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Abstract

It is important to predict any adversarial attacks and their types to enable effective defense systems.
Often it is hard to label such activities as malicious ones without adequate analytical reasoning. We
propose the use of Hidden Markov Model (HMM) to predict the family of related attacks. Our proposed
model is based on the observations often agglomerated in the form of log files and from the target or
the victim’s perspective. We have built an HMM-based prediction model and implemented our proposed
approach using Viterbi algorithm, which generates a sequence of states corresponding to stages of a
particular attack. As a proof of concept and also to demonstrate the performance of the model, we have

conducted a case study on predicting a family of attacks called Action Spoofing.
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I. INTRODUCTION

Hidden Markov Model (HMM) is a probabilistic model that can be used to predict a set of
“hidden” states based on certain observations. The foundation of Hidden Markov Model (HMM)
was initially introduced with its applications primarily used in speech and signal processing.
Nowadays, HMM finds its applications across several domains such as natural language process-
ing and machine-learning due to the simplicity of adapting the model to predict unknown (i.e.,
hidden) sequence of states. The prediction is based on the features or observations emitted from
each state. HMM are very useful in cyber security domain as cyber-attacks are often conducted

in several phases or steps where these steps may not always be conspicuous as attackers often



try to mask their activities. However, HMM can help in identifying patterns in the data such as
network trace spread across time and can evidently help in determining attacks [1]. HMM also
find its applications in cloud computing to detect multi-step attacks using the cloud [2]. It also
can be used to detect attacks that target misconfigured software applications [3] [4].

Cyber-attacks are often conducted in several phases or steps, which may not always be
conspicuous, as the attackers often try to mask their activities by following a stealth approach.
HMM is an effective technique in unmasking the attacker’s intentions by correlating the temporal
observations spread across network and activities’ log files. HMMs have been widely used
in combination with intrusion detection systems (IDS) as an early-warning system for attack
detection or for detecting anomalies in the network.

In this paper, we propose to adopt Hidden Markov Model to predict attacks. The introduced
model consists of hidden states and observations related to the family of attacks under consid-
eration. To demonstrate the formulation and modeling of the HMM-based attack prediction, the
results of a case study will be presented with its focus on action spoofing.

The case study considers user’s activities that are directly observable (e.g., user opens an app)
and the attacker’s malicious activities running in the background which are hidden to the user.
Moreover, we are dealing with attacks belonging to the same family instead of different families.
Defining a HMM model for attacks falling under varied families can get infeasible due to a very
large search space which is computationally infeasible. The motive to consider an attack family
is to simplify the problem by grouping attacks with similar properties and characteristics. As a
result, a defense strategy employed to confront a certain type of attack or mitigate the risk of
such attack can be adapted for similar attacks classified in the same family. The observations
are chosen from the user or the user’s perspective (i.e., victim) as we want to assess if the
observations can be successfully utilized in determining the corresponding attack family. The
key contributions of this paper are:

1) We introduce an attack prediction model using Hidden Markov Model in which attacks
are grouped based on their characteristics and thus, prediction is performed on the attacks
belonging to the same family.

2) We demonstrate the process of the introduced model in predicting attacks through a case
study where observations are derived from analysis of log files in the context of predicting
a family of attacks belonging to action spoofing.

This paper is structured as follows: The literature of this line of research is reviewed in Section



II. Section III briefly presents the technical background of Hidden Markov Model (HMM). The
problem of attack prediction using HMM is presented in Section IV. Section V presents the
methodology of how attacks are modeled into the hidden markov model. The use of Viterbi
algorithm to determine the type of attack based on observations is presented in Section VI. The
results of a simulation are presented in Section VII. The practical implications of the approach
are discussed in Section VIII. The conclusion of the paper along with some future work are

provided in Section IX.

II. RELATED WORK

Zan et al. [5] present a framework to detect cyber attacker’s intentions based on HMM called
HMM-AIP (Attack Intention Prediction). The authors train several HMMs to predict seven types
of attack intentions based on alerts sequence received from the IDS. The authors consider six
types of attacks scenarios 1) privilege escalation, 2) worm, 3) botnet, 4) phishing, 5) Web attack
and 6) DDoS to train the HMM with the goal of detecting attacker’s intentions based on the
sequence of attack alerts from the IDS. The authors evaluate their framework using the DARPA
2000 intrusion dataset to map the alerts to attack intentions.

HMM has also been used to predict the attack sequences in the cloud computing environment.
The detection of attacks in the cloud is vital as the attackers can use the cloud computing
resources to launch larger attacks. Chen et al. [2] propose a system based on HMM to detect
attacks in the cloud through analysis of log files. The assumption is that the malicious activities
by the attacker often leave some traces at each attack step, which can be analyzed from the logs
files.

Kholidy et al. [6] presents a risk-centric approach to predict multi-stage attack in the cloud. The
authors use an HMM model to predict the attack sequence from the sequence of alerts generated
by the IDS. The HMM model is trained to recognize attack signatures based on combinations of
alerts relevant to the attack. The authors conclude that the HMM model combined with IDS was
able to generate early-warning alerts for severe attacks by 39 minutes before the attack phase.

Holgado et al. [1] propose a method based on HMM to predict multi-stage attacks utilizing the
alert from the IDS. The authors use a clustering method that tags alerts with certain keywords.
The textual description of the alerts is used to extract significant keywords utilizing the CVE
repository. Once tagged, these alerts are used as observations for training the HMM model to

determine the multistep attack sequence.



Besides HMM, there are some other techniques for attack predictions such as Bayesian
networks [7], decision trees [8], hidden petri nets [9], data-intensive Artificial Neural Networks
(ANN) and deep learning [10]. Fuzzy and game theoretic approaches for attack prediction are
useful for the IDS systems to take a defensive action in response to when an attack is detected
[1]. Whereas, hidden petri colored nets [9] require pre and post-conditions of an attack in order
to predict it.

Unlike hidden Petri nets, HMM allows prediction of attacks based on observations from
each state and does not require a large set of conditions to build the model [1]. In addition
to performance benefits of HMM over decision trees [8], HMM does not need a lot of data
compared to ANN and deep learning models [10]. The work presented in this paper uses “textual
description” of security attacks to formulate hidden states and observations which is different
than existing techniques such as measuring the correlation of security events to predict attacks.
Furthermore, our proposed model predicts related but different attack types and can be further

adapted to any multi-step attacks.

III. A BRIEF BACKGROUND OF HMM
A. Hidden Markov Model

Hidden Markov Model (HMM) is a probabilistic model and it is kind of an extension to
Markov chains. A Markov Chain is a stochastic model that describes transition between events
or states based on some probability values. Unlike Markov chains, the states in a HMM are not
directly observable and thus are “hidden.” The states can be estimated based on the emissions
or observations at each state.

Like Markov chains, HMM embodies two important assumptions about the model. The first
property also known as “markov assumption” states that given a sequence of states Xy, X1, ...X,,

the future state X, is only influenced by the current state X,,:

PT(Xn_H :]|Xn :'L.,Xn—l :a,...7X0 = Z) =
P?“(Xn+1 - j’Xn - Z)
Additionally, the probability of transition from state i to state j remains the same throughout

the sequence. This property is also know as “time invariance” or “time stationary” property (i.e.,

Pr(X,4+1 = j|X, = i) remains same Vn =0,1,2... ).



An HMM consists of the following components [11]:

A set of finite states X = {X;, X5, X3,..., X,,}. These states are not directly observable

and are hidden. Instead, each state emits or outputs a unique symbol which can be used to
estimate the state.

— A set of observations or emissions Y = {Y},Y5,...,Y,}, where Y; are distinct symbols
emitted by each state X; at different time intervals.

— A state-transition matrix A = a1, a12, . . . a;; that describes the probability of transitioning
from state ¢ to state j such that, Z?Zl ai; =1 1<4,5<n.

— An observation probability matrix B = b;(Y;), where b; is the probability of observation
emitted Y; by state 7.

— An initial probability distribution 7 = 7, m,,... 7, where 7; is the probability that the

model starts at state . It should be noted that >  m; = 1.

Together, these components of the HMM can represented by the notation A\(A, B, ).

B. Fundamental Problems Modeled by HMMs

Rabiner [12] describes three fundamental problems that can be addressed using hidden Markov

models:

1) Evaluation Problem. Given the observations Y = {Y7,Y3,...,Y;} and the HMM A(A, B, 7),
how can we deduce P(Y'|)\) efficiently? More specifically, given an HMM and a sequence
of observations how likely is it that the given HMM results in those observations?

2) Decoding Problem. Given the observations Y = {Y7,Y5,...,Y;} and the HMM A\(A, B, 7),
how to find a state sequence X = {X;, Xs, X3,...,X,} that best corresponds to the
observations. The key idea is to find the correct or most probable sequences of hidden
states of the HMM based on sequence of observations values.

3) Optimization Problem. Given an HMM \ with parameters A, B and 7, how to optimize
the parameters to maximize P(Y|\)? This process is also known as “training” as the
observed sequences are used to adjust (fine-tune) the values of the model’s parameters

The first problem can be solved by an algorithm known as Forward-Backward Procedure.

The second problem can be resolved using Viterbi algorithm and finally, the solution to the
third problem can be achieved by Baum-Welch or EM (Expected-Maximization) methods. In this

paper, we apply the HMM to our application domain to predict the sequences of attacker’s state



in the attack execution flow based on the observations from the users actions (i.e., an instance
of the second problem). The attack’s hidden states are then used to predict the attack type. We

discuss how we formulated Viterbi algorithm in the next section.

I'V. PROBLEM FORMULATION

It is often important to find the states that produces a given observation sequence. For example,
given a patient’s symptoms monitored over a period of time, a doctor may wish to find what
disease resulted in the observed set of symptoms. An HMM can be used for such applications.
The Viterbi algorithm tries to determine the best sequence of hidden states that resulted in the
observed sequences. Viterbi algorithm is an application of dynamic programming and it uses
recursion to determine the hidden state sequence given the observations. It uses a graph structure
called “trellis” consisting of various paths connecting the start state to other hidden states at
different time intervals. The Viterbi algorithm then estimates the likelihood of following a path
given the input sequence of observation at each time step. The following subsection describes

formulation process used in our domain.

A. Viterbi Algorithm

Given a particular sequence of observations Y = {Y},Y5,...,Y;} and the HMM \(A, B, 7),
the Viterbi algorithm aims to find an optimal hidden state sequence P(X|Y,\) associated with
the given observation sequence. In the context of this paper, Y; is the instance or event that is
observed or seen by the user/victim at a time instant # with a malicious action running in the
background unknown to the user (i.e. hidden state X;). The tasks of logging into the system and
receiving email links are examples of such events. Once we define the model parameters (A, B,,
), we then define [12]:

a(i) =  max  P[X;jXs...X;=1,Y1Y5... Y|} (1)
X1,X2,0 Xi—1

where o, (i) represents the Viterbi variable which corresponds to the highest probability of
a single path given the observation sequence till time interval ¢. More specifically, Equation 1
attempts to find that hidden state sequence: X;, Xo,...X; = ¢ whose probability of emitting
the given observation sequence: Y1Y5...Y; is maximum. Here, X; represents the hidden state at
time interval t. In other words, the algorithm tries to find a sequence of states (events) that are

most likely to produce the input observation sequence, given the HMM model .



In our problem domain, a; would be high for that attack path (i.e., hidden state sequence),

where the given observation sequence closely resembles the outcome of execution flow (events)

in that attack path. For time ¢ + 1:

bir1(f) = ara () = [max ey (i)ai;].b;(Yirn) 2)

where:

— 1441(J) is used to keep track of the max value for Equation (1),

— b; is the probability of observation Y emitted by hidden state j at time step ¢ + 1,

— and a;; is the probability of transitioning from state ¢ to j.

To derive the state sequence, we need to keep a track of the values that corresponds to the

highest probability of a single path for each ¢ and state j. The implementation of Viterbi algorithm

can then be specified through four steps [12]:

1) Initialization:

2)

(i) =0 (3b)

We initialize the Viterbi variable by multiplying the initial probability of state i (i.e., 7;),
with the emission probability of state i to Y at time ¢ = 1 (i.e., b;(Y})).

Recursion:

a(j) = max[oy_1(D)ailb;(V), 2<t<T
1<i<n J17a (4a)

I<j<n
Here, the maximum value among the multiplication results is calculated. A single mul-
tiplication comprises of: 1) previous Viterbi variable of state i: «;_1(i), 2) the transition
probability from state ¢ to j: a;;, times 3) the emission probability from state j to obser-

vation Y: b;(Y;) and assign that to the new Viterbi variable.

Ui(J) = arg mazi<icnlap_1(i)ay;), 2<t<T
(4b)

1<j<n

The 1 array is used to save those state entries that maximized the Viterbi variable.



3) Termination:

P = 121%}7(1[047“(2.” (5a)
X7 = arg maxi<i<p|ar(i)] (5b)

It represents the probability of the best entire state sequence. In the context of this paper,
P~ gives the best path probability (attack path) while X7 describes the actual hidden states
corresponding to the best attack path.

4) Path Backtracking:

X, =t (X)), t=T-1,T-2,...,1 (6)

This step finds the hidden state sequence by tracing back through the v arrays.

V. ATTACK PREDICTION THROUGH HMM

In our methodology, given a sequence of observations as input, our aim is to use Viterbi
algorithm to generate a sequence of hidden states which is representative of the attack flow. We

then identify the attack type whose execution flow resembles the resulted sequence.

A. Attacks Description

As a proof of concept, we study a family of Action Spoofing attacks and thus predict them using
HMM. In these types of attacks, an attacker tricks a user into performing certain malicious actions
unbeknownst to the user (e.g., clicking a button that secretly downloads a malicious application).
We referred to the Common Attack Pattern Enumeration and Classification (CAPEC) [13], [14]
for the attack descriptions as it is widely used as a reliable repository of attack patterns and
their descriptions. The specific attack types that fall under Action Spoofing are:

1) Clickjacking: In these type of attacks, the attacker often overlays a transparent user-interface
(UD) on the top of the existing Ul to mask certain areas that trigger malicious actions when
clicked.

2) Activity Hijack: This type of attack is often common to android operating systems. Every
app on android needs to register an intent and explain what the app does when certain
actions are triggered. An attacker causes a malicious activity to trigger instead of a trusted
activity by registering an implicit intent and thereby prompting the user to enter sensitive

information.



TABLE 1

LIST OF HIDDEN STATES REPRESENTING ATTACK FLOW INSTANCES FOR ALL ATTACK TYPES IN THE HMM MODEL.

States Description

S1 Installed malicious s/w

S2 Flash App Overlay

S3 URL scheme registering
S4 Implicit intent interception
S5 Query legit task list

S6 Toast Window overlay

S7 Message interception

S8 Launches new task

S9 Mimics trusted UI

S10 User tricked

S11 Sensitive data obtained

3) Task Impersonation: A malicious application installed on the user’s computer secretly
monitors the process list to trigger a malicious application resembling an actual application
that the user wants to open. The user is then tricked into interacting with the malicious
application and can expose sensitive information if the application requires the user to
enter credentials.

4) Scheme Squatting: In this type of attack, a previously installed malicious application
registers a URL scheme on behalf of a target application that is not installed yet on the
user’s system. When the target application is installed, the malicious application displays
an interface resembling that of the target application, and thus tricking the user to input
sensitive information.

5) Tapjacking: Similar to clickjacking attack, a previously installed application displays an
interface resembling a benign application and the user is tricked into fapping a certain area

of the malicious application which may further trigger malicious actions or activities.

B. Hidden States

To represent the hidden states as attack flows, we utilized both the textual descriptions and
the pre-requisites defined for every attack type in the CAPEC website [13] and encoded them
as keywords into discrete hidden states. Table I shows the complete list of the hidden states for
our HMM model.

As we are dealing with just one family of attack (i.e., Action Spoofing), its specific attack types

have a lot of overlapping among events (e.g., compromising the victim’s data). We accounted



for these overlapping instances by representing them as single states in our HMM model, for
instance, S10, S11 in Table I are some of the events which were redundant in their occurrences

across different attack paths.

C. Observations

The observations in our HMM model are instances or events that are observed or seen by
the user as a series of sequential events but with a malicious action running in the background
without the knowledge of the user. To ease describing the process, we illustrate an attack scenario
to provide the details explaining the motive of the attacker. We then build upon the scenario and
generate observations pertaining to different attack types.

An Illustrative Attack Scenario. Consider a victim user who logs into their bank account
through a Bank application on their android device. We assume that a malicious app has already
been installed on the victim’s device and is disguised as a genuine application. On opening the
malicious app, user is prompted with a message link (e.g., ‘Claim free gift!’), which redirects
the user to a malicious website disguised as a genuine one. The intent of the attacker is to trick
the user into authorizing a bank transaction by manipulating the user interface such that the user
remains oblivious to the malicious activity which results in unauthorized money transfer to the
attacker’s account.

Depending on the attack type and its family, the mechanism to trick the user varies. However,
the starting and ending points, (e.g., visiting or installing a website or malicious app) (State S1)
and stealing money (State S11), respectively are the same since all the attack types belong to
the same family with same goal of tricking the user . Table II shows the list of observations we
considered based on what user sees and performs. This list incorporates all the activities carried

out by different attack types.

VI. ALGORITHM

Algorithm 1 shows the procedure for implementing Viterbi Algorithm in our problem domain.
The input to the algorithm is a defined HMM model A(A, B,7) and a sample observation
sequence O = {01, 09,...,0;}. Here A represents the state transition probability (TP) matrix
of size 11 x 11(= N) as there are 11 hidden states in our model (Table I), B represents emission
probabilities (EP) matrix of size (11 x 13) as we have 13(= M) distinct observations (Table

II), and lastly, initial probability distribution (IP) vector 7 of size 1 x 11 which represents the



TABLE II

LIST OF OBSERVATIONS EMITTED BY EVERY STATE PRESENT IN HMM.

Obs. Description

01 User logged in

02 Receives email link (Malicious)

03  Visits Web pages; clicks on overlay button
O4  Unauthorized account transaction

O5  opens malicious app

O6  Toast window pops up; taps on button

O7  Malicious App running in background

08  Clicks on unregistered URL for uninstalled Bank App
09  Sign-In look-alike page open on foreground
010  Enters card details

O11  Launches new Bank App task

012  Launches legit charity App

013  Selects Bank App from options

probability of choosing particular hidden state as the starting point. The pseudo code described in

the algorithm is adapting Python syntax. The output of the algorithm is an attack_path sequence

which consists of hidden states. This algorithm consists of the following steps:

1)

2)

Lines 1 - 3: We created a tuple consisting of probabilities for the 15 observation o; in
O which is calculated by multiplying /P (i.e., Initial Probability) of each hidden state by
their £'P (i.e., Emission Probability) for 0, and then append the tuple to the probabilities
list.

Lines 4 - 7: For every obs in Olo,, ..., 0;], we obtain the last tuple of probabilities i.e.,
probabilities[—1] which gives us probabilities of all previous hidden states and assigns
it to the previous hidden states list, prev_states. We then identify the maximum from
the probabilities of each of the next hidden states based on all previous hidden states
probabilities. For instance, for a particular hidden states, hs and observation obs, the
maximum probability is chosen among all hidden states considered one at a time from 1

to N as follows:

mazx(prev_state_probs[l : N| « TP[1 : N|[hs| * EP[hs][obs])

Where T'P is the Transition Probability. The tuple consisting of maximum probability for



Algorithm 1: Identifying state sequence based on given observation sequence using

Viterbi Algorithm
Input: 1) State Transition Matrix A = [N x N]|

2) Observation Matrix B = [N x M]

3) Initial probability distribution 7 = [1 x N]|
4) Hidden states hidden_states = {s1,S2,...,5n}
5) Observation sequence O = {01, 02,...,0;}
Output: Attack path Sequence A = {s1,S2,..., Sk}
1 p_list =[] > To store probability values calculated in line 2
attack_path = []
probabilities = [] > To store tuples of p_list as shown in line 3
for (states in hidden_states) do

2 t p_list.append(m[states] * Bl[states][o1])

3 probabilities.append(tuple(p_list))

4 for (obs = o, to 0;) do

5 prev_states = probabilities[-1]

6 max_prob_tuple[obs] = max probabilities for all hidden states using prev_states
probs for obs

7 probabilities.append(max_probs_tuple[obs])

8 for (p_tuple in probabilities) do

9 max_p = max prob in p_tuple attack_path.append(hidden_state associated to

max_p)

10 print (attack_path)

a particular obs,
max_prob_tuple|obs], for all hs: 1 to N is then added to probabilities list and the entire
process keeps repeating until we reach the last obs on O.

3) Lines 8 - 9: We then iterate over each tuple, (p_tuple) in probabilities list and identify
which hidden state has the max probability among the rest. Here, each tuple corresponds

to its respective obs in O. The hidden state is then added to the attack path. The process



is repeated until we reach the last tuple or obs.

4) Line 10: We eventually obtain the best attack path associated to the observation sequence

0.

This way we could obtain the best attack path out of all the possible paths that resulted in the

given observation sequence.

VII. SIMULATION AND RESULTS

We implemented the HMM and Viterbi algorithm using Python version 3.6. This section
reports the results of a simulation performed to demonstrate the mechanic of the proposed

HMM-based model for attack prediction.

A. Data Collection

We collected our data from CAPEC’s website for the action spoofing! family of attacks. For
each attack, we utilized the attack’s description and execution flow to derive the states and
observations to create our model. As an example, consider the description of tapjacking attack

below:

“An adversary, through a previously installed malicious application, displays an
interface that misleads the user and convinces them to tap on an attacker desired
location on the screen. This is often accomplished by overlaying one screen on top
of another while giving the appearance of a single interface. There are two main
techniques used to accomplish this. The first is to leverage transparent properties that
allow taps on the screen to pass through the visible application to an application
running in the background. The second is to strategically place a small object (e.g.,

a button or text field) on top of the visible screen and make it appear to be a part of
the underlying application. In both cases, the user is convinced to tap on the screen
but does not realize the application that they are interacting with.”
The intention of the action spoofing attack is to trick the user into performing certain malicious
actions. The tapjacking attack (a type of action spoofing) in particular does this by using a
toast overlay window to trick the user into clicking certain section of the screen, which has an

underlying benign app running.

"https://capec.mitre.org/data/definitions/173.html



Similar to our illustrative example described in Section V-C, the previously installed malicious
app sends a prompt (’claim free gift’) which is an invisible overlay window on the top of the
bank app running in the background. When the user clicks on the claim free gift button, which is
exactly aligned over the login button in the banking app, an unauthorized transaction is initiated.
Based on the tapjacking and the attack description, we derived the hidden states which are
from the attacker’s perspective and the corresponding observations which are from the user’s

perspective, as listed in Table III.

TABLE 1II

TAPJACKING: STATES AND OBSERVATIONS.

Hidden states Obseravations

Sl:Installed malicious software | O1:User logged in

S6:Toast window overlay O5:opens malicious app

S10:User tricked 06:Toast window pops up; taps on
button

S11:Sensitive data obtained O4:Unauthorized account transac-

tion

B. Probability Values for HMM Parameters

We defined our HMM model by constructing the probability matrices: A, B and 7. We
estimated the probability values using certain heuristics derived from each attack’s description
and execution flow described on the CAPEC website [13].

For instance, in scheme squatting attack [13], the device/computer should have a pre-installed
malicious software (i.e hidden state S1). The malicious software allows the attacker to register
for a URL scheme (i.e hidden state S3) meant for a target application. Hence, state S2 is more
likely to occur next from state S1 for that attack path.

Furthermore, to derive the value of , it was apparent to give the state S1: Installed
malicious s/w the highest starting probability as all attacks are contingent upon a pre-
existing malicious software to be already installed on the victim’s device. Also, we assigned
the same transition probabilities to those hidden states, which had equal chances of occurring
the next. For instance, states S2 through S6 have equal probabilities to occur after the state S1.
We ensured all the probabilities along each row in all of the matrices were assigned in such a

way that the sum was equal to 1.0. Figure 1 shows the state machine diagram for the attack



Installed
malicious

Unauthorized
account
transaction

Toast window
pops up; taps
on button

Fig. 1. State transition diagram for Tapkjacking with initial, transition and emission probabilities.

type Tapjacking with initial, transition and emission probabilities where the hidden states are

represented by yellow and observations in blue.

C. Simulation Result

Table IV shows the results of best attack path sequence generated by Viterbi algorithm for
observations O taken from Table II as an input. The idea behind giving known observation

sequences was to check whether the algorithm is able to generate the corresponding attack path

correctly or not.

TABLE IV

ATTACK TYPES IDENTIFIED BASED ON THE OBSERVATION SEQUENCE INPUT AND THE ATTACK PATH GENERATED BY HMM.

Observation Sequence

Attack Path Generated

Attack Type

04

S11

0l - 02— 03— S1 — S2 — S10 — Clickjacking
04 S11
01 —- 05 —» 06 — S1 — S6 — S10 — Tapjacking

07 —- 08 — 09 —
0Ol — 010 —» 04

S1 - 8S3 —» S7 —
S9 — S10 — S11

Scheme Squatting

07 — 011 - 09 —
Ol — 010 — 04

S1 —+ S5 — S8 —
S9 — S10 — S11

Task Impersonation

07 — 012 — 013
— 010 —» 04

S1 - S84 - S9 —
S10 — S11

Activity Hijack




Our HMM model generates an attack path (execution flow), given an observation sequence
pertaining to an attack type using the Viterbi algorithm. We compared the path generated by
the model against the execution flow descriptions described on the CAPEC’s website for all the
attack types. We identified the attack type that was closest to execution flow generated by the
model. The corresponding state names to state number can be referred from Table 1. Figure 2
shows the graphical representation of the various attacks paths, composed of hidden states of

the model.

Flash App Overlay

S2
URL scheme message
registering interception
s3 STk
e et mimics trusted Ul —>  usertricked —»( SeMSiive data
S T/ Implicit intent B LaIC

s1 interception s9 S10 S11
S4

Query legit task list —> launches new task
ATTACK PATH

S5
+ S1-825810-S11 : Clickjacking
+ S1-586—S10—S11 : Tapjacking
* S$1-583—-87—-89—-810-811: Scheme Squatting
+ 81585588 —+89—S10—-81 : Task Impersonation
Toast Window * S$1-584—-89-810-811 : Activity Hijack
overlay
S6

Fig. 2. Attack paths and types generated by HMM.

VIII. PRACTICAL IMPLICATIONS

In a realistic attack scenario, where a system is under attack, the observations can be captured
by various command line utilities and software tools. In this section, we demonstrate the capturing
process for some of the observations listed in Table II using Windows and Android tools.

Process Monitor (ProcMon) [15] is a Windows-based utility that can capture real-time file
system events, registry, and process/thread activity. The tool logs user activities performed on
the local system as well as the interactions with the browser which includes process details,
image path, user and session ID. For instance, if the user opens the Chrome browser and visits

the Bank of America’s Website (i.e. observation O1 in Table II) to do some transactions, the
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Fig. 4. CSV log data with trace of file 360ubcw.exe created by malware

tool can capture these interactions and traces. Figure 3 shows the snapshots of user activity of
visiting the bank website captured using ProcMon (Highlighted in blue).

Any trace of malicious application running in the background (i.e. observation O7 in Table
II) can also be traced in the logs generated by the tool by applying ready-made filters of Process
Monitor for Malware Analysis including [16]:

1) TCP/UDP Send and Receive, Any connections that the malware may try to use while it

is running.

2) Load Image, DLL/Executable loading.

3) Create File, new files being created.

4) Write/Delete/Rename File, changes to the file system.

5) Registry Activities, run entries for malware persistence.

For instance, when a malicious spoofer? app runs in the background in Windows, it creates a

file named 360ubcw.exe, which is an indication of malware trying to plant a malicious file®.

2MD5: a86898615b642ed94adb1e361c30a8c06725b0cb396ab97b3ec08848¢316a266

3https://virusshare.com/



Figure 4 shows the screenshot of the file creation logs captured by ProcMon stored in a CSV
file for this spoofer.

The instances of observation O2 in Table II can be captured by message tracking log com-
mand, Get-MessageTrackingLog in Powershell developed by Microsoft [17]. To search
the message tracking log entries for specific events, we can use the following syntax to capture

the instances of the observations in the log file:

Get-MessageTrackingLog
[-Server <ServerIdentity>]
[-ResultSize <Integer> | Unlimited]
[-Start <DateTime>] [-End <DateTime>]
[-EventId <EventId>]
[-InternalMessageld <InternalMessageId>]
[-MessageId <Messageld>]
[-MessageSubject <Subject>]
[-Recipients <RecipientAddressl,
RecipientAddress2, ...>]
[-Reference <Reference>]

[-Sender <SenderAddress>]

To capture instances of observation O3 in Table II and in order to detect an overlay which
can occur both in a screen that appears on top of another application or window screen, a
command line tool called Monkey UI exerciser [18] can be used to explore each app.
The tool runs on device and generates UI event streams of user events such as clicks, touches,
or gestures, as well as a number of system-level events . Whenever Monkey hits an overlay
object, it records dynamic features listed [19]. For launching the tool from command line, the

adb shell environment is required:
adb shell monkey [options] <event-count>

In a similar fashion, we can extract other observations using logs and other tools that can be
used by the HMM model for attack prediction. It should be noted that we did not include the

screenshots for rest of the observations described in Table II for brevity.



IX. CONCLUSION AND FUTURE WORK

We presented a proof-of-concept of a prediction model based on Hidden Markov Model to
identify the type of cyber attacks. The deriving idea is to capture sequences of observations
and then map them out to the set of hidden states that form attack paths. All the probability
matrices, i.e., transition, observation/emission and initial are manually determined based on
the knowledge derived from the description of attacks from the CAPEC website. The Viterbi
algorithm implemented in the presented idea is capable of generating such attack paths and then
matching them with the specification of a certain family of attacks.

The current model deals with only one family of attacks where we have overlapping events
representing the hidden states resulting in a smaller state search space. We chose concrete attacks
belonging to a single family of attacks because these concrete attacks share some common
features. This makes modeling of attacks easy through HMM as compared to modeling concrete
attacks which have no common features or characteristics. It will be infeasible to model through
a specific HMM model for each concrete attack.

The model can be further expanded into an ensemble of HMM models trained on different
attack families. Such an ensemble model can be scaled up to predict an extensive range of attacks.
One of the limitations of this study is that it requires collection of vast number of observations
belonging to different attacks using a variety of tools. This makes capturing such a vast pool
of observations in real-time quite challenging. One of a possible solution to this problem could
be to develop an integrated tool that can encapsulate observations from different user activities
automatically. As a future work, our prediction model could help the victim trigger some defense
actions against the attack if the model could predict the type of the ongoing attack in real time.
We also demonstrated the feasibility of HMM through a case study. As future work, this model
could be replicated on a larger set of attack types through collecting more data. The accuracy

of the model can then be evaluated using metrics such as accuracy, precision, and recall.
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