
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.DOI

MalView: Interactive Visual Analytics for
Comprehending Malware Behavior
Huyen N. Nguyen1, Faranak Abri1, Vung Pham2, Moitrayee Chatterjee3, Akbar Siami
Namin1, Tommy Dang1
1Department of Computer Science, Texas Tech University, Lubbock, TX 79409 USA (e-mail: {huyen.nguyen | faranak.abri | akbar.namin | tommy.dang}@ttu.edu)
2Department of Computer Science, Sam Houston State University, Huntsville, TX 77304 USA (e-mail: vung.pham@shsu.edu)
3Department of Computer Science, New Jersey City University, Jersey City, NJ 07305 USA (e-mail: mchatterjee@njcu.edu)

Corresponding author: Huyen N. Nguyen (e-mail: huyen.nguyen@ttu.edu).

This research work is supported by National Science Foundation (NSF) under Grant No: 1821560.

ABSTRACT Malicious applications are usually comprehended through two major techniques, namely
static and dynamic analyses. Through static analysis, a given malicious program is parsed, and some
representative artifacts (e.g., control-flow graphs) are produced without any execution; whereas, the given
malicious application needs to be executed when conducting dynamic analysis. These two mainstream
techniques for analyzing the given software are effective in detecting certain classes of malware. More
specifically, through static analysis, the patterns and signature of the malware are exposed, helping in
detecting any known malicious payload hidden in or injected into the code. On the other hand, behavioral
and run-time execution patterns of software are explored through dynamic analysis. To ease the analysis
process, a third analysis approach, known as the visual representation of the artifacts created by both
static and dynamic analysis tools, would also be a supplementary asset for malware experts. This paper
introduces “MalView”, an interactive visualization platform, for malware analysis by which pattern matching
techniques on both signature-based and behavioral analysis artifacts can be utilized to 1) classify malware,
2) identify the intention and location of the malicious payload in the artifacts, 3) analyze unknown
malware (i.e., zero-day malware) by recognizing any unusual signature or behavior, and 4) explore the time
dependencies and thus the system components affected or tampered by the underlying malware. The results
of several case studies conducted in this work show that MalView offers more features and information
compared to some other visualization tools, facilitating the malware analysis process.

INDEX TERMS Malware analysis, dynamic analysis, malware visualization system, visual analytics.

I. INTRODUCTION

Malicious software applications, or malware, are the pri-
mary source of many security problems. These intention-
ally manipulative malicious applications intend to perform
unauthorized activities on behalf of their originators on the
host machines for various reasons such as stealing advanced
technologies and intellectual properties, governmental acts
of revenge, and tampering sensitive information, to name a
few. Malware applications are complex software programs
that are often obfuscated to disguise their main intentions
and thus deceive network administrators and the underlying
intrusion detection systems. Although such obfuscations can
be captured, reported, and maintained in a repository as a
reference for building better detection mechanisms, newer
malware programs are constantly developed by professional
hackers raising the challenging problem of zero-day malware

detection [1]. As a result, in order to build an effective mal-
ware detection and defense system, it is crucial to understand
each malware and comprehend its behavior through rigorous
analysis.

There are two conventional approaches that are widely
adopted for analyzing software programs: 1) static analysis
by which the underlying software is parsed, and intermediate
transformations of the underlying software are generated
without actually executing the software program. For in-
stance, a control-flow graph can be created to represent the
execution control of the program under test; and 2) dynamic
analysis by which the program under test is executed in a
controlled environment (e.g., a sandbox) and the behavior
of the program is observed under various environmental
conditions for further analysis. For instance, a sandbox (e.g.,
Cuckoo [2]) can capture the processes that are created along

VOLUME 2, 2022 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

with the files that are tampered with or modified during the
execution of the program under test. These two conventional
program analysis techniques (i.e., static and dynamic) are
often complementary to each other, each targeting different
types of faults or malicious activities in the program that is
being analyzed. There is also a third “hybrid” approach that
enables conducting both static and dynamic analysis of the
program under test.

Although these conventional program analysis techniques
are shown to be effective in comprehending static and dy-
namic features of the software under test, it is often time-
consuming, labor-intensive, and technically challenging to
build a customized analysis platform. Therefore, to ease
performing such a complex analysis, some other analysis
techniques with a smoother learning curve and faster compre-
hension of functionalities of the underlying software under
test should be developed for analysis purposes. The visual
analytics approach is one of those possible solutions to
facilitate the analysis process and efficiently and effectively
showcase the processes involved in malware analysis.

This paper introduces an interactive visualization plat-
form, called MalView, for performing analytical reasoning
of malware behaviors. MalView1 is an analysis-oriented de-
velopment to our previously created malware visualization
tool [3]. MalView emphasizes comprehensive understand-
ing from visual analytics with in-depth, multi-faceted ex-
plorations of malware behavior and scalability to multiple
malware families. The result of malware triage and analysis
is significantly enhanced if a provenance of software arti-
facts can be identified, especially when specific attributes of
suspected malware are used to identify similarities to a set
of known malware artifacts, as shown by Casey et al. [4].
In light of improving malware analysis utilizing malware
artifacts, the current prototype provides a detailed graphical
representation for malware analysis to identify: (1) indica-
tors of compromise and malicious activities, (2) tampering,
modification, and possible damages occurred on the system,
(3) the mechanic of how malware functions and infect, (4)
the primary target of the malware, (5) the suspicious events
occurred on the network, (6) the impact on the host and its
registry, and more notably (7) the time and process dependen-
cies occurred while executing the malware, the key feature of
MalView.

Malware visualization systems can be categorized into
three categories: Malware forensics, Malware Comparison,
and Malware Summarization [5]. The work in MalView is
under Malware Forensics and Malware Comparison cate-
gories: assisting the understanding of the behavior of an
individual malware sample for forensics. By exploring the
characteristics and relationships between the process and its
dependencies and mapping them to visual features, MalView
provides an interactive and intuitive platform to comprehend
malware behavior towards the ultimate goal of generating

1The application and demonstration video of MalView can be accessed at:
https://malview.netlify.app and https://malview.netlify.app/video.

rules and signatures for fully-automated malware detection
systems. To demonstrate the effectiveness of MalView in
identifying and interpreting malicious and suspicious activ-
ities of malware, the paper reports the analysis of differ-
ent families of malware namely: Remote Access Trojans
(RATs), Backdoor, Ransomware, Behavioral, Email Flooder,
and Hacktool. The results show that using MalView it is
possible to quickly understand the main functionalities of the
underlying malware without delving into a complex analysis
of the static and dynamic analysis reports.

While conducting the case studies and inspecting some
malware families, the authors noticed the different behavior
exhibited by the same malware on different operating system
(OS) platforms. As a result, each malware was executed and
inspected on three different Windows platforms: Windows
XP, Windows 7, and Windows 10. Even though the execution
of each malware was performed in a controlled environment,
it was noticed that the newer platforms of Windows operating
systems (e.g., Windows 10) were creating more system and
kernel-level processes making it harder to thoroughly inspect
and analyze the exact flow of each malware on these recent
versions of platforms. As a remedy for such problem, it is
suggested to apply additional filtering mechanisms in order
to analyze each malware and its processes thoroughly. This
paper makes the following key contributions:

1) It introduces MalView, a malware visualization tool to
enable analytical reasoning of malware behaviors.

2) The MalView visualization tool visualizes the output of
several dynamic and static analysis tools.

3) The tool also integrates the output of many anti-virus
tools using their Application Programming Interface
(API) to provide additional insights for each malware.

4) The paper demonstrates the efficiency and effective-
ness of MalView through several case studies con-
ducted on a set of the family of malware.

5) The paper also compares the behavior of each malware
when executed on three different Windows platforms
(i.e., XP, 7, and 10) in order to recognize the impact of
environmental settings on malware comprehension and
analysis.

Organization of the Paper. The rest of the paper is
laid out as follows: Section II gives an overview of the
data collected and feed into the visualization. Section III
introduces the system and visualization tasks that guide the
system design. Next, section IV elaborates on the visual
components with interactivity and highlights the key features
of MalView. Section V presents the analysis performed using
MalView on a set of family of malware types. The influence
of the running platforms on malware behavior is articulated
in Section VI. A feature-based comparison of MalView and
some other malware visualization tools is demonstrated in
Section VII. The state-of-the-art of malware visualisation is
presented in Section VIII. Section IX concludes the paper and
highlights the future research work.

2 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://malview.netlify.app
https://malview.netlify.app/video

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

II. CAPTURING DYNAMIC BEHAVIOR USING PROCMON
Dynamic analysis aims at studying the behavior and actions
of malware sample when it is executed. This technique ana-
lyzes malware and returns the collected information of such
behavior and actions for further processing or analysis [5].
Assuming that the malicious sample does not employ any
anti-forensics guards, in this paper, the Windows Sysinternals
Process Monitor [6], or Procmon, is employed to capture
the run time behavior of malware during execution. MalView
visualizes the outputs and traces produced by Procmon rather
than explicitly executing a given malware directly. During
the dynamic analysis of malware execution, Procmon can
capture five types of events that the Windows-based malware
interacts with the host system: 1) file system, 2) registry, 3)
network, 4) process and 5) profiling.

While capturing dynamic behavior of malware, it is im-
portant to use a proper Procmon filtering to avoid capturing
unnecessary information from the normal execution of the
system. Furthermore, even when the underlying system is
idle, it has numerous background processes running that can
be captured by the Procmon. As a result, the authors filtered
out the activities by capturing suspicious processes only
represented by functions commonly encountered by malware
analysts [7], [8]. Furthermore, they excluded the default
system operations such as Procmon, Autoruns, Sysmon from
further visualization and analysis.

A. DATA ATTRIBUTES
Procmon provides records of Windows activities through
the low-level system events, where thousands of events are
generated every minute. The standard output in Comma
Separated Value (CSV) format from Procmon is used as the
primary input for visualization components in MalView. One
row in the CSV log file demonstrates one specific event and
comprises of these major attributes [9]:

• Time of Day: The timestamp of the day when the event
occurred.

• Process Name: The name of the process – active exe-
cutable, performing the operation.

• PID: Process identifier (ID).
• Operation: The name of the executing operation.
• Path: The path to the target object being operated

on. This field can be empty, depending on the opera-
tion/process.

• Result: The result of the operation. The values for this
field include success, denied, or access.

• Detail: The additional notes about the event.

B. EVENT CATEGORIES
The log file output from Procmon contains five major types of
process activities, which are color-coded in our framework.

• Registry: Events of registry operations, such as querying
and enumerating keys and values.

• File System: Events related to operations on local and
remote storage and file systems.

• Network: Network activities, including TCP and UDP.
• Process: Events of process/thread, such as process cre-

ation, start, and exit.
• Profiling: Events for every process in the system in

terms of memory used, kernel and user time charged,
output as a log for the profile.

III. MalView: SYSTEM OVERVIEW
MalView is aimed at accelerating malware analysis and inte-
grating visual analytics to enable interactive data exploration
and malware behavior comprehension. Figure 1 depicts the
architecture of MalView. The flow of information in MalView
is as follows: 1) It uses a data provider in dynamic analysis,
where the malware sample is executed on a host system, then
the data provider logs relevant information into execution
traces. 2) MalView takes in the raw data captured by the data
provider, extracts the information, and maps them to visual
features. 3) MalView explores the relationship between each
process and its dependencies. To the best of our knowledge,
this feature has not been taken into account in previous work,
not only the malware as an individual but also its interactions
with the system and the artifacts created.

The MalView prototype provides visual representations
for system and malware activities captured by Procmon [6]
utility. In the context of malware analysis, four important
system-level activities are of utmost importance that need
to be captured, namely registry, file system, processes and
threads, and network activities. These are four major cate-
gories that are highlighted by InfoSec [7], [8] as an indication
of malicious activities. The processes and events related to
these four activities are captured by Procmon, filtered, and
then fed to MalView.

MalView provides an analysis of linked views with inter-
actions for users to gain comprehensive insights into mal-
ware behaviors within the system. Details of MalView visual
components with their corresponding interactive features are
described in the following section, MalView: Visual compo-
nents.

The tool MalView is developed as a web-based application
using JavaScript and D3.js library created by M. Bostock et
al. [10]. The primary goal of MalView is to provide an inter-
active visualization platform that demonstrates the malware
behaviors and interactions within the system. The captured
events are presented in multiple perspectives: in a temporal
manner of processes and function calls between them, the
dependency graph between a process and the objects it op-
erates on, including registry, system files, network addresses,
and dynamic-link libraries. The platform gives classification
of malicious or benign connecting domains with further
analysis. To meet the primary goal, MalView implements the
analysis tasks below, based on the analysis task types for
employing information visualization systems [11]:

• T1 Provide a comprehensive overview of system ac-
tivities. The visual design should present the general
distribution of activities chronologically to facilitate the
initial summary based on the selected malware.

VOLUME 2, 2022 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

System activities

Registry

File System

Process/Thread

Network
Log file

Procmon

Data Preprocessing

Time series
data

Dependency
data

Processes Visualization

Network Visualization Libraries Calls

Activity Overview

Linked Views with Interactions: Filtering | Highlighting | Ordering | Details on demand

Events capturing

MalView

External analysis

Connecting
domains

VirusTotal API
IPStack API

Connecting
Domains Analysis

FIGURE 1. The schematic overview of MalView framework for analyzing the dynamic behavior of malware. The visualization provides linked views and supports
interactive features, such as filtering, highlighting, ranking, and details-on-demand.

• T2 Display details-on-demand for activities and in-
teractions. The user can get a close-up look at an
entity or select an activity to view its event data. The
system should show the information in a deeper level
of supporting details that accompany the interactions
among different processes.

• T3 Characterize data distribution for processes and
their dependencies. In addition to displaying the de-
tailed information of processes on demands, it is also
important to show the distribution of temporal patterns
of processes and simultaneously use that as the context
to explore their dependencies. To this end, the system
should show the groupings of operated objects (e.g.,
dynamic-link libraries) based on their similarities in
features.

• T4 Present the associations: relationships among
processes and function calls between a process and
its dependencies. To characterize the complex associ-
ations between entities within the system, the system
should show the relationships caused by interactions
among processes and function calls from a process to
its dependencies.

• T5 Highlight critical activities in context. Here, crit-
ical is defined in context: For the timeline as a whole,
MalView should allow user to zoom into the time in-
terval that captured the most active interactions of the
malware. For malware activities in particular, the system
should incorporate filter-based feature to highlight the
commonly encountered malicious types, besides the

original representation.
• T6 Order the entities based on dependencies char-

acteristics. A specific ranking order along a data di-
mension be of tremendous help in the arrangement of
visual components to convey important characteristics
and allow the user to focus on the top essential entities.

• T7 Classify malicious vs. benign activities. Another
key to understand malware forensics is the ability to
show the malicious and benign activities. The system
should be able to classify the level of malice that corre-
sponds with the malware sample captured.

IV. MalView: VISUAL COMPONENTS
Taking into account the mapping to time, the associations
between processes and dependencies, and guided by the
designed tasks, we designed the user interfaces of MalView.
Figure 2 depicts the main modules of MalView for supporting
users in comprehension and visual reasoning of malware
activities and interactions.

A. INPUT AND OPERATION OVERVIEW

MalView provides the options for users to select input data
from a default set of data samples or from their local
machine, as depicted in Figure 2, panel (A1). The default
dataset contains more than 60 samples of primary input data,
helping users to familiarize themselves with the system and
explore how the tool works. In addition to the default dataset,
MalView allows users to use and analyze the output log file

4 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 2. The MalView system contains the following main views: Input and Operation Overview (A), Processes Activity (B), Classification (C), Process
Dependencies (D) and Libraries Matrix (E). The Process Activity view has another mode of showing the referenced operated object (B1), with feature of lensing for
zooming in upon a particular interval in both viewing modes. Detail-on-demand is provided upon mouse interaction on selected item, as in the example in panel (B2).

from running Procmon on their machine via the “Choose file”
button for uploading the file for direct analysis.

After the input file is uploaded, the operation overview (A)
shows how the operations are categorized and allows user to
observe the the prevalence of event types (visualization task
T3). Each event type is represented as a rectangle, stacked
horizontally by its category in a bar chart visualization. There
are four color hue representing four categories: yellow for
File System, blue for Process and Thread, green for Registry,
red for Network. We employ the color coding based on the
category the event type belongs to and incorporated it with
the statistics of the amount of total corresponding function
calls during the monitored period. An individual event type
is mounted with interactivity: it acts as a button providing
filtering upon mouseclick, the result of which is shown
directly on the below adjacent panel, processes activity (B)

A special group of existing critical operations, defined by
“Commonly encounter” from InfoSec [7], [8], is shown on
the right of panel A. All the available operations captured
that match the commonly encounter criteria are presented.
This list serves as a selection box for highlighting critical
activities in both operation overview and processes activity
(visualization task T5).

B. TEMPORAL PATTERNS
Building upon the visual information mantra by Shneider-
man [12]: “Overview first, zoom and filter, then details-on-
demand,” the process activity in Figure 2(B) is designed

to explore the temporal patterns from the system’s low-
level events along with inter-process communications. The
timeline is presented horizontally from left to right, while
the processes are listed vertically. Besides the operations
executed by a process itself, there are interactions between
two processes, such as one creating the other with its primary
thread, demonstrated by the arc connecting the two. On top
of panel B is an area chart showing the arc distribution,
providing the overview of the function call frequencies (vi-
sualization task T1).

Each process is associated with an aligned set of events
executed by the process itself. An individual event is rep-
resented by a thin vertical bar, color coded by its event
type, which is introduced in section II-B and presented in
panel A. These small, thin bars are presented with 50%
transparency so that if multiple events appear at nearly the
same time, the color will add up on display (visualization
task T3); therefore, users can see that the calls are busy there
and there is a chance for anomalies detection at these spots
(visualization task T7).

The interaction arc starts from the parent process (the one
that initializes the call, or the source) and ends at the child
process (the destination, or the target of the call) (visualiza-
tion task T4). The interactions here are the typical events of
processes and thread, as specified in section II-B; hence they
have the blue color of process and thread category. One of
the most common events in this category is Process Create, in
which a process creates a new process and its primary thread.

VOLUME 2, 2022 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

Besides the source-target interactions, MalView also supports
to visualize the call-to-self events (or the loops). In this case,
the process is both the one that initializes and the target of the
call.

MalView supports details-on-demand in terms of process
detail, event call detail, filtering calls related to one specific
process, and zooming in a period (visualization task T2).
The details of an event can be shown on the tooltip by
mousing over the corresponding bar, including process name,
operation, event type, timestamp, process ID, and additional
operation-specific information about the event, as shown in
Figure 2(B2). Similarly, the detail of process interaction is
displayed on the tooltip by mousing over the arc, providing
information on the source process, target process, and the
event type of the call. For a particular process, users can
choose to observe only the call originated from or to this
process by a simple mouseclick on that process. The zooming
feature for the arc distribution (visualization task T5) will be
presented with a case study in section VI-D.

1) Operated Objects

This processes activity panel supports the detail view by
a magnification feature called “Lensing” (visualization task
T2). When this feature is enabled, hovering along the time-
line will expand the current window at that time step. For ex-
ample, panel (B1) in Figure 2 presents the “Lensing” feature
for the interval of 2:27:22 to 2:28:06. Here, the view shows
another mode of presenting the referenced streamgraph rather
than individual events. We utilize the event categorization
that revolves around five key types: registry, file system,
network, process, and profiling, to determine the operated ob-
jects. Since profiling operation can be less informative about
process activity and more about kernel time and memory
used, we exclude profiling from the scope of our operated
objects. In addition, dynamic-link libraries that contain code
and data that can be used by more than one program at
once are also indispensable from the analysis process. These
considerations lead to our final operated object list: registry,
network address, system file, exe (executable file), and dll, as
shown in panel (D1). That serves as a reference to both panel
(B1) and, later, process dependencies in panel (D).

C. MALWARE AND CLASSIFICATION

Figure 2(C) presents the classification for malicious or be-
nign activities of the captured log file produced by Procmon
(visualization task T7). Aligning with the primary aim of
providing a visual analytics tool and platform to demonstrate
malware’s static and dynamic behavior, MalView captures
the results provided by the integrated APIs and visualizes
them to the end-user. MalView incorporates a number of APIs
such as VirusTotal API and inherently relies on the output
produced by these APIs. We investigate the target domains
that the network activities are connected to. The extracted
information for each connected domain contains its Internet
Protocol (IP) address, the detection classification results, the

associated process and activities related to the domain, and
lastly, the country to which the server is hosted.

FIGURE 3. MalView analysis summary of TeeracB malware on Windows 7.

The API automatically scans a given malware, and their
patterns are automatically compared with more than 70
servers and databases. The classification result consists of
four categories: malicious, suspicious, undetected, or harm-
less, each indicated by the number of detections found corre-
sponding to the targeted domain. Spring et al. [13] discussed
that the malicious domains are attempts to connect with a
command and control server or dropbox and are expected
to behave differently from a typical phishing or a drive-by-
download malicious site. In MalView, this list of connecting
domains is ordered by the variety of the outcomes of each
domain (visualization task T6). Figure 3 demonstrates the
analysis summary of TeeracB malware on Windows 7. One
malicious domain is detected, named “maatuska.4711.se”,
connected by the “explorer.exe” process with “TCP Recon-
nect” activity.

D. PROCESS DEPENDENCIES
This process dependencies view (Figure 2(D)) presents an
in-depth analysis of each process in the system, where one
process can operate on many types of objects, as introduced
in section IV-B1 and shown in panel (D1). The visualiza-
tion task T4 is actualized as presenting the one-to-many
relationships between the process and its dependencies. In
addition, as the number of dependencies increases in cases
with complex activity, we need a way to handle visual
clutters by reducing the number of visual elements while
preserving the structure. For these reasons, we employ 1) the
force-directed layout with node-link diagram to demonstrate
the relationships and 2) the node bundling technique [14]
incorporated into the force-directed layout to reduce visual
clutter by node aggregation. Force-directed layout has been
explored in many efforts, such as [15]–[17], to represent the
even distribution of nodes and links and speed up spring force
calculations.

The process dependencies panel contains multiple win-
dows; each corresponds to one single process, ranked by
the degree of that process node (visualization task T6). In
each window, aside from the main process node (positioned
in the center of the graph with thick, dark stroke), each
node can be in one of the two states: individual or bundling.
The individual state corresponds to each node representing
one object operated on by the process. The bundling state
leverage the node bundling/aggregation technique [14], as
shown in the top panel of (D), where each node encompasses

6 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

multiple objects with the same type and connection. The size
of this bundled node is proportional to the number of the
individual nodes it comprises (visualization task T3). Mouse-
clicking on a bundled node transforms itself into a set of
individual nodes bounded by a convex hull, as shown in the
lower panel. These two states can be switched back and forth
by a single mouse click on the bundled node or the convex
hull surrounding the internal nodes. Besides the source-target
type of connection, the graph also presents the available call-
to-self events (the loops) of each process, in accordance with
the processes activity panel in Figure 2(B).

E. LIBRARIES MATRIX
Figure 2(E) describes the dynamic-link library (DLL) calls
by each process (visualization task T4), supporting users to
detect the abnormal frequency patterns (visualization task
T7). These are the Windows API calls to the libraries that
are part of the Windows operating system, not to be confused
with the one calling VirusTotal/IPStack API for scanning
connected domains, as presented in Section IV-C. System
activities may involve multiple library calls from one pro-
cess or a common library providing resources for various
processes. To represent vast number of relationships between
processes and libraries, MalView utilizes an interactive heat-
map matrix to prevent cluttering in contrast to conventional
node-link graph visualization (visualization task T3). In the
matrix, each cell value is color encoded by the gray color
scale, in which darker presents frequent calls while lighter
is rare calls. There are several criteria for ranking processes
(rows)/libraries (columns): by similarity, frequency, or the
number of different libraries called.

V. CASE STUDIES
In an effort to provide its users with a safe and productive
experience, Microsoft provides information about malware
and unwanted applications affecting its operating systems
online [18] and details about these in its documentation
platform [19]. Microsoft [19] classifies malware into 13 cate-
gories categories:1) Backdoor, 2) Downloader, 3) Dropper, 4)
Exploit, 5) Hacktool, 6) Macro virus, 7) Obfuscator, 8) Pass-
word Stealer, 9) Ransomware, 10) Rogue security software,
11) Trojan, 12) Trojan clicker, and 13) Worm. Furthermore,
Microsoft also provides a tool to search for current cyber
threats, viruses, and malware in its online platform called
Microsoft Security Intelligence (MSI) platform [20].

MalView can be utilized in different settings. 1) When
the objective is to comprehend malware functionalities and
not detection, 2) when a new malware application (zero-day
malware) is developed and not detectable by any tool (due
to lack of profiles and signatures), 3) when the objective
is to classify a family of malware and then employ a set
of generic solutions and remedies to address each class of
malware, and 4) when new malware is developed, and we
are interested in investigating whether it follows some exist-
ing known malicious patterns or not (i.e., labeling malware
type). Accordingly, if there is an incident report about zero-

day vulnerability where there is no clear patching solution
developed, MalView can help us to analyze and comprehend
the malware with zero-day vulnerability and thus enable us
to identify patches or solutions better. To demonstrate the
usability of MalView in analyzing malware software visually,
we conducted a set of case studies in which the output and
behavior of the selected malware were captured. Due to the
space limit, we capture and present the processes involved
in seven malware, namely 1) Backdoor, 2) RemoteAccess, 3)
Behaviour, 4) Ransomware, 5) EmailFlooder, 6) Hacktool,
and 7) Trojan (Infostealer). The following sections demon-
strate the applications of MalView to several of these malware
types.

A. EXPERIMENTAL SETUP
The malware experimentation setup needs an isolated and
controlled environment so that the malicious code does not
propagate or infect other entities in the network. This clean
and isolated environment also helps to identify the changes
and possible tampers in the system due to the malicious ac-
tivities of the malware specimen. For this work, we installed
three different Windows systems on an Oracle Virtual Box:
Windows XP, Windows 7, and Windows 10. The windows
defender services, windows security services, firewalls, and
other automatic security updates were disabled on each of the
virtual OSs to prevent any interruption during the malware
sample’s execution and capture all the traces of their dynamic
behavior. To capture the interaction between the malware and
each host system, Procmon was installed on all environments.
More specifically, all the user applications on the virtual OS
were closed, the malware process name was added to the
monitor filter to capture only the events of the malware exe-
cutable. Then the executable was run for two minutes before
saving the time-ordered system activities from Procmon and
fed to MalView.

Since MalView depends on the output of Procmon, the
amount of information it visualizes depends on how long
Procmon is executed. The execution time also shortens the
amount of data captured by Procmon. According to our expe-
rience with MalView, a larger and more complex output and
traces produced by Procmon makes MalView less effective
since the visualization needs to capture a vast number of
processes and events. However, a key feature of MalView
is to offer different levels of abstraction and complexity. If
we adjust the window width (interface size) and rerun the
sample, the visual components would readjust to fit the new
window size. More specifically, the execution time depends
on how large the malware sample is, ranging from 0.3s to
several seconds.

B. REMOTE ACCESS TROJAN (RAT)
Remote Access Tools are useful applications to provide
administrative assistance to the end-users remotely. How-
ever, these pieces of software are increasingly abused by
adversaries to gain control over the target systems and are
referred to as Remote Access Trojans (RATs). RATs are dis-

VOLUME 2, 2022 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 4. MalView analysis summary on RAT, with the filter set on displaying the interactions with RAT only: There are multiple and repeated function calls
between the process corresponding to the RAT and explorer.exe, wscript.exe and svchost.exe. Patterns of periodical operations are also presented, such as
of Local Security Authority Subsystem Service lsass.exe or Virtual Box’s vboxservice.exe.

tributed through email attachments or as a patch with pirated
software to infect the target in order to gain administrative
control. Once the target machines are infected, RATs have
complete control over the victim system to perform malicious
activities, such as password sniffing, keylogging, track file
transfer information, webcam feed, control the system by
issuing shell commands, or even propagate some other mal-
wares/viruses. RATs are particularly hard to detect, as they
execute legitimate operating system processes resembling the
behavior of other commercial remote access tools, and they
usually do not show up as running tasks. Besides, there are
tools that enable performing obfuscation on a given appli-
cation and produce obfuscated malicious applications. Using
various obfuscation methods, along with managing resource
utilization, RATs can remain undetected. According to the
October 2018 Global Threat Index [21] published by Check
Point, RATs are ranked among the top 10 “most wanted”
malware.

We captured the run time behavior of RATs on different
Windows and visualized the behavior using visualization
tool MalView. The live malware sample was downloaded
from public malware dataset VirusShare [22]. According to
a multi-scan report from Virustotal [23], this sample has a
community score of 66 out of 70, i.e., out of 70 detection en-
gines, 66 could identify it as a malicious executable. Figure 4
shows the detail analysis performed on an RAT sample using
MalView. The malicious indicators presented by MalView are
as follows:

• Process: The malicious executable spawns processes
like explorer.exe, wscript.exe, and svchost.exe. The
execution of these processes indicates that the RAT
program is trying to start a command prompt and then
run some scripts to start a session to monitor the process
remotely.

• Registry: The sample RAT performs a large number of
registry operations, including the creation of registry
keys as well as a query of the registry entries.

• Files: The malicious PE performs a large number of
various file operations, including the creation of new
files and mapping file systems.

• Network activity: The sample RAT does not demon-
strate any significant number of TCP/UDP requests.

Besides the malware-associated events, MalView is also
able to capture the recurrent pattern of periodical operations,
such as the system process of Local Security Authority Sub-
system Service lsass.exe or Virtual Box’s vboxservice.exe.
The influence of running platform will be discussed further in
Section VI.

C. TROJANS

A Trojan is a type of malware that pretends to be a benign
program, but after installation, it executes hidden code and
then performs malicious activities such as deleting or tam-
pering with data, stealing information, running some other
scripts, and creating backdoors. In general, it enables the

8 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 5. MalView visualization for a sample Trojan. User can request to overlay the networks of suspicious processes (which contain the self calls).

attacker to access the victim’s system, and these types of
malware are not able to replicate themselves [24].

1) Sample Trojan

A sample of Trojan2 was obtained from VirusShare [22]. The
output file containing all the processes was created after run-
ning the malware in a controlled environment using Windows
7 as its platform. Figure 5 shows the MalView output for this
malware. We applied lensing on the critical period to view
the activity details. We chose four important processes based
on the dependencies, including cmd.exe, tmp.exe, reg.exe,
and timeout.exe.

By clicking the name of this malware on MalView Process
Activity window, we can observe that this executable file
has created two processes: cmd.exe and tmp.exe (at the
blue links). By further clicking on the child process, we
can retrieve the list of processes created by cmd.exe and
tmp.exe. Then, the cmd.exe process has created two child
processes: reg.exe and timeout.exe. The tmp.exe process
did not create any child process. The process networks of
cmd.exe, tmp.exe, reg.exe, and timeout.exe are overlaid
on top of the process timeline on request.

2) Trojan MultiInjector

MultiInjector, under trojan classification, is a trojan that
tries to inject code into other processes to hide or execute
its payload and download and install other malware [25].
Figure 6(a) presents a sample of trojan MultiInjector under
MalView analysis. MalView reveals the sequence of Process
Create events generated by the malware and its interactions
with other processes in the system, with multiple recurring
patterns of function calls. Panel (b) shows the result of zoom-
ing into the most active/busy interval that was automatically
detected by the tool, while panel (c) presents the outcome
from filtering to highlight only interactions associated with
the malware. The final result patterns are shown in panel (d).

2MD5:b3eebe51ccc4a95815ddef3ef55604d2

By exploring details-on-demand via mousing over, as
shown in panel (c), the first event in this sequence is Process
Create from the malware to cmd.exe leading to the subse-
quent calls. Around 12:23:47, there are four consecutive Pro-
cess Create calls from the malware to net.exe. The subsequent
calls can be seen in panel (b) and panel (a) (for a broad view).
Finally, the repeated event patterns associated with malware
are clear in panel (d): one Process Create event from the
malware to cmd.exe, followed by the four subsequences to
net.exe. The behavior from this observation aligns with the
characteristics of the malware of injecting code into other
processes. The visualization helps to discern these low-level
operations from the malware to other system processes.

D. BACKDOOR
A backdoor is a type of malware that provides unauthorized
remote access to the compromised system by exploiting se-
curity vulnerabilities. The malware works in the background
while hiding from the user. Meanwhile, it enables the attacker
to have access to the victim’s computer, such as databases
and file servers, as well as running system-level commands.
The process of injecting Backdoor is usually performed in
two stages: First, a small file, called a dropper, is installed.
Second, the dropper downloads the main malicious file from
a remote location [26]. It is important to mention that Trojan
and backdoor malwares are not the same: A Trojan might
contain a backdoor, but a backdoor can execute as a stand-
alone program without being a part of a Trojan.

The MalView visualization of malware Backdoor Androm
execution on Windows 7 is presented in Figure 7. The ac-
cumulation of interactions presented in the top area chart
divides the observation into two phases. The first phase
heavily involves activities associated with the malware and
svchost.exe. The last function call from the malware is to
regasm.exe (at the end of Box A), followed by an interesting
recurring pattern in the second phase, as highlighted in Box
B. This recurring pattern starts with a function call from
regasm.exe itself to schtasks.exe, where the time between the
two patterns is about two seconds. Here, process regasm.exe

VOLUME 2, 2022 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 6. Trojan MultiInjector under MalView analysis: the sequence of Process Create events generated by the malware and its interactions with other
processes in the system.

is the assembly registration tool, which reads metadata within
an assembly and adds necessary entries to the registry.

The overlay dependency graphs in Figure 7 open up sev-
eral interesting findings. First, although its activities end
early during the observation, the malware operates on mul-
tiple registry files, as shown by the large size of the green
registry nodes. Second, svchost.exe has a long sequence of
periodic operations on registry files and operates on numer-
ous types of objects, as seen on the dependency graph. As
the generic host process for Win32 services, it also makes

function calls to the malware process twice, about five sec-
onds apart. Finally, while regasm.exe interacts with five other
processes, it only shares dependencies with schtasks.exe. The
dependency graphs and process activity timeline are comple-
mentary and can effectively support the analytical reasoning
of malware behaviors.

E. RANSOMWARE

A typical ransomware program encrypts the victims’ com-
puter files and demands a ransom to restore access to the

10 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 7. MalView visualization of malware Backdoor Androm on Windows 7. The top area chart demonstrates two separate phases: the first one with malware
activities, ending with a call to regasm.exe (Box A) and the second with recurring patterns involving regasm.exe itself (Box B).

data. A ransomware program locks a system utilizes some
visual messages, imposing law enforcement to threaten the
target. The ransomware scam has matured over time, utilizing
different methods to impair a computer. According to a report
published by Symantec [27], the latest advancement prevents
the computer from functioning and dismisses the client from
gaining any access. The system at such a stage displays a
message that proclaims to be from a local law enforcement
organization. The ransomware application asks for money in
exchange for letting the users re-gain access to their systems.
In recent news in July 2021 by Malwarebytes report [28], a
severe ransomware attack was reportedly taking place against
the popular Remote Monitoring and Management software
tool Kaseya VSA. This attack has forced to immediately
shut down the VSA servers, where Kaseya VSA was used to
encrypt over 1,000 businesses. The attackers are asking for
$70M in exchange for a universal decryptor. Also reported
by Malwarebytes [29], 35% of small and medium-sized
businesses were under attack of ransomware. A lot of times,
these organizations end up paying for the ransom. According
to a multi-scan report from Virustotal, the sample studied in
this paper has a community score of 47 out of 72, i.e., out
of 72 detection engines 47 could identify it as a malicious
executable.

Figure 8 shows the visualization for the dynamic activities
of the ransomware wannapeace.exe3. The malicious indica-
tors presented by the MalView are as follows:

• Processes: The time window shows that the ran-
somware spawns: conhost.exe and consent.exe. The

3MD5:eefa6f98681d78b63f15d7e58934c6cc

FIGURE 8. MalView analysis summary of ransomware WannaPeace on
Windows 7.

conhost.exe indicates that the ransomware is accessing
the command line, whereas the consent.exe is an indi-
cator that the program is trying to utilize the user access.

• Registry: It creates a registry key to make changes.
• Files: Malicious PE performs a lot of file operations.

For instance, it performs 3434 times of CreateF ile
operations and 601 times of WriteF ile operations.

• Network activity: The malware performs many
TCP/UDP connection requests, sends, and receives.

• Domain Activity: It connects to seven different do-
mains, as shown on the upper right corner of Figure 8.

VOLUME 2, 2022 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

F. BEHAVIORAL MALWARE
At the time of this writing, a search on Microsoft Security
Intelligence threat search platform [20] returned 500 malware
as Behavior type, in which the distribution of alert levels was
as 400, 38, 3, and 16 for severe, high, moderate, and low,
respectively. A behavior type of malware generally includes
malware that exhibits suspicious activities, but it is not clas-
sified into a specific popular category of malware. This type
of malware is difficult to detect because its activities can
greatly vary depending on the intention of the underlying
malware and the current user context. Our study of several
malwares in “Behavior” type shows that these suspicious
activities include 1) disabling system recovery, 2) deleting
shadow copies, 3) hidden code executions, 4) creating files in
the user’s system, 5) changing the registry key to run itself,
and 6) accessing to netsh.exe to modify firewall configuration
that allows itself to run on system startup. Examples of
such behavioral malware include Bladabindi.gen [30], Vaw-
trak.A [31], and Teerac.B [32]. Furthermore, some behavioral
malware (e.g., MultiInjector [33]) involves accessing the
command prompt (CMD).

For instance, Figure 9 shows suspicious activities from an
example of the Behavior malware type called Bladabindi.
Panel (a) shows that it starts netsh.exe to modify firewall
configuration to add itself as a permissible program. Panel
(b) provides a piece of evidence as it sets the registry value
(RegSetValue) on the user system to runs itself at Windows
Startup for the same malware.

FIGURE 9. MalView shows suspicious activities from a Behavior malware,
named Bladabindi. Panel (a) shows that it starts netsh.exe to modify firewall
configuration. Panel (b) depicts that it sets the registry values to run itself.

G. HACKTOOL MALWARE
Hacktool is a piece of software that malicious attackers use
to gain unauthorized access to user’s devices [18]. As of
the time of this writing, Microsoft lists 188 active entries as
Hacktools, of which 93 are severe, 80 are high, and 15 are
moderate in terms of alert levels [20]. The popular attacking
channel for Hacktool is via insecure Universal Serial Bus
(USB) communication design and Windows Autoplay fea-
tures [34]. Malicious activities for Hacktool launched from
USB include 1) changing registry settings, 2) installing a
backdoor, 3) stealing confidential information, and 4) reading
data encryption keys. Recently, besides Trojan, Hacktool is
also the second most prevalent type of malware embedded in
pirated software [35].

FIGURE 10. MalView view on a Hacktool malware type called Mailpassview. It
first creates process svchost.exe (a), then svchost.exe starts windows
update.exe (b), and then windows update.exe creates pidloc.txt (c)

.

FIGURE 11. The classification for malicious connecting domains from
malware Mailpassview. The target domain iplogger.com is assessed as
malicious and suspicious by VirusTotal. This domain is connected from
powershell.exe via four activities: TCP Connect, TCP Send, TCP Receive and
TCP Disconnect.

Figure 10 shows MalView view while analyzing a sample
of Hacktool malware type named Mailpassview [36]. It first
creates svchost.exe process (a). The svchost.exe process then
creates windows update.exe (b). This process then creates
several files like holdermail.txt (via using vcb.exe) to store
“Browser Password Recovery Report," pidloc.txt to contain
information of compromised computers (c). These are the
pieces of evidence about the existence of Hawkeye Keylog-
ger [37] to steal sensitive data (e.g., email password).

Determining whether the connecting domains from net-
work activities are malicious or benign is important. The
classification for malicious connecting domain for the mal-
ware Mailpassview is shown is Figure 11. Among the ex-
amined domains, iplogger.com is assessed as malicious and
suspicious by VirusTotal, with the IP address 88.99.66.31
from Gunzenhausen, Bavaria, Germany. Recall from the
chained calls shown in Figure 10: The process correspond-
ing to the malware mailpassview.exe called and initiated
wscript.exe with Process Create (panel “D” in Figure 10),
then wscript.exe also called and initiated powershell.exe with
Process Create. This chain continues with process power-
shell.exe connecting to malicious target domain iplogger.com
with four different activities: TCP Connect, TCP Send, TCP
Receive and TCP Disconnect. Here, wscript.exe is stored
in C:\Windows\System32 and provides an environment in
which users can execute scripts, which is different from
the malicious programs that malware programmers or cyber
criminals write and name it as wscript.exe.

12 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 12. MalView visualizations of the sample ransomware on (a)
Windows XP, (b) Windows 7, and (c) Windows 10.

VI. THE INFLUENCE OF RUNNING PLATFORMS ON
MALWARE BEHAVIOR
To examine how malware behaves in different platforms, we
also executed multiple malware on Microsoft’s mainstream
Windows OSs.

A. RANSOMWARE
The ransomware samples were collected under different
Windows platforms and had their behaviors compared using
MalView. Figure 12 captures the behavior of the ransomware
on Windows XP, Windows 7, and Windows 10, respectively.

• The ransomware sample performs a large number of
registry operations on both Windows 10 and 7; whereas,
it accesses the registry just one time on Windows XP.

• On Windows 10, the ransomware did not perform any
file operations; whereas, Windows 7 shows many file
activities. The Windows XP platform shows traces of a
few file operations.

• The DLL called by the ransomware remained almost
unchanged for three platforms.

• The upper right panel of the tool shows a time interval
sequence of process, file, registry operations performed
by the ransomware. Both Windows 10 and Windows XP
show that the malicious PE executes sparsely; whereas,
on Windows 7, it shows more consecutive operations.

• The lower right panels show the statistics of commonly
encountered and critical activities of the ransomware.

FIGURE 13. MalView visualizations of Email Flooder on (a) Windows XP, (b)
Windows 7, and (c) Windows 10.

B. EMAIL FLOODER

We chose the “email flooder” malware to compare the visu-
alization for this sample run in different platforms, including
Windows XP, 7, and 10, as depicted in Figure 13. In partic-
ular, the output for Windows XP is simpler than the outputs
produced by Windows 7 and 10. For example, the number
of different processes for Windows XP is four vs. seven and
nine for Windows 7 and 10, respectively. In addition, the total
number of operations is much higher in Windows 10 than in
Windows XP. It is observable that there is more information,
including more processes, calls, dependencies, and activities
in Windows 10 and 7 than XP. Since some of these pieces
of information might be because of the Windows activities
themselves and not the malware activities, tracking malware
behavior in newer platforms might be more complicated.

C. BEHAVIORAL MALWARE

Figure 14 shows MalView views applied to Bladabindi mal-
ware executed on these three Windows operating systems
in the top panel, middle panel, and bottom panel, respec-
tively. In general, more platform-related processes are being
executed in the latter two operating systems in comparison
to Windows XP. However, its suspicious activities remain
the same. In all platforms, it first starts netsh.exe to modify
firewall configuration and then sets the registry values to run
itself.

D. PATTERNS ACROSS PLATFORMS

One of the key features and benefits of employing visualiza-
tion tools is to perform pattern detection and classification
visually prior to delving into analytical approaches. MalView
captures key features that are indicators for profiling classes
or families of malware.

VOLUME 2, 2022 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 14. Bladabindi malware executions on different platforms: Windows
XP (a), Windows 7 (b) and Windows 10 (c).

More specifically, using MalView it is possible to capture
features such as volume of processes, registry activities,
files manipulation and accesses, and network activities. As
described below, these features are able to detect any “behav-
ioral patterns in the set of malware studied and thus enable us
to classify them according to their dynamic behavior. Instead
of trying to generate patterns of interest, in this study, we
show how the analysis works based on malware behavior
tracing, the kind of information it entails, and how the tool
can enable analysts to quickly study the interaction of mal-
ware with system internals using selections, focus+context,
and aggregations.

With MalView, we focus on the interactions of the malware
program to other system internals processes. While Procmon,
as the data provider, brings detailed information into each
of the processes running in the system, the interval and log
activity captured may be subjective to the person behind the

captured execution. To focus on the time interval in which we
can witness the most significant amount of malware activity
to other system internals processes, called busy interval, we
applied focus+context visualization technique in MalView to
support 1) close-up view for individual malware analysis and
2) standardization for malware comparison. To accommodate
the context around the focal point, we select the interval that
satisfies either ensuring the equal paddings to the first and last
interaction to the boundary of the interval or equal paddings
to the peak of the area chart - where there witness the highest
amount of interactions.

Patterns of Bladabindi malware behavior across platforms:
Windows XP (a), Windows 7 (b) and Windows 10 (c), all
under focus+context with busy interval length of 20 seconds,
are shown Figure 15. By using mousing over an arc rep-
resenting a function call, an user can observe the detailed
information including type of operation, source and target
processes. A recurring pattern observed from the bladabindi
is the following sequence of calls: A ProcessCreate from
explorer.exe to the malware, following by a ProcessCreate
from the malware to netsh.exe. As shown in Figure 5 and Fig-
ure 7, different processes produce very different dependency
connections in terms of topology, grouping and volume.
However, as presented on the right of Figure 15, the depen-
dencies of the three bladabindi malware processes across
different platforms demonstrate many similarities: the three
biggest nodes that have the degree of one are all from registry
(green), file (sand color), and dll (grey). For nodes with a
degree of two - having connections with both bladabindi
and netsh.exe, their categories are the same regardless of
the running platforms. For further analysis, these patterns can
serve as indicators for such classes of malware.

VII. MALWARE VISUALIZATION TOOLS VS. MalView
This section compares the features offered by MalView with
the ones offered by some other malware visualization tools,
including Hybrid [38] and AnyRun [39]. First, we briefly
review each visualization tool and then compare its features.

A. ANYRUN: INTERACTIVE ONLINE MALWARE
SANDBOX
Funded in 2016 by a Russian security researcher, Alexey
Lapshin, AnyRun [39] offers a free “interactive” sandbox
tool for dynamic analysis of malware. The tool enables
uploading a suspicious file and, in the meantime, interacting
with the sandbox and thus with malware to trigger some func-
tionalities or execute macros embedded into the uploaded
file. AnyRun offers several key features, as follows:

• The tool’s main feature is the visualization of interactive
graphs and tree structure for comprehending malware.
The feature helps visually identify suspicious processes,
determine the family of malicious activities and pat-
terns, and highlight external files that are downloaded
by the malware.

• It also enables content analysis of different types of
suspicious and malware files, including PCAP files (i.e.,

14 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 15. Patterns of malware behavior across platforms: Bladabindi malware executions Windows XP (a), Windows 7 (b) and Windows 10 (c), all under
focus+context with busy interval length of 20 seconds. On the right end are the corresponding dependency graphs of the malware process. While different
processes express different dependency graphs, as shown in Figure 5 and Figure 7, the dependency graph of Bladabindi malware is relatively consistent across
different platforms.

network activity dump).
• The tool also performs network analysis with the goal of

tagging suspicious events. It analyzes Hypertext Trans-
fer Protocol (Secure) (HTTP(s)) requests and responses
along with their headers

• The tool can be used as an educational and training tool
to assist the security experts to understand the structure
of attacks through Mitre Att&ck Mapping [40].

• It enables opening web addresses (URLs) in different
browsers and therefore helps in URL analysis and, more
importantly, phishing attacks using various mainstream
and supported browsers.

• The tool generates a fine-format report for publication
and sharing purposes. The professionally-looking report
consists of supporting screenshots, Process Behavior
Graphs, indicators of being malicious/suspicious, and
many other components.

B. HYBRID: AUTOMATED MALWARE ANALYSIS
SERVICE
Hybrid [38] is a free malware analysis tool that enables
both static and dynamic analysis. It utilizes several analysis
reports and sandbox tools, including Falcon Sandbox [41],
a dynamic analysis framework. In addition to the dynamic
analysis offered by Falcon Sandbox, Hybrid integrates some
other anti-virus tools such as VirusTotal, OPSWAT Metade-

fender, SIEM systems, NSRL (i.e., white listing), TOR
(e.g., avoiding external IP fingerprinting), Phantom, Thug
Honey Client (e.g., URL exploit analysis), and Suricata
(ETOpen/ETPro rules). The tool provides several useful anal-
ysis features such as:

• Risk summary and verdict of being malicious or benign.
• A good number of malicious/suspicious indicators
• A large set of network rules for intrusion detection and

network analysis
• Integration with YARA [42] for rule-based pattern

matching-based malware detection
• Analysis of a wide variety of files including binary

samples and PCAP files
• Analysis of URLs for detection of phishing attacks

C. A FEATURE-BASED COMPARISON

This section aims to highlight the key features of
AnyRun [39] and Hybrid [38] in comparison with the fea-
tures offered by MalView. The comparison is performed
through the classification of features into 1) general features,
2) behavioral activities and dynamic analysis, 3) structure-
based and static analysis, and 4) network-level analysis.
Table 1 lists the features classified into these four groups.

VOLUME 2, 2022 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

Features AnyRun Hybrid MalView
I) General Features

1 Integrated with VirusTotal [23] *
√ √

2 Integrated with MetaDefender [43] *
√

3 Integrated with CrowdStrike Falcon [41]
√

4 Compliance with InfoSec Classification [7], [8]
√

5 Filtering (i.e., Simplification) Capabilities
√

6 Classification into Malicious/Benign
√ √ √

7 List of Imported DLLs
√ √ √

8 Statistics of Extracted Executable Files
√ √ √

9 Highlights Malicious Indicators (e.g., report from anti-viruses, installation activities, creation of a windows
session/station, termination of a session, and spanning a lots of processes

√ √ √

10 Highlights Suspicious Indicators (e.g., inspection of PE files, suspicious API calls, locating of resource files,
deleting executable files, creating files in Windows directory, importing suspicious APIs)

√ √ √

II) Behavioral Activities and Dynamic Analysis
11 Behavioral Graphs/Activities

√ √

12 Different Classes and details of Processes
√

13 Call graph and Number of Calls for each Process/category
√ √

14 Scalar representation of process calls
√

15 Dependencies among processes/executable files
√

16 Time Dependencies between processes/executable files
√

17 Lists dangerous/suspicious system level activities (creating/changing important files: registry, SVCHOST to
execute hidden code, writes to start menu, etc.)

√ √

18 Registry/File Activities
√ √ √

19 List of Registry/File changes and modifications and events
√ √ √

20 Statistics about events and registry activity including read/write/ delete events
√

21 Statistics about executable files
√ √ √

22 Provide Falcon Sandbox Report (Dynamic Execution)
√ √

23 Basic Risk Assessment (e.g., access to clipboard, spanning processes, reading the computer name, and injecting
into explorer)

√ √

24 Extract memory strings and tokens
√ √

25 The name of the extracted executable files
√ √ √

26 List the size of different Sections of PE files
√ √

Partially
III) Network Level Analysis

27 Domain Name System (DNS) Requests
√ √ √

28 Host Connections
√ √ √

29 HTTP Traffic/Requests
√ √ √

30 Network Threats
√ √

31 PCAP Download
√

32 Registry Changes
√

33 Details on GET/POST methods
√

*: The feature is under development.

TABLE 1. A feature-based comparison of Anyrun [39], Hybrid [38] and MalView.

1) General Features
MalView offers not only comparatively similar features but
also additional features that are unique to MalView. More
precisely, the tool offers features such as 1) compliance with
InfoSec classification with respect to malicious processors
and indicators (Feature #4), and 2) simplification of visu-
alization through filtering and focusing only a subset of
processes for the analysis (Feature #5).

2) Behavioral Activities and Dynamic Analysis Features
The features related to dynamic analysis are considerably
diverse. As a result, each analysis tool offers its own set of
unique features. Given the fact that MalView mostly visu-
alizes the output of Procmon [6], it is primarily a dynamic
analysis tool. Depending on how the underlying malware
visualization tool is implemented, most of these tools are able
to visualize the “basic” sets of dynamic data captured through
Procmon or similar utilities. For instance, as Table 1 shows,
most of the behavioral features are visualizable by these three
tools.

The major and key feature that is unique to MalView is

the exploration of “time dependencies between processes
(Features #15 and #16). The visualization of time and process
dependencies are an important part of malware analysis in
order to comprehend the nature of the underlying malware.

3) Signature-based and Static Analysis

As stated earlier, MalView is primarily a visual analytics
tool based on the output of the dynamic analysis of the
underlying application or malware. As a result, it is less
focused on visualizing static features of executable files.
However, MalView is integrated with several static analysis
tools, including VirusTotal, and thus is capable of capturing
this information and visualize them accordingly. VirusTotal
is able to capture static information such as the size of
header files, type of files, PE Specific, and other static and
signature-based features. As a result, MalView can visualize
all the information captured by VirusTotal and uses its API to
retrieve this information and visualize them accordingly.

16 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

4) Network Level Analysis
Similar to signature-based and static analysis features,
MalView is less focused on visualizing purely network-level
features. However, given the strength of Procmon in captur-
ing all related processes and events, MalView is capable of
visualizing the network-level events and processes captured
by Procmon and thus provides a process-level view on this
network-level information.

VIII. RELATED WORK
The malware analysis methods can be broadly categorized
into static vs. dynamic analysis [44]. Many of these ap-
proaches utilize visual representation to enable the analysts
to visually capture general activities related to malware from
a large number of data files or logs which are infeasible to
digest in text or binary format [45].

A. SIGNATURE-BASED FEATURES/STATIC ANALYSIS
Panas [46] visualized software binaries in order to demon-
strate malware samples. In their approach, they first disas-
semble the file to obtain the Abstract Syntax Tree (AST)
and then provided the intermediate representation of the file
by using ROSE [47], an open-source compiler. Visualizing
the signature of a set of different malware families, they
were able to show the changes in different versions of a
malware family. Also utilizing visualizations in dynamic
malware analysis, Grégio et al. [45] proposed a solution
with two interactive visualization tools. The two visualization
prototypes are a timeline with a magnifier and a spiral view
of the malicious activities. The first tool provides analysts
with views of the malware activities over time. While the
time selection for the x-axis is similar to ours (and many
others), the uses of colors and what is to be presented in the y-
axis are different. They used the y-axis to represent activities
and colors to different processes or services involved by the
malware execution. Each event (an activity at a timestamp of
an involved process) is presented by a circle connected by a
line, which represents changes over time. This presentation
leads to the visual cluttering issue, especially when malware
does many different activities in a short time interval [48].

Gove et al. [49] presented their tool Similarity Evidence
Explorer for Malware (SEEM), which compares a focal sam-
ple of malware with other malicious samples in the database.
The malware features are grouped into nine categories, and
feature similarities are visually presented in three ways: 1)
histogram, 2) Venn diagram list, and 3) a feature matrix. The
histogram utilizes the Jaccard similarity of the features of the
focal sample with the other samples. In contrast, the Venn
diagram is more granular and shows information of overlap,
strict subset, and disjoint features. The feature matrix high-
lights the specific features present in the analyzed sample.
Long et al. [50] proposed a versatile and instinctive technique
to identify a given malware file from its image sets. The
authors argued that the desktop icons are one effective social
engineering attempt employed by some malware developers.
The victim clicks on the icon resulting in the execution of

the malware. Hence, comparing a new malware based on
its image with a previously known malware database results
in effective malware identification. Extracted greyscale mal-
ware images are shown using a force-directed graph [15],
[17], which is essentially a similarity network of sample
malware images computed with the nearest neighbor index.
The visualization tool shows hash values of the executable,
and upon clicking on the values, it draws the similarity
network graph, and it provides zooming functionalities for
multiple hops of each node.

B. IMAGE-BASED AND DYNAMIC ANALYSIS
While static analysis is computationally efficient, its perfor-
mance could be impaired by packed or encrypted malware.
On the other hand, dynamic analysis analyzes actual be-
haviors from the malware while it is running, so it is more
efficient [51]. In their work [52], Shaid and Maarof proposed
a method to generate images representing malware API calls.
First, the API calls are monitored in the malware behavior
capturing step. These calls are then sorted from malicious
to less malicious. Finally, each API call is assigned a color
depending on its maliciousness level. Similarly, Kancherla
et al. [51] proposed to convert the malware into a gray-
scale image called byteplot. They then used machine learning
(ML) methods (e.g., Support Vector Machines) to analyze the
low-level features (e.g., intensity and textures) extracted from
the resulted images. Regarding ML approaches, LeDoux
and Lakhotia [53] presented that ML has a natural fit with
malware analysis, where ML operates by rapidly learning,
discovering inherent patterns and similarities in the corpus.

With image-based malware classification, O’Shaughnessy
[54] utilized the space-filling curves approach to formalize
a scalable solution for classification ambiguity among anti-
virus programs. Donahue [55] proposed another idea of using
Markov Byte Plot [56] to convert Portable Executable (PE)
files into truecolor (defined by red, green, and blue (RGB)
color components) images that help to highlight the differ-
ences between the packed and unpacked malware. Another
common approach is to convert malware PE or binary files
into images and analyze the resulted images. There are
various ways to turn the malware into images and different
methods to analyze the produced images. For instance, Han et
al., [57] proposed a three-step approach to analyze malware
in this direction. First, the opcode sequences of the malware
are extracted in Step 1. Step 2 generates an image with both
width and height are of 2n, where n is a user-defined number.
Next, this step applies a hash function, such as SimHash [58],
to each of the extracted opcode sequences to generate a pixel
with corresponding x-y position and RGB color. Finally, sim-
ilarities between the resulted images are calculated in Step
3. In their extended version of this approach [44], they also
incorporated dynamic analysis to filter for essential opcode
sequences.

Miles et al. [59] presented VirusBattle, a system equipped
with intelligence navigation and visualization to mine and
to discover interrelationships between malware instances au-

VOLUME 2, 2022 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

tomatically. This system provides two primary analyses: 1)
a program’s dynamic trace tree and 2) a scalable method
of discovering shared Computed Semantics artifacts among
instances of malware. VirusBattle analyzes the interrelation-
ships over many types of malware artifacts, including the
binary, code, code semantics, dynamic behaviors, malware
metadata. Shaid and Marrof [60] proposed the method of
presenting the behavioral pattern of malicious files using
a Hot-to-Cold color ramp. As the malware runs, the user-
mode API calls are captured, then ordered and grouped based
on their maliciousness. This behavior-to-color map of the
malware helps visualize when and in which order a malware
sample performs malicious activities during execution.

Besides software systems, research in hardware advance-
ment has introduced many approaches that facilitate malware
analysis to build a transparent dynamic analysis system.
In terms of hardware virtualization extensions, Dinaburg et
al. [61] proposed Ether, an application that remained trans-
parent and defeated a large percentage of obfuscation tools.
Later, Lengyel et al. [62] built DRAKVUF on a similar vir-
tualization extensions approach and provided greater insight
into the execution of the system to trace system execution for
malware analysis.

This visual analytics approach in MalView can benefit the
branch prediction in dynamic environment analysis in Gold-
enEye by Xu et al. [63] and the analysis of sequences of API
calls in VECG by Alaeiyan et al. [64]. The interactive visual
representations can expedite the process of proactively de-
tecting environment-sensitive and context-based behaviors,
where "human-in-the-loop" can accelerate early stopping and
quickly capture patterns that emerged from the API call
sequences.

C. HYBRID (STATIC AND DYNAMIC) ANALYSIS
Most static approaches focus on comparing, clustering mal-
ware instances, or classifying if a new sample belongs to a
known family of malware. For example, Paturi et al., [65]
used Pythagoras tree to represent the similarities in codes
between malware. The similarity metrics might be “Cosine
similarity" or “Normalized Compression Distance." The hi-
erarchical structure of the Pythagoras tree is characterized as
the distance between nodes at each lower depth of the tree is
reduced by

√
2/2. Thus, the tree helps bring malware with

higher similarities into clusters as leaf nodes with shorter
distances stay close to one another.

Anderson et al. [66] presented a malware classification
system that works based on the combination of static and
dynamic features. For static feature extraction, they used
three sources, including 1) the binary file, 2) the disassembled
binary, and 3) the control flow graph of the disassembled
binary file. For dynamic feature extraction, they used dy-
namic instruction sequence and the dynamic call sequence.
They tested their system using a large malware dataset and
achieved 98.07% accuracy with the combined static and
dynamic features. They also achieved a 96.14% accuracy by
using only static features. Yoo and InSeon [67] designed their

visualization based on the belief that malicious content in
an executable file has a unique feature called SOM (Self-
Organizing Map). By calculating the SOM and visualizing a
specific executable file, the potential portion of the malicious
content can be determined, and by checking the generated
pattern, the malware family can be detected.

Saxe et al. [68] developed an interactive visualization
system for comparing malware samples in a dataset using
the extracted features. Based on the presence of the system
call sequence, the similarity matrix for the malware dataset
is generated. This system also provides a comparison view
among malware samples based on their malicious activity.
On mobile computing platforms such as Android devices,
Jenkins and Cai [69], [70] explored Inter-Component Com-
munications (ICC) via interactive visual explorations, show-
ing thorough ICC comprehension and security vulnerability
inspection, revealing the malicious behaviors that were nor-
mally hidden to users.

D. VISUALIZATION TOOLS AND ANALYSIS
Analyzing malware through visual behaviors has been stud-
ied with the aim to observe the overall flow of a program,
discover malicious patterns, and quickly assess the nature
of the malware sample [5], [71]. Wagner et al. [72] pro-
posed KAMAS, a knowledge-assisted visualization system
for behavior-based malware analysis, which visualizes API
call sequences gathered during the execution of malicious
software. Our approach aligns with this direction, but we
shift the focus on the analysis side with different malware
families and the influence of operating systems on malware
behavior. In particular, the design decisions and techniques
in MalView are applied in the malware analysis domain and
derived from visualization principles for time-series data,
which is the collection of observations through repeated mea-
surements over time, including but not limited to numerical,
geolocation, and text data [73]–[75]. Using Ether [61] as
the monitoring platform, Quist and Liebrock [76] propose
a directed graph structure of all the basic blocks of an
executable with a navigable interface to explore the code
structure. Treemaps and thread graphs are also visualization
techniques that show usefulness in detecting maliciousness of
software and in classifying malicious behavior [77]. The clas-
sification decisions can be supported by the visual analytics
solution provided by Angelini et al. [78] to provide the user a
better understanding of such decisions and the possibility of
changing the classification results. Visual analytics approach,
when combined with predictive analysis, can project poten-
tial threats or detect malicious attacks for securing efficient
manufacturing automation [79].

Conti et al. [80] designed a system for file analysis with
these features: 1) Analyze undocumented file format, 2)
Audit files for vulnerabilities, 3) Compare files, 4) Crack,
Cryptanalysis, and Forensic analysis, 5) Identify unknown
file format, 6) Malware analysis and 7) Reporting. Their
system is an extension to the hex editor and consists of both
textual and graphical visualization. Quist and Liebrock [81]

18 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

developed a tool called VERA (Visualization of Executables
for Reversing and Analysis) that can be used for visualizing
the structure and flow of an executable file, including mem-
ory reads and writes. Later, they extended their work [82] by
adding more reverse engineering tools and providing more
testing case studies in detail.

Trinius et al. [77] used two different approaches for mal-
ware visualization. They first generated an XML file contain-
ing dynamic analysis information of the malware sample us-
ing CWSandbox [83], including 1) loaded system libraries, 2)
outgoing and incoming network connections, and 3) accessed
or manipulated registry keys. Using the XML output, they
visualized the key feature using two techniques: “treemaps”
and “thread graphs”. They argue that these two methods are
complementary and, using these two visual representations,
can effectively help detect the malicious behavior of the given
malware and identify the malware family. They tested their
proposed approach by executable and non-executable (PDF
format) malware samples.

Gregio and Santos [84] developed an interactive timeline
tool for visualizing dynamic malware behavior using various
techniques [48]. They ran the given malware in a controlled
environment and captured its behavior using a modified
version of BehEMOT [85] (a malware behavior monitoring
tool). They captured high-level activities such as file write
and delete, process creation and termination, registry reads
and writes, mutexes and network operations, and system
calls using System Service Dispatch Table (SSDT) hooking,
which operates at the kernel level. In addition, they used
identification labels provided by VirusTotal [23].

An interactive visualization tool called MalwareVis is in-
troduced by Zhou et al. [48] for malware dynamic analysis
with a concentration on network traces including the total
number of packets, size of the transmission, number of
streams, and the packet trace’s duration. They ran the mal-
ware in a controlled environment and captured these network
traces by using packet sniffer software, where the output
packet capture (PCAP) files were used for visualization.
They used table views and shape views for representing the
features that allow the user to browse, filter, and compare
different types of malware. Cappers et al. [86] also utilize
PCAP to discover the patterns in traffic to explore the intru-
sive behavior from malware activities.

IX. CONCLUSION AND FUTURE WORK
This paper introduces MalView, an interactive visualization
platform for hybrid analysis and diagnosis of malware. Our
approach first represents the behavioral properties of the
major malware classes (such as Trojan or backdoor), aiming
to capture the common visual signatures of these malicious
applications. MalView implements a web-based prototype
for demonstrating our approach to analyzing 60 malware
samples from seven different classes. The behavior aspects
of these malware files are captured using Process Monitor
(i.e., Procmon [6] on three different platforms (Windows
XP, Windows 7, and Windows 10). The functionality and

features offered by MalView are designed and developed
based on a thorough literature review and a comparison
with the state-of-the-art malware analysis tools, including
AnyRun and Hybrid. In order to have better insight regarding
the features offered by MalView, a feature table is presented
in which MalView is compared with AnyRun and Hybrid
analysis tools. The feature comparison is performed based
on four classes of features. The feature table demonstrates
that MalView comparatively implements most of the features
offered by the other two tools. In addition, the time and
processed dependencies, the key features of MalView, are
implemented in the prototype, making the analysis more
thorough. Given the ability to process, visualize and analyze
the system activities and put them into a comprehensive
view, MalView can serve as an informative and potential
interest to developers, engineers, and practitioners outside the
laboratory.

There are several lines of research that can be explored
through visual analytics when complemented by conven-
tional static and dynamic analysis: The early detection of
zero-day vulnerability and malware is a grand challenge.
There are several machine learning-based approaches for
addressing this problem [1], [53]. With the capability of vi-
sual analytics facilitating explainable machine learning [87],
[88], applying visual analytics techniques to detecting and
analyzing unknown and zero-day malware is an interesting
research approach that can be explored using MalView. The
key feature of MalView is its features in demonstrating
time and process dependencies that occurred during static
and dynamic analysis. A potential research direction is to
model malware behavior through recurrent neural networks
on the visual signatures and then predict malware behaviors
or even classify suspicious programs into a particular class
of malware. It would also be interesting to model malware
samples through genome alignments and then model the
malware classification or detection problem through deoxyri-
bonucleic acid (DNA) or sequence matching approaches.
The sequence matching might be useful in capturing the
core malicious functionalities of obfuscated malware. The
obfuscation techniques employed by the obfuscating tools
often follow similar patterns, and thus we expect the control-
flow graphs produced for all these obfuscated malicious ap-
plications share fully or partially the same core. MalView will
offer a visual analytic approach to spot these similar patterns
in the execution traces. Once a section of the underlying
execution trace is identified as obfuscated, it can be ignored
by the user of MalView and then enables the users to focus
on other parts of the malware in order to comprehend it. A
second approach would be to employ existing de-obfuscated
tools to de-obfuscate the malware under investigation (MUI)
and then let Procmon generates the de-obfuscated traces of
execution and processes.

ACKNOWLEDGMENT
This work was supported by National Science Foundation
(NSF) under Grant No: 1821560.

VOLUME 2, 2022 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

REFERENCES
[1] Faranak Abri, Sima Siami-Namini, Mahdi Adl Khanghah, Fahimeh Mirza

Soltani, and Akbar Siami Namin. Can machine/deep learning classifiers
detect zero-day malware with high accuracy? In IEEE BigData, 2019.

[2] Claudio Guarnieri. Cuckoo sandox: Automated malware analysis.
https://cuckoosandbox.org/, Accessed 2019.

[3] Vinh The Nguyen, Akbar Siami Namin, and Tommy Dang. Malviz: An
interactive visualization tool for tracing malware. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, pages 376–379, New York, NY, USA, 2018. ACM.

[4] William Casey, Jeffrey Havrilla, Charles Hines, Leigh Metcalf, and Aaron
Shelmire. Sparse Representation Modeling for Software Corpora. Results
of SEI Line-Funded Exploratory New Starts Projects, page 43, 2012.

[5] Markus Wagner, Fabian Fischer, Robert Luh, Andrea Haberson, Alexander
Rind, Daniel A Keim, Wolfgang Aigner, Rita Borgo, Fabio Ganovelli, and
Ivan Viola. A survey of visualization systems for malware analysis. In EG
conference on visualization (EuroVis)-STARs, pages 105–125. The EGA,
2015.

[6] Microsoft. Process Monitor - Windows Sysinternals - Microsoft
Docs, 2020. Accessed: 2020-11-29. https://docs.microsoft.com/en-us/
sysinternals/downloads/procmon.

[7] Infosec. Windows Functions in Malware Analysis Cheat Sheet Part
1. https://resources.infosecinstitute.com/windows-functions-in-malware-
analysis-cheat-sheet-part-1/, 2015. (Accessed: 2019-06-05).

[8] Infosec. Windows Functions in Malware Analysis Cheat Sheet Part
2. https://resources.infosecinstitute.com/windows-functions-in-malware-
analysis-cheat-sheet-part-2/, 2015. (Accessed: 2019-06-05).

[9] Mark E. Russinovich and Aaron Margosis. Windows Sysinternals Admin-
istrator’s Reference. Microsoft Press, Redmond, WA, USA, 1st edition,
2011.

[10] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven
documents. IEEE Trans. Vis. Comput. Graph., 17(12):2301–2309, 2011.

[11] Robert Amar, James Eagan, and John Stasko. Low-level components of
analytic activity in information visualization. In Information Visualization,
2005. INFOVIS 2005. IEEE Symposium on, pages 111–117. IEEE, 2005.

[12] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization, pages
364–371. Elsevier, 2003.

[13] Jonathan M Spring, Leigh B Metcalf, and Edward Stoner. Correlating
domain registrations and dns first activity in general and for malware.
National Physical Laboratory, 2011.

[14] Tim McGraw. Glitch style visualization of disrupted neuronal connectivity
in parkinson’s disease. In 2017 IEEE VIS Arts Program (VISAP), pages
1–8. IEEE, 2017.

[15] Ngan VT Nguyen, Huyen N Nguyen, Jon Hass, and Tommy Dang. JobNet:
2D and 3D Visualization for Temporal and Structural Association in High-
Performance Computing System. In International Symposium on Visual
Computing, pages 210–221. Springer, 2021.

[16] Huyen N. Nguyen and Tommy Dang. EQSA: Earthquake Situational
Analytics from Social Media. In 2019 IEEE Conference on Visual
Analytics Science and Technology (VAST), pages 142–143, 2019.

[17] Hao Van, Huyen N Nguyen, Rattikorn Hewett, and Tommy Dang. Hack-
erNets: Visualizing Media Conversations on Internet of Things, Big Data,
and Cybersecurity. In 2019 IEEE International Conference on Big Data
(Big Data), pages 3293–3302. IEEE, 2019.

[18] Microsoft. How Microsoft identifies malware and potentially un-
wanted applications. https://docs.microsoft.com/en-us/windows/security/
threat-protection/intelligence/criteria, 2020. Accessed: 2020-11-29.

[19] Microsoft. Malware Names. https://docs.microsoft.com/en-us/windows/
security/threat-protection/intelligence/malware-naming, 2020. Accessed:
2020-11-29.

[20] Microsoft. Cyberthreats, viruses, and malware - Microsoft Security
Intelligence. https://www.microsoft.com/en-us/wdsi/threats. Accessed:
2019-12-24.

[21] Check Point Software Technologies Ltd. Blog. October 2018’s most
wanted malware: For the first time, remote access trojan reaches top 10
threats. https://blog.checkpoint.com/2018/11/13/october-2018s-most-
wanted-malware-for-the-first-time-remote-access-trojan-reaches-top-
threats-cryptomining/, Accessed 2019.

[22] Corvus Forensics. Virus share. https://virusshare.com/, Accessed 2019.
[23] Hispasec Sistemas. Virustotal public api v2.0.

https://www.virustotal.com/en/documentation/public-api/, 2019.

[24] Kaspersky. What is a trojan virus? - definition.
https://usa.kaspersky.com/resource-center/threats/trojans, Accessed
2019.

[25] Microsoft Security Intelligence. Trojan:Win32/MultiInjector.C.
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-des
cription?Name=Trojan:Win32/MultiInjector.C. Accessed: 2022-05-24.

[26] Imperva. Backdoor attack - what is backdoor?
https://www.imperva.com/learn/application-security/backdoor-shell-
attack/, Accessed 2019.

[27] Gavin O’Gorman and Geoff McDonald. Ransomware: A growing menace.
Symantec: Security Response.

[28] Malwarebytes Labs. Kaseya hijacked, thou-
sands attacked by revil, fix delayed again.
https://blog.malwarebytes.com/cybercrime/2021/07/shutdown-kaseya-
vsa-servers-now-amidst-cascading-revil-attack-against-msps-clients/,
2021.

[29] Wendy Zamora. The state of ransomware among smbs.
https://blog.malwarebytes.com, 2017.

[30] Microsoft Security Intelligence. Behavior:Win32/Bladabindi.gen.
https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Behavior:Win32/Bladabindi.
gen&threatId=-2147281575. Accessed: 2019-12-24.

[31] Microsoft Security Intelligence. Behavior:Win32/Vawtrak.A.
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Behavior:Win32/Vawtrak.
A&threatId=-2147280787. Accessed: 2019-12-24.

[32] Microsoft Security Intelligence. Behavior:Win32/Teerac.B.
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Behavior:Win32/Teerac.
B&threatId=-2147277970. Accessed: 2019-12-24.

[33] Microsoft Security Intelligence. Behavior:Win32/MultiInjector.
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Behavior:Win32/
MultiInjector&threatId=-2147325646. Accessed: 2019-12-24.

[34] Dung Vu Pham, Ali Syed, and Malka N Halgamuge. Universal serial bus
based software attacks and protection solutions. digital investigation, 7(3-
4):172–184, 2011.

[35] Svrana Kumar, Logesh Madhavan, Mangalam Nagappan, and Biplab
Sikdar. Malware in pirated software: Case study of malware encounters in
personal computers. In 2016 11th International Conference on Availability,
Reliability and Security (ARES), pages 423–427. IEEE, 2016.

[36] Microsoft Security Intelligence. HackTool:Win32/Mailpassview.
https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=HackTool:Win32/
Mailpassview&threatId=-2147395884. Accessed: 2019-12-24.

[37] Quick Heal. ’Golroted’ malware uses web browser weakness to steal
sensitive information. http://dlupdate.quickheal.com/documents/others/
quick_heal_golroted_malware_threat_report_june_2015.pdf. Accessed:
2019-12-24.

[38] Payload Security. Free automated malware analysis service - hybrid
analysis. https://www.hybrid-analysis.com/, Accessed 2019.

[39] ANY.RUN LLC. ANY.RUN - interactive online malware sandbox.
https://any.run/, Accessed 2019.

[40] MITRE Corporation. Mitre att&ck framework. https://attack.mitre.org/,
Accessed 2019.

[41] Crowdstrike. Automated malware analysis & sandbox: Falcon sandbox.
https://www.crowdstrike.com/, Accessed 2019.

[42] Victor Manuel Alvarez. Yara: The pattern matching swiss knife for
malware researchers. https://virustotal.github.io/yara/, Accessed 2019.

[43] OPSWAT, Inc. Metadefender cloud. https://metadefender.opswat.com/,
2020.

[44] KyoungSoo Han, BooJoong Kang, and Eul Gyu Im. Malware analysis
using visualized image matrices. The Scientific World Journal, 2014, 2014.

[45] André Ricardo Abed Grégio, Alexandre Or Cansian Baruque, Vitor Monte
Afonso, Dario Simões Fernandes Filho, Paulo Lício de Geus, Mario Jino,
and Rafael Duarte Coelho dos Santos. Interactive, visual-aided tools to
analyze malware behavior. In International Conference on Computational
Science and Its Applications, pages 302–313. Springer, 2012.

[46] Thomas Panas. Signature visualization of software binaries. In Proceed-
ings of the 4th ACM Symposium on Software Visualization, pages 185–
188, New York, NY, USA, 2008. ACM.

[47] Lawrence Livermore National Laboratory. Rose compiler: Program anal-
ysis and transformation. http://rosecompiler.org/, Accessed 2010.

20 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/criteria
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/criteria
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/malware-naming
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/malware-naming
https://www.microsoft.com/en-us/wdsi/threats
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Bladabindi.gen&threatId=-2147281575
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Bladabindi.gen&threatId=-2147281575
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Bladabindi.gen&threatId=-2147281575
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Vawtrak.A&threatId=-2147280787
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Vawtrak.A&threatId=-2147280787
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Vawtrak.A&threatId=-2147280787
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Teerac.B&threatId=-2147277970
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Teerac.B&threatId=-2147277970
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/Teerac.B&threatId=-2147277970
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/MultiInjector&threatId=-2147325646
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/MultiInjector&threatId=-2147325646
https://wdsi-filesubmission.trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior:Win32/MultiInjector&threatId=-2147325646
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=HackTool:Win32/Mailpassview&threatId=-2147395884
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=HackTool:Win32/Mailpassview&threatId=-2147395884
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=HackTool:Win32/Mailpassview&threatId=-2147395884
http://dlupdate.quickheal.com/documents/others/quick_heal_golroted_malware_threat_report_june_2015.pdf
http://dlupdate.quickheal.com/documents/others/quick_heal_golroted_malware_threat_report_june_2015.pdf
https://metadefender.opswat.com/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

[48] Wei Zhuo and Yacin Nadjin. Malwarevis: Entity-based visualization
of malware network traces. In Proceedings of the Ninth International
Symposium on Visualization for Cyber Security, pages 41–47, New York,
NY, USA, 2012. ACM.

[49] Robert Gove, Joshua Saxe, Sigfried Gold, Alex Long, and Giacomo
Bergamo. Seem: a scalable visualization for comparing multiple large
sets of attributes for malware analysis. In Proceedings of the Eleventh
Workshop on Visualization for Cyber Security, pages 72–79, 2014.

[50] Alexander Long, Joshua Saxe, and Robert Gove. Detecting malware
samples with similar image sets. In Proceedings of the Eleventh Workshop
on Visualization for Cyber Security, pages 88–95, 2014.

[51] Kesav Kancherla and Srinivas Mukkamala. Image visualization based mal-
ware detection. In 2013 IEEE Symposium on Computational Intelligence
in Cyber Security (CICS), pages 40–44. IEEE, 2013.

[52] Syed Zainudeen Mohd Shaid and Mohd Aizaini Maarof. Malware be-
haviour visualization. Jurnal Teknologi, 70(5), 2014.

[53] Charles LeDoux and Arun Lakhotia. Malware and machine learning. In
Intelligent Methods for Cyber Warfare, pages 1–42. Springer, 2015.

[54] Stephen O’Shaughnessy. Image-based malware classification: A space
filling curve approach. In 2019 IEEE Symposium on Visualization for
Cyber Security (VizSec), pages 1–10. IEEE, 2019.

[55] John Donahue, Anand Paturi, and Srinivas Mukkamala. Visualization
techniques for efficient malware detection. In 2013 IEEE International
Conference on Intelligence and Security Informatics, pages 289–291.
IEEE, 2013.

[56] Kesav Kancherla, John Donahue, and Srinivas Mukkamala. Packer iden-
tification using byte plot and markov plot. Journal of Computer Virology
and Hacking Techniques, 12(2):101–111, 2016.

[57] KyoungSoo Han, Jae Hyun Lim, and Eul Gyu Im. Malware analysis
method using visualization of binary files. In The 2013 Research in
Adaptive and Convergent Systems, pages 317–321. ACM, 2013.

[58] Moses S Charikar. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 380–388. ACM, 2002.

[59] Craig Miles, Arun Lakhotia, Charles LeDoux, Aaron Newsom, and Vivek
Notani. Virusbattle: State-of-the-art malware analysis for better cyber
threat intelligence. In 2014 7th International Symposium on Resilient
Control Systems (ISRCS), pages 1–6. IEEE, 2014.

[60] Syed Zainudeen Mohd Shaid and Mohd Aizaini Maarof. Malware be-
havior image for malware variant identification. In 2014 International
Symposium on Biometrics and Security Technologies (ISBAST), pages
238–243. IEEE, 2014.

[61] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether:
malware analysis via hardware virtualization extensions. In Proceedings
of the 15th ACM conference on Computer and communications security,
pages 51–62, 2008.

[62] Tamas K Lengyel, Steve Maresca, Bryan D Payne, George D Webster,
Sebastian Vogl, and Aggelos Kiayias. Scalability, fidelity and stealth in the
drakvuf dynamic malware analysis system. In The 30th Annual Computer
Security Applications Conference, pages 386–395, 2014.

[63] Zhaoyan Xu, Jialong Zhang, Guofei Gu, and Zhiqiang Lin. Goldeneye:
Efficiently and effectively unveiling malware’s targeted environment.
In International Workshop on Recent Advances in Intrusion Detection,
pages 22–45. Springer, 2014.

[64] Mohammadhadi Alaeiyan, Saeed Parsa, and Mauro Conti.
Analysis and classification of context-based malware behavior.
Computer Communications, 136:76–90, 2019.

[65] Anand Paturi, Manoj Cherukuri, John Donahue, and Srinivas Mukkamala.
Mobile malware visual analytics and similarities of attack toolkits (mal-
ware gene analysis). In 2013 International Conference on Collaboration
Technologies and Systems (CTS), pages 149–154. IEEE, 2013.

[66] Blake Anderson, Curtis Storlie, and Terran Lane. Improving malware
classification: Bridging the static/dynamic gap. In Proceedings of the 5th
ACM Workshop on Security and Artificial Intelligence, pages 3–14, New
York, NY, USA, 2012. ACM.

[67] InSeon Yoo. Visualizing windows executable viruses using self-organizing
maps. In Proceedings of the 2004 ACM Workshop on Visualization and
Data Mining for Computer Security, pages 82–89, New York, NY, USA,
2004. ACM.

[68] Josh Saxe, David Mentis, and Chris Greamo. Visualization of shared sys-
tem call sequence relationships in large malware corpora. In Proceedings
of the Ninth International Symposium on Visualization for Cyber Security,
pages 33–40, NY, USA, 2012. ACM.

[69] John Jenkins and Haipeng Cai. Dissecting android inter-component com-
munications via interactive visual explorations. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 519–
523. IEEE, 2017.

[70] John Jenkins and Haipeng Cai. Icc-inspect: Supporting runtime inspection
of android inter-component communications. In Proceedings of the 5th
International Conference on Mobile Software Engineering and Systems,
pages 80–83, 2018.

[71] Markus Wagner, Wolfgang Aigner, Alexander Rind, Hermann Dornhackl,
Konstantin Kadletz, Robert Luh, and Paul Tavolato. Problem characteriza-
tion and abstraction for visual analytics in behavior-based malware pattern
analysis. In Proceedings of the Eleventh Workshop on Visualization for
Cyber Security, pages 9–16, 2014.

[72] Markus Wagner, Alexander Rind, Niklas Thür, and Wolfgang Aigner. A
knowledge-assisted visual malware analysis system: Design, validation,
and reflection of kamas. Computers & Security, 67:1–15, 2017.

[73] Tommy Dang, Huyen N. Nguyen, and Vung Pham. WordStream: In-
teractive Visualization for Topic Evolution. In Jimmy Johansson, Filip
Sadlo, and G. Elisabeta Marai, editors, EuroVis 2019 - Short Papers. The
Eurographics Association, 2019.

[74] Tommy Dang, Vung Pham, Huyen N Nguyen, and Ngan VT Nguyen.
AgasedViz: Visualizing groundwater availability of Ogallala Aquifer,
USA. Environmental Earth Sciences, 79(5):1–12, 2020.

[75] Huyen N. Nguyen, Caleb M. Trujillo, Kevin Wee, and Kathleen A. Bowe.
Interactive qualitative data visualization for educational assessment. In
The 12th International Conference on Advances in Information Technol-
ogy, IAIT2021, New York, NY, USA, 2021. ACM.

[76] Daniel A Quist and Lorie M Liebrock. Visualizing compiled executables
for malware analysis. In 2009 6th International Workshop on Visualization
for Cyber Security, pages 27–32. IEEE, 2009.

[77] Philipp Trinius, Thorsten Holz, Jan Göbel, and Felix C Freiling. Visual
analysis of malware behavior using treemaps and thread graphs. In 2009
6th International Workshop on Visualization for Cyber Security, pages 33–
38. IEEE, 2009.

[78] Marco Angelini, Leonardo Aniello, Simone Lenti, Giuseppe Santucci, and
Daniele Ucci. The goods, the bads and the uglies: Supporting decisions in
malware detection through visual analytics. In 2017 IEEE Symposium on
Visualization for Cyber Security (VizSec), pages 1–8. IEEE, 2017.

[79] Dy D Le, Vung Pham, Huyen N Nguyen, and Tommy Dang. Visualization
and explainable machine learning for efficient manufacturing and system
operations. 2019.

[80] Gregory Conti, Erik Dean, Matthew Sinda, and Benjamin Sangster. Visual
reverse engineering of binary and data files. In John R. Goodall, Gregory
Conti, and Kwan-Liu Ma, editors, Visualization for Computer Security,
pages 1–17, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[81] Daniel Quist and Lorie Liebrock. Visualizing compiled executables for
malware analysis. pages 27 – 32, 11 2009.

[82] Daniel A Quist and Lorie M Liebrock. Reversing compiled executables for
malware analysis via visualization. Information Visualization, 10(2):117–
126, 2011.

[83] CWSandbox. Cwsandbox - automated online malware analysis.
http://cwsandbox.org/, Accessd 2020.

[84] Andre R. A. Gregio and Rafael D. C. Santos. Visualization techniques
for malware behavior analysis. In Edward M. Carapezza, editor, Sensors,
and Command, Control, Communications, and Intelligence (C3I) Tech-
nologies for Homeland Security and Homeland Defense X, volume 8019,
pages 9 – 17. International Society for Optics and Photonics, SPIE, 2011.

[85] André RA Grégio, Dario S Fernandes Filho, Vitor M Afonso, Rafael DC
Santos, Mario Jino, and Paulo L de Geus. Behavioral analysis of malicious
code through network traffic and system call monitoring. In Evolutionary
and Bio-Inspired Computation: Theory and Applications V, volume 8059,
page 80590O. International Society for Optics and Photonics, 2011.

[86] Bram CM Cappers, Paulus N Meessen, Sandro Etalle, and Jarke J
Van Wijk. Eventpad: Rapid malware analysis and reverse engineering
using visual analytics. In 2018 IEEE Symposium on Visualization for
Cyber Security (VizSec), pages 1–8. IEEE, 2018.

[87] Tommy Dang, Hao Van, Huyen Nguyen, Vung Pham, and Rattikorn
Hewett. DeepVix: explaining long short-term memory network with high
dimensional time series data. In Proceedings of the 11th International
Conference on Advances in Information Technology, pages 1–10, 2020.

[88] Tommy Dang, Huyen N Nguyen, and Ngan VT Nguyen. VixLSTM: Visual
Explainable LSTM for Multivariate Time Series. In The 12th International
Conference on Advances in Information Technology, pages 1–5, 2021.

VOLUME 2, 2022 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

HUYEN N. NGUYEN is a Ph.D. Candidate in
Computer Science at Texas Tech University, where
she is a member of the interactive Data Visu-
alization Lab (iDVL). She has a great research
interest in interactive data visualization, visual
analytics, and human-computer interaction, sup-
porting data insight discovery via visual repre-
sentations. Her research work has been presented
at the IEEE Visual Analytics Science and Tech-
nology, EG/VGTC Conference on Visualization,

and funded by NASA for multidisciplinary collaboration on Visualizing
Qualitative Data for Science and Education.

FARANAK ABRI is a Ph.D. candidate and re-
search assistant in Computer Science at Texas
Tech University. She joined Texas Tech University
in 2018 and received her second Master’s degree
in Computer Science from Texas Tech Univer-
sity in 2020. Faranak’s research interest is model-
ing cybersecurity problems using artificial intelli-
gence(AI) and machine learning (ML) techniques.
She has research experience in a wide range of
topics in this area including malware analysis,

cloud security, automated deception detection, social engineering, security
comprehension, and usable security.

VUNG PHAM is an Assistant Professor in the
Computer Science Department at Sam Houston
State University. He received his Master of Sci-
ence in Computer Systems Engineering from Po-
litecnico di Milano, Milan, Italy, in 2010 and
his Ph.D. in Computer Science from Texas Tech
University, Texas, USA. He has a great interest in
data analytics and data visualization. His research
on big data and interactive visual analytics has ap-
peared in Geoderma, Computers and Electronics

in Agriculture, Environmental Earth Sciences, and ASTM International, and
has been presented at IEEE International Conference on Big Data, IEEE
VIS, and EuroVis, among others.

MOITRAYEE CHATTERJEE is an Assistant
Professor at New Jersey City University. She re-
ceived her PhD from Texas Tech University in
2020. Her research work lies at the intersection
of Machine/Deep Learning and Cyber Security.
She has been contributing to various NSF funded
research projects and workshops on Digital Foren-
sics, generating secure software configuration,
Mental model development of cyber adversaries,
reverse engineering, cloud security & abuse, and

Malware analysis. She regularly participates in top conferences like Black-
Hat, DefCon, IEEE Bigdata, IEEE COMPSAC as workshop organizer,
program committee member and presenter. She has more than 9 publications
in various peer reviewed journal and conferences and cited 84 times since
2018. Besides, academic and research involvements she has 8 years of
industry experience working in Software industry in countries like India and
Malaysia.

AKBAR SIAMI NAMIN is an Associate Professor
in Computer Science at Texas Tech University.
His research interests and expertise include soft-
ware engineering, testing and program analysis,
software and cyber security and malware analysis,
machine and deep learning. He received the Ph.D.
degree in Computer Science from Western Uni-
versity, London, Canada in August 2008. He has
co-authored over 80 research articles published
in premier journals and venues. His research on

cyber security research and education is funded by National Science Foun-
dation.

TOMMY DANG is an Assistant Professor of
Computer Science at Texas Tech University, where
he directs the interactive Data Visualization Lab
(iDVL). His research on big data visualization and
visual analytics has appeared in Computer Graph-
ics Forum and IEEE Transactions on Visualization
and Computer Graphics and has been presented at
IEEE Information Visualization, IEEE Visual An-
alytics Science and Technology, EG/VGTC Con-
ference on Visualization, among others. He has

previously been a post-doc on a DARPA-funded project on biological
network visualization at the Electronic Visualization Lab at the University
of Illinois at Chicago which focuses on advanced virtual reality, notably the
CAVE2 hybrid reality environment and the SAGE2 scalable amplified group
environment.

22 VOLUME 2, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3207782

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Capturing Dynamic Behavior Using ProcMon
	Data Attributes
	Event Categories

	MalView: System Overview
	MalView: Visual Components
	Input and Operation Overview
	Temporal Patterns
	Operated Objects

	Malware and Classification
	Process Dependencies
	Libraries Matrix

	Case Studies
	Experimental Setup
	Remote Access Trojan (RAT)
	Trojans
	
	

	
	Ransomware
	Behavioral Malware
	Hacktool Malware

	The Influence of Running Platforms on Malware Behavior
	Ransomware
	Email Flooder
	Behavioral Malware
	Patterns Across Platforms

	Malware Visualization Tools vs. MalView
	AnyRun: Interactive Online Malware Sandbox
	Hybrid: Automated Malware Analysis Service
	A Feature-based Comparison
	General Features
	Behavioral Activities and Dynamic Analysis Features
	Signature-based and Static Analysis
	Network Level Analysis

	Related Work
	Signature-based Features/Static Analysis
	Image-based and Dynamic Analysis
	Hybrid (Static and Dynamic) Analysis
	Visualization Tools and Analysis

	Conclusion and Future Work
	REFERENCES
	Huyen N. Nguyen
	Faranak Abri
	Vung Pham
	Moitrayee Chatterjee
	Akbar Siami Namin
	Tommy Dang

