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1. Introduction

The inverse Born series (IBS) is a reconstruction method that is applicable to a wide

variety of inverse problems. It was initially introduced in the setting of the one-

dimensional inverse backscattering problem for the Schrödinger equation [6, 12]. Later,

it was extended to higher dimensions and to a variety of scattering experiments in both

classical and quantum physics [17, 4, 9, 18]. In more recent works, the IBS has been

applied to the inverse problems of optical tomography, electrical impedance tomography,

and acoustic and electromagnetic imaging [13, 11, 14, 16, 7, 1, 8, 10, 2]. Moreover, the

convergence, stability and error of the method have been analyzed. The analysis exploits

the combinatorial structure of the IBS in combination with partial differential equation

(PDE) estimates [13]. See [15] for a survey of these developments.

In previous work, we have applied the IBS to inverse problems on graphs. The

motivation was to isolate the combinatorial structure in a simpler discrete setting [3].

To this end, we were able to show that the IBS converges under qualitatively weaker

conditions than those that hold in the continuum. This result was obtained by making

use of tools from geometric function theory in several complex variables, especially
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estimates of Bloch radii. The key idea is to bound the size of a polydisc on which the

inverse of a holomorphic function exists.

In this work we extend the approach of [3] to PDE inverse problems. As explained

below, we obtain weaker conditions for the convergence and approximation error of the

series compared to the findings of [13]. Our results obtain from an alternative, but

equivalent, formulation of the IBS within which it is possible to construct the analog of

Bloch radii in Banach spaces.

The remainder of this paper is organized as follows. In section 2 we formulate

the Born and inverse Born series in Banach spaces. We then state our main theorems

on the convergence and approximation error of the IBS. The proofs of these results are

presented in section 3. In section 4 we apply our results to the inverse problem of optical

tomography with diffuse light. The Appendix discusses an alternative formulation of

the IBS and compares it to the classical case described in [15].

We use the following notational convention throughout this paper. If X is a Banach

space, Xn indicates the n-fold tensor product Xn = X ⊗ · · · ⊗ X equipped with the

projective norm for n > 1. We note that Xn is generally not a Banach space.

2. Main results

Let X and Y be Banach spaces and Km : Xm → Y be m-multilinear operators with

m ≥ 1. Consider the operator F : X → Y defined by

F [η] =
∞
∑

m=1

Km(η, . . . , η). (1)

We will refer to the Km as forward operators. The forward problem is to evaluate the

map F : η 7→ φ for η ∈ X and φ ∈ Y .

The inverse problem is to determine η assuming φ is known. That is, we wish to

construct a map I : Y → X which is, in a suitable sense, the inverse of F . To proceed,

we define the operator I by

I[φ] =
∞
∑

m=1

Km(φ). (2)

The inverse operator Km : Y → X is homogeneous of degree m and is given by

K1(φ) = K+
1 (φ), (3)

K2(φ) = −K1 (K2(K1(φ),K1(φ))) , (4)

Km(φ) = −
m
∑

n=2

∑

i1+···+in=m

K1Kn (Ki1(φ), . . . ,Kin(φ)) . (5)

Here K+
1 denotes the inverse of K1, provided K−1

1 is bounded, or a regularized

pseudoinverse of K1.

The series (1) and (2) will be referred to as the forward Born series and inverse

Born series, respectively.
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Remark 2.1. We note that the above formulation of the IBS differs, to some extent,

from the series analyzed in [13]. See Appendix A for a discussion of this point.

Throughout this paper we denote by BR,X the ball of radius R centered at the

origin in the Banach space X. We omit the X when there is no ambiguity as to the

Banach space in question. The following theorem establishes a sufficient condition for

convergence of the IBS.

Theorem 2.2 (Convergence of the inverse Born series). Let µ and ν be positive

constants. Suppose that ‖Km(η1, . . . , ηm)‖Y ≤ νµm−1‖η1‖X . . . ‖ηm‖X , for m = 1, 2, · · · .
The inverse Born series converges if ‖K1φ‖X < r , where the radius of convergence r is

given by

r =
1

2µ

[√
16C2 + 1− 4C

]

,

where C = max{2, ‖K1‖ν}. Moreover, if K1φ ∈ Br then the inverse operator I maps Br

into Br0 , with r0 = 2µ/
√
16C2 + 1.

Remark 2.3. The convergence of the IBS was analyzed in [13]. It was found that certain

smallness conditions on both ‖K1φ‖ and ‖K1‖ are sufficient to guarantee convergence.

In particular, the condition on ‖K1‖ is rarely met in practice. Note that a condition on

‖K1‖ is not present in Theorem 2.2.

The limit of the IBS does not, in general, coincide with η. We characterize the

approximation error as follows.

Theorem 2.4 (Approximation error). Suppose that the hypotheses of Theorem 2.2

hold and that the forward and inverse Born series converge. Let η̃ denote the sum of

the inverse Born series and η1 = K1φ. Setting M = max {‖η‖X , ‖η̃‖X} , we further

assume that

M <
1

µ

(

1−
√

ν‖K1‖
1 + ν‖K1‖

)

, (6)

Then the approximation error can be estimated as follows:
∥

∥

∥

∥

∥

η −
N
∑

m=1

Km(φ)

∥

∥

∥

∥

∥

X

≤ M

(‖η1‖X
r

)N+1
1

1− ‖η1‖X
r

+

(

1− ν‖K1‖
(1− µM)2

+ ν‖K1‖
)−1

‖(I −K1K1)η‖X ,(7)

where

M =
2µ√

16C2 + 1
.

We note that the second term on the right-hand side of (7) corresponds to the

absolute error of reconstructing η. We also note that the bound on M in (6) requires

an estimate of the norm ‖K1‖, which is generally not available. However, for the case

of diffuse waves discussed in section 4, ‖K1‖ has been computed in [14].
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3. Proofs of the main results

Before proceeding, we introduce the notion of Bloch radii.

Definition 3.1. Let B be the open unit ball of a complex Banach space and let

h : B → X be a holomorphic function with h(0) = 0 and Dh(0) = Id. The positive

numbers r and P with r < 1 are Bloch radii for h, if h maps a subdomain of Br(0)

biholomorphically onto BP (0).

The next theorem provides a bound on the Bloch radii of a function.

Theorem 3.2 ([5]). Let B be the open unit ball of a complex Banach space X and let

h : B → X be a holomorphic function with h(0) = 0 and Dh(0) = Id. Suppose that

‖h(x)‖ ≤ M for all x ∈ B. Then r = 1/
√
4M2 + 1 and P = 1/(2M +

√
4M2 + 1) are

Bloch radii for h.

The proof of Theorem 2.2 is an immediate consequence of the above theorem.

Proof. We begin by assuming that µ < 1 and define the operator h : X → X by

h[x] = x+
∞
∑

m=2

K1Km(x, . . . , x). (8)

When ‖x‖ ≤ 1, it follows that ‖h[x]‖ ≤ 1 + ‖K1‖νµ 1
1−µ

. Let C0 = 2max{1, ‖K1‖νµ}.
Then ‖h[x]‖ ≤ C0/(1 − µ) for all x ∈ B. From the previous theorem it follows that h

has Bloch radii r = 1/
√
4M2 + 1 and P = 1/(2M +

√
4M2 + 1) with M = C0/(1− µ).

Hence, there exist homogeneous polynomials Am : X → X such that

x = h[x] +
∞
∑

m=2

Am[h[x]], (9)

whenever ‖x‖ < r and h[x] < M . Moreover, the Am are unique. Inserting the definition

of h[x] into the above series and comparing terms at the same order in x, we see that

Km(y) = (Am ◦ K1)(y). (10)

Now, we consider the case for arbitrary µ > 0, which follows by a straightforward

rescaling. For some fixed β > µ, we define

hβ[x] = x+ β−(m−1)

∞
∑

m=2

Km(x, . . . , x). (11)

Bounding this function in a similar way as was done for h, we find that

‖hβ[x]‖ ≤ C/(1− µ/β),

where C = 2max{1, ‖K1‖νµ/β}. Hence, there exist unique homogeneous polynomials

A(β)
m such that

x = hβ[x] +
∞
∑

m=2

A(β)
m (hβ[x]), (12)
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where the above series converges for ‖hβ‖ ≤ 1/(2M+
√
4M2 + 1) withM = C/(1−µ/β),

where Next, we observe that hβ[x] = βh[x/β]. It follows that h−1[y] = h−1
β [βy]/β. In

particular, the series of h−1 has a radius of convergence bounded from below by P/β.

Choosing β = 2µ, we obtain the bound

P =
1

2µ

[√
16C2 + 1− 4C

]

. (13)

Finally, we note that by construction, any function in BP is mapped into a function in

Br, r = 2µ/
√
16C2 + 1.

We now prove the error estimate for the IBS.

Proof of Theorem 2.4. We proceed in two steps. First we give an estimate for the tail

of the IBS. Then we derive a bound for the difference between the sum of the inverse

Born series and the true η.

Put η̃ ∈ B(r,X) and ℓ ∈ B(1, X∗), where X∗ is the dual space of X. Consider the

function

f(t) = ℓ

(

∞
∑

n=1

Kn(η̃ t)

)

. (14)

Note that for all |t| < r/‖η̃‖X , f(t) is analytic in t and |f(t)| < M, where

M =
2µ√

16C2 + 1
. (15)

Using the previous theorem, we note that the ball of radius r is mapped into the ball of

radius r0 = 2µ/
√
16C2 + 1. We further note that since f(t) is analytic for |t| < r/‖η̃‖X ,

there exist coefficients cn(ℓ,X, η̃) such that

f(t) =
∞
∑

n=1

cn(ℓ,X, η̃) tn. (16)

Applying Cauchy’s estimate, we see that

|cn(ℓ,X, η̃)| ≤ M
‖η̃‖nX
rn

, (17)

from which it follows that

|ℓ (Kn(η̃))| ≤ M
‖η̃‖nX
rn

. (18)

Therefore if η(K) is the sum of the first K terms of the IBS and η(∞) is the sum of all

the terms,

∣

∣ℓ
(

η(∞) − η(K)
)∣

∣ =

∣

∣

∣

∣

∣

∑

n>K

ℓKn(η̃)

∣

∣

∣

∣

∣

(19)

≤ M
∑

n>K

‖η̃‖nX
rn

(20)

= M

(‖η̃‖X
r

)K+1
1

1− ‖η̃‖x
r

. (21)
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Taking the supremum over all ℓ ∈ B(1, X∗) we obtain

∥

∥η(∞) − η(K)
∥

∥

X
≤ M

(‖η̃‖X
r

)K+1
1

1− ‖η̃‖x
r

. (22)

Next we bound the difference between η(∞) and the true η. We assume that

‖η‖X ,
∥

∥η(∞)
∥

∥

X
≤ min

{

1

µ

(

1−
√

ν‖K1‖
1 + ν‖K1‖

)

, r0

}

. (23)

By construction we have that

η(∞) +
∞
∑

m=2

Km

(

η(∞), . . . , η(∞)
)

−K1φ = 0. (24)

Since the true η satisfies ‖η‖X < 1/µ, we find that

φ =
∞
∑

m=1

Km(η, . . . , η). (25)

Upon substituting this identity in the previous equation, we obtain

η(∞) − η +
∞
∑

m=2

K1

[

Km

(

η(∞)
)

−Km(η)
]

= −(I −K1K1)η. (26)

Letting M = sup{‖η‖X , ‖η(∞)‖X}, we bound the left-hand side from below, noting that
∥

∥

∥

∥

∥

η(∞) − η +
∞
∑

m=2

K1

[

Km

(

η(∞)
)

−Km(η)
]

∥

∥

∥

∥

∥

X

(27)

≥ ‖η(∞) − η‖X −
∥

∥

∥

∥

∥

∞
∑

m=2

K1

[

Km

(

η(∞)
)

−Km(η)
]

∥

∥

∥

∥

∥

X

(28)

≥ ‖η(∞) − η‖X − ν‖K1‖
∞
∑

m=2

mµm−1Mm−1
∥

∥η − η(∞)
∥

∥

X
(29)

≥
(

1− ν‖K1‖
(1− µM)2

+ ν‖K1‖
)

‖η(∞) − η‖X . (30)

Thus

‖η(∞) − η‖X ≤
(

1− ν‖K1‖
(1− µM)2

+ ν‖K1‖
)−1

‖(I −K1K1)η‖X , (31)

provided that

M <
1

µ

(

1−
√

ν‖K1‖
1 + ν‖K1‖

)

, (32)

which holds by assumption. The estimate (7) follows immediately from (22) and (31),

together with the triangle inequality.
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4. Application to diffuse waves

We now apply Theorem 2.2 to the inverse scattering problem for diffuse waves. We

follow [13] with minor modifications. The energy density u of a diffuse wave satisfies

−∇2u+ k2(1 + η(x))u = g, x ∈ R
3, (33)

lim
|x|→∞

u = 0. (34)

where 1 + η(x) is nonnegative, g is the source, and k is a nonnegative constant. Here

we assume that the support of η lies in Ba, the ball of radius a, and the sources and

detectors lie on a sphere of radius R > a, which we denote ∂BR. In particular, g is a

function supported on BR.

The solution to (33) can be expressed in the form

φ(x, y) =
∞
∑

m=1

Km(η, . . . , η)(x, y), x, y ∈ ∂BR. (35)

where

Km(η1, . . . , ηm)(x, y) = −(−k2)m
∫

Ba

. . .

∫

Ba

G(x, z1)G(z1, z2) . . . G(zm−1, zm)

×G(zm, y)η(z1) . . . η(zm) dz1 . . . dzm. (36)

Here φ(x, y) is the scattered field for a source at the point x and a detector at y. The

Green’s function G is given by

G(x, y) =
e−k|x−y|

4π|x− y| . (37)

Eq. (35) is the Born series for diffuse waves.

The inverse problem is to recover η from measurements of φ. The associated IBS

is of the form

η(x) =
∞
∑

m=1

Km(φ)(x), (38)

where Km is defined by (3). The following proposition provides sufficient conditions for

the convergence of the inverse series.

Proposition 4.1. Let ν and µ be the positive constants defined by

ν = k2|Ba|1/2
R

16πa
log

∣

∣

∣

∣

R2 + a2

R2 − a2

∣

∣

∣

∣

and

µ = k2

√

a

4π
,

and let K1 be any bounded linear operator from L2(∂BR × ∂BR) → L2(Ba). The

corresponding inverse Born series for diffuse waves converges for all φ such that

‖K1φ‖L2(Ba) ≤
1

2µ

[√
16C2 + 1− 4C

]

, (39)

where C = max{1, ‖K1‖ν}.
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Proof. We begin by observing that

‖K1(η)‖L2(∂BR×∂Br) ≤ k2|Ba|1/2‖η‖L2(Ba) sup
y∈Ba

‖G(y, ·)‖2L2(∂BR). (40)

A straightforward calculation shows that

sup
y∈Ba

‖G(y, ·)‖2L2(∂BR) ≤
R

16πa
log

∣

∣

∣

∣

R2 + a2

R2 − a2

∣

∣

∣

∣

. (41)

Similarly, repeated application of Holder’s inequality yields

‖Km(η1, . . . , ηm)‖L2(∂BR×∂Br) ≤ k2m‖η1‖L2(Ba) . . . ‖ηm‖L2(Ba)

× |Ba|1/2 sup
y∈Ba

‖G(y, ·)‖2L2(∂BR) sup
y∈Ba

‖G(y, ·)‖m−1
Ba

. (42)

The last term on the right-hand side of the above expression is easily seen to be bounded

by (a/4π)(m−1)/2. It follows that if we define

ν = k2|Ba|1/2
R

16πa
log

∣

∣

∣

∣

R2 + a2

R2 − a2

∣

∣

∣

∣

and

µ = k2

√

a

4π
,

then

‖Km(η1, . . . , ηm)‖L2(∂BR×∂BR) ≤ ‖η1‖L2(Ba) . . . ‖ηm‖L2(Ba)νµ
m−1. (43)

Thus, the Born series

φ(x, y) =
∞
∑

m=1

Km(η, . . . , η)(x, y), (44)

converges in L2(∂BR×∂BR) if ‖η‖2 ≤ 1/µ. Moreover, by Theorem 2.2, for any bounded

linear operator K1 : L
2(∂BR × ∂BR) → L2(BRa

), the IBS
∞
∑

m=1

Km(φ), (45)

converges for all φ such that

‖K1φ‖L2(Ba) ≤
1

2µ

[√
16C2 + 1− 4C

]

, (46)

where C = max{1, ‖K1‖ν}.

Remark 4.2. The above analysis applies more generally, and similar results can be

obtained for many other problems where the inverse Born series has been applied [15].
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Appendix A. Construction of the inverse Born series

The inverse Born series analyzed in this paper is slightly different than the classical

one described in [13]. Though the two are equivalent when the linearized operator

K1 has a bounded inverse, writing the series as in (3) presents several analytical and

computational advantages. Here we describe the construction of both forms of the IBS,

and discuss the computational ramifications.

The derivation of both forms of the IBS series starts with the observation that for

η small enough,

φ = K1(η) +K2(η, η) +K3(η, η, η) + · · · , (A.1)

for multilinear operators K1, K2, K3, . . . . Next, we assume that the converse holds,

namely that for φ sufficiently small, we can expand η in of the form

η = K1(φ) +K2(φ, φ) +K3(φ, φ, φ) + · · · , (A.2)

for some multilinear operators K1, K2, . . . . Substituting the first series into the second,

we find that

η = K1(K1(η) +K2(η, η) + · · ·) +K2(K1(η) + · · · , K1(η) + · · ·) + · · · .(A.3)
Equating terms of the same order in η on the left and right hand sides of the above

yields

K1K1 = Id, (A.4)

K2 = −K2 ◦ (K1 ⊗K1), (A.5)

K3 = −K2 ◦ (K1 ⊗K2) ◦ (K1 ⊗K1 ⊗K1) (A.6)

−K2 ◦ (K2 ⊗K1) ◦ (K1 ⊗K1 ⊗K1)−K1 ◦K3 ◦ (K1 ⊗K1 ⊗K1),

Kn = −
n−1
∑

m=1

∑

i1+...+im=n

Km ◦ (Ki1 ⊗Kim) ◦ Kn
1 . (A.7)

This is the standard formulation of the IBS presented in [13]. We remark that only

the diagonal elements (at equal arguments) of K2,K3, . . . are uniquely determined by

(A.3), meaning K2(φ, φ), K3(φ, φ, φ),Km(φ, . . . , φ), · · · . In particular, to each term it is

possible to add any operator which is antisymmetric in any two of its arguments.

Now, if instead one substitutes the series for η into the series for φ, we find that

φ = K1(K1(φ) +K2(φ) + · · ·) +K2(K1(φ) + · · · ,K1(φ) + · · ·) + · · · . (A.8)
Equating terms of the same order in φ on the left and right hand sides, we see that

K1K1 = Id, (A.9)

K2(φ) = −K1K2(K1(φ),K1(φ)), (A.10)

K3(φ) = −K1K3(K1(φ),K1(φ),K1(φ))−K2(K1(φ),K2(φ))−K2(K2(φ),K1(φ)),

(A.11)

Km(φ) = −
m
∑

n=2

∑

i1+···+in=m

K1Kn(Ki1(φ), . . . ,Kin(φ)). (A.12)
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We note that the above recurrence relations only provide the values of K2,K3, . . . on

their diagonals (when all the arguments are equal). On the other hand, unlike the

classical IBS, the only terms involving the inverse operators K1,K2,K3, . . . appearing

on the right-hand side of (A.9-A.12) are only evaluated on their diagonals. Thus, unlike

the classical IBS, we do not need to evaluate K2, . . . ,K3, · · · off the diagonal.

Computationally, the above reformulation of the IBS presents a significant

advantage. Inspecting the formulae, each Km, m ≥ 2, is only evaluated at one argument,

φ. Thus, the collection of functions K1(φ),K2(φ), . . . can be stored and re-used, obviating

the need for recursive re-evaluations of K2,K3, . . . at each order. This is in contrast to

the classical case, where the arguments of K2, for example, change depending on which

term in the series is being evaluated. We intend to explore these observations in future

work.
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