1 is added to
the output worklist (lines 25–26) and index1 is marked as visited
by storing fillnum at its entry in the waymap array (line 28). The
store to waymap at line 28 causes a potential loop-carried memory
dependency with the waymap branch at line 22 and all other seven
instances of the waymap branch. An added challenge is that the
loads that feed the branches may cache miss a lot, depending on
the input dataset and hence the sizes of the waymap and maparp
arrays.

Figure 6: Astar ROI.

1274



4.1.2 Astar Custom Branch Predictor. Figure 7 shows the design
of our custom astar branch predictor. The custom design is shown
under the “FPGA” heading on the left. Loads and branch predictions
sent to the Agent and core are shown in the middle under the
“Agent/Core” heading. The “Program’s Data Structures” are shown
on the right under that heading.

Figure 7: Custom astar branch predictor.

Line 1 is the beginning of the ROI and the RST is configured ac-
cordingly. Five key values need to be snooped from the Retire Agent:
fillnum (line 1, snooped only once per call of wayobj::fill()), yoffset
(line 14, snooped only once per call of wayobj::makebound2()), the
base address of the input worklist (available from an instruction in
the prologue of wayobj::makebound2() because the input worklist
is an input argument), and the base addresses of the waymap and
maparp arrays (lines 22-23, but obtained only once).

The custom design is implemented as three decoupled engines,
which can be viewed as “threads” (T0–T2) implemented as fixed
hardware. The threads are decoupled via two queues, index_queue
and pred_queue. Each entry of index_queue eventually contains
a single index from the input worklist, hence, the number of in-
dex_queue entries corresponds to the number of loop iterations
the design may run ahead – its speculative scope. The pred_queue

eventually contains all waymap and maparp branch predictions for
this scope, therefore, it is sized commensurately. Each loop itera-
tion/index corresponds to eight index1’s and 16 branch predictions
(one waymap and one maparp for each index1). The example sizes
of index_queue (8) and pred_queue (128), shown in Figure 7, are the
default configuration (we also vary the scope in a sensitivity study)
and configuration of the FPGA-synthesized design in Section 5.

The index_queue entry pointed-to by its commit head, H, corre-
sponds to the oldest unretired iteration in the core. It is incremented
when the design snoops an appropriate instruction, such as that
which increments the loop induction variable. In steady state, when
index_queue is continuously full, this frees up an entry so that the
design can allocate a new iteration/index at its speculative tail, T.
There is a one-to-one correspondence between each index_queue
entry and each 16-entry segment of pred_queue, and this likewise
applies to their commit heads and speculative tails. Thus, dealloca-
tion and allocation of index_queue entries implicitly performs the
same for pred_queue and two other structures to be discussed.

When the index_queue tail entry is free, T0 pre-allocates the
tail entry for a new index and issues a load to the input worklist
to get the next index. Recall in Section 2.3 that loads from the
custom component must be tagged with unique identifiers due to
loads returning out-of-order (OOO) (hits-under-misses or misses
returned OOO). In this case, the load is tagged with its pre-allocated
entry number in the index_queue, i.e., id=T as shown in Figure 7.
(T0 then increments T.) Each index_queue entry has a valid bit
and value. The valid bit is initialized to zero when the entry is pre-
allocated. As T0’s loads are returned, possibly OOO, by the Load
Agent, their values are deposited in the entries indicated by their
ids and corresponding valid bits are set.

T1 consumes valid entries from index_queue in order, at the
speculative head entry, H′ (higher performance may be possible by
relaxing this order, but this would incur more complexity). Each
index thus obtained is used to compute eight index1’s. In turn, each
index1 is used to compute the addresses for a waymap load and
a maparp load. Different designs are possible, in terms of width:
the number of index1’s and corresponding loads generated each
FPGA cycle. The example design in Figure 7 shows two index1’s
generated each cycle and, correspondingly, four loads (two waymap
and two maparp) pushed into the Load Agent’s IntQ-IS each cy-
cle. This example corresponds to the FPGA-synthesized design in
Section 5. The identifiers of T1’s loads are arithmetically derived
from H′, the speculative head entry from where the root index
was obtained. An additional 1-bit is prepended to the identifiers
so that T1’s load responses are steered to pred_queue, whereas,
T0’s load responses are steered to index_queue by virtue of not
having this uppermost bit set. As T1’s load responses are returned
by the Load Agent (possibly OOO), the values of loads with even
ids are used to compute waymap branch predicates and the values
of loads with odd ids are used to compute maparp branch predi-
cates. Predicates are deposited in the pred_queue at the locations
indicated by their ids, and valid bits are set in these entries to signal
predicates are available. Finally, as T1 generates index1’s, they are
saved in the index1_queue, thus maintaining a record of each index1
corresponding to each pair of waymap and maparp predicates.

T2 consumes a design-dependent number (four in the example
shown in Figure 7) of consecutive valid predicates starting at the

1275



speculative head entry, H′, of the pred_queue. These are referred
to as raw predictions because they may have to be adjusted, based
on inferring stores to waymap[index1].fillnum within the specu-
lative scope of the design. To make this inference, the index1’s
corresponding to the raw predictions are obtained from the in-
dex1_queue (entries of which are derived from H′ of pred_queue),
and these index1’s are searched in the index1_CAM. If an index1
hits in the index1_CAM, there was a previous visit to the same
index1 (within the maximum scope of the design) and the control-
dependent region containing the store was logically entered for
this visit, i.e., we predicted [NT, NT] for the two branches in the
previous visit. In this case, the waymap and maparp branch pre-
dictions for this visit to index1, should be overridden with [T, -]
(the second branch is not even encountered and its prediction is
discarded). The final predictions are pushed into the Fetch Agent’s
IntQ-F. For a width of four raw predictions, anywhere from two
to four final predictions are pushed, depending on the waymap
predictions in the bundle being taken or not-taken. Finally, if the
final predictions for a given pair of waymap and maparp branches
are [NT, NT], the implication is that there is logically a store for the
branches’ corresponding index1. In this case, index1 is written into
the index1_CAM (at the entry derived from H′ of the pred_queue);
otherwise, 0 is written into it.

When the Retire Agent sends a squash packet (because the
pipeline had a squash), only T2 needs to be rolled back. There
is no need to redo the work performed by T0 and T1. T2 must be
rolled back so that its predictions once again line up with where the
core’s fetch unit is in the dynamic instruction stream. Because the
index1_CAM now reflects inferred-stores in the future, T2 cannot
redo the work of converting raw predictions to final predictions
as it initially had done. Therefore, final predictions are recorded
in an additional queue and, after receiving a squash packet, those
between the pred_queue commit head (H) and speculative head
(H′) are replayed from this additional queue.

4.1.3 Astar Results. While the baseline astar suffers an MPKI (mis-
predictions per kilo instructions) of 31.9, the custom predictor is
able to reduce MPKI to 1.04, thus removing the branch mispre-
diction bottleneck and yielding good performance improvement.
Figures 8, 9, and 10, show performance of the custom predictor
over the baseline, for different parameters of the custom predic-
tor (frequency differential, width, delay, and structure sizes) and
Agents (sizes of intervention and observation queues, and PRF port
sharing).

Figure 8 shows sensitivity of the custom predictor to its fre-
quency differential with the core and its superscalar width (C and
W parameters in clkC_wW ), which combine to determine the cus-
tom predictor’s bandwidth. The limitation of lower frequency of
the RF-synthesized custom predictor can be overcome by increas-
ing its width. At low bandwidths, the fetch stage will stall while
waiting for the custom predictor to generate and supply predictions,
thus reducing the speedup or even causing slowdowns compared
to baseline execution (e.g., configurations clk4_w1 and clk8_w1).
With sufficient bandwidth, the predictions generated by the custom
predictor can reach the core in a timely fashion to provide good
speedup. Configurations clk4_w2, clk4_w3, and clk4_w4, provide
IPC improvements of 99%, 155%, and 163%. The latter is slightly

better than the 162% IPC improvement of perfect branch predic-
tion (perfBP bar in the graph). This is possible because the custom
predictor achieves higher MLP than the baseline core; higher MLP
among loads issued by the predictor, translates into lower latency
for the core’s redundant loads via a prefetching effect.

Figure 8: Speedup of the custom astar branch predictor for
different C and W parameters. (All configurations: delay0,
queue32, portALL; 8-entry index_queue.) perfBP is perfect
branch prediction.

Table 2 shows (1) the percentage of fetched instructions in the
ROI that hit in the Fetch Agent’s FST and must be supplied cus-
tom predictions, and (2) the percentage of retired instructions in
the ROI that hit in the Retire Agent’s RST and must be observed
by the custom predictor. These percentages are 15.5% and 20.3%.
For the core’s fetch and retire widths of 4 instructions/cycle and
a 4x higher frequency (clk4), these percentages suggest average
snoop rates of 2.48 and 3.25 instructions per RF cycle (multiply the
percentages times 16 instructions per RF cycle). Assuming some
degree of burstiness, these calculations support the effectiveness of
clk4_w2 through clk4_w4 configurations.

% fetched instr. in ROI that hit in FST 15.5%
% retired instr. in ROI that hit in RST 20.3%

Table 2: astar: FST and RST snoop percentages.

Figure 9a shows that IPC improvement yielded by the custom pre-
dictor decreases as its pipelined execution latency increases. Increas-
ing this parameter increases the startup delay at each call to way-
obj::makebound2() and the penalty of synchronizing the core and
custom predictor at pipeline squashes (via the squash/squash_done
protocol). Infrequent squashes still occur, due to exiting the loop
and due to speculative memory disambiguation within the core.
Nonetheless, even at delay8 (8 RF cycles or 32 core cycles, for clk4),
the custom predictor yields an IPC improvement of 138%.

Figure 9b shows that the performance is resistant to the size of
the Agents’ communication queues, while Figure 9c shows that
PRF port availability is not an issue for this use-case.

Figure 10 shows that performance of the custom predictor is
sensitive to the number of entries in its index_queue, i.e., its specu-
lative scope. An 8-entry index_queue (and corresponding 64-entry

1276



(a) (b) (c)

Figure 9: Speedup of the custom astar branch predictor
for different D, Q, and P parameters. (a) clk4_w4, queue32,
portALL. (b) clk4_w4, delay4, portALL. (c) clk4_w4, delay4,
queue32. (All configurations: 8-entry index_queue.)

index1_queue, 64-entry index1_CAM, and 128-entry pred_queue)
is adequate to achieve most of the speedup potential.

Summing up, for custom predictor parameters of clk4_w4, delay4,
and 8-entry index_queue, and Agent parameters of queue32 and
portLS1, IPC improvement is 154% (last bar of Figure 9c).

Figure 10: Speedup of the custom astar branch predictor,
varying the number of entries in the index_queue. (All con-
figurations: clk4_w4, delay4, queue32, portLS1.)

4.2 BFS
Applications with load-dependent loads defy conventional prefetch-
ers because of their irregular access pattern. Performance is de-
graded further if these loads feed hard-to-predict branches. In this
section, we present a custom component for Breadth-First Search
(bfs) from the GAP graph benchmark suite [3], which exhibits this
behavior.

It is shown in Fig. 11. The TDstep() function is shown at the
left. The design is shown under heading “FPGA”. It sends loads and
branch predictions via “Agent/Core”. The “program’s data struc-
tures” are shown on the right.

The design is comprised of four decoupled engines, akin to
“threads” T0–T3 implemented as fixed hardware. Decoupling
achieves high memory level parallelism (MLP), i.e., it enables many
outstanding loads. T0 maintains a sliding window of nodes (“fron-
tier queue”) whose neighbors are to be visited, by issuing loads
from the program’s global frontier. The frontier queue decouples
T0 and T1. T1 pops a node id U from the frontier queue. T1 uses U
and the next consecutive node id U+1 to index into the program’s
offset array, to obtain the address of U’s first neighbor (“a”) and

the address of U+1’s first neighbor (“b”). The difference “b-a” is the
number of neighbors of U. T1 pushes U’s first neighbor’s address
into the “neighbor begin address queue” and the difference (number
of neighbors) into the “neighbor trip-count queue”. T2 pops an
entry from both queues, and uses the first address and trip-count
to load all of U’s neighbors from the program’s neighbor array.
T2 deposits each neighbor, V, into the “neighbor queue”. T2 also
uses the trip-count to stream branch predictions for instances of
the neighbor loop branch; the trip-count is hard to predict by the
core’s predictor due to different trip-counts among different nodes
U. Finally, T3 pops each neighbor, V, from the neighbor queue, and
issues a load for its visited-ness property from the program’s prop-
erties array. T3 uses the loaded value to compute the predicate of
the hard-to-predict visited branch. T3’s visited branch predictions
are interleaved with T2’s neighbor loop branch predictions, in the
Fetch Agent’s IntQ-F.

The visited branch tests whether or not the neighbor V has been
visited. If it has not been visited, the branch’s control-dependent
region is executed, including a store that marks V as visited. Thus,
as was the case with astar, there is a potential loop-carried memory
dependency between the visited store and the visited branch that
guards it. Similar to how the astar design infers stores and overrides
dependent predictions, T3 infers stores to the visited-ness property
within its speculative scope (visited stores that have not been retired
by the core yet).When T3 pops neighbor V from the neighbor queue,
concurrently with issuing the load for its visited-ness property, it
searches the neighbor queue for prior instances of V (between V’s
entry and the commit head, not shown). If there is a match, an
older unretired conflicting store is inferred and the visited branch
predicate is overridden as taken.

Experiments were performed with two input graphs, Roads
(roadNet-CA) and Youtube (com-Youtube) [12]. The analysis that
follows refers to only the Roads input. The first three bars of Fig. 12
show that both cache misses and branch mispredictions are de-
bilitating. Importantly, both need to be attacked simultaneously.
Perfect branch prediction alone yields only 11% speedup. Perfect
data cache alone yields a significant 152% speedup, yet this is only
a fraction of what the two together achieve: 426%. Bfs’s custom
component achieves up to 125% speedup, due to (1) exploiting high
MLP both within and among decoupled “threads” T0–T3 and (2)
reducing branch MPKI from 19.1 to 0.5.

Fig. 12 shows speedups for different C and W parameters. Table
3 shows (1) percentage of fetched instructions in the ROI that hit
in the Fetch Agent’s FST and must be supplied custom predictions,
and (2) percentage of retired instructions in the ROI that hit in
the Retire Agent’s RST and must be observed by the custom com-
ponent. Trends are similar to those of astar. Despite observing a
higher fraction of retired instructions than astar, performance is
still good; moreover, clk4_w2 is somewhat closer to clk4_w4 than
was observed for astar. This is likely due to more slack owing to
residual miss latency.

% fetched instr. in ROI that hit in FST 13%
% retired instr. in ROI that hit in RST 31%

Table 3: bfs: FST and RST snoop percentages.

1277



Figure 11: bfs’s custom component.

Figure 12: Speedup of bfs’s custom component, for different
C and W parameters. (All configurations: delay0, queue32,
portALL; 64-entry frontier, begin-address, trip-count, and
neighbor queues.) perfBP, perfD$, and perfBP+D$ are perfect
branch prediction, perfect data cache, and both.

Figure 13 shows low sensitivity to (a) the custom component’s
pipelined execution latency, (b) the size of Agents’ communication
queues, and (c) the Retire Agent’s PRF port sharing options.

Figure 14 shows that the performance of bfs’s custom component
scales with the number of entries in its frontier, begin-address, trip-
count, and neighbor queues.

(a) (b) (c)

Figure 13: Speedup of bfs’s custom component for different
D, Q, and P parameters. (a) clk4_w4, queue32, portALL. (b)
clk4_w4, delay4, portALL. (c) clk4_w4, delay4, queue32. (All
configurations: 64-entry frontier, begin-address, trip-count,
and neighbor queues.)

Figure 14: Speedup of bfs’s custom component, varying the
number of entries in its frontier and other queues. (All con-
figurations: clk4_w4, delay4, queue32, portLS1.)

1278



4.3 Load Prefetching
PFM can be used to target applications which suffer high cache
miss rates. Design of a custom prefetch engine allows proactive
generation of extremely accurate prefetches while maintaining
an optimal prefetch distance. We demonstrate this use-case here
with the SPEC2006 libquantum benchmark. Libquantum’s simplicity
allows focusing on the fundamental ideas of PFM for prefetching.
Later in this section, we briefly discuss other benchmarks that were
also targeted for prefetching.

Libquantum has 2 delinquent loads, one each in the quan-
tum_toffoli and quantum_sigma_x functions. Figure 15 shows the
quantum_toffoli function where the delinquent load is marked as
B. The PFM design to generate prefetches for load B is shown in
Figure 16. It snoops, from the retire stream, the base address of the
delinquent load, the iteration count (annotated A in Figure 15), and
the stride, and uses a simple custom finite state machine (FSM) in
the “Prefetch Generation Engine” to generate accurate prefetch OPs
which are sent to the core via the Load Agent’s IntQ-IS. The core
executes the received prefetch OPs from the head of IntQ-IS when
it finds a bubble in one of the load/store execution lanes.

Figure 15: Libquantum’s ROI with delinquent load B.

Taking advantage of access to the retire stream, a simple
sampling-based performance-feedback mechanism is used to adap-
tively update the prefetch distance to achieve optimal timeliness.
The mechanism measures the number of retired instances of load
B over a fixed number of cycles (epoch), a proxy for IPC. It then
increases prefetch distance in the next epoch and observes if proxy-
IPC increased. It keeps incrementing the prefetch distance as long
as proxy-IPC continues to improve, and settles or backs off when
it does not change or degrades, respectively. This adaptive policy
works well for libquantum. We found that customizing not only
the prefetch engine, but also the feedback mechanism, for each
application, is a useful feature enabled by PFM.

Figure 16: PFM design for load prefetching.

Custom prefetchers were developed for four other SPEC2006
benchmarks. The overall structure remains similar to the design

shown in Figure 16, but the Prefetch Generation Engine is cus-
tomized to be as simple, or as complex, as needed by the specific
benchmark.

• bwaves: The delinquent loads are inside the innermost loop of
five nested loops. Each load’s address depends on a different
set of four of the five induction variables or computational
derivatives of them. As the induction variables change at
different rates, each load’s pattern is complex. The custom
prefetcher features a complex FSM that nevertheless surgi-
cally follows the patterns.

• lbm: This benchmark has a cluster of delinquent loads that
suffer from uneven latency reduction with the baseline
prefetcher, resulting in the bottleneck simply shifting among
different loads instead of getting removed. The customized
prefetcher developed for lbm pushes, or skips (if IntQ-IS is
full), the prefetch OPs for all delinquent loads in the cluster,
as a set. This memory-level-parallelism (MLP) awareness is
necessary for getting good performance.

• milc: This benchmark has a cluster of delinquent loads that
access different cache lines, but each load is similar to that of
libquantum. Thus, its prefetch engine and adaptive distance
control are similar to libquantum’s design.

• leslie: This benchmark has multiple ROIs, each of which
contributes significantly to total execution time due to load
misses. Similar to bwaves, the loads in each ROI are nested
inside two to four loops. FSMs were designed for three of
these ROIs, following a similar strategy as the design of
bwaves’s FSM.

Figure 17 shows performance of the five custom prefetchers for
different C and W. Performance is very resistant to C (frequency
difference between the core and custom prefetcher), W (superscalar
width of the custom prefetcher), and D (pipelined execution la-
tency of the custom prefetcher – not shown). This is partly due
to the adaptive prefetch distance, and partly because, unlike cus-
tom branch prediction, the core’s execution does not stall waiting
for packets from RF. PRF port availability is not an issue for these
use-cases (portLS1 performs as well as portALL – not shown).

Figure 17: Speedup of customprefetchers for different C and
W (all configs: delay0, queue32, portALL).

5 FPGA AND POWER RESULTS
We synthesized several use-cases to FPGA (Xilinx Virtex UltraScale+
device xcvu3p-ffvc1517-3-e) to estimate hardware cost, power, and
frequency.

We have results for four of the five custom prefetchers (all but
leslie). High-level synthesis [5] (Vivado HLS 2018.1) was used to
convert the prefetchers’ C++ models to verilog. Width (W) is one

1279



for the verilog implementations of the prefetchers. As observed in
Section 4.3, clk1_w1 and clk4_w1 have similar performance.

We completed verilog design, FPGA implementation, and post-
place-and-route simulation, verification, and power analysis, of
astar’s custom branch predictor. Moreover, this implementation
has width W=4: T0 and T1 generate 1 and 4 loads concurrently (up
to 5 total per FPGA cycle) and T2 generates up to 4 predictions per
FPGA cycle. The pipelined delay through each of the concurrent
units, T0, T1, and T2, is four FPGA cycles, corresponding to delay4
in Fig. 9a.1

In addition to FPGA results for the astar microarchitecture de-
scribed in Section 4.1, we also have FPGA results for astar-alt, the
microarchitecture of which follows a different strategy than the one
presented in this paper and yields 125% IPC improvement. Inspired
by concepts from the EXACT branch predictor [1], it maintains
two large predictor tables that mimic the program’s underlying
waymap and maparp arrays. It also populates its own output work-
list as its input worklist is processed, and they swap roles at each
call to wayobj::makebound2(). Thus, astar-alt mimics the program’s
data structures instead of issuing loads to them.2 Details can be
found in our earlier work [11]. Its large prediction tables are im-
plemented with Block RAMs and, in spite of the complexity, we
achieved timing closure at a good frequency.

Numbers of LUTs, FFs, BRAMs, etc., frequency, and power, are
shown in Table 4. Power reports use switching activity from post-
place-and-route simulation, using stimuli generated from the super-
scalar processor simulator (packets from the Retire Agent’s ObsQ-R
and Load Agent’s ObsQ-EX). The table separates out I/O power for
informational purposes only, because it relates to FPGA pins which
would not exist for FPGA embedded with the core. Nonetheless,
we include total dynamic and static power of the FPGA-synthesized
designs in the following overall core+RF energy analysis presented in
Figure 18.

design LUT FF BRAM DSP Freq
(MHz)

dyn. power
(mW)

static
power
(mW)

logic I/O

astar (4wide) 6249 3523 0 0 500 251 338 865
astar-alt 1064 700 17.5 0 498 236 174 864
libq 282 215 0 0 690 8 45 861
lbm 169 204 0 0 628 6 44 861

bwaves 182 363 0 0 731 10 49 861
milc 253 667 0 4 628 38 115 861

Table 4: Hardware overhead using FPGA (xcvu3p-ffvc1517-
3-e) for RF. astar (4wide) has width W=4 and an 8-entry in-
dex_queue. Other designs have width W=1. NOTE: astar-alt
is a differentmicroarchitecture than presented in Section 4.1
as explained above; it has two 32KB prediction tables and
two 512-entry worklists.

1This excludes core-cycles that loads, generated by T0 and T1, spend executing in the
core, which is naturally modeled separately from the delayD parameter (modeled on
the core side).
2We shifted to the load-based strategy for several reasons. First, it is more robust to
different input dataset sizes. Second, it combines prefetching/MLP-exploitation and
branch prediction. Third, the load-based strategy may be templated in the future;
notice that astar and bfs follow similar strategies, suggesting a possible path toward
automation in the future, as discussed in Section 7.

Figure 18 shows the energy reduction that the custom compo-
nents achieve over the baseline execution. Cumulative energy for
the core is obtained using McPAT [13] and cumulative energy for a
given FPGA-synthesized design is based on the per-RF-cycle energy
obtained using the methodology above. The reduction in energy
with respect to baseline execution can be attributed to (1) reduced
misspeculation due to better branch prediction accuracy and (2)
reduced static energy consumption due to shorter runtime.

Figure 18: Energy of PFM designs (core+RF) normalized to
baseline (core).

6 RELATEDWORK
There have been several proposals to integrate reconfigurable logic
with a core, at different levels of granularity. One approach is to
tightly integrate reconfigurable logic as customizable functional
units close to the execution unit of the core. Cores leverage the
reconfigurable functional units via an expanded instruction set. Ex-
amples include Chimaera [25], PRISC [15], and OneChip [24]. Other
proposals, for example, DySER [8] and BERET [9], map program
subgraphs onto custom configurable compute engines (typically a
grid of networked functional units) tightly integrated with the core.
Loosely-coupled reconfigurable “co-processors” have also been pro-
posed – for example, GARP [10], PRISM [2], and PipeRench [7] –
where the execution of some compute-intensive loops might be
offloaded to the reconfigurable co-processor. Reconfigurable logic
has also been integrated in the context of multicore processors
[22, 23] to accelerate multithreaded applications. A pool of special-
ized programmable logic is shared among several tiles of the CMP
and can be configured for individual thread computation, producer-
consumer communication, or fast barrier synchronizations.

The focus of all these prior works has been on mapping the
execution of “hot loops/traces” on reconfigurable logic (with var-
ied degrees of overheads depending on how tightly coupled the
reconfigurable logic is with the core), which serve as accelerators
for the targeted applications. Our work, on the other hand, targets
the microarchitectural inefficiencies by allowing post-fabrication
deployment of application-specific microarchitecture components.

Another set of related works include helper threads [4, 16, 26]
or leader-follower microarchitectures like Slipstream [14, 20] and
DLA [6]. We highlighted the challenges of generalized, automated
branch pre-execution, such as implemented by the state-of-art Slip-
stream 2.0 [20], in Section 1.1. These unsolved challenges are also
called out in that prior work. PFM, customization, and insights into
the region of interest, offer a solution.

1280



7 CONCLUSION AND FUTURE WORK
Processor companies rightly favor microarchitectural enhance-
ments that improve performance generally. Targeting general per-
formance is important but it is also constraining, in that large
speedups on individual applications are possible with custom mi-
croarchitectural components. Post-Fabrication Microarchitecture
(PFM) is a novel paradigm that enables superscalar processor de-
signers to support both general performance improvement and
large gains on individual applications: the former, via continuous
generational improvements to the superscalar core; and the latter,
via custom microarchitecture components synthesized to a recon-
figurable fabric attached to key pipeline units through agents.

For future work, we would like to explore automating or assist-
ing the generation of custom microarchitecture components. For
example, the astar and bfs designs presented in this paper follow a
similar strategy. If this could be templated, it suggests a path toward
automation. The custom prefetchers in this paper are finite state
machines (FSMs) that implement simple or complex arithmetic ad-
dress patterns, so it is conceivable that a compiler could generate
these FSMs. We would also like to explore architectures for the
reconfigurable fabric (beyond traditional FPGA), such as including
building blocks that suit the PFM paradigm and typical use-cases.

ACKNOWLEDGMENTS
This project is funded by the NSF/Intel Partnership on Foundational
Microarchitecture Research (FoMR) (NSF grant no. CCF-1823517
and matching Intel grant). Any opinions, findings, and conclusions
or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the National Science
Foundation or Intel Corporation.

REFERENCES
[1] Muawya Al-Otoom, Elliott Forbes, and Eric Rotenberg. 2010. EXACT: Explicit

Dynamic-Branch Prediction with Active Updates. In Proceedings of the 7th ACM
International Conference on Computing Frontiers (CF ’10). Association for Comput-
ing Machinery, New York, NY, USA, 165–176. https://doi.org/10.1145/1787275.
1787321

[2] Peter M. Athanas and Harvey F. Silverman. 1993. Processor Reconfiguration
Through Instruction-Set Metamorphosis. Computer 26, 3 (1993), 11–18. https:
//doi.org/10.1109/2.204677

[3] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP Benchmark
Suite. arXiv:1508.03619

[4] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes, Yong-
Fong Lee, Dan Lavery, and John P. Shen. 2001. Speculative Precomputation:
Long-Range Prefetching of Delinquent Loads. In Proceedings of the 28th Annual
International Symposium on Computer Architecture (ISCA ’01). Association for
Computing Machinery, New York, NY, USA, 14–25. https://doi.org/10.1145/
379240.379248

[5] Philippe Coussy and AdamMorawiec. 2010. High-Level Synthesis: From Algorithm
to Digital Circuit (1st ed.). Springer Publishing Company, Incorporated.

[6] Alok Garg and Michael C. Huang. 2008. A Performance-Correctness Explicitly-
Decoupled Architecture. In Proceedings of the 41st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO-41). IEEE Computer Society, USA,
306–317. https://doi.org/10.1109/MICRO.2008.4771800

[7] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Srihari
Cadambi, R. Reed Taylor, and Ronald Laufer. 1999. PipeRench: A Coprocessor for
Streaming Multimedia Acceleration. In Proceedings of the 26th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’99). IEEE Computer Society,
USA, 28–39. https://doi.org/10.1109/ISCA.1999.765937

[8] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011.
Dynamically Specialized Datapaths for Energy Efficient Computing. In Proceed-
ings of the 17th Annual IEEE International Symposium on High Performance Com-
puter Architecture (HPCA ’11). 503–514. https://doi.org/10.1109/HPCA.2011.
5749755

[9] Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and David Au-
gust. 2011. Bundled Execution of Recurring Traces for Energy-Efficient General
Purpose Processing. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-44). Association for Computing Ma-
chinery, New York, NY, USA, 12–23. https://doi.org/10.1145/2155620.2155623

[10] John R. Hauser and John Wawrzynek. 1997. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. In Proceedings of the 5th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines. 12–21. https://doi.org/10.
1109/FPGA.1997.624600

[11] Chanchal Kumar, Aayush Chaudhary, Shubham Bhawalkar, Utkarsh Mathur,
Saransh Jain, Adith Vastrad, and Eric Rotenberg. 2020. Post-Silicon Microar-
chitecture. IEEE Computer Architecture Letters 19, 1 (2020), 26–29. https:
//doi.org/10.1109/LCA.2020.2978841

[12] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[13] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-42). Association for Computing Machinery, New York, NY, USA, 469–480.
https://doi.org/10.1145/1669112.1669172

[14] Zach Purser, Karthik Sundaramoorthy, and Eric Rotenberg. 2000. A Study of
Slipstream Processors. In Proceedings of the 33rd Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO-33). Association for Computing Ma-
chinery, New York, NY, USA, 269–280. https://doi.org/10.1145/360128.360155

[15] Rahul Razdan and Michael D. Smith. 1994. A High-Performance Microar-
chitecture with Hardware-Programmable Functional Units. In Proceedings of
the 27th Annual International Symposium on Microarchitecture (MICRO-27). As-
sociation for Computing Machinery, New York, NY, USA, 172–180. https:
//doi.org/10.1145/192724.192749

[16] Amir Roth andGurindar S. Sohi. 2001. Speculative Data-DrivenMultithreading. In
Proceedings of the 7th Annual IEEE International Symposium on High-Performance
Computer Architecture (HPCA ’01). 37–48. https://doi.org/10.1109/HPCA.2001.
903250

[17] André Seznec. 2016. TAGE-SC-L Branch Predictors Again. In 5th JILP Workshop
on Computer Architecture Competitions (JWAC-5): Championship Branch Prediction
(CBP-5). Seoul, South Korea. https://hal.inria.fr/hal-01354253

[18] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-
matically Characterizing Large Scale Program Behavior. In Proceedings of the 10th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS X). Association for Computing Machinery, New
York, NY, USA, 45–57. https://doi.org/10.1145/605397.605403

[19] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson,
Seth H. Pugsley, and Zeshan Chishti. 2015. Efficiently Prefetching Complex
Address Patterns. In Proceedings of the 48th Annual International Symposium on
Microarchitecture (MICRO-48). Association for Computing Machinery, New York,
NY, USA, 141–152. https://doi.org/10.1145/2830772.2830793

[20] Vinesh Srinivasan, Rangeen Basu Roy Chowdhury, and Eric Rotenberg. 2020.
Slipstream Processors Revisited: Exploiting Branch Sets. In Proceedings of the
47th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA
’20). IEEE Press, 105–117. https://doi.org/10.1109/ISCA45697.2020.00020

[21] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2014.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Technical
Report UCB/EECS-2014-54. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[22] Matthew A. Watkins and David H. Albonesi. 2011. ReMAP: A Reconfigurable
Architecture for Chip Multiprocessors. IEEE Micro 31, 1 (2011), 65–77. https:
//doi.org/10.1109/MM.2011.14

[23] Matthew A. Watkins, Mark J. Cianchetti, and David H. Albonesi. 2008. Shared
Reconfigurable Architectures for CMPs. In 2008 International Conference on Field
Programmable Logic and Applications. 299–304. https://doi.org/10.1109/FPL.2008.
4629948

[24] Ralph D. Wittig and Paul Chow. 1996. OneChip: An FPGA Processor With
Reconfigurable Logic. In 1996 Proceedings IEEE Symposium on FPGAs for Custom
Computing Machines. 126–135. https://doi.org/10.1109/FPGA.1996.564773

[25] Zhi Alex Ye, Andreas Moshovos, Scott Hauck, and Prithviraj Banerjee. 2000. CHI-
MAERA: A High-Performance Architecture with a Tightly-Coupled Reconfig-
urable Functional Unit. In Proceedings of the 27th Annual International Symposium
on Computer Architecture (ISCA ’00). Association for Computing Machinery, New
York, NY, USA, 225–235. https://doi.org/10.1145/339647.339687

[26] Craig Zilles and Gurindar Sohi. 2001. Execution-Based Prediction Using Specula-
tive Slices. In Proceedings of the 28th Annual International Symposium on Computer
Architecture (ISCA ’01). Association for Computing Machinery, New York, NY,
USA, 2–13. https://doi.org/10.1145/379240.379246

1281

https://doi.org/10.1145/1787275.1787321
https://doi.org/10.1145/1787275.1787321
https://doi.org/10.1109/2.204677
https://doi.org/10.1109/2.204677
https://arxiv.org/abs/1508.03619
https://doi.org/10.1145/379240.379248
https://doi.org/10.1145/379240.379248
https://doi.org/10.1109/MICRO.2008.4771800
https://doi.org/10.1109/ISCA.1999.765937
https://doi.org/10.1109/HPCA.2011.5749755
https://doi.org/10.1109/HPCA.2011.5749755
https://doi.org/10.1145/2155620.2155623
https://doi.org/10.1109/FPGA.1997.624600
https://doi.org/10.1109/FPGA.1997.624600
https://doi.org/10.1109/LCA.2020.2978841
https://doi.org/10.1109/LCA.2020.2978841
http://snap.stanford.edu/data
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/360128.360155
https://doi.org/10.1145/192724.192749
https://doi.org/10.1145/192724.192749
https://doi.org/10.1109/HPCA.2001.903250
https://doi.org/10.1109/HPCA.2001.903250
https://hal.inria.fr/hal-01354253
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/2830772.2830793
https://doi.org/10.1109/ISCA45697.2020.00020
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://doi.org/10.1109/MM.2011.14
https://doi.org/10.1109/MM.2011.14
https://doi.org/10.1109/FPL.2008.4629948
https://doi.org/10.1109/FPL.2008.4629948
https://doi.org/10.1109/FPGA.1996.564773
https://doi.org/10.1145/339647.339687
https://doi.org/10.1145/379240.379246

	Abstract
	1 Introduction
	1.1 Motivation for custom microarchitectural components
	1.2 Paper Outline

	2 PFM Agents
	2.1 Retire Agent
	2.2 Fetch Agent
	2.3 Load Agent
	2.4 Security and Debug

	3 Methodology
	4 PFM Use-Cases and Performance Results
	4.1 Astar
	4.2 BFS
	4.3 Load Prefetching

	5 FPGA and Power Results
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

