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1. Introduction

The inverse Born series (IBS) is a reconstruction method that is applicable to a wide
variety of inverse problems. It was initially introduced in the setting of the one-
dimensional inverse backscattering problem for the Schrodinger equation [6, 12]. Later,
it was extended to higher dimensions and to a variety of scattering experiments in both
classical and quantum physics [17, 4, 9, 18]. In more recent works, the IBS has been
applied to the inverse problems of optical tomography, electrical impedance tomography,
and acoustic and electromagnetic imaging [13, 11, 14, 16, 7, 1, 8, 10, 2]. Moreover, the
convergence, stability and error of the method have been analyzed. The analysis exploits
the combinatorial structure of the IBS in combination with partial differential equation
(PDE) estimates [13]. See [15] for a survey of these developments.

In previous work, we have applied the IBS to inverse problems on graphs. The
motivation was to isolate the combinatorial structure in a simpler discrete setting [3].
To this end, we were able to show that the IBS converges under qualitatively weaker
conditions than those that hold in the continuum. This result was obtained by making
use of tools from geometric function theory in several complex variables, especially
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estimates of Bloch radii. The key idea is to bound the size of a polydisc on which the
inverse of a holomorphic function exists.

In this work we extend the approach of [3] to PDE inverse problems. As explained
below, we obtain weaker conditions for the convergence and approximation error of the
series compared to the findings of [13]. Our results obtain from an alternative, but
equivalent, formulation of the IBS within which it is possible to construct the analog of
Bloch radii in Banach spaces.

The remainder of this paper is organized as follows. In section 2 we formulate
the Born and inverse Born series in Banach spaces. We then state our main theorems
on the convergence and approximation error of the IBS. The proofs of these results are
presented in section 3. In section 4 we apply our results to the inverse problem of optical
tomography with diffuse light. The Appendix discusses an alternative formulation of
the IBS and compares it to the classical case described in [15].

We use the following notational convention throughout this paper. If X is a Banach
space, X" indicates the n-fold tensor product X" = X ® --- ® X equipped with the
projective norm for n > 1. We note that X" is generally not a Banach space.

2. Main results

Let X and Y be Banach spaces and K,, : X" — Y be m-multilinear operators with
m > 1. Consider the operator F : X — Y defined by

Fin) =Y Kn(n,--.n). (1)

We will refer to the K, as forward operators. The forward problem is to evaluate the
map F:n—¢forne X and p €Y.

The inverse problem is to determine 7 assuming ¢ is known. That is, we wish to
construct a map Z : Y — X which is, in a suitable sense, the inverse of F. To proceed,
we define the operator Z by

I[0] = ) Kn(9)- (2)
m=1
The inverse operator IC,, : Y — X is homogeneous of degree m and is given by
Ki(¢) = K{(¢), (3)
Ka(o) = —Ki (Ka2(Ki(0), Ki(9))) , (4)

Kn(@)==> Y KE,(Ki(9),....Ki.(¢)). (5)
n=2 i1+-+in=m
Here K, denotes the inverse of K;, provided K;' is bounded, or a regularized
pseudoinverse of K.
The series (1) and (2) will be referred to as the forward Born series and inverse
Born series, respectively.
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Remark 2.1. We note that the above formulation of the IBS differs, to some extent,
from the series analyzed in [13]. See Appendix A for a discussion of this point.

Throughout this paper we denote by Bgr x the ball of radius R centered at the
origin in the Banach space X. We omit the X when there is no ambiguity as to the
Banach space in question. The following theorem establishes a sufficient condition for
convergence of the IBS.

Theorem 2.2 (Convergence of the inverse Born series). Let p and v be positive
constants. Suppose that | K., (n1, .. 7m)lly < ve™ Hmllx - |19mllx, form =1,2,---.
The inverse Born series converges if ||K1¢||x < r , where the radius of convergence r is
given by

1

r=s- [\/1602 Fi- 40] ,

i
where C' = max{2, ||KC1||v}. Moreover, if K;¢ € B, then the inverse operator Z maps B,
into B,,, with ro = 2u/+v/16C? + 1.

Remark 2.3. The convergence of the IBS was analyzed in [13]. It was found that certain
smallness conditions on both [[IC1¢|| and ||| are sufficient to guarantee convergence.
In particular, the condition on ||IC1|| is rarely met in practice. Note that a condition on
|/C1]| is not present in Theorem 2.2.

The limit of the IBS does not, in general, coincide with 7. We characterize the
approximation error as follows.

Theorem 2.4 (Approximation error). Suppose that the hypotheses of Theorem 2.2
hold and that the forward and inverse Born series converge. Let 77 denote the sum of
the inverse Born series and 1 = Ky¢. Setting M = max {||n||x, |7]|x}, we further
assume that

1 K|
M<—|1—|——— |, 6
" ( VTl .

Then the approximation error can be estimated as follows:

oy (Il )Y
- r 1 — lmlix

vkl e
# (1= B o) e - 0

n— Z K ()

X

where
2
V16C2 +1

We note that the second term on the right-hand side of (7) corresponds to the

absolute error of reconstructing . We also note that the bound on M in (6) requires
an estimate of the norm || ||, which is generally not available. However, for the case
of diffuse waves discussed in section 4, ||/ || has been computed in [14].
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3. Proofs of the main results

Before proceeding, we introduce the notion of Bloch radii.

Definition 3.1. Let B be the open unit ball of a complex Banach space and let
h : B — X be a holomorphic function with h(0) = 0 and Dh(0) = Id. The positive
numbers r and P with » < 1 are Bloch radii for A, if A maps a subdomain of B,(0)
biholomorphically onto Bp(0).

The next theorem provides a bound on the Bloch radii of a function.

Theorem 3.2 ([5]). Let B be the open unit ball of a complex Banach space X and let
h : B — X be a holomorphic function with h(0) = 0 and Dh(0) = Id. Suppose that
|h(x)|| < M for all x € B. Then r = 1//4M? +1 and P = 1/(2M + /4M? + 1) are
Bloch radii for A.

The proof of Theorem 2.2 is an immediate consequence of the above theorem.

Proof. We begin by assuming that ;< 1 and define the operator h: X — X by
hlx] :x—I—ZICle(m,...,m). (8)
m=2

When ||z < 1, it follows that [|A[z]|| < 1+ [[Kiflvpgs,. Let Co = 2max{1, [[Ki[lvu}.
Then ||h[z]|| < Co/(1 — p) for all x € B. From the previous theorem it follows that h
has Bloch radii » = 1/v/4M?2 +1 and P = 1/(2M + /4M? + 1) with M = Cy/(1 — p).
Hence, there exist homogeneous polynomials A,, : X — X such that

v =hlz]+ > An[h[z]], (9)

whenever ||z|| < r and h[z] < M. Moreover, the A,, are unique. Inserting the definition
of hlx] into the above series and comparing terms at the same order in =, we see that

Kn(y) = (Am o K1)(y). (10)

Now, we consider the case for arbitrary p > 0, which follows by a straightforward
rescaling. For some fixed S > u, we define

hglz] =z + "D " Ko (x, .., x). (11)
m=2
Bounding this function in a similar way as was done for h, we find that

1hsla]ll < C/(1 = p/B),

where C' = 2max{1, ||Ky|lvun/B}. Hence, there exist unique homogeneous polynomials
AP such that

x = hgle] + Y A (hsla)), (12)
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where the above series converges for ||hg| < 1/(2M++/4M?2 + 1) with M = C/(1—pu/B),
where Next, we observe that hglz] = Bh[z/f]. It follows that h~'[y] = hgl[ﬁy]/ﬁ. In
particular, the series of h~! has a radius of convergence bounded from below by P/j.
Choosing = 2u, we obtain the bound

|
P=5 [\/1602+ — 40 . (13)

Finally, we note that by construction, any function in Bp is mapped into a function in

B, r=2u/v16C? + 1. O
We now prove the error estimate for the IBS.

Proof of Theorem 2.4. We proceed in two steps. First we give an estimate for the tail
of the IBS. Then we derive a bound for the difference between the sum of the inverse
Born series and the true 7.

Put 77 € B(r, X) and ¢ € B(1, X*), where X* is the dual space of X. Consider the

function

fey=t (f fcmt)) . (1)

Note that for all |t| < r/||7||x, f(t) is analytic in t and |f(t)| < M, where
21
M= —. 15
V16C? + 1 (15)

Using the previous theorem, we note that the ball of radius r is mapped into the ball of
radius ro = 241/v/16C? + 1. We further note that since f(t) is analytic for [¢t| < /|7 x,
there exist coefficients ¢, (¢, X, 7) such that

F&) =" el X, i) t". (16)
n=1
Applying Cauchy’s estimate, we see that
- %
ealt, X, 7)) < 21T (17)
from which it follows that
. %
)] < Al (18)

Therefore if n6) is the sum of the first K terms of the IBS and 1> is the sum of all
the terms,

€ (™ =" )] =D K (@) (19)
<n Yy Ik (20)
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Taking the supremum over all £ € B(1, X*) we obtain

- K+1
17 — g < M (||77||x) 1 (22)

r | Dl
T

Next we bound the difference between 7> and the true . We assume that

)1 [ vy
(@) < Sl I I D Lt 1 L . 2
Ill H77 HX N mm{u < 1+ vy 1 (23)

By construction we have that
7 + i Ko ()., 0) — K¢ = 0. (24)
m=2
Since the true 7 satisfies ||n||x < 1/p, we find that
6= Kolno o) (25)
m=1

Upon substituting this identity in the previous equation, we obtain
e}
m=2

Letting M = sup{||n|lx, [7°°|/x}, we bound the left-hand side from below, noting that

N =0+ Ky Ko (1) = Kun(n)] (27)
m=2 X
> [0 = llx — > K [Kn () = Kun(n)] (28)
m=2 X
> [ = nllx = VKl mpm M g =) (29)
m=2
V[|IKA | (c0)
> T x \o - .
> (1= gl o) 1 < ol (30
Thus
- v||K !
1 = alle < (1= S v -kl G

provided that

1 K|
M<=|1— )2l 39
p ( ISR 42

which holds by assumption. The estimate (7) follows immediately from (22) and (31),
together with the triangle inequality. ]
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4. Application to diffuse waves

We now apply Theorem 2.2 to the inverse scattering problem for diffuse waves. We
follow [13] with minor modifications. The energy density u of a diffuse wave satisfies

—V2u+E(14+n@)u=g xR (33)
lim u = 0. (34)
|z|—o0

where 1 4 n(z) is nonnegative, g is the source, and k is a nonnegative constant. Here
we assume that the support of 7 lies in B,, the ball of radius a, and the sources and
detectors lie on a sphere of radius R > a, which we denote 0Bpg. In particular, g is a
function supported on Bpg.

The solution to (33) can be expressed in the form

Sz, y) =D Kn(n,...,n)(x,y), =,y € OB (35)
m=1
where
Kot i) (@) = —(—k;?)m/ G )G ) - Gl o)
a B,

X G(zm, y)n(z1) .. .n(zm) dz1 ... dzp,. (36)

Here ¢(z,y) is the scattered field for a source at the point = and a detector at y. The
Green’s function G is given by

G(l‘,y) =

Eq. (35) is the Born series for diffuse waves.

e_k‘z_y‘

. 37
Ar|z — y| (37)

The inverse problem is to recover n from measurements of ¢. The associated IBS
is of the form

(@) =Y Kn(@)(), (38)

where IC,, is defined by (3). The following proposition provides sufficient conditions for
the convergence of the inverse series.

Proposition 4.1. Let v and p be the positive constants defined by

R R? 4+ o2
= K?|B,|"*——1
v | Bal 16ma 8 R? — @?
and
a
= k2, /=
12 A’

and let IC; be any bounded linear operator from L*(0Br X dBgr) — L*(B,). The
corresponding inverse Born series for diffuse waves converges for all ¢ such that
1
Kol < 5 [VIBCPHT - 4c] (39)
where C' = max{1, || ||v}.
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Proof. We begin by observing that
1B () |22 0808,y < K2[Bal 2|10l 25, sup |Gy, WNizo8.): (40)
Yy a

A straightforward calculation shows that

R R% + a?
sup [|G(y, )| 7208, < < T6a 08 ‘W (41)

yE a
Similarly, repeated application of Holder’s inequality yields

1K (n1, - ) L2 0Brxom) < K Imllr2s,) -- H?7mHL2(Bu)
X | Ba|"? sup |G (y, ) 72085 SUP Gy, )B. (42)

yEB,
The last term on the right-hand side of the above expression is easily seen to be bounded
by (a/47)™=V/2 Tt follows that if we define

R R? 4 a?
= k| Bu|'?——1
v | Bal 16ma 8 R? —

and

a

= k2, =

" An’
then

[ K (1, - )l L2 0B px08) < 1mll2s.) - - - 10mll 2 ve™ (43)

Thus, the Born series

Z K,, (2,y), (44)

converges in L?(0Bg x OBg) if ||n||l2 < 1/u. Moreover, by Theorem 2.2, for any bounded
linear operator Ky : L?(0Bgr x 0Bgr) — L*(Bg,), the IBS

> Kul(o), (45)
m=1
converges for all ¢ such that
IKdlloqe) < 5 [VIBOT+1 - 40 (46)
where C' = max{1, ||Cy]|v}. O

Remark 4.2. The above analysis applies more generally, and similar results can be
obtained for many other problems where the inverse Born series has been applied [15].
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Appendix A. Construction of the inverse Born series

The inverse Born series analyzed in this paper is slightly different than the classical
one described in [13]. Though the two are equivalent when the linearized operator
K has a bounded inverse, writing the series as in (3) presents several analytical and
computational advantages. Here we describe the construction of both forms of the IBS,
and discuss the computational ramifications.

The derivation of both forms of the IBS series starts with the observation that for
1 small enough,

for multilinear operators K, Ky, K3, .... Next, we assume that the converse holds,
namely that for ¢ sufficiently small, we can expand 7 in of the form

n=Ki(¢) + Ks(9,0) + Ks(¢, 0,0) + -+ -, (A.2)

for some multilinear operators K1, Ko, . ... Substituting the first series into the second,
we find that

n=Ki(Ki(n) + Ka(n,n) + ) + Ko(Ki(n) + -, Ki(n) + ) + - (A.3)
Equating terms of the same order in 7 on the left and right hand sides of the above

yields
KKy = 1d, (A.4)
Ky =-Kyo(Ki®Ky), (A.5)
Ks =-Kso(K1®Kjy)o(K;®K®K) (A.6)
— Ko (K@ K)o (K@K ®@Ky) —Kio0oK;zo0 (K ®K®Ky),
n—1
Ko ==Y > Kpno(K,®K;)oK]. (A7)

m=1i14...+im=n
This is the standard formulation of the IBS presented in [13]. We remark that only
the diagonal elements (at equal arguments) of Ky, K, ... are uniquely determined by
(A.3), meaning Ky(o, ¢), Ks(o, ¢, ), Kin(®,...,¢),---. In particular, to each term it is
possible to add any operator which is antisymmetric in any two of its arguments.
Now, if instead one substitutes the series for 7 into the series for ¢, we find that

¢ = Ki(Ki(¢) + Ka(9) + - -+) + Ko (Ki(¢) + -, Ki(d) +-+-) + -+ . (A8)
Equating terms of the same order in ¢ on the left and right hand sides, we see that

KKy =1d,

K2(¢) = —K1K2(’C1(¢)JC1(¢))7

(A.9)

(A.10)

Ks(¢) = —KiK3(Ki(0), Ki(0), Ki(0)) — Ka(Ki(9), K2(9)) — Ka(K2(9), Ki(9)),

’Cm<¢) - _Z Z IClKn(’Ci1(¢)='~wICin(¢))'

n=2t1++in=m

(A.11)

(A.12)
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We note that the above recurrence relations only provide the values of Ky, s, ... on
their diagonals (when all the arguments are equal). On the other hand, unlike the
classical IBS, the only terms involving the inverse operators Ky, Ko, K3, ... appearing
on the right-hand side of (A.9-A.12) are only evaluated on their diagonals. Thus, unlike
the classical IBS, we do not need to evaluate Ko, ..., s, - - - off the diagonal.

Computationally, the above reformulation of the IBS presents a significant
advantage. Inspecting the formulae, each IC,,,, m > 2, is only evaluated at one argument,
¢. Thus, the collection of functions Ky (¢), Ka(¢), . . . can be stored and re-used, obviating
the need for recursive re-evaluations of Ko, K3, ... at each order. This is in contrast to
the classical case, where the arguments of ICy, for example, change depending on which
term in the series is being evaluated. We intend to explore these observations in future
work.
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