Securing Big Data Scientific Workflows via
Trusted Heterogeneous Environments

Saeid Mofrad’(>), Ishtiag Ahmed”

, Fengwei Zhang*

, Shiyong Lu @, Ping Yang (), Heming Cui

Index Terms—trusted computing, Intel SGX, AMD SEV, big data workflow, heterogeneous cloud

Abstract—Big data workflow management systems (BDWMS)s have
recently emerged as popular data analytics platforms to conduct large-
scale data analytics in the cloud. However, the protection of data
confidentiality and secure execution of workflow applications remains
an important and challenging problem. Although a few data analyt-
ics systems, such as VC3 and Opaque, were developed to address
security problems, they are limited to specific domains such as Map-
Reduce-style and SQL query workflows. A generic secure framework
for BDWMS:s is still missing. In this paper, we propose SecDATAVIEW,
a distributed BDWMS that employs heterogeneous workers, such as
Intel SGX and AMD SEV, to protect both workflow and workflow data
execution, addressing three major security challenges: (1) Reducing the
TCB size of the big data workflow management system in the untrusted
cloud by leveraging the hardware-assisted TEE and software attestation;
(2) Supporting Java-written workflow tasks to overcome the limitation of
SGX’s lack of support for Java programs; and (3) Reducing the adverse
impact of SGX enclave memory paging overhead through a “Hybrid”
workflow task scheduling system that selectively deploys sensitive tasks
to a mix of SGX and SEV worker nodes. Our experimental results
show that SecDATAVIEW imposes moderate overhead on the workflow
execution time.

1 INTRODUCTION

Today, technology advances provide an opportunity to col-
lect and store a large amount of data (referred to as big data)
from different data sources, such as Event logs, the Inter-
net, Smartphones, Databases, Sensors, IoT devices, etc [1].
The study and comparison of these collected data provide
useful knowledge that is often used in decision-making
processes. For example, in the business context, big data
is used to forecast market trends. Analyzing the collected
data allows policymakers to take prescriptive action for

S. Mofrad” and 1. Ahmed" are entitled the co-first authors with equal

contribution; F. Zhang* is the corresponding author.

e S. Mofrad is with COMPASS Lab and Big Data Research Lab, Depart-
ment of Computer Science, Wayne State University, Detroit, MI, USA.
E-mail: saeid.mofrad@uwayne.edu.

o [Ahmed is with Big data Research Lab, Department of Computer Science,
Wayne State University, Detroit, MI, USA. E-mail: ishting@uwayne.edu.

o F Zhang is with COMPASS Lab, Department of Computer Science and
Engineering, Southern University of Science and Technology, China. E-
mail: zhangfw@sustech.edu.cn.

e S. Lu is with Big data Research Lab, Department of Computer Science,
Wayne State University, Detroit, MI, USA. E-mail: shiyong@uwayne.edu.

e Ping Yang is with the Department of Computer Science, State Uni-
versity of New York at Binghamton, Binghamton, NY, USA. E-mail:
pyang@binghamton.edu.

e H. Cui is with the HKU Systems Software Group, Department of

Computer Science, University of Hong Kong, Hong Kong. E-mail: hem-

ing@cs.hku.hk.

the benefit of society in healthcare and government. Cloud
providers, with their vast and elastic processing, storage and
networking infrastructure, offer exciting potential for large-
scale data analytics, which is often compute and resource
intensive. For example, the Hadoop framework [2] is a big
data analytics platform that processes Map-Reduce-style
workflows and is often deployed in a cloud environment.
Nonetheless, the notion of cloud is based on resource shar-
ing abstraction, and cloud hardware and software resources
are typically shared among different users or organiza-
tions through isolation techniques such as virtual machines
or containers. The characteristics of resource sharing and
the large size of cloud system software make the cloud
vulnerable to different classes of attacks [3]-[8]. Scientific
workflows running on clouds or virtualized data centers
rely on the integrity of the OS and hypervisor code to
operate correctly, which introduces a large trusted com-
puting base (TCB). For instance, Linux kernel has about
35.5 million lines of code and the latest Xen hypervisor
contains 586 thousands of lines of code [9]. This large TCB
inevitably creates vulnerabilities that could be exploited by
attackers. The National Vulnerability Database shows that
there are 21 vulnerabilities in Xen that have been reported
between 2017 to 2019 and 21 vulnerabilities in the latest
Linux kernel version 5.x.x [10]. Attacks may stem inside the
cloud provider (e.g., dishonest administrator) or outsiders.
External attackers may exploit such vulnerabilities to gain
access to computers on which scientific workflows execute
to access or modify data and workflow tasks. For example,
Ristenpart et al. [§] showed that an outside adversary could
extract unauthorized information in AWS EC2 instances.
One of the fundamental and realistic security-enhancing
strategies is to isolate the execution of workflows at run-
time, where workflow data is processed in clear text to
ensure data processing efficiency. Hardware-assisted TEE is
a promising solution for protecting the execution of big data
workflows in the cloud. To create hardware-assisted security
solutions, hardware vendors introduced several hardware-
assisted TEEs, such as Intel Software Guard eXtensions
(SGX) [11]-[13] and AMD Secure Encrypted Virtualization
(SEV) [14]. Intel SGX and AMD SEV technologies are de-
signed to be general-purpose hardware-assisted TEEs in the
x86 architecture, which help to reduce the runtime attacks
in cloud environments. Some researchers [15] have explored
the pros and cons of each approach with a side-by-side
comparison. There have been several prior efforts to protect

https://orcid.org/0000-0001-9529-3165
https://orcid.org/0000-0001-9654-7403
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0002-7864-1815
https://orcid.org/0000-0001-9058-2822
https://orcid.org/0000-0001-7746-440X

big data analytics in the cloud with Intel SGX. For example,
Shuster et al. [16] proposed VC3, a system that leverages
SGX to protect unmodified Map-Reduce tasks written in
C/C++. Rafael Pires et al. [17] proposed a lightweight, Map-
Reduce framework with Lua [18], a high-level language
that interprets the Map-Reduce Lua scripts in Intel SGX. In
another effort, Zheng et al. proposed Opaque [[19] to enhance
the security of the Spark SQL with SGX. Although these sys-
tems are the pioneers in using hardware-assisted TEEs for
big data analytics, they are limited to specific domains. For
example, both VC3 and Rafael Pires et al [17] systems sup-
port only Map-Reduce-style workflows consisting of a Map
task and a Reduce task, but not workflows of a more flexible
structure. The Opaque application is limited to the use of
relational algebra based tasks with Spark SQL. Existing
systems do not support workflow tasks with well-defined
input and output ports of complex data types, such as lists,
maps, and arrays. In this paper, we present SeccDATAVIEW,
a new distributed BDWFMS that leverages Intel SGX and
AMD SEV to develop a TEE for the secure execution of
big data workflows. SecDATAVIEW protects against attacks
that mainly happen on cloud providers and data centers,
including attacks that are launched by a dishonest cloud
administrator, malicious cloud software, or a compromised
virtual machine. SecDATAVIEW is transparent to the users
and the application-level workflow tasks. Our research and
development focus on addressing the following challenges.
Firstly, to address the above-mentioned clould’s security
vulnerabilities, SeccDATAVIEW reduces the size of the sys-
tem’s TCB by isolating the security-sensitive modules of the
system in the SGX-protected enclaves or SEV-protected VMs
and by keeping the high-privileged cloud system software
outside of the TCB. Secondly, SGX applications are bounded
by a limited set of C/C++ libraries. This is due to the system
call restriction in the SGX enclave that limits the availability
of C/C++ libraries inside an SGX enclave. However, many
workflow tasks are written in Java and may use several
third-party Java libraries which are not directly supported
by SGX. To address this challenge, SecDATAVIEW uses
the SGX-Shield approach [20] and specifically incorporates
the SGX-LKL library OS [21] to execute workflow tasks
written in Java inside SGX enclaves while maintaining a
small TCB of the BDWEMS. Thirdly, big data workflow
tasks are often memory-intensive. For example, 75% of the
execution time of the Broadband workflow [22] is consumed
by workflow tasks that require over 1GB memory. Run-
ning the DATAVIEW [23] Kernel itself also requires over
500MB memory. As a result, SGX memory paging could
significantly increase the execution time of the DATAVIEW
server and workflow tasks. To address this concern, Sec-
DATAVIEW uses AMD SEV, instead of SGX enclaves, to
support a larger amount of secure memory. Our contribu-
tions are summarized as follows:

1) We propose SecDATAVIEW, a heterogeneous big
data workflow management system that leverages
Intel SGX and AMD SEV for the secure execution
of big data workflows. We propose a secure ar-
chitecture and the WCPAC (Workflow Code Pro-
visioning and Communication) protocol that uses
real-time Intel remote attestation along with in-

2

enclave VPN connection to provision and attest
secure worker nodes, securely provision the code
for the Task Executor and workflow tasks on each
participating worker node for a workflow, establish
secure communication between the master node
and worker nodes, and ensure secure file transfers
among worker nodes. We leverage the SGX-LKL
library OS to execute workflow tasks written in Java
to overcome the limitation of SGX'’s lack of support
for Java programs.

2) To support memory-intensive workflows and re-
duce the overall performance overhead incurred by
SGX enclaves EPC memory paging, SecDATAVIEW
introduces the notion of “Hybrid” operation that
enables users to selectively assign confidential tasks
into SGX and SEV worker nodes. Our previous
work [15] reported that SEV performs faster than
SGX for workloads that require a larger amount of
secure memory. However, SGX offers better secu-
rity than SEV due to its smaller TCB size, enclave
abstraction, and memory integrity protection. In
SecDATAVIEW, users can assign memory-intensive
confidential tasks (e.g., tasks that do not require
enhanced-degree of security but require a large
amount of secure memory) in SEV worker nodes
while assigning security-sensitive confidential tasks
(e.g., tasks that need enhanced-degree of security)
to SGX worker nodes.

3) We have implemented and evaluated
SecDATAVIEW with a comprehensive set of
real-world workflows, including a Diagnosis
Recommendation workflow [24], a Distributed
K-means workflow, a Neural Network workflow, a
Map-Reduce workflow [25], and MONTAGE [26]
workflow, to demonstrate the feasibility and
usability of the proposed system. Our experimental
results show that SecDATAVIEW imposes a
moderate overhead on the execution times of
various workflows.

This paper is an extended version of our prior work [27]
that is awarded with the “Artifacts Evaluated - Functional”
badge. In this work, we developed a more complete and
more secure system. The source code is available in the
SecDATAVIEW GitHub] The main differences between the
two versions are summarized as follows:

1) We provided a more secure and more practical
edition of SecDATAVIEW as part of the extensions.
We proposed and integrated a stronger security
measurement that we assumed their existence in our
prior work [27]; the implemented security measure
is to prevent attacks that fake the presence of TEE
(i.e., SGX or SEV) in the cloud provider environ-
ments. We added this protection through enforcing
a real-time cloud’s hardware and enclave binary
attestation for every single worker node during the
worker launch. The TEE remote attestation suffi-
ciently prevents attacks that fake the presence of
TEE and reveals any modifications to the enclave’s

1. https:/ / github.com/shiyonglu/SecDATAVIEW

https://github.com/shiyonglu/SecDATAVIEW

binary in the TEE [28]. Additionally, we used in-
enclave VPN tunneling methods in the SGX-LKL for
secure delivering SGX TEE's secret after the success-
ful remote attestation. Moreover, we enforced the
real-time TEE's storage clean-up before terminating
the worker nodes, which prevents attacks that may
happen after workflow execution is finished (i.e.,
accessing workflow residual files in the disk image).

2) We modified the Workflow Code Provisioning
and Communication (WCPAC) protocol, the Sec-
DATAVIEW system architecture, Cloud Resource
Management, Workflow Executor and Task Ex-
ecutor to enforce the proposed security in Sec-
DATAVIEW. To facilitate further research and devel-
opment, we disclosed detail information describing
above-mentioned modules and also other subsys-
tems of SecDATAVIEW that have not been discussed
in ACSAC 19 conference paper. Also, all WCPAC
steps are mapped at source code level helping inter-
ested researchers to understand the logic of source
codes and their interaction in the SecDATAVIEW
GitHub.

3) We added a set of new experimental validations
(e.g., Deep Learning and MONTAGE workflows)
targeted to observe the SecDATAVIEW system per-
formance with different configuration settings and
workflow designs; all discussed in Section For
example the deep learning algorithms such as Neu-
ral Network (NN) families often depends upon
“loop” construct whose representation is limited in
form of DAG diagram. We showed that the NN
algorithm could be assigned as an independent task
in the workflow DAG. Such deep-learning exper-
iments prove the usability and flexibility of the
SecDATAVIEW system and show how proposed
system handles a challenging case where a complex
algorithm cannot be distributed as part of differ-
ent tasks in the DAG. In addition, the MONTAGE
workflow represents a workflows with many input
and output data channels that go through encryp-
tion/decryption and secure data transfer during
the secure workflow execution. Our experiment on
the MONTAGE workflow reveals the behavior of
SecDATAVIEW in heavily-connected DAG scenario.

The rest of the paper is organized as follows. Section §2| pro-
vides an overview of big data workflows, the DATAVIEW
workflow management system, the Intel SGX, the AMD
SEV, and the adversary model. Section describes the
design and implementation of SecDATAVIEW. Section §4|
presents our experimental results, security analysis, and
comparison studies. Section §5| presents the related work
and Section §6]concludes the paper.

2 BACKGROUND & ADVERSARY MODEL

Big data: Big data refers to a collection of large datasets
and records containing the raw information related to the
data collector sensors and data sources [29]|-[31]. Business
experts, understand the power of data and how data could
empower them to compete with their business rivals, pro-
vide a better customer experience, and gain revenue ad-
vantages. In fact, companies are very active with collecting

3

data whenever and wherever they can and big data ana-
lytics becomes essential to many modern companies. While
big data provides invaluable information for the decision-
making process, big data analysis poses various challenges
in storage, transfer, processing, and management due to the
following big data characteristics [1]], [31]: (1)-Volume that
represents the size of big data records that range between
terabytes to petabytes; (2)-Variety that demonstrates the
format of data records, which can be structured (such as
student records), unstructured (such as videos and images),
or semi-structured in which data records do not typically
follow a particular data schema; (3)-Velocity that represents
the data arrival speed, which can be very high in real-time
applications that require rapid and on-the-fly processing
of data. (4)-Value that speaks for the results that could
be extracted from big data records and is categorized as
statistical, hidden, and unknown. Also, integrating and
correlating data records originating from different sources
unlocks useful information that might not be obtainable by
processing just one data source. (5)-Veracity that embodies
the trustworthiness and consistency of big data.

Big data workflows: A big data workflow is a computer-
ized model for automating a data analytics process, which
consists of a set of computational tasks and their data
dependencies, to process and analyze data of ever increasing
in scale, complexity, and rate of acquisition [23], [32]. A big
data workflow management system (BDWFMS) is a system
that completely defines, modifies, manages, monitors, and
executes scientific workflows on the cloud in the order that
is driven by the workflow logic [23], [32]. An example work-
flow is given in Figure 4} SecDATAVIEW was developed
based on the DATAVIEW scientific workflow management
system [23]]. We chose DATAVIEW as the baseline for the de-
velopment of our secure BDWFMS because of the following
reasons. Firstly, DATAVIEW represents the state-of-the-art
big data workflow management system and has a strong
user base (over 700 registered users worldwide). Secondly,
DATAVIEW has been used in various data analytics applica-
tions, including diagnosis recommendation [24], predicting
the efficacy of therapeutic services for autism spectrum dis-
order [33], analysis of vehicle data to assess driver’s driving
behavior [23], medical image processing [34], biological sim-
ulation data analysis [35], and brain fiber connectivity analy-
sis [36]. The architecture of DATAVIEW is given in Figure
DATAVIEW system consists of three layers: the Presentation
& Visualization Layer, the Workflow Management Layer, and
the Task Management Layer. The Presentation & Visualization
layer is responsible for the presentation of workflows and
the visualization of different data products, and also prove-
nance metadata. The Workflow design & configuration module
implements a GUI front-end environment for end-users
to design and configure workflows. The Workflow Engine
is the module that manages the execution of workflows.
The Workflow Monitoring module keeps track of the status of
workflow execution. The Data Product Management module
stores and manages all data products used in workflows.
The Provenance Management module is responsible for gener-
ating workflow provenance. The Task Management module is
responsible for the execution of workflow tasks that are ex-
ecuted in the cloud. The Cloud Resource Management module
interacts with clouds for provisioning and de-provisioning

virtual machines (e.g., Amazon EC2 instances).

Intel SGX: Intel SGX is a recent hardware innovation
that enables users to instantiate a secure container, called
enclave, to protect the execution of code from being altered
by malicious code or external attackers. SGX protects the
integrity of the enclave code and data, even when the
high-privileged system software is compromised [37]. SGX
also protects against the physical memory access class of
attacks [20]. With SGX, the trusted computing base (TCB)
contains only the processor and the code running inside
the enclave. SGX reserves a limited size of the encrypted
memory region called Enclave Page Cache (EPC), where
enclaves are created within this region. In the current SGX
release, the size of EPC is 32MB, 64MB, or 128MB [37], [38].
Although a larger memory size can be supported through
the paging mechanism, it incurs up to 1, 000X performance
overhead [37]. To speed up the execution performance of
parallel applications, SGX supports multi-threads inside the
enclave.

AMD Secure Encrypted Virtualization (SEV): AMD SEV is
a security feature that is created on top of the AMD Secure
Memory Encryption (SME) [14] technology and provides the
protection against attacks that usually occur in cloud system
software such as high-privileged hypervisors by encrypting
the memory space of VM instances. SEV protects a VM’s
memory space with an encryption key that is protected
from the hypervisor, cloud management software or other
parts of the system [14]. SEV protection is transparent to
the user applications that are running inside SEV-protected
instances. Protected applications are unaware of underlying
memory encryption. AMD’s Memory Encryption Engine
is capable of using different encryption keys to protect
different SEV-protected VM'’s memory spaces on the same
platform.

Adversary Model: The adversary model for SecDATAVIEW
is similar to that for VC3 [16]. We assume that an attacker
may control the whole software stack in remote servers,
including their system software. An attacker may also have
access to network packets and capture, replay, and modify
them. In addition, an attacker may access or change data
after the data leaves the processor with hardware-tapping or
probing techniques. An attacker can also access any process
running on a worker node. The adversary could fake the
presence of the TEE or be a dishonest administrator who
can tap into a worker node to read user data, or an attacker
who can exploit a vulnerability in the worker node host’s
system software and access user data that is located in
the unprotected memory, in the network buffer, or on the
physical storage medium. We assume the attacker is not
capable of modifying SGX-enabled CPU package or AMD
SEV SoC that resides in the remote location. Other attacks,
including network traffic-analysis [39], denial-of-service, ac-
cess pattern leakage [40], side-channel attacks [41], and fault
injections [42], are out of the scope of this paper.

3 DESIGN OF SECDATAVIEW

We identify the following security-related requirements for
SecDATAVIEW:

Presentation Layer
Presentation &
Visualization

Workflow Design &
Configuration

—_ = — - — — — — — — — =

J

Workflow Management Layer

Other Workflow
Engines ﬁ

Workflow

Workflow ﬁ
Monitoring

Engine

/i ‘\ N B
c
3|

T -1

w

£l

/l l WaskManage t Layer El
a

Cloud Resource Provenance Task Data Product I

Management I Management Management Management I

|

Infrastructure Layer
| Cloud Services |

I

Amazon AWS Servers

Fig. 1: Architecture of the DATAVIEW (unsecured) sys-
tem [32].

e R1: Providing the confidentiality and integrity of
code and data for workflows running on public
untrusted clouds.

e R2: Evaluating the authenticity of hardware re-
sources and validating the worker VMs that are
provided by an untrusted cloud provider.

R3: Minimizing the TCB size for SecDATAVIEW.

e R4: Enabling the trade-off between security and per-
formance for workflows with different user require-
ments.

o R5: Supporting the execution of Java-based work-
flow tasks in SGX nodes without tedious code refac-
toring.

Figure 2| depicts the architecture of SecDATAVIEW, that uses
a heterogeneous computing environment including both
SGX and SEV worker nodes. We propose the Workflow
Code Provisioning and Communication (WCPAC) protocol
that guarantees the integrity and confidentiality protection
of a workflow execution (Requirement R1). The WCPAC
protocol in SecDATAVIEW leverages a real-time TEE attes-
tation mechanism that is provided by the hardware ven-
dors (e.g., Intel SGX Attestation Service via SGX-LKL) to
evaluate the trustworthiness of cloud’s hardware resources
and enclave’s binary during the worker launch process
(Requirement R2). SecDATAVIEW'’s architecture leverages
hardware-assisted TEEs in the cloud providers and only
provisions and executes the security-sensitive modules and
data inside TEE enclaves and trusted VMs, which signif-
icantly decreases the hardware and software TCB of the
SecDATAVIEW system (Requirement R3). SecDATAVIEW
provides a “Hybrid” operation mode by leveraging a het-
erogeneous computing environment (i.e., Intel SGX and
AMD SEV). The “Hybrid” operation provides the trade-off
between the performance and the degree of security (Re-

quirement R4). Based on the previous study [15], SGX offers
better security than SEV due to its smaller TCB size, enclave
abstraction, and memory integrity protection. However,
SGX may impose high performance overhead on memory-
intensive applications due to its limited enclave memory
size. While SEV offers better performance for memory-
intensive applications and the assurance of confidentiality,
it comes with the limitations of a larger TCB size (ie.,
entrusting the entire VM) and lack of memory integrity
protection, which decreases its degree of security assur-
ance. SecDATAVIEW benefits greatly from our proposed
“Hybrid” operation and the heterogeneous computing en-
vironment that includes both SGX and SEV worker nodes.
Security-sensitive workflow tasks (e.g., tasks that process
confidential data) are executed on SGX nodes and memory-
intensive tasks with lower security requirement (e.g., tasks
that do not process confidential data) are executed on SEV
nodes. In this way, SecDATAVIEW achieves the degree of
security with low performance overhead. Moreover, Sec-
DATAVIEW leverages the SGX-Shield approach that was
initially proposed in [20] and a SGX-supported Linux kernel
library that is provided by SGX-LKL [21] to execute JVM and
Java tasks in the SGX worker nodes (Requirement R5).

3.1 SecDATAVIEW Architecture

To address the security-related requirements of
SecDATAVIEW, we first identify the components
in DATAVIEW that process confidential data. In
DATAVIEW [23]], the Workflow Engine and the Task
Management module are security-sensitive components
as they interact with workflow tasks that may process
confidential data. These components need to be distributed
inside SGX/SEV TEEs or a trusted on-premises server
(Requirement R3). Also, DATAVIEW was not designed
with security in mind and all communications between two
different modules were passed through an unencrypted
channel. Although the input and output data channels were
transferred through secure FIP (sftp), they were stored
in the plaintext format. To address this security flaw and
securing DATAVIEW, we develop the WCPAC (Workflow
Code Provisioning And Communication) protocol to
provision and attest secure worker nodes (Requirement R2).
Via the WCPAC protocol, the system securely provisions
the code for the Task Executor and workflow tasks on
each participating worker node, and establish the secure
communication and file transfers between the master node
and worker nodes, and among worker nodes. As a result,
the confidentiality and integrity of intermediate workflow
data products are protected during their transfer from one
workflow task to another (Requirement R1).

To integrate the WCPAC protocol into DATAVIEW, we
redesigned the Cloud Resource Management module to ini-
tialize and attest SGX/SEV worker nodes, and added two
security-related subsystems — Code Provisioner and Code
Provisioning Attestation — to the Task Management and to
the Workflow Engine modules, respectively. Figure [2(a)
gives the secure system architecture for SecDATAVIEW in
the cloud and the zoom-in view of its two components:
the Workflow Engine and the Task Management. Figure [2(d)
provides the deployment architecture of SecDATAVIEW,
which consists of two parts: the master node running in

5

a secure on-premises server and worker nodes running in
a public cloud. The gray components in the figure rep-
resent the redesigned components in SecDATAVIEW. In
SecDATAVIEW, the Code Provisioner and Task Executor are
executed inside SGX enclaves or SEV-protected VMs.

3.1.1 Executing workflows inside SGX enclaves

SGX-based applications are implemented with Intel SGX
SDK that uses low-level C/C++ to accomplish SGX prim-
itives and introduces the notion of enclave abstraction into
the programming model. The enclave abstraction divides
every SGX application into trusted and untrusted runtime
that should be designed carefully by the developers. We
identify two common SGX-based application design. One
approach is called the Specialized-Enclave, in which the de-
veloper follows all the SGX rules, such as code partition-
ing in trusted and untrusted parts, defining Ecalls and
Ocalls [43], and configuring the Enclave Definition Lan-
guage [43], to develop applications. SecureKeeper [38] uses
the Specialized-Enclave approach. In the Specialized-Enclave
approach, the size of the TCB is small because the size of
code running inside the enclave is minimal. The Specialized-
Enclave approach works well if the system depends on only
the static components that are usually created by skillful
developers. However, the DATAVIEW system uses dynamic
and third-party proprietary tasks and libraries that are not
created or used by the DATAVIEW system developers. Ap-
plying the Specialized-Enclave approach would dramatically
decrease the usability and the security of the DATAVIEW
system due to the burden of learning low-level SGX-based
programming on the shoulder of its end-users. Besides,
C/C++ is not a type-safe language and user-created SGX
workflow tasks may unintentionally expose low-level vul-
nerabilities that result in the leak of sensitive information
from the enclave and the compromise of the system runtime
environment. Another approach is the SGX-Shield approach
that was initially proposed in [20]. The SGX-Shield approach
executes an unmodified application in the SGX runtime. In
this approach, the unmodified application along with its
execution environment (such as JVM) and codes that belong
to the library operating system (LibOS) entirety is executed
inside the enclave. On one hand, the SGX-Shield approach
introduces a larger TCB as it puts more code inside the en-
clave and may significantly decrease the memory access per-
formance of the enclave [38] when the enclave memory size
exceeds 96M B due to the EPC memory paging overhead.
On the other hand, the SGX-Shield approach substantially
increases the usability of the SGX-based system by support-
ing the execution of unmodified applications. In addition,
the SGX-Shield approach enables end-users to execute code
written in type-safe languages such as Java, which mitigates
unintended memory leakage in the program and is suitable
for security-sensitive scientific workflow applications.
Considering above-mentioned benefits, we devel-
oped SecDATAVIEW wusing the SGX-Shield approach.
HAVEN [20], Graphene-SGX [44], SCONE [37], and the
SGX-LKL library OS [21] use the SGX-Shield approach to run
unmodified applications in enclaves. Among them, SCONE
and SGX-LKL support Java. Because SGX-LKL is open-
source, SecDATAVIEW uses SGX-LKL to execute workflow
tasks written in Java inside SGX enclaves. One limitation

e "
Presentation Layer| .~ | Werkflow Engine subsystem
Presentation & Workflow Design & L~ Workflow
Visualization Configuration e Planner
-,
-
-
| n o
| Workflow Mianagement Layer Workflow Isolated Clou
. l Executor Services
Workflow Workflow
I Engine ﬁl Monitoring | I n
I - I Code
S~a] Provisioning
- <
] = i‘l Attestation o)
T ~-< ecDATAVIEW Master Node running in a secure premisé
EI (b) such asisolated VM services or inside
E the client machine
/I J \X[“k ME"EE%EVS“ Er - Task Management subsystem
. i | Cloud Resource | l | Provenance Task | | Data Product | | 2
@
N |‘ | 1 |
1) ~
o
Intel Attestation Service —_——e—, e — N — — J H
o
Infrastructut®{ayer 5 _I
x
Cloud Services I~ 2 = SGX Capable
N Code Provisioner VM Worker Nod ‘Worker Node SEV Capable
~ orker Noce L Worker Node
o VM Worker Node
SGX Capable ™
Workers Amazon AWS (c) SGX Capable
Workers) Worker Node
VM Worker Node

(a)

SEV Capable
Worker Node

(d)

Fig. 2: (a) The system architecture of SecDATAVIEW and zoom-in views of its two components: (b) Workflow Engine and
(c) Task Management. (d) The all-in-cloud deployment architecture of SecDATAVIEW.

Intel Attestation Service

Worker Node
Untrusted SGX OS / SEV hypervisor
:’::3:::‘::\5:\::::::; Trusted SGX Enclave / SEV VM
Cloud Resource Management Message Jnised Tak Exsditor
I Workflow Executor g N ——

Activation o P STP Server/ssL % o -

SFIP . t/um * SSL Socket (13) Socket 8 ==l

[

w g —

4 4 1 Activation o —

Activation / Return . an I @
6 |t TEE : =
E Code Provisioning Attestation =1 -] o E Trusted Code Provisioner E = =
i @ - =
HTTPS & o - =
* SSL Socket/SFTP" L) SFTP Server/ 2 = -
Message SFTP /SSL Socket (9) SSL Socket g - -
b | ———
@ (2) 7 child Worker Node
| AN in the Workflow
Activation
g (7
Do E
v N -§ 2 SFTP. j SFTP Server
& & g © .
G 1 DiskTmage M
L J/SET Worker Node Host
! SSH/SFTP Server

Fig. 3: The WCPAC Protocol for securing the communication between Workflow Executor, Cloud Resource Management, Code

Provisioning Attestation, Code Provisioner, and Task Executor.

of SGX-LKL is that SGX-LKL supports only the execution
of a single process inside the SGX enclave. However, com-
plex modules in SecDATAVIEW such as Code Provisioner
and Task Executor are often run as multiple processes (e.g.,
SSL socket and sftp server). To tackle the above limitation,
we developed a Java-written sftp server which is included
in the SGX-LKL encrypted disk image and is sent to the
SGX worker node. When an SGX-LKL enclave is launched,
the Java sftp server starts executing inside the enclave. The
sftp server leverages Java multi-threading, class loader, and
reflection to dynamically activate the Code Provisioner mod-
ule upon its arrival and as part of its single running process
inside the enclave. In the same way, the Code Provisioner
module is enabled to activate the Task Executor inside the

enclave.

3.1.2 Executing workflows inside SEV-protected VMs

AMD SEV is designed for cloud applications and protects
unmodified applications by shielding the SEV VM instances
from other parts of the system [14]. SEV does not protect
the integrity of the memory content but imposes lower
performance overhead than SGX. To reduce the performance
overhead, SecDATAVIEW introduces a “Hybrid” operation
mode in which memory-intensive workflow tasks that do
not require enhanced-degree of protection are executed
inside SEV-protected VMs. The workflow designer decides
whether a workflow task should be executed on an SEV
or on an SGX worker node. SecDATAVIEW contains a pre-

created SEV disk image. This SEV disk image is used at run-
time to provision a customized VM on a SEV worker node
with an execution environment that includes the guest OS,
the Java virtual machine and other necessary components
(e.g., the stand-alone Java sftp server) for secure workflow
execution.

3.2 The WCPAC Protocol

We developed a Workflow Code Provisioning And Com-
munication (WCPAC) protocol for securing the execution
of workflow tasks in remote worker nodes. The main func-
tionalities of WCPAC include (1) provisioning and attesting
secure worker nodes, (2) securely provisioning the code for
the Task Executor and workflow tasks on each participating
worker node, (3) establishing a secure communication chan-
nel between the master node and each worker node, and (4)
establishing secure communication channels among worker
nodes for secure data transfer.

Every SGX worker node is configured to execute the
SGX-LKL library. AMD servers are used to execute SEV in-
stances. When a worker node is launched, the Cloud Resource
Management subsystem uses an SGX-LKL-based Intel remote
attestation similar to [45] to verify the trustworthiness of
Intel SGX CPU and SGX-LKL enclave and to send the appli-
cation configuration (i.e., disk cryptography key and JVM
setting) remotely inside the trusted SGX enclave. Besides,
AMD guest attestation [14] should be used to launch and
verify the SEV instances. Note that due to the 1) similarity
of the AMD guest attestation idea with SGX remote attes-
tation, 2) existing security concerns regarding AMD guest
attestation [46] and 3) the fact that SecDATAVIEW, uses
SEV workers mainly for executing less security-sensitive
tasks in the workflow, we leave the implementation of AMD
guest attestation for future work. Nevertheless, the WCPAC
protocol assumes that such a protocol is incorporated, and
the SEV workers would pass the guest attestation upon the
request of the Cloud Resource Management module. Besides,
the WCPAC protocol assumes that the approaches used by
TEE hardware vendors (i.e., SGX-LKL and AMD SEV) to
launch, attest and access the disk images are secure.

The SecDATAVIEW master node is deployed on a
trusted on-premises server whose security is ensured. Sec-
DATAVIEW will provision as many worker nodes as nec-
essary from a given heterogeneous computing environment
to execute a particular workflow. The user can determine
workflow scheduling during the workflow design, or a
workflow scheduling algorithm, called SEED [47], can be
used to schedule efficient workflow execution on the provi-
sioned worker nodes. During the execution, SecDATAVIEW
dynamically deploys a Code Provisioner and a Task Executor
on each worker node using the WCPAC protocol. The
remaining components of SecDATAVIEW will run on the
trusted on-premises server. Figure 3| shows the communica-
tion diagram of the WCPAC protocol. The detailed sequence
diagram of the WCPAC protocol is provided in GitHub El

Firstly, the Workflow Executor activates the Cloud Resource
Management module with a request containing the machine
type (i.e., SGX or SEV) to initialize the worker nodes — Step
(1) in Figure[3] If a worker node is SGX node, then the Cloud

2. https:/ / github.com/shiyonglu/SecDATAVIEW /blob/master /
WCPAC/WCPAC.png

7

Resource Management module sends the SGX-LKL encrypted
disk image to the worker node and activates SGX-LKL over
ssh, which initializes the worker SGX enclave for remote
activation — Step (2) in Figure
Intel SGX worker remote attestation: Cloud Resource Man-
agement follows the remote attestation and remote control
steps provided by SGX-LKL group [45]. We have modified
the SGX-LKL remote attestation source code and use it to
provide attestation service in SecDATAVIEW. Cloud Resource
Management makes Intel Attestation Service (IAS) queries
(Step (3) in Figure [3) and compares enclave measurement
(e.g., (MRENCLAVE) and (MRSIGNER)) with expected val-
ues to evaluate the cloud provider’s SGX hardware and the
enclave binary that is executed on the SGX worker node.
Upon receiving the successful attestation report from the
IAS, a public VPN key of in-enclave’s VPN server for the
attested SGX worker is received by the Cloud Resource Man-
agement module from the worker. Upon VPN’s public key
arrival, the SecDATAVIEW master node adds the worker
enclave’s VPN endpoint as its VPN peer. Using the secure
VPN channel, the decryption key of the disk image along
with stand-alone sftp server’s application configuration and
JVM environments are sent inside the trustworthy enclave.
At this moment, the enclave executes the stand-alone sftp
server and the SGX worker node is ready. If a worker node
is an SEV-protected VM, then the Cloud Resource Management
module sends the SEV disk image to the worker node,
launches SEV-protected VM over ssh, and runs the stand-
alone sftp server inside the SEV-protected VM — Step (2) in
Figure 3|

Upon successful initialization, all worker nodes have
active Java sftp server — Step (4) in Figure 3| At this step,
the Cloud Resource Management module returns the control
back to the Workflow Executor. The Workflow Executor then
activates the Code Provisioning Attestation module, which
computes the SHA256 digest of the Code Provisioner file and
stores the digest in its memory — Step (5) in Figure 3| In
addition, the Code Provisioning Attestation module randomly
generates an encryption key and stores the key in its mem-
ory. The Code Provisioning Attestation module then encrypts
the Task Executor with the generated key and sends the Code
Provisioner, the SSL certificates of the Code Provisioner, and
the encrypted Task Executor to the SGX enclave or the SEV
instance through sftp — Step (6) in Figure 3] The stand-alone
sftp server process dynamically activates the Code Provi-
sioner through Java reflection and class loader, transfers the
control to the Code Provisioner, and terminates the sftp server.
The Code Provisioner then computes the SHA256 digest on its
file (self-integrity inspection), initiates a new sftp server as
part of a new running thread for the secure file transfer,
opens a new SSL socket to communicate with the Code
Provisioning Attestation module, and sends its SHA256 digest
to the Code Provisioning Attestation module through the SSL
socket — Steps (7) and (8) in Figure

After the Code Provisioning Attestation module receives
the Code Provisioner's SHA256 digest, the Code Provisioning
Attestation module compares the SHA256 digest against the
digest stored in its memory to ensure that Code Provisioner
is not altered. If the SHA256 digests do not match, the
application is terminated; otherwise, the Code Provisioning
Attestation module sends the Task Executor’s decryption key

https://github.com/shiyonglu/SecDATAVIEW/blob/master/WCPAC/WCPAC.png
https://github.com/shiyonglu/SecDATAVIEW/blob/master/WCPAC/WCPAC.png

to the Code Provisioner. In addition, the Code Provisioning
Attestation module sends the encrypted workflow’s input
data, the Task Executor’s configuration, and the Task Execu-
tor’s SSL certificate to the Code Provisioner and through sftp.
After the success of attestation and file transfer, the control is
returned to the Workflow Executor from the Code Provisioning
Attestation module — Steps (9) and (10) in Figure 3}

Upon receiving the decryption key of the Task Executor
and all the dependency files, the Code Provisioner module
decrypts the Task Executor and dynamically activates the Task
Executor using the Java reflection and class loader. The Code
Provisioner then terminates and the control is transferred to
the Task Executor — Step (11) in Figure

The Task Executor is initialized and a new SSL socket
with its SSL certificate is started as part of the Task Ex-
ecutor running thread. At this moment, the communica-
tion between the Workflow Executor and the Task Executor
is secured and the Task Executor completes all assigned
tasks based on the local workflow schedule it receives from
the Workflow Executor. The results are sent through sftp to
the children worker nodes in the workflow or send back
to the user in the encrypted form, and the Task Executor
terminates — Steps (12) and (13) in Figure[3] It is noteworthy
that the workflow’s data cryptography key is carried with
the Task Executor and is used for the encryption and de-
cryption purpose throughout the workflow execution. The
data owner generates and encrypts the input files with a
provided cryptography tool, and the secret key is compiled
as part of the Task Executor and is securely transferred to
and decrypted in the trustworthy worker nodes. Also, all
trustworthy worker nodes share the same cryptography key,
so the data received from parent nodes could be decrypted
in the children nodes in the workflow and vice versa.

3.3 SecDATAVIEW Integration

Below, we describe the integration of the WCPAC protocol
and modified modules in SecDATAVIEW.

Cloud Resource Management: This module initializes SGX
and SEV worker nodes upon receiving the request from
the Workflow Executor. It implements machine-specific com-
mands to send pre-configured encrypted SGX-LKL (or the
SEV disk image) to each worker node and communicates
with the worker node’s hypervisor using an ssh bash session
to launch the AMD SEV-protected instance or Intel SGX-
LKL enclave. After successfully initializing the worker node,
it sends a TEE’s hardware and enclave attestation query
to the TEE’s vendor remote attestation service. Upon a
successful remote attestation, it sends the disk image de-
cryption key into the SGX/SEV TEE and JVM'’s application
configuration to run the stand-alone sftp server inside the
TEE, then it returns the control to the Workflow Executor.
Workflow Engine: The Workflow Engine is the heart of the
SecDATAVIEW system. This component is responsible for
communicating with other components for the successful
execution of a workflow. The Workflow Engine is depicted in
Figure 2[b). We divide the workflow engine into three sub-
systems: a) Workflow Planners, b) Workflow Executors, and c)
Code provisioning Attestation. A user may choose a particular
workflow planner for the execution of a workflow.

a) Workflow Planner: The Workflow Engine starts with
the Workflow Planner. Given a workflow and a resource

Algorithm 1: Code Provisioning Attestation

Input : A GlobalSchedule gsch = [lschi, - - ,lschny]

Output : Status

password <— random six characters;

2 codeProvisionerJarSH A256 «— Generate SHA256 digest
for CodeProvisioner.jar;

Encrypt the T'ask Executor.jar to TaskExecutor.enc by the
generated password;

forall LocalSchedule lsch; € gsch in parallel do

send CodeProvisioner.jar, CodeProvisioner.jks,
TaskExecutor.enc from workflow lib directory to
remote machine associated with lsch; IP

-

(%)

(S

end

forall LocalSchedule lsch; € gsch do

Set up a SSL/TLS socket connection to each Code
Provisioner inside each worker node’s SGX/SEV TEE;

® 9 o

9 end

authenticationV alidated <— True;
totalSuccess «+— 0;

forall LocalSchedule lsch; € gsch in parallel do

1
1
1

N =R o

13 send signal initialization to the remote machines
associated with lsch;;
14 while SSL/TLS socket connection is active and
authenticationValidated do
15 message <— response from remote machines
associated with lsch;;
16 if messageyirsipart =
code ProvisionJarSH A256V alue then
17 if messagesecondPart =
codeProvisionerJarSH A256 then
18 send all the input data files from workflow

data directory to remote machine associated
with lsch; IP;

19 send signal decryptTaskExecutor along
with password to remote machines
associated with lsch;;

20 end

21 else

22 ‘ authenticationV alidated <— False;

23 end

24 end

25 if messageyirstpare = decryptionComplete then

26 ‘ total Success «— totalSuccess + 1;

27 end

28 if totalSuccess = total local schedules then

29 terminate all remote machines by sending signal
terminate;

30 end

31 end

32 end

33 return authenticationV alidated;

provider, a workflow planner will produce a workflow
schedule, which specifies the types of resources, the number
of resources for each type, and the mapping of workflow
tasks to the resources. Users have the flexibility to choose
different workflow planners from the workflow planner
pool in SecDATAVIEW. Each workflow planner implements
a different workflow scheduling algorithm. A workflow
schedule consists of three levels: i)-Task Schedule, ii)-Local
Schedule, and iii)-Global Schedule.

i) Task Schedule: A task schedule maps a particular task
to one resource, and estimates the start time and finish
time of the task on that resource. A task schedule also
contains the information of a task’s incoming and outgoing
data channels to facilitate data movement during workflow
execution. The incoming data channels are the incoming
edges from its parent tasks and the outgoing data channels
are the outgoing edges from the current task to children
tasks.

Algorithm 2: Code Provisioner

Input : Input files

Output : Transfer control to T'ask Executor

actual SH A2560 fSshd <— calculate SHA256 digest of TEE’s
SSHD jar;

2 if actual SH A2560 fSshd # expectedSH A256V alueSshd
then
| return;

end

start SSHD Server in a separate thread;

start SSLServerSocket;

accept Code ProvisioningAttestation SSL/TLS connection
request;

while SSL/TLS socket is active do

9 message <— message from

CodeProvisioning Attestation;

10 if messagefirstpart = initialization then

11 SHAqye +— calculate SHA256 digest of TEE's

CodeProvisioner.jar;

12 send SH A, q1ye With message key

codeProvisionerJarSH A256V alue to

CodeProvisioning Attestation;

-

N Gk W

®

13 end

14 if message firstpart = decryptTask Executor then
15 password <— MmessagesccondPart;

16 decrypt T'ask Executor.enc to TaskExecutor.jar
with password;

17 end

18 if messageirstpart = terminate then

19 close the socket connection;

20 initialize the T'ask Executor.jar;

21 end

22 end

ii) Local Schedule: A local schedule contains a list of all
tasks scheduled for a particular resource. A local schedule
prescribes how a sequence of tasks will be executed on a
particular resource. However, some incoming data channels
may come from another local schedule that is located at
a different resource. Similarly, outgoing data channels may
reach local schedule on other machines. Local schedule also
contains the IP address of the worker node that the local
schedule is mapped to.

iii) Global Schedule: A global schedule is the collection
of all local schedules for a workflow. When all the local
schedules are created, a global schedule combines them and
then passes the combined schedule to the Workflow Executor
for execution.

b) Workflow Executor: It is the main subsystem of the Work-
flow Engine. The Workflow Executor executes on the master
node in a trusted on-premises server and communicates
with Task Executors that are executing in remote workers’
SGX/SEV TEE. At first, it receives the global schedule
from Workflow Planner and the location of files that need
to be sent to each of the worker nodes. Then it provisions
the number of machines with the help of Cloud Resource
Management module according to the global schedule and
assigns an IP address to each of local schedule. Afterward,
it transfers the control to the Code Provisioning Attestation
module to securely send and execute Task Executor and
workflow data in each worker’s SGX/SEV TEE. Once the
code provisioning is successful, it securely communicates
with Task Executors in the remote worker nodes to complete
the workflow job.

¢) Code Provisioning Attestation: It is a subsystem of
the Workflow Engine. The Code Provisioning Attestation mod-

9

ule is executed on the trusted master node and, provisions
the Task Executor with the help of Code Provisioner. It uses a
SHA256 digest message to verify the integrity of the Code
Provisioner executed inside a remote worker’s SGX/SEV
TEE. When the integrity of the Code Provisioner is verified,
the Code Provisioning Attestation module sends the Task Ex-
ecutor’s decryption key, the workflow’s input data, and the
Task Executor’s SSL certificate to the Code Provisioner mod-
ule to facilitate the Task Executor initialization, and returns
the control to the Workflow Executor. Otherwise, the Code
Provisioning Attestation terminates the workflow execution
due to the code attestation failure. Listing[I|shows the steps
in this subsystem.

Task Management: The Task management component is re-
sponsible for executing the tasks in remote workers. It
receives a local schedule from the Workflow Executor and
performs operation accordingly. It contains two subsystems:
a) Code Provisioner and b) Task Executor.

a) Code Provisioner: This is the first subsystem of Task
Management component by which the Task Management layer
is initiated. It communicates with the Code Provisioning At-
testation module and is started by the signal that is received
from the Code Provisioning Attestation module. After proving
its authenticity to the Code Provisioning Attestation module,
it receives all the necessary files for running the workflow
with sftp channel. Through an SSL socket, the Task Executor’s
decryption key is sent to this subsystem. After a successful
decryption of Task Executor, it activates the Task Executor.
Listing [2| shows the steps in Code Provisioner.

b) Task Executor: Task Executors are the core subsystem of
the Task Management. Each Task Executor packages all nec-
essary code and libraries used by workflow tasks, executes
workflow tasks inside the worker node’s SGX/SEV TEE,
and communicates with other worker nodes” SGX/SEV
TEE. This module actively interacts with the Workflow Ex-
ecutor and carries the secret key for cryptography of work-
flow data and results. In addition, AEAD AES-GCM 256
symmetric cryptography [48]], [49] scheme, SSL socket, and
sftp channel are used to protect the communication and file
transfer between worker nodes. It receives all the required
files before starting its procedure and is activated as soon as
it receives the starting signal from the Workflow Executor.
Initially, it gathers information about the confidentiality
of each task through a configuration file that is received
from the Code Provisioning Attestation module. If a task
name is in the confidential list, its incoming and outgoing
data channels are encrypted and decrypted. In the begin-
ning, all scheduled tasks to a particular Task Executor are
started at the same time with the help of multi-threading.
Then, a particular task evaluates whether all incoming data
channels are ready and begins the task execution when
all incoming data channels are ready. After a particular
task is finished, Task Executor prepares its outgoing data
channels, applies encryption on results if the task name
enlisted in the confidential list and transfers the results to
the destination worker. A “job finish” signal is sent to the
children workers and the Workflow Executor. Finally upon
receiving the “terminate” signal from the Workflow Executor,
and before terminating its thread, the Task Executor executes
the “clean-up” phase in which every workflow related and
intermediate residual files except the encrypted workflow

TABLE 1: Testbed Configuration.

Testbed Machine SecDATAVIEW Master Intel SGX AMD SEV
CPU Model Intel Xeon E3-1275 v5 Intel Xeon E3-1275 v5 EPYC 7251
CPU Core 4 4 8

CPU Thread 8 8 16

CPU Base Clock 3.6GHz 3.6GHz 2.1GHz
CPU Boost Clock 4GHz 4GHz 2.9GHz
Cache Type Smart Cache Smart Cache L3

Cache Size 8MB 8MB 32MB
Motherboard Intel FOG Intel FOG GIGABYTE MZ31-AR0
Memory 32GB DDR4 Non-ECC 32GB DDR4 Non-ECC 32GB ECC
Storage NVME SSD NVME SSD SATA SSD

Ubuntu 16.04 LTS
4.15.0-74-generic-x64

Ubuntu 16.04 LTS
4.15.0-74-generic-x64

Ubuntu 18.04 LTS
4.20.0-sev-x64

Hypervisor/OS
Kernel Version

SGX SDK Version ~N/A Ver 2.0 N/A
SGX-LKL N/A Hardware Mode N/A
SGX-LKL Memory N/A 2GB (Encrypted) N/A

SGX-LKL Storage ~ N/A 2GB (Encrypted Disk Image) N/A

SEV VM Kernel N/A N/A 5.3.0.29-generic-x64
SEV VM Memory N/A N/A 4GB (Encrypted)
SEV VM Storage N/A N/A 32GB (Disk Image)

data and results in the the SGX/SEV storage medium are
deleted.

4 EVALUATION

This section presents the evaluation results of Sec-
DATAVIEW. Specifically, we aim to answer three research
questions: (1) What is the performance overhead of running
workflows inside SecDATAVIEW? (2) Does SecDATAVIEW
preserve its security properties? (3) How is SecDATAVIEW
compared with other systems? We used an Intel-based
processor machine as the SecDATAVIEW master node, two
Intel SGX machines, and two SEV-protected VMs that are
running on one AMD EPYC server to conduct experiments.
Table [I| shows the configuration of the hardware and soft-
ware settings for the master and worker nodes. We have
also installed Java Open]JDK 1.8 on both the SEV and SGX-
LKL disk image. JVM in the SEV worker is allowed to
allocate up to 4GB of heap memory. For SGX workers, we
have compiled the latest SGX-LKL in hardware mode. Each
SGX-LKL enclave is set to allocate 2GB of heap memory.
Also, the JVM runtime in the SGX-LKL enclave is allowed
to allocate up to 1GB of heap memory. All machines were
connected with a 100Mb LAN interface, forming a hetero-
geneous cluster of five nodes. The source code for all of the
experimental workflows is available in the SecDATAVIEW
GitHub repository.

4.1 Workflow Performance Evaluation

We measured the performance overhead incurred by
SGX/SEV in terms of the execution time and the memory
usage for each workflow in ten different configurations that
are depicted in Table 2| In the table, “Data Cryptography
Active” refers to the scenario when both task code and
data are encrypted during the workflow execution and file
transfer, and then decrypted before their usage. “Data Cryp-
tography Inactive” refers to the scenario when the task code
is encrypted and decrypted, but the data is not encrypted
during the workflow execution and file transfer.

4.1.1 The Diagnosis Recommendation Workflow

This experiment deals with a real-life diagnosis recommen-
dation workflow [24] involving machine learning methods
and raw textual dataset that provides the prescription for a
group of patients. Since invoking machine learning models
requires extensive computation both for the training and
the testing datasets, we examine how the overall execution
time and memory footprint are affected due to running

10

TABLE 2: SecDATAVIEW settings for experimental work-

flows.

SecDATAVIEW Setting
SGX inactive without data encryption
SGX inactive with data encryption

TEE Setting
Inactive
Inactive

Data Cryptography
Inactive
Active

SGX active without data encryption Active Inactive
SGX active with data encryption Active Active
SEV inactive without data encryption Inactive Inactive
SEV inactive with data encryption Inactive Active
SEV active without data encryption Active Inactive
SEV active with data encryption Active Active
Hybrid TEE active without data encryption Active Inactive

Hybrid TEE active with data encryption Active Active

Parame

Parameter Recommendation

T3: SplitDataOnePort T5: Algorithm2
T2: Partitioner T4: Algorithm1 T6: Evaluation

Patient
Records

Fig. 4: The Diagnosis Recommendation Workflow [24].

every task of the workflow in Figure [inside a worker’s
TEE. Here, we synthetically create patient records in the
size varying from 100k to 350k patients with an average
length of 150 characters for an individual prescription. We
conducted the experiments with 10 different SecDATAVIEW
settings mentioned earlier. For each scenario, we used 75%
of the random dataset for training, and the rest were for
testing. Figure 5| (a) shows the average workflow execution
time of ten trials in milliseconds. We observe that the
training and testing of the machine learning models for
relatively bigger datasets demand relatively a long period of
time and as a result, secure execution demands more time
span. For the 350K dataset and with TEE and encryption
active setting, the results show that the SGX, SEV, and
the “Hybrid” setting with two SGX and two SEV workers
impose 3.11X, 1.13X, and 2.24X performance overhead,
respectively. Also, the cryptography overhead inside TEE
shows that SGX imposes 1.37X and SEV imposes 1.09.X
performance overhead compared to the baselines where
encryption was not used in the TEE. We also conducted
experiment that captures the total allocated memory and the
total number of active processing threads in the workflow.
The results show that up to 459M B heap memory and 29
active threads were used in the diagnosis recommendation
workflow. Table [3| shows the total memory usage for the
workflow execution inside a worker node. Figure[/|depicted
the detailed distribution time span of TEE and cryptography
overhead for the experimental workflows.

4.1.2 Word Count (Map-Reduce) Workflow

In this experiment, we consider a well-known word-count
example for the Map-Reduce [25] operation to investigate
the execution timespan and memory footprint with 10 dif-
ferent SecDATAVIEW settings mentioned earlier. We create
a workflow involving 16 tasks including one task for input
processing, six (three Splitting + three Mapping) tasks for
map operation, eight tasks (four Shuffling + four Reduc-
ing) for the reduce operation, and one task for the final
output organization. At first, we randomly generate words
with a length of two characters in the size varying from
1,000K to 3,500K. In the first task, the inputs are equally
distributed into three different Splitting tasks. Figure | (b)

5 SGX inactive without data encryption
SGX active without data encryption
SGX inactive with data encryption
SGX active with data encryption
[SEV inactive without data encryption
[0 SEV active without data encryption
BN SEV inactive with data encryption
250000 SEV active with data encryption
Hybrid TEE inactive with data encryption
Hybrid TEE active with data encryption

350000

300000

200000
150000

100000

- “ HJH H _HJ‘H
fDOK 150K 200K 250K 300K 350K

Number of patient records

Avg execution time in milliseconds

(a) Diagnosis Recommendation Workflow.

100000

I SGX inactive without data encryption

[SGX active without data encryption

= SGX inactive with data encryption

771 SGX active with data encryption

80000 - SEV inactive without data encryption M
] SEV active without data encryption

B SEV inactive with data encryption

SEV active with data encryption m w
60000 | Hybrid TEE inactive with data encryption
£ Hybrid TEE active with data encryption
']
E -
s
40000
o 20000
>
) H‘ HH(‘HH ‘
250 30

ISOOK

0K 00K 3500K
Number of input words

(b) Word Count (Map-Reduce) Workflow.

160000

5 SGX inactive without data encryption
[SGX active without data encryption
140000 1 SGX inactive with data encryption
] SGX active with data encryption

[SEV inactive without data encryption
120000(| 1 SEV active without data encryption
W SEV inactive with data encryption

SEV active with data encryption m
100000 (| =1 Hybrid TEE inactive with data encryption
Hybrid TEE active with data encryption

30000}

60000

40000

Avg execution time in milliseconds

- “H—‘
1000K 1500K 2000K

(c) Distributed K-means Workflow.

35001
Number of input points

Fig. 5: Execution times of running different workflows in
different configurations for different input datasets.

depicts the overall timespan comparison for secure and the
baseline executions with different settings. It is observed
that even though the number of words has been increased,
the timespan is slightly enlarged. For the 3,500K words
and with TEE and encryption active setting, the results
show that SGX, SEV, and the “Hybrid” setting with two
SGX and two SEV workers impose 4X, 2.85X, and 2.96X
performance overhead, respectively. Also, the cryptography
overhead inside TEE shows that SGX imposes 1.42X and
SEV imposes 1.14.X performance overhead compared to the
baselines where encryption was not used in the TEE. We also
conducted an experiment that captures the total allocated
memory and the total number of active processing threads
in the workflow. The results show that up to 556/ B heap
memory and 31 active threads were used in the word-count

11

I SGX inactive without data encryption
[SGX active without data encryption
350000 mum SGX inactive with data encryption
SGX active with data encryption
SEV inactive without data encryption m
SEV active without data encryption -
mmE SEV inactive with data encryption
'E 250000 SEV active with data encryption
1 Hybrid TEE inactive with data encryption
Hybrid TEE active with data encryption

300000

200000

time in

.8 150000

100000

2
< 50000

lﬁolJK 1500K

2000K
Number of input points

2500K 3000K 3500K

(a) MONTAGE Workflow.

= SGX inactive without data encryption
£ SGX active without data encryption

| SGX inactive with data encryption
) SGX active with data encryption

| SEV inactive without data encryption

SEV active without data encryption

= SEV inactive with data encryption
SEV active with data encryption

10000

8000)

s000)

)
250 350 200 250

Number of nodes

(b) Neural Network Workflow.

Fig. 6: Execution times of running different workflows in
different configurations for different input datasets.

Avg execution time in milliseconds

MONTAGE SEV
MONTAGE SGX
K-Means SEV

K-Means SGX (Baseline) TEE deactive without Cryptography

(TEE overhead) TEE active without Cryptography
(Cryptography overhead) TEE and Cryptography active

Word Count SEV
Word Count SGX

Diagnosis SEV

Diagnosis SGX

o 50000 100000 150000 200000 250000

Execution time in milliseconds

300000 350000 400000

Fig. 7: The distribution of the TEE and cryptography over-
head in workflow executions.

Map-Reduce workflow. Table [3| and] show the total mem-
ory usage and the cryptography overhead for the workflow
execution inside a worker node.

4.1.3 The Distributed K-means Workflow

We measured the execution time and memory usage of
SecDATAVIEW using a Distributed K-means workflow ﬂ
where several clusters and the number of splits of datasets
are designed dynamically. In this experiment, we randomly
generated 1000K to 3500K points, each of which has an x
and a y coordinate. Figure [5 (c) shows the execution time
of SecDATAVIEW with 10 different settings. We observe
that SGX, SEV, and the “Hybrid” approach with two SGX
and two SEV workers impose 1.48X, 1.44X and 1.48X
overhead on the largest dataset (3500K points), respectively.
Also, results showed that running the distributed K-means

3. https:/ /www.flickr.com/photos/waynestateise /47529826741 /

https://www.flickr.com/photos/waynestateise/47529826741/

TABLE 3: Memory footprints of experimental workflows.

Workflow Max Heap Max Threads
Diagnosis 459M B 29
Map-Reduce 556 M B 31
K-Means 476 M B 32
MONTAGE 359M B 27

Neural Network 496M B 22

workflow used 476M B heap and 32 active processing
threads, that is represented in Table] Table [4] shows the
cryptography overhead for this workflow.

4.1.4 The MONTAGE Workflow

To evaluate how SecDATAVIEW performs when a work-
flow construct that uses a heavily-connected DAG (i.e., the
graph edge to node ratio is a large number), we consider a
MONTAGE workflow [26]]. The MONTAGE workflow was
created with ten different tasks. The number of randomly
generated integers ranges between 1, 000K to 3, 500K. Each
of the tasks is responsible for sorting the given number that
is randomly generated through a completely uniform distri-
bution of the numbers. When the numbers are populated, a
merge sort is performed among the given numbers so that
we can effectively measure the performance overhead of the
SecDATAVIEW system for the sorting and extra memories
to complete the procedure. Figure [](a) shows the execution
time of SecDATAVIEW with 10 different settings. We ob-
serve that SGX, SEV, and the “Hybrid” approach with two
SGX and two SEV workers impose 2.28 X, 1.98X and 2.03.X
overhead on the largest dataset (3, 500K), respectively. Also,
running the MONTAGE workflow uses 359M B heap and
27 active processing threads, which is represented in Table
Table @ shows the cryptography overhead for this workflow.

4.1.5 The Neural Network Workflow

Figures E] (b) shows the execution time of SecDATAVIEW
with 8 different settings. In this workflow, we consider
a two-layer feed-forward Neural Network (NN) for our
experiment. Since SecDATAVIEW considers the directed
acyclic graph only, we can not consider the traditional
deep learning workflow, i.e., splitting the tasks into dif-
ferent pieces with a circular graph. As a result, we exam-
ine everything in a single task for representing the whole
scenario. This NN recognizes the X-OR operation with
the help of heavy matrix calculation that slows down the
overall execution when it comes to processing large data
sets. We want to investigate how SecDATAVIEW performs
this heavyweight matrix computation. The core concept
could be scaled for any number of layers and nodes. In
this experiment, we want to examine the performance
overhead of different number of input nodes. We observe
that SGX and SEV impose 2.3X and 1.07X performance
overhead, respectively. “Hybrid” approach was not used
for the NN workflow since the neural network algorithm is
implemented as a single workflow task to support iterative
processing necessary for training an NN model. Finally, the
NN workflow with the largest dataset used 496 MB heap
memory and 22 active processing threads as depicted in
Table [3| Table 4| shows the cryptography overhead for this
workflow.

12
TABLE 4: Cryptography overhead inside the TEE.

Workflow SGX SEV
Diagnosis 1.37X 1.09X
Map-Reduce 142X 1.14X
K-means 1.03X 1.03X
MONTAGE 1.14X 1.02X
Neural Network 1.02X 1.07X
4.2 Security Analysis
The SecDATAVIEW architecture and TCB: The
SecDATAVIEW architecture provides small software

and hardware TCB for deploying a big data workflow
management system in the cloud. For SGX workers, the
software components of TCB are the LibOS, the JVM, the
Code Provisioner, and the Task Executor. For SEV workers,
the software components of TCB are the guest OS, the JVM,
the Code Provisioner, and the Task Executor. The hardware
components of the TCB are the CPU package for the SGX
workers and are AMD SoC and AMD secure processor for
the SEV worker. The SecDATAVIEW architecture excludes
all the underlying and high-privileged cloud system
software (i.e., hypervisor and cloud management software)
from the TCB. Besides, SecDATAVIEW is protected against
memory corruption vulnerabilities (e.g., buffer overflow)
since memory access is protected by type-safe Java language
and JVM.

Workflow code and data confidentiality and integrity: The
SecDATAVIEW architecture protects the confidentiality and
integrity of the workflow’s code and data at the booting
time and runtime with the help of TEEs. TEEs are attested
through the hardware attestation method that is provided
by TEE hardware vendors (i.e., Intel and AMD). Besides,
SecDATAVIEW uses different security primitives such as
AEAD scheme, one-way hash function, SSL, and SFIP
channels. Specifically, SecDATAVIEW uses authenticated
encryption with associated data (AEAD). The associated
data is validated, but not combined in the ciphertext.
However, the Initialization Vector (IV) that is used to
generate the AEAD is implicitly integrated within the
ciphertext. We assume that AEAD is secure [50].

SecDATAVIEW cloud’s SGX hardware and enclave attes-
tation: SecDATAVIEW uses the TEE attestation mechanism
provided in SGX-LKL, which is an Intel-based attestation
approach, for remote attestation. The Intel-based attestation
approach uses the Enhanced Privacy ID (EPID) scheme [51]
to ensure the anonymity of the SGX platform, which uses
a group signature to allow the SGX platform to generate
a signature without leaking an identity. The anonymity is
provided as each EPID group contains many SGX plat-
forms [51]. Although the Intel-based attestation is univer-
sally used for SGX TEE, the Intel-base attestation requires
the direct involvement of Intel during the attestation process
and hence Intel may learn who requested the Attestation
(i.e., SecDATAVIEW owner) through the unique registered
Service Provider ID (SPID) and SecDATAVIEW IP address
that may reveal the possible location of the SecDATAVIEW
server when the SecDATAVIEW master node connects to the
Intel Attestation Servers. Also, Intel may learn what enclave
is being attested and who signed the enclave through the en-
clave measurement primitives (i.e., MRENCLAVE and MR-

SIGNER values) that are sent to Intel during the attestation
process. One possible mitigation for above-mentioned iden-
tity leakage is to leverage third-party attestation. We identify
two third-party attestation approaches: Intel-provided on-
premises third-party attestation for data centers [52] and
OPERA [28] which is the Internet-based third-party Attesta-
tion. The third-party attestation platform should be owned
and operated by the SecDATAVIEW and data owner when
the security of the platform is the utmost important factor.
The WCPAC protocol: SecDATAVIEW uses the WCPAC
protocol to 1) provision and attest worker nodes, 2)
provision the code for the Task Executor and workflow tasks
on each participating worker node, 3) establish the secure
communication and file transfers between the master node
and worker nodes, and 4) ensure the secure file transfers
among worker nodes. The WCPAC protocol protects the
SecDATAVIEW network connectivity by establishing an
SSL socket connection for messaging and the SFTP for file
transferring between active workers. WCPAC is protected
against eavesdropping, the man-in-the-middle attack, and
the replay attack.

Attacks against network channel: Assume that an
adversary actively eavesdrops on the communication
among different workers. The adversary may learn the
source, the destination, the number of transmitting packets,
the time when the message was sent, and the total size
of the transferred message. Conversely, the adversary
cannot know the content carried by the packet’s payload
due to our multi-layer protection mechanisms. First, the
communication is protected with the SSL protection. Even
if the adversary breaks the SSL cryptography protection,
the payload is protected with the AEAD encryption and the
adversary needs to break the second layer of cryptography
protections, which decreases the chance of successful
attacks.

Access pattern leakage attack: SecDATAVIEW could be
vulnerable to access pattern leakage attack when it executes
workflows whose DAG construct is well-known and
predictable to the adversary. For example, in a Map-Reduce
workflow, all values with the same key are sent to the same
reducer. If an adversary can infer or count the total number
of pairs received by a reducer node from other mappers, it
can leak some information about the result. In Map-Reduce
workflow, the chance of the successful information leakage
is increased when the number of keys in the key-value pairs
processed by reducer is small (e.g., processing vote between
two presidential candidates). However, if the number of
reducers is high, the distribution of values to each reducer
(key) could leak negligible amount of information. The
access pattern leakage attack is a common vulnerability in
most Map-Reduce frameworks and even in a secure Map-
Reduce framework such as VC3 [16]. In SecDATAVIEW,
the mitigation solution is workflow-specific and should be
addressed during the workflow design by the workflow
owner. To provide the general-purpose characteristics
and support workflows with different requirements, the
SecDATAVIEW engine is not confined to specific workflow
data structures (e.g., SQL query, Map-Reduce, etc). Having
a general built-in solution at the system level that mitigates

13

access pattern leakage attacks for all workflows with
different data structures and data stream models is still
an open research challenge. Currently, for a Map-Reduce
workflow, the workflow designer could assign more than
one reducer task to each worker node that hides the actual
distribution of values to each reducer or include additional
workflow tasks similar to the proposal in [40], [53] to
suppress the access pattern leakage attacks. In the same
way, for a SQL query workflow, the workflow owner
and designer could adapt the data stream obliviousness
techniques discussed in [19] during designing SQL query
workflow.

The denial of service (DoS) attack: SecDATAVIEW is
vulnerable to the DoS attacks, but this attack is also present
in all SGX and SEV TEEs. For SGX, the DoS attack is
mainly caused by a malicious host that refuses to launch
the enclave or services the enclave requests. In SEV, it could
be caused by a malicious hypervisor that refuses to start
the SEV-protected VM or by attackers who modify the SEV-
protected memory image and due to the lack of the SEV
memory integrity protection, causing the VM to crash or
exhibit unexpected behavior. Another DoS attack vector that
presents only in the SGX server happens when a malicious
enclave application implements the Rowhammer attack [54]
on the enclave protected memory region and modifies
data in that protected region. Violating the integrity of the
enclave memory causes the memory integrity protection
policy in the Intel SGX initiated, which puts the CPU in
system-wide lockdown that can only be fixed via a hard
cold reboot. The permanent countermeasure for the DoS
attack that is caused by the Rowhammer attack depends
upon the availability of Rowhammer-free DRAM that
thoughtfully discussed in [54]. Permanent countermeasure
for system software level DoS attack can only be addressed
via hardware vendors by removing the dependency of TEE
from unprotected system software. One possible solution
is to use a dedicated, trustworthy, and isolated integrity
protected System on Chip (SoC) to handle requests that
relate only to the TEEs. However, how to develop such a
system is still an open research challenge. DoS attack on
SecDATAVIEW does not leak any sensitive information and
only affects the progress of the workflow execution, which
can be easily detected by the user. The user can relaunch
the workflow on a different cloud or use a different worker
node to counter that attack.

The side-channel attack: SecDATAVIEW is vulnerable to
the side-channel attack that is present in every SGX [41],
[55] and SEV [15] TEE.

4.3 Comparison with Existing Big Data Systems
Table[5|compares SecDATAVIEW against several representa-
tive big data systems including VC3 [16], Opaque [19], and
the lightweight Lua Map-Reduce system [17].
Functionality: SecDATAVIEW has two main advantages
compared to the existing systems: 1) it is compatible with
many forms of data structures/formats, and 2) it is capa-
ble of executing workflows by leveraging a heterogeneous
computing setting (i.e., SGX and SEV). VC3, the lightweight
Lua Map-Reduce, and Opaque are limited to Map-Reduce

14

TABLE 5: A comparison with existing TEE-based big data systems.

Feature SecDATAVIEW VC3 |16] Opaque [19] Lua Map/Reduce |17]
Data confidentiality AES-GCM-256 AES-GCM-128 AES-GCM-128 AES-CTR-128

Data integrity Authenticated Encryption Authenticated Encryption Authenticated Encryption No

Intel SGX Yes Yes Yes Yes

AMD SEV Yes No No No

Data structure compatibility All types of workflow Map-Reduce SQL query Map-Reduce

Job integrity verification No Yes Yes No

Access pattern leakage protection No No Yes No

Access pattern leakage overhead N/A N/A 1.6X-46X (oblivious mode) N/A

Job performance overhead 1.48X-2.96X (Hybrid mode)

1.04X-1.08X (base-encrypted mode)

0.52X-3.3X (encrypted mode) 1.3X-2X (encrypted mode)

and SQL query workflows, respectively. Besides, they only
support SGX TEE.

Security: SecDATAVIEW and the lightweight Lua Map-
Reduce use the managed code (Java/Lua) that is protected
against memory corruption vulnerabilities (e.g., buffer over-
flow). VC3 uses C/C++ and offers an execution mode
in which the integrity of the enclave memory region is
evaluated. However, when this feature is activated, the
performance overhead is increased to 1.27X. Among the
compared systems, Opaque and VC3 offer job execution
verification. In SecDATAVIEW, since the structure of work-
flows and the size of input files do not need to follow
a pre-defined data structure (i.e., Map-Reduce or query),
having a general verification model to be applied in many
forms of workflow is an open research challenge. Among
the compared systems, only Opaque provides the protection
against access pattern leakage attack. However, it is based
on the oblivious computation, which imposes up to 46X
overhead on the job execution time.

Performance: SecDATAVIEW imposes moderate overhead,
a range between 1.48X-2.96X in the “Hybrid” operation
with different workflow data structures. Among compared
systems, VC3 is fastest when it operates without enclave
memory region checking. However, when VC3 activates
the enclave memory region checking, its performance is
competitive with SecDATAVIEW (i.e., VC3 imposes about
1.27X overhead and SecDATAVIEW imposes about 1.48X
overhead when a well-optimized task scheduling algorithm
is used). Additionally, SecDATAVIEW outperforms Opaque
(2.96X vs 3.3X overhead) and has higher overhead than
the lightweight Lua Map-Reduce (2X overhead).

5 RELATED WORK

Bertino et al. [1] and Ye et al. [56] provided comprehensive
studies on data security and privacy requirements as well
as existing research challenges for providing security and
privacy in the big data context. Qui et al. [57] presented
a comprehensive study on existing research advances and
open research challenges on machine learning for big data.
Brenner et al. proposed Securekeeper [38] that uses Intel SGX
to protect the confidentiality of ZooKeeper coordination
service. Considering the enclave programming spectrum,
the Securekeeper used the Specialized-Enclave with Java JNI
approach to call the SGX primitives in native C/C++, which
helped it to maintain a small size of TCB. SecureKeeper
imposes 32.18% overhead compared to the base ZooKeeper.
In another work, researchers proposed SGX-Spark [58] that
used SGX-LKL to run unmodified Java applications in the
SGX enclaves. Reported results in [59] show that SGX-
Spark imposes about 4X - 5X performance overhead using
32M B of a medical dataset and with vanilla Spark. Still,

SecDATAVIEW offers the flexibility of leveraging heteroge-
neous cloud (i.e., AMD SEV and Intel SGX) and supports
different types of workflows. Recently Jiang et al. proposed
URANUS [60] as an SGX-aware JVM to run Java applica-
tions in the SGX TEE. URANUS decreases the TCB of Java
execution environments via porting only essential JVM com-
ponents inside the SGX (i.e., GC, dynamic code loader, JIT,
and exception handler). In addition, URANUS introduced
two new compiler annotations (i.e., JECall and JOCall) to
the Java programming model that developers should use
to identify sensitive parts of the code that need to be
executed inside the SGX enclaves. URANUS has been tested
with ZooKeeper and Spark. Experimental results show that
ZooKeeper-URANUS imposes 19.4% performance over-
head compared to the native (insecure) ZooKeeper. Also,
URANUS-Spark imposes 1.2X - 7.6X performance over-
head compared to native Spark. URANUS requires Java
code refactoring. Compared with URANUS, SecDATAVIEW
is compatible with heterogeneous cloud (i.e., AMD SEV and
Intel SGX), and supports unmodified Java application that is
portable to every Java runtime environment. Recently Tsai et
al. proposed Civet [61] that uses a modified JVM, a Java class
partitioning tool, dynamic taint-tracking, and Graphene-
SGX for partitioning a Java application into trusted and
untrusted classes. Trusted classes execute inside enclaves,
and untrusted classes run outside enclaves. Civet results
show a performance overhead of about 16% — 22% without
and 70% - 80% with taint-tracking for partitioning and
shielding a Hadoop mapper (RegexMapper) in a Hadoop
regular expression parser that used for searching a regular
expression inside the 1GB dataset. Compared with Sec-
DATAVIEW that supports heterogeneous clouds (i.e., AMD
SEV and Intel SGX), Civet is only bound to the Intel SGX
platform. Schuster et al. proposed VC3 [16] that works with
unmodified Hadoop and uses Intel SGX to protect Map-
Reduce code and job execution. In VC3, all Map-Reduce
jobs run inside the enclave with one executing thread (i.e.,
no multi-threading is used). Additionally, all data traffic of
intermediate Map-Reduce results is kept encrypted during
the job execution. Experimental results show that VC3 im-
poses 4.3% - 24.5% performance overhead when the enclave
self-integrity checking mode is used. Pires et al. [17] pro-
posed an SGX-based lightweight and secure Map-Reduce
framework. The system is integrated with a lightweight
virtual machine for the Lua language [18], which is a high-
level language that interprets the Map-Reduce Lua scripts,
and a Secure Content Based Routing System, which is a
secure publish/subscribe system for the message passing
and data distribution between the client and worker nodes
in the distributed system. In this system, three main entities
— client, SCBR, and worker nodes — collaborate to execute

a Map-Reduce workflow. All message routing as well as
the execution of the map and reduce Lua scripts occurs
inside the secure enclave. Their experimental results show
that their system imposes up to 2X performance overhead.
Zheng et al. [19] proposed Opaque that enhances the secu-
rity of the Spark SQL with SGX. One execution mode, called
the encryption mode, provides the confidentiality protection
on the data and results. In this mode, the Opaque’s code at
the client side is transferred to the enclave and with the help
of the Intel attestation protocol, the code is verified and the
secret keys are distributed inside the enclave. Their exper-
imental results show that the Opaque’s encryption mode
imposes 3.3X performance overhead. Moreover, Opaque
uses the oblivious mode and the oblivious pad mode to
provide protection against the access pattern leakage and
the size leakage with the help of oblivious computations.
Opaque’s experimental results showed that the oblivious
mode imposes 1.60X to 46X performance overhead. Intel
recently announced Trusted Domain eXtensions (TDX) [62]
as its next-generation TEE for cloud applications. Intel TDX,
similar to AMD SEV, designed to provide hardware-isolated
VM with a large amount of secure memory and processing
resources. Upon its availability, Intel TDX can also be inte-
grated into SecDATAVIEW with proper engineering effort
and as another secure cloud TEE for big data workflow
execution.

6 CONCLUSIONS

In this paper, we present SecDATAVIEW, an efficient and
secure big data scientific workflow management system to
protect the confidentiality and integrity of Java-written tasks
and data in the workflow with the help of Intel SGX and
AMD SEV TEEs. SecDATAVIEW significantly reduces the
TCB size of the worker node to the shielded code that
belongs to the Task Executor, individual workflow tasks, and
their execution environment running inside the SGX/SEV
TEE. Our experimental results with different types of work-
flows show the usability of SecDATAVIEW with acceptable
performance overhead, while securing confidential task exe-
cution at runtime. In the future, we plan to develop a trusted
execution environment (TEE) to secure general-purpose
GPU computing (GPGPU) in big data context, which would
help secure big data management systems that leverage
the enormous computing power of GPU accelerators in
untrusted cloud environments.

7 ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for
their insightful comments that helped improve this paper.
Ahmed'’s current affiliation is with Google; his contributions
to this work were primarily made while he was a student
at Wayne State University. This project is supported in
part by the National Science Foundation under grant NSF
OAC-1738929. Heming Cui is supported by the research
grants from the HKU-SCF FinTech Academy R&D Funding
Scheme, HK RGC GRF (17202318, 17207117), and a Croucher
Innovation Award.

15
REFERENCES

[1] Bertino, “Big data - security and privacy,” Big Data Congress, 2015.

[2] T. White, Hadoop: The definitive guide. ”O’Reilly Media, Inc.”, 2012.

[3] S. Bugiel, S. Niirnberger, T. Péppelmann, A.-R. Sadeghi, and
T. Schneider, “Amazon]A: when elasticity snaps back,” in CCS,
2011.

[4] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervi-
sor vulnerabilities in cloud computing servers,” in Proceedings of
the international workshop on Security in cloud computing, 2013.

[5] K. Kortchinsky, “Cloudburst: A vmware guest to host escape
story,” Black Hat USA, vol. 19, 2009.

[6] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Xen Owning tril-
ogy,” Invisible Things Lab, 2008.

[7] E Rocha and M. Correia, “Lucy in the sky without diamonds:
Stealing confidential data in the cloud,” in DSN Workshops, 2011.

[8] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud: exploring information leakage in third-party
compute clouds,” in CCS, 2009.

[9] i Black Duck Software, “Black duck open hub,” https://
www.openhub.net/p?query=xen&sort=relevance, Last accessed
on 11/02/2021.

[10] “National institute of standards, national vulnerability database,”
https:/ /nvd.nist.gov /| Last accessed on 11/02/2021.

[11] E McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions
and software model for isolated execution.” in HASP@ ISCA, 2013.

[12] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative tech-
nology for cpu based attestation and sealing,” in HASP@ ISCA,
2013.

[13] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software
solutions.” in HASP@ ISCA, 2013.

[14] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,”
White paper, 2016.

[15] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A comparison study of
intel sgx and amd memory encryption technology,” in Proceedings
of the 7th International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP@ ISCA), 2018.

[16] A. Baumann, M. Peinado, and G. Hunt, “VC3: Trustworthy data
analytics in the cloud using SGX,” in IEEE S&P, 2015.

[17] R. Pires, D. Gavril, P. Felber, E. Onica, and M. Pasin, “A
lightweight MapReduce framework for secure processing with
SGX,” in CCGRID. IEEE, 2017.

[18] A. Hirschi, “Traveling light, the lua way,” 2007.

[19] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa,]. E. Gonzalez,
and I. Stoica, “Opaque: An oblivious and encrypted distributed
analytics platform.” in NSDI, 2017.

[20] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications
from an untrusted cloud with haven,” TOCS, 2015.

[21] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A.
Sartakov, and P. Pietzuch, “Sgx-lkl: Securing the host os interface
for trusted execution,” arXiv preprint, 2019.

[22] R. W. Graves and A. Pitarka, “Broadband ground-motion simula-
tion using a hybrid approach,” Bulletin of the Seismological Society
of America, 2010.

[23] A.Kashlev and S. Lu, “A system architecture for running big data
workflows in the cloud,” in IEEE SCC, 2014.

[24] 1. Ahmed, S. Lu, C. Bai, and F. A. Bhuyan, “Diagnosis recommen-
dation using machine learning scientific workflows,” in Big Data
Congress, 2018.

[25] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, 2008.

[26] R.Sakellariou, H. Zhao, and E. Deelman, “Mapping workflows on
grid resources: experiments with the montage workflow,” in Grids,
P2P and services computing, 2010.

[27] S. Mofrad, 1. Ahmed, S. Lu, P. Yang, H. Cui, and F. Zhang,
“Secdataview: A secure big data workflow management system
for heterogeneous computing environments,” in Proceedings of the
35th Annual Computer Security Applications Conference, 2019.

[28] G.Chen, Y. Zhang, and T.-H. Lai, “Opera: Open remote attestation
for intel’s secure enclaves,” in CCS, 2019.

[29] Saraladevi et al., “Big data and hadoop-a study in security per-
spective,” Procedia computer science, vol. 50, pp. 596-601, 2015.

[30] Nelson et al., “Security and privacy for big data: A systematic
literature review,” in IEEE International Conference on Big Data,
2016.

https://www.openhub.net/p?query=xen&sort=relevance
https://www.openhub.net/p?query=xen&sort=relevance
https://nvd.nist.gov/

[31] Terzi et al., “A survey on security and privacy issues in big
data,” in International Conference for Internet Technology and Secured
Transactions (ICITST), 2015.

[32] A.Kashlev, S. Lu, and A. Mohan, “Big data workflows: a reference
architecture and the DATAVIEW system,” STBD, 2017.

[33] E Bhuyan, S. Lu, I. Ahmed, and J. Zhang, “Predicting efficacy of
therapeutic services for autism spectrum disorder using scientific
workflows,” in International Conference on Big Data, 2017.

[34] H. Hamidian, S. Lu, S. Rana, E. Fotouhi, and H. Soltanian-Zadeh,
“Adapting medical image processing tasks to a scalable scientific
workflow system,” in IEEE World Congress on Services, 2014.

[35] X. Feiand S. Lu, “A dataflow-based scientific workflow composi-
tion framework,” IEEE Transactions on Services Computing, 2010.

[36] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and
J. Hua, “A reference architecture for scientific workflow manage-
ment systems and the view soa solution,” IEEE Transactions on
Services Computing, 2009.

[37] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, and M. L. Stillwell,
“SCONE: Secure linux containers with Intel SGX,” in OSDI, 2016.

[38] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz,
C. Fetzer, P. Pietzuch, and R. Kapitza, “SecureKeeper: Confidential
ZooKeeper using intel SGX,” in Middleware, 2016.

[39]]J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues,
and open problems,” in Designing Privacy Enhancing Technologies,
2001.

[40] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang,
“M2R: Enabling stronger privacy in MapReduce computation.” in
USENIX Security, 2015.

[41] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in SGX,” in CCS,
2017.

[42] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
injection attacks on cryptographic devices: Theory, practice, and
countermeasures,” Proceedings of the IEEE, 2012.

[43] Intel, “SGX-SDK developer guide,” https://software.intel.com/
en-us/documentation/sgx-developer-guide, 2017.

[44] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical
library os for unmodified applications on sgx,” in USENIX ATC,
2017.

[45] LSDS, “Sgx-lklremote attestation,” https://github.com/lsds/
sgx-1kl/wiki/Remote-Attestation-and-Remote-Control, 2018.

[46] R. Buhren, C. Werling, and J].-P. Seifert, “Insecure until proven
updated: Analyzing amd sev’s remote attestation,” in CCS, 2019.

[47] 1. Ahmed, S. Mofrad, S. Lu, C. Bai, F. Zhang, and D. Che, “Seed:
Confidential big data workflow scheduling with intel sgx under
deadline constraints,” in 2020 IEEE International Conference on
Services Computing (SCC). 1EEE, 2020.

[48] P. Rogaway, “Authenticated-encryption with associated-data,” in
CCS, 2002.

[49] B. Schneier, Applied cryptography: protocols, algorithms, and source
code in C. john wiley & sons, 2007.

[50] P. D’Avilar, J. D’Errico, K. Berends, and M. Peck, “Reading guide
3: Authenticated encryption,” 2004.

[51] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “In-
tel® software guard extensions: Epid provisioning and attestation
services,” White Paper, 2016.

[52] V. Scarlata, S. Johnson,]. Beaney, and P. Zmijewski, “Supporting
third party attestation for intel® sgx with intel® data center
attestation primitives,” White Paper, 2018.

[53] Ohrimenko et al., “Observing and preventing leakage in MapRe-
duce,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015.

[54] Jang et al., “Sgx-bomb: Locking down the processor via rowham-
mer attack,” in Proceedings of the 2nd Workshop on System Software
for Trusted Execution, 2017.

[55] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load
Value Injection,” in (IEEE S&P), 2020.

[56] H. Ye, X. Cheng, M. Yuan, L. Xu, J. Gao, and C. Cheng, “A survey
of security and privacy in big data,” in 2016 16th international
symposium on communications and information technologies (iscit).
IEEE, 2016.

16

[57] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine
learning for big data processing,” EURASIP Journal on Advances in
Signal Processing, vol. 2016, no. 1, pp. 1-16, 2016.

[58] LSDS, “Lsds https:/ /github.com/lsds/
sgx-spark, 2019.

[59] C. Segarra, R. Delgado-Gonzalo, M. Lemay, P-L. Aublin, P. Piet-
zuch, and V. Schiavoni, “Using trusted execution environments
for secure stream processing of medical data,” in IFIP International
Conference on Distributed Applications and Interoperable Systems.
Springer, 2019.

[60] J. Jiang, X. Chen, T. Li, C. Wang, T. Shen, S. Zhao, H. Cui, C.-L.
Wang, and F. Zhang, “Uranus: Simple, efficient sgx programming
and its applications,” in Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security, 2020.

[61] C.-C. Tsai, J. Son, B. Jain, J]. McAvey, R. A. Popa, and D. E. Porter,
“Civet: An efficient java partitioning framework for hardware
enclaves,” in 29th USENIX Security Symposium, 2020.

[62] Intel, “Trust domain extensions,” |https://software.intel.
com/content/dam/develop/external /us/en/documents/
tdx-whitepaper-v4.pdf, 2020.

sgx-spark github,”

Saeid Mofrad is a Ph.D. candidate in the De-
partment of Computer Science at Wayne State
University, USA. He received his M.S. in Com-
puter Science in 2016 from Eastern Michigan
University, USA, where he has been awarded
the National Scholars Program (NSP) scholar-
ship for two consecutive years. Currently, he is a
pe member of the Computer and System Security
1 Laboratory (COMPASS) under the supervision
of Dr. Fengwei Zhang and Big Data Research
Laboratory under the supervision of Prof. Shiy-
ong Lu. He is also a co-reviewer in the IEEE Big Data and IEEE Access
venues. His current research focuses on systems security, hardware-
assisted TEE in x86 architecture, and big data scientific workflows
security and privacy.

Ishtiaqg Ahmed received his Ph.D. degree from
the Department of Computer Science at Wayne
State University, USA, in 2019. He received his
M.S. degree in 2014 from the Department of
Computer Engineering, Kyung Hee University,
South Korea, where he has been awarded the
South Korea Global IT scholarship for two con-
secutive years. He is a member of the Big Data
Research Laboratory under the supervision of
Prof. Shiyong Lu. He received the best student
paper award in IEEE Big Data Congress 2018.
He is also a co-reviewer in IEEE Big Data, IEEE Big Data Congress
and, IEEE SCC venues. His current research includes big data scien-
tific workflows, workflow scheduling algorithms, big data security and
privacy, machine learning and, data science.

Fengwei Zhang received the Ph.D. degree in
computer science from George Mason Univer-
sity in 2015. He is currently an Associate Profes-
sor and the Director of the Computer and Sys-
tems Security Laboratory, Department of Com-
puter Science and Engineering, Southern Uni-
versity of Science and Technology. His research
interests are in the areas of systems security,
with a focus on trustworthy execution, trans-
parent malware debugging, hardware-supported
security, and plausible deniability encryption. He
received the Distinguished Paper Award from ACSAC in 2017.

https://software.intel.com/en-us/documentation/sgx-developer-guide
https://software.intel.com/en-us/documentation/sgx-developer-guide
https://github.com/lsds/sgx-lkl/wiki/Remote-Attestation-and-Remote-Control
https://github.com/lsds/sgx-lkl/wiki/Remote-Attestation-and-Remote-Control
https://github.com/lsds/sgx-spark
https://github.com/lsds/sgx-spark
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf

L

Shiyong Lu Ph.D., is a Professor in the De-
partment of Computer Science at Wayne State
University, and the director of the Big Data Re-
search Laboratory. Dr. Lu received his Ph.D. in
computer science from Stony Brook University
in 2002. Dr. Lu’s current research interests focus
on scientific workflows, big data security, ser-
vices computing, and provenance management.
Dr. Lu is an author of two books and over 120
articles published in various international jour-
nals and conferences. He is the founding chair

of the IEEE International Workshop on Scientific Workflows (SWF) and
a founding editorial board member of International Journal of Big Data.
He is a senior member of the IEEE.

Ping Yang is currently an Associate Professor
in the Department of Computer Science at State
University of New York at Binghamton. She got
her Ph.D. in Computer Science from State Uni-
versity of New York at Stony Brook in 2006, M.E.
from Chinese Academy of Sciences in 1999, and
B.S. from Sun Yat-sen University in 1996. Her
research interests include cybersecurity, privacy,
blockchain, access control, formal method, and
cloud computing.

Heming Cui received the Ph.D. degree from
Columbia University, New York City, NY, USA,
in 2014. He is currently an Associate Profes-
sor with the Department of Computer Science,
The University of Hong Kong. His research in-
terests include operating systems, programming
languages, distributed systems, and cloud com-
puting, with a particular focus on building soft-
ware infrastructures and tools to improve relia-
bility and security of real-world software.

17

	Introduction
	Background & Adversary Model
	Design of SecDATAVIEW
	SecDATAVIEW Architecture
	Executing workflows inside SGX enclaves
	Executing workflows inside SEV-protected VMs

	The WCPAC Protocol
	SecDATAVIEW Integration

	Evaluation
	Workflow Performance Evaluation
	The Diagnosis Recommendation Workflow
	Word Count (Map-Reduce) Workflow
	The Distributed K-means Workflow
	The MONTAGE Workflow
	The Neural Network Workflow

	Security Analysis
	Comparison with Existing Big Data Systems

	Related Work
	Conclusions
	Acknowledgement
	References
	Biographies
	Saeid Mofrad
	Ishtiaq Ahmed
	Fengwei Zhang
	Shiyong Lu
	Ping Yang
	Heming Cui

