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PERIODIC SOLUTIONS IN THRESHOLD-LINEAR NETWORKS
AND THEIR ENTRAINMENT*

ANDREA BELT, ROMINA COBIAGAf, WALTER REARTES*, AND HORACIO G.
ROTSTEINS

Abstract. Threshold-linear networks (TLNs) are recurrent networks where the dynamics are
threshold-linear (linearly rectified at zero). Mathematically, they consist of coupled non-smooth
ordinary differential equations. When the nodes in the network are assumed to be neurons or
neuronal populations, TLNs represent firing rate models. We investigate the dynamics of a subclass
of TLNs referred to as competitive TLNs where all the connections between different nodes are
inhibitory. We prove the existence of periodic solutions in competitive TLNs with three nodes using
a combination of mathematical analysis and numerical simulations. We calculate the analytical
expressions of the periodic solutions, then we consider a reduced system of transcendental equations
and apply a Kantorovich’s convergence result to demonstrate the existence of these solutions. We
then analyze the attributes (frequency and amplitude) of these periodic solutions as the model
parameters vary. Finally, we study the entrainment properties of competitive TLNs in the oscillatory
regime, by examining their response to external periodic inputs to one of the nodes in the network.
We numerically determine the ranges of input amplitudes and frequencies for which competitive
TLNs are able to follow the periodic input for three-node networks and larger networks with cyclic
symmetry.
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1. Introduction. Threshold-linear network (TLN) models describe the activity
of connected nodes where the input to each cell in the network is a linear combination
of the contribution of the other cells when this linear combination is above zero and
zero otherwise. In their simplest description, the dynamics of the individual nodes are
one-dimensional and linear. When the nodes in the network are neurons or neuronal
populations, their activity is interpreted as their firing rate, and the TLNs represent
firing rate models [11, 13, 32].

Linear networks (linear node dynamics and linear connectivity) produce relatively
simple dynamics where, in particular, sustained network oscillations are excluded. The
TLNs we use here (nonlinear connectivity and linear node dynamics) are arguably
the simplest nonlinear extension of linear networks that, despite their simplicity, are
able to produce complex dynamics including multistability, periodic, quasiperiodic
and chaotic temporal patterns, even when the number of nodes in the network is
relatively small (e.g., three) [16, 24, 25].

The systematic mathematical study of TLNs has primarily focused on the exis-
tence and stability of fixed-points for symmetric TLNs [7, 8, 15] and non-symmetric
competitive threshold-linear networks [9, 10, 25]. Competitive TLNs are a specific
class of recurrent TLNs where all connectivity weights are negative and there are no
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2 A. BEL, R. COBIAGA, W. REARTES AND H. G. ROTSTEIN

self-connections. Inhibitory networks arise in many neuronal systems and have been
shown to underlie the generation of rhythmic activity in cognition and motor behavior
[1, 3, 18, 21, 22, 28, 31]. Recent modeling work, primarily based on numerical simu-
lations has showed that competitive TLNs with three or more nodes can show very
rich dynamics, in particular limit cycle oscillations [9, 24, 25]. However, the existence
of periodic solutions in competitive TLNs and their relationship with the networks’
fixed-points has not been rigorously discussed.

The goal of this paper is to analyze the existence of periodic solutions to compet-
itive TLNs and their response to periodic inputs. For the specific model investigated
in [25] where the periodic solutions were first observed we prove the existence of the
limit cycle. This specific case describes the particular situation where the three nodes
receive the same constant input. We combine a detailed mathematical analysis with
numerical simulations. Our investigation is based on the theory of non-smooth dy-
namical systems [12, 30]. We first carry out a bifurcation analysis that allows us
to formulate a hypothesis for the existence of periodic solutions in the network as a
function of the inputs to the participating nodes. Then, we calculate the analytical
expressions for the periodic solutions and prove their existence by considering the
solutions to a reduced system of equations associated to these analytical expressions.
We subsequently study the dependence of periodic solutions with the model parame-
ters. Finally, we analyze the response of competitive TLNs to periodic inputs applied
to one of the participating nodes. We begin our study with three-node networks and
then extend it to networks with a larger number of nodes and cyclic symmetry.

The overview of the paper is as follows. In Section 2, we describe the three-node
competitive TLN. We review some basic results about the model equilibria and their
stability, and we compute and classify all bifurcations of these equilibria, which are the
basis for the cycle generation analysis presented in the following sections. In Section
3, we study the existence of periodic solutions with small amplitude: we calculate
the analytical expression of these periodic solutions and analyze their stability. We
also describe a reduced system of transcendental equations whose solutions are in
correspondence with the limit cycles of the network, and use it to prove the existence
of limit cycles for different values of the parameters. In Section 4, we describe how the
periodic solutions of the network are affected by changes in the values of the constant
input of the nodes or the connection strength connections between nodes. In Section
5, we consider three-node networks in which oscillatory solutions are observed. We
assume that an external sinusoidal input is added to one of the nodes and, by defining
a Poincaré map, we numerically determine whether and how the oscillatory solutions
are modified by this periodic input. Finally, in Section 6 we extend the previous
work to competitive TLNs having three or more nodes, all-to-all connections and
cyclic symmetry. Following the techniques used in Section 3, we find the analytical
expressions of the oscillatory solutions. Then, we study the cycle attributes when
either the number of nodes or the parameter values vary, and we briefly analyze the
response of the network as an external sinusoidal input is added to one of the nodes.
We discuss our results in Section 7.

2. Three-node network: equilibria and bifurcations. In this section we
describe the threshold-linear network that we will study in the following three sections.
We first present some basic results about the model equilibria and their stability.
Then, we calculate and classify all bifurcations of equilibria which are the basis for
the cycle generation analysis presented in Section 3.
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Ay

Fia. 1. Graph representation of a three-node network where a black arrow indicates weak
inhibition, whereas a gray arrow indicates strong inhibition between nodes.

We consider a non-smooth network with three nodes described by

3
d .
(2.1) ;t’ =+ | Wya; +6;| ,  i=12.3
=1

+

where x; is the level of activity of node ¢ (the firing rate), W;; represents the strength
of the connection from node j to node i, 6; > 0 is a constant input and [-]+ is the
threshold-linear function defined by [y]+ = max(0,y).

We assume that W;; = 0 for all ¢ (so for each node self-inhibition results only
from the second term on the left-hand side of (2.1)). In addition, we assume that all
connections between nodes are inhibitory, that is, W;; < 0, for 1 <14,5 < 3,4 # j. We
follow the assumptions in [25] and consider the action of a strong global inhibition term
(constant for all connectivity weights), which is added to the local connections between
nodes. If the local connection is inhibitory (excitatory), it is said that the resulting
inhibition is strong (weak). Therefore, even if the local connectivity is excitatory,
the effect of the global inhibition may cause the network to be a competitive TLN.
Also, following [25], we use —1 — §, with § > 0, for strong inhibition, and —1 + e,
with 0 < e < 1, for weak inhibition. Because all the non-zero connectivity weights
are negative, it can be proved easily that the activity of node ¢ is bounded, moreover
the activity x; remains in [0, §;] provided the initial conditions belong to that interval
[4, 25].

The connectivity matrix for the three-node network we use is given by
(2.2)

0 —-1-6 —-1+4c¢€ 0o -1 -1 0 -0 e
W=| —1+c¢ 0 -1-6|=|-1 0 -1 |+ € 0o =9 |,
—1-6 —1+4c¢€ 0 -1 -1 0 - € O

and the network has the graph representation showed in Figure 1.

The network (2.1)-(2.2) is the smallest one in which oscillatory activity has been
observed [25]. In their simulations they used §; = 1 for all nodes. Two-node com-
petitive TLNs are not expected to exhibit periodic oscillations since a mechanism of
amplification accompanying the negative feedback necessary for sustained oscillatory
activity is lacking. In three-node networks this mechanism can be provided by dis-
inhibition (“inhibition of inhibition”). Below we describe these oscillatory solutions.
To simplify the calculations and for the sake of clarity we consider that two nodes of
the network have the same fixed constant input (6; = 65 = #) and the other node
has an arbitrary positive input (63). The general case can be analyzed with similar
techniques. Defining p = 65/ and rescaling the variables (by the factor 1/6), we
obtain the system

dx

(2.3) a—l—x—[VVx—FB]Jr
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4 A. BEL, R. COBIAGA, W. REARTES AND H. G. ROTSTEIN

with W defined in (2.2) and B = [1,1, u]7T.

In the rest of the present section we consider the system (2.3), and we perform a
dynamical system analysis for the bifurcation parameter p and the auxiliary param-
eters § and e.

2.1. Equilibria and their stability. We begin the study of the network (2.3)
by calculating the equilibria as functions of the model parameters. These equilibria
are the solutions of

(2.4) T = [fi(xl,l‘g,l‘g)]Jr y 1= 1, 2, 3.

where we define f; : R? — R for i = 1,2, 3, as

3 3
(25) filwr,w,m3) = > Wya;+1, i=1,2,  fa(wr,m0,23) =Y Wajz; + p.

Jj=1 Jj=1

System (2.4) is piecewise linear and its solutions depend on the values of the
functions f;. To clear up the calculations we define the transition planes (or, in the
general case, transition hyperplanes)

(2.6) Y = {x € R*: fi(x) = 0}, i=1,2,3,
and the following seven regions in R3

Si2s ={xeR3: fi(x) >0, Vi},
(2.7) Sij ={xeR3¥: fij(x)>0 A fi(z) <0, k#i,j}, 1<i<j<3,
S ={xeR3: fi(x) >0 A fip(x) <0, jk#i}, i=1,23.

Each region contains, at most, one solution of (2.4), that is, one equilibrium of (2.3).
To calculate the equilibrium (if it exists within the region of interest) and its
stability properties we use the corresponding linear system. For example, in the Siao3
region, the equation (2.4) results x = Wx + B. In this case the equilibrium has the
form x* = (I —W)~!B, provided that I — W is invertible and x* € S}23. It’s stability
properties are analyzed by computing the eigenvalues of W — I.
These equilibria are:

Xio3 = di[€® + de + 6%+ (20 + €) (1 — 1),0% + de + €2 — (26 + ) (p — 1),
02 + €% +dep+ (e — 0)(p — 17,
(2.8) Xty = dafL+ (e — 1), 0, (1 + 6) + ]
X5 = do[0,1 — (14 &), e — 1+ )7,
x3 = [0, 1’0]T7 X3 = [O,Ovﬂ]T’

with di = (349 — €)(6% + de + €2))7! and dy = (=5 + (§ + 1)e)~!, and where the
subscript indicates the region to which they belong. We note that while the underlying
linear system may posses an equilibrium, this may be located outside the region we
are analyzing (region of interest). We observe that in two cases, specifically for the
regions Sio and Sy, the equilibria for the corresponding linear system do not belong
to the region for any value of the parameters J, € and u, and therefore we do not
include them in (2.8).

The equilibrium in Sje3 is an unstable (stable) focus if € < & (¢ > ¢§). The
equilibria in the S;; regions are saddle points if 0 < € < §/(1 + §), whereas they are
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€ | (0,¢1) (c1,¢3) (c3,¢4) (ca,¢2) | (c2,00)
x5 (s) | x5 (s) x5 (s) | x3(s)
(0.25) X3 (1) xi (1)
XTa3 (1) XTa3 (1) XTo3 (1)
€ Fol (0ye3) | (es,c1) (c1,¢2) (c2,c4) | (€a,00)
(L 1) x5 (s) | X33 (s) | Xfo3 (w) ife<d | xj3(s) x5 (s)
1467 (s) ife>4
TABLE 1

Non-boundary equilibria of system (2.3) given in (2.8). For each equilibrium we indicate its
stability depending on the values of the parameters: (s) stable and (u) unstable. The critical values
c; are giwen in (2.9).

154  stable nodes if §/(1 4+ ¢) < € < 1. Finally, the equilibria in the S; regions are stable
155 mnodes since the linear matrices of the corresponding systems have a triple eigenvalue
156 —1. In Table 1 we summarize the information about the equilibria of system (2.3).
157 We calculate the critical values of the parameter p by solving the equations
158 fi(x*) = 0 for the equilibria in (2.8). We obtain four critical values of u given by

26 — e+ e — €2 0%+ 0+ de + 2¢ 1
TErre 0 ?T grze—e 0 @=UTd as

159 (2.9) =

160 which verify the relations ¢; < ¢ and c3 < ¢4, for all values of the parameters 6 > 0
161 and 0 < e < 1. For these critical values, system (2.3) has boundary equilibria (i.e.,
162 equilibria in one of the transition planes ¥;). In the following subsection we study
163 the equilibrium bifurcations associated with the boundary equilibria in our system.

164 Remark 2.1. If € = §/(6 + 1), the equilibria in regions Sa3 and Si3 are non-
165 hyperbolic. If € = ¢ the equilibrium xj,5 € Si23 is a linear center, i.e., a family of
166 periodic solutions exists surrounding the equilibrium x7,s.

167 As an example, in Figure 2 we show one of the possible configurations of the equi-
168 libria as the parameter p varies. There are different branches of equilibria connected
169 at the critical values of u given in (2.9). These values of the parameter are associ-
170 ated with bifurcations of the system (2.3). In the following subsections we describe
171 the different equilibrium bifurcations and how they are related to the generation of
172 periodic solutions.

173 2.2. Boundary equilibrium bifurcations. In non-smooth continuous systems,|j
174 a boundary equilibrium bifurcation occurs if (i) there is a boundary equilibrium (in a
175 transition plane) at a critical value of the parameter, and (ii) certain non-degeneracy

176 conditions are satisfied [12, 30]. There are two possible universal unfoldings of this
177 bifurcation. In one of them, called a persistent (or border-crossing) scenario, when
178 the parameter varies, a branch of equilibria lying in one region transitions into an-
179 other branch of equilibria lying in other region. The other universal unfolding is
180 the non-smooth fold scenario. In this bifurcation, when the parameter varies, two
181 branches of equilibria collide at the boundary equilibrium and then disappear. For a
182  m-dimensional system with only one transition variety, analytical conditions exist for
183 distinguishing between the above two cases [12]. Applying this theory we obtain the
184 following result describing all boundary equilibrium bifurcations for our model.

This manuscript is for review purposes only.
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Fi1G. 2. Equilibria as functions of parameter p for the fized values 6 = 1/2 and e = 1/4. The
different types of lines correspond to different branches of equilibria. Stable (unstable) equilibria
are indicated in solid (dashed and dotted) line. The vertical gray lines correspond to the critical
values ¢; defined in (2.9). a. Norm ||x*|| of the equilibria indicated in labels. b. Coordinates of the
equilibria in a.

THEOREM 2.2. For fized values of § and €, if € # 6/(1+ ), the system (2.3) has
a boundary equilibrium bifurcation at each critical value p = ¢; defined in (2.9) for
i =1,...,4. In all cases the bifurcation is a non-smooth fold if 0 <e < d/(1+96),
and it is a persistent bifurcation if 0/(1496) < e < 1.

20 — & — €2
Proof. Foryu=cy = ﬁ—;i;, the boundary equilibrium of (2.3), x* € X,
results in
5+ e 5 T
2.10 =10
(2.10) x [’62+25+e’62+2(5+e

In a neighborhood of x*, by defining the variables X = x —x* and 1 = yu — ¢1, we
express system (2.3) in the translated form

~ ~ ~ . TA >
(2.11) dx { Nox + M i, if C'%>0,

dt | Mix+Mj=(Ng+ ECT)%+ M, if CTx <0,
-1 —-1-6 —-1+c¢€ 0 0
where Ny = —1+4e¢ -1 —-1-6 |, M= |0|, C = —1—-46 | and
—-1-6 —1+e -1 1 —1+e
E = [-1,0,0]". The condition CT& = 0 corresponds to values of x € %, and

therefore the expression (2.11) represents the linear systems in the regions Sia3 and
So3 separated by the plane 3.

For i = 0, the system (2.11) has a boundary equilibrium at the origin. Since
e € (0,1) and € # §/(1 + 9), it follows that det(Ng) # 0, CTNy'M # 0 and 1 +
CTNy 'E # 0. Thus, the system (2.11) has a boundary equilibrium bifurcation at
the critical value st = 0. Moreover, using standard results [12] (see theorem 5.1 there)
the universal unfolding of this bifurcation can be determined by the sign of

-0+ (0+1)e
(3406 —€)(0% + de + €2)
Specifically, if 0 < e < §/(1 + §), we then obtain 1 + C’TNo_lE < 0, therefore the

system (2.11) has a non-smooth fold bifurcation. If /(1 4+ ) < € < 1, we have
1+ C’TNo_lE > 0, and the system shows a persistent scenario.

(2.12) 1+ CTN'E =

This manuscript is for review purposes only.
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PERIODIC SOLUTIONS IN TLNS AND THEIR ENTRAINMENT 7

0%+ 0+ e+ 2¢

For p=co = , the boundary equilibrium x* € 3, is given by
0+ 2¢ — €2
0+e€ € r
2.13 * =
( ) x d+2c—€2" 7 5+ 2c— €2
The proof is analogous to the above case with i = p — co, for the same matrices Ny

and M, and

—1+e€ 0
(2.14) C = 0 , E=1] —1
—-1-94 0

For y1 = c3 = (1 —¢), the boundary equilibrium results in x* = [0,1,0]7 € ¥3. As
before, the proof is analogous to the first case considering ji = p—c3 and the matrices

-1 0 0 -1-9 0
(2.15) No=| -14e -1 -1-6|,C=| -14¢ |, E=| 0
—1-6 —-1+e¢ -1 0 -1

The system presents a boundary equilibrium bifurcation at 1 = 0 and 1+CT N 'p =
(=64 (6 +1)e)~ 1, then, from the sing of this constant the conclusions follow directly.

Finally, for 4 = ¢4 = 1/(1 — €), the proof is similar to the case p = ¢; but
considering the boundary equilibrium x* = [0,0,]T € ¥y, i = u — ¢4 and the
matrices

-1 —1-90 —-1+c¢ 0 -1
(2.16) Ny = 0 -1 0 ,C=| -1-§6 |, E= 0 . O
—-1—-6 —-1+c¢€ -1 —1+e€ 0

The above theorem indicates the critical values of the parameters for which the
system (2.3) has equilibrium bifurcations, but, it does not describe how the branches
of equilibria interact for values of the parameter p near the critical values. To describe
completely the various dynamical scenarios we consider the results in Theorem 2.2
along with the information about the existence and stability of equilibria (see (2.8)
and Table 1). We summarize some of these results in the following theorem.

THEOREM 2.3. In a small neighborhood of the critical values p = ¢1 and p =
¢y given in (2.9), the system (2.3) has two branches of equilibria (depending on )
verifying the following.

o If 0<e<d/(1+9), the system has a non-smooth fold bifurcation at p = ¢q
and p = co. Two equilibria exist for p > c¢1 (u < c2): an unstable focus
Xio3(u) € S123 and a saddle fized point x54(u) € Sog (X33(1) € S13).

o If §/(1+9) < e <4, the system shows a persistent scenario at pu = c1 and
= co. In particular, near the critical value c1, a stable node x35(p) € Sas
exists for p < c1, and an unstable focus Xi45(p) € Siaz exists for pu > c;.
Whereas, near the critical value ca, an unstable focus Xjq5(p) € S123 exists
for p < ca, and a stable node x35(u) € Si3 exists for pu > ca.

In the above theorem we only analyze bifurcations involving an unstable focus
because they are the equilibria related with the generation of limit cycles as we will
show in the next section. In Figure 3 we show the two possible scenarios for the
bifurcation at g = ¢;. We consider the fixed value § = 1/2 and two representative
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a b

0500 02

Fia. 3. Scheme of different bifurcations observed in system (2.3) at p = c1. a. Non-smooth fold
bifurcation. b. Persistent bifurcation. We show the transition plane 31, the boundary equilibrium
(black dot) and the two branches of equilibria observed when the parameter varies. Stable (unstable)
equilibria are indicated in solid (dashed and dotted) line. The inset diagrams show one coordinate
of the equilibria as functions of p.

values of e. We show a non-smooth fold bifurcation (Fig. 3 a) where both interacting
equilibria are unstable and they exist for values of i > ¢;. Also, we show a persistent
case (Fig. 3 b) where a stable node is transformed in an unstable focus when the
value of p is increased.

3. Cycles generated in boundary equilibrium bifurcations: existence
and stability. In Section 2 we described all boundary equilibrium bifurcations of
system (2.3). In particular, we found conditions for the parameters for which the
system has bifurcations with one branch of unstable foci. These dynamical scenarios
are particularly interesting because the rotational field around the unstable focus
allows that trajectories near the transition plane to come back on that plane. This
behavior is one of the properties that enable the existence of periodic solutions in the
system.

In two dimensional systems the existence of cycles generated in an equilibrium
bifurcation can be determined using analytical conditions like the ones presented in
[12]. In three dimensional systems only a few results exist for very specific systems,
for example, if the two equilibria interacting in the bifurcation are foci (see Chapter
5 of [12]). However, in the general case, the existence of limit cycles and chaotic
attractors in piecewise linear three dimensional systems is an open problem.

In this section, we study the existence of periodic solutions related to the boundary
equilibrium bifurcations already calculated for the network (2.3). If the amplitude is
small enough, we find the analytical expression for the solutions by solving the system
in each region separately and adding continuity conditions. Then, we analyze the
stability of the cycles and prove their existence for different values of the parameters.

3.1. Analytical expressions of limit cycles. If 0 < € < § system (2.3) has
an unstable focus and shows one of the two different dynamical scenarios showed in
the above section (see Figure 3). In both cases, periodic solutions could be generated
in the boundary equilibrium bifurcations at the critical values 4 = ¢y or u = co.
In this subsection we assume that a cycle with small enough amplitude exists and
we determine its analytical expression for values of the parameter near these critical
values.

Here we consider the critical value g = ¢, where system (2.3) has the boundary
equilibrium x* € ¥; given in (2.10). We define X = x —x*, i = u — ¢y, the transition

This manuscript is for review purposes only.



(=2}

o

o e B A B |

DN N NN NN
X

[\
oo
—_

282
283
284
285
286

288

289

290
291
292

PERIODIC SOLUTIONS IN TLNS AND THEIR ENTRAINMENT 9

Fic. 4. A periodic solution crossing the transition plane $1. The plane divides the solution in
two parts, po and p1. The dots indicate the initial condition po(0) and p1(0).

plane 3, and the regions S1o3 and So3 as the translation of the original objects
(defined in (2.6) and (2.7)). To analyze the behavior of the solutions to system (2.3)
in some neighborhood of the bifurcation value we use the translated system (2.11).
From Theorem 2.3 it follows that an unstable focus for (2.3) exists for 1 > ¢y, therefore
an unstable focus for (2.11) exists for fi > 0. We emphasize that system (2.11) remains
unchanged if we consider X and [ scaled by the same positive value (the system is
scale invariant), therefore it is enough to study the case i = 1.

Because system (2.11) is linear in each region, if a small amplitude periodic solu-
tion p exists, the transition plane 31 must divide it in two parts, pg and p1, belonging
to the regions 5'123 and 5'237 respectively (see Fig. 4). We consider the intersection
points po(0) and p;1(0), as the initial conditions to solve the system (2.11) in each one
of these regions. Thus, we obtain the expressions

t
(3.1) m@ﬁw%%ﬂD+/eMWW@7i:QL
0

with Ny and M as in (2.11), and

-1 0 0
(3.2) Ny=| -14e -1 —-1-94
—1-6 —1+e -1

We assume that p has period T' = To + T4, where T; is the time that the periodic solu-
tion expends in the region Si23 and Ss3, respectively. Then, the following continuity
conditions must be satisfied

(3.3) po(To) = p1(0), p1(T1) = po(0).

Adding the initial conditions p;(0) € 21, for i = 0, 1, to the conditions above we obtain
a system of eight transcendental equations with eight unknowns: the coordinates of
the points p;(0) and the times T; for i = 0, 1. Solving this system we find the analytical
expressions for the periodic solutions of small enough amplitude of (2.3) near the
critical value p = ¢;.

Now we consider the critical value y = ¢y, where the boundary equilibrium x* €
Y5 was defined in (2.13). Locally, in a neighborhood of the bifurcation, with a suitable
change of variables, the system (2.3) can be expressed in the same form of system

This manuscript is for review purposes only.
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10 A. BEL, R. COBIAGA, W. REARTES AND H. G. ROTSTEIN

(2.11) with

1 —1-0 —l4c¢
(3.4) Ny = 0 -1 0
—1-6 —l+e -1

We observe that the unstable focus exists for values of p < ¢z, so in the search for
periodic solutions we consider i = —1. The expressions of the two parts of the cycles
are defined in (3.1) with the matrix N; defined in (3.4). Moreover, we consider the
continuity conditions given by (3.3) and the initial conditions p;(0) € $,, for i =0, 1.
Again, we obtain a system of eight transcendental equations. As in the previous
case, solving this system we find the expressions of cycles generated in the boundary
bifurcation at u = cs.

It is important to mention that, in a neighborhood of the boundary equilibrium
bifurcation (at the critical values ¢; and ¢3), the scale invariance of (2.11) ensures that
the amplitude of the periodic solutions depends linearly on the parameter p and their
period is constant. This was observed and proved in other piecewise linear neural
models [6, 29]. However, if the value of the constant input pu is far from the critical
value, the cycles could show transformations (when they interact with the transition
planes) that change their amplitude and period. We consider this situation in the
subsection 4.1.

3.2. Stability of the limit cycles. Once we found a periodic solution p we can
calculate its stability by applying Floquet theory (see, for example, [14, 17]). The
linearized equation for the perturbation Ap of the cycle results in

dAp

(3.5) -

J(p(t))Ap,  Ap(0) = Apy,

where J is the Jacobian of the system evaluated along the cycle and Apy is a small per-
turbation of p(0). For our system the Jacobian is piecewise constant, the correspond-
ing matrices are Ny or N7 depending on the region, then we obtain the monodromy
matrix

(3.6) O(T) = N1 TrNoTo,

The eigenvalues of ®(T') are the Floquet multipliers. There is always a multiplier
equal to 1 associated with the cycle p (see, for example, [14, 17]). If the rest of the
multipliers lie inside the unit circle, then the cycle is stable.

We note that for the two critical values of i considered in the above section, p = ¢;
and p = ca, the difference in the monodromy matrix is given by the matrix Ny, defined
by (3.2) and (3.4), respectively. Also, we observe that the Floquet multipliers of the
cycles with small enough amplitude do not depend on the values of the parameter p
because the period T of the cycles is constant near the critical values.

3.3. Existence of limit cycles. In subsection 3.1 we found that the existence of
cycles generated in a boundary equilibrium bifurcation is equivalent to the existence of
solutions to certain system of transcendental equations. In this subsection we reduce
the dimensionality of this system and prove the existence of solutions by using the
Kantorovich theorem for the Newton-Raphson method [26].

We consider the system given by

(3.7) po(To) = p1(0), p1(T1) = po(0), pi(0) €%, i=0,1,

This manuscript is for review purposes only.
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where p; are defined in (3.1) and ¥ is the transition plane crossed by the cycle (3 or
$y depending on the considered critical value). As we already mentioned, this system
of transcendental equations has eight unknowns: the coordinates of the points p;(0)
and the time values T;, for i = 0, 1.

The expressions (3.1) and the continuity conditions allow us to write the following
equations

To T
(3.8) e™oTopy(0)+ / eNos Mds =pi(0),  eMTip(0)+ / e* M ds = po(0).
0 0

By replacing po(0) on the left for the expression on the right and solving the integrals
we obtain the following system of three equations

(3.9) A pi(0) =B,
where
(3.10) A = (eNoToghiTy 1y,

with I the 3 x 3 identity matrix, and B is a 3 x 1 matrix given by
(3.11) B =eNo TN T — MM + N ' (I — eMoTo) M.

Since (3.6) has an eigenvalue equal to 1, det (4) = det (eMT1eMNoTo — J) = 0 and
the matrix A is non-invertible. Thus, the system (3.9) cannot be solved to find p;(0),
hence we reduce it by considering the initial conditions p;(0) € X. Since p;(0) € X,
we have n - p1(0) = 0, where n = [n1,n9,n3] is normal to the plane X. Thus, by
considering p1(0) = (&1, T2, Z3) and ng # 0, we can write the last coordinate Z3 as a
combination of the first two (here we suppose that ng # 0, if it is not the case, then
we change the selection of coordinates on p;(0)). In the new coordinates the system
(3.9) results in

(3.12) D{%]_{Z;]

where

1 | nsai; —na n3a12 — N2d
(3.13) D=~ 3011 10413 N3012 2013
ng | M3G21 —N1d23 N3a22 — N2d23

being a;; and b; the elements of A and B respectively.

The elements in the matrix A depend on the times Ty and T7. For Ty and T}
exist such that det(D) # 0, we solve the system (3.12) and find the expressions of
the coordinates Z1(7p,71) and Zo(Tp,T1). Thus, we obtain an expression of the point
p1(0) as a function of Ty and T3.

Now, the condition py(0) € ¥ can be expressed in the form

(3.14) F(To, T1) :==n- (eMTp(0) + Ny 1M — 1)M) =0,
and the third equation in the system (3.9) yields

(315) FQ(To,Tl) = [agl,agg, a33] . pl(O) — b3 = 0

This manuscript is for review purposes only.
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So, we reduce the original system (3.7) to
(3.16) (Fy(To, Th), F»(To,T1)) = 0.

A solution to equation (3.16) that satisfies det(D) # 0, corresponds to a periodic
solution of small enough amplitude for the network (2.3). Despite the low dimen-
sionality of (3.16), its complexity makes it difficult to prove the existence of solutions
in the general case. However, one advantage of this system is that its solutions can
be interpreted as the intersection of curves in the (7p,71) plane, which allows for a
geometric (graphic) study of the system as the parameters vary. Once we find values
for the parameters § and e such that (3.16) has a solution, we prove its existence by
using the following Kantorovich’s convergence result [26].

Let F: X — Y be an operator, where X and Y are Banach spaces. We consider
the recurrent method defined by

(317) Tk+1 :wkfFl(xk)ilF(xk)a kioala"'a

where F'(zy,) is the Fréchet derivative of F(z) at the point zy.

THEOREM 3.1 (Kantorovich). Assume that F is defined and twice continuously
differentiable on a ball B = {x : ||z — x| < r}, the linear operator F'(xq) is invertible,
[1F" (o)~ F(@o) || < n, | F'(20) ' F"(2)| < K, x € B, and

1 1—+v1-2h
(3.18) h=Knp<-, r>-—Y-",

2 h
Then, the equation F(x) =0 has a solution x* € B, the process (3.17) is well defined
and converges to x* with quadratic rate:

k
e — " < -1z (2h)"

To apply this theorem to our system (3.16), we define the nonlinear operator
F:R?2 - R? as F(Ty, T1) = (F1(Ty, T1), Fo(To, T1)). As a first example, we consider
the fixed values 6 = 1/2 and € = 2/5. We choose the initial value 2o = (6,2.7) and the
ball B around zy with ratio » = 0.25. Considering the expressions of F; and F5, we
prove that F' is twice continuously differentiable on B, and that F'(xg) is invertible.
In addition, we have ||F’(zo) 1 F(xo)| < n = 0.05 and ||[F'(xo) ' F"(z)|| < K = 8,
for all x € B. Thus, the hypotheses of the theorem are satisfied. This proves the
existence of a unique solution z* of (3.16) in B, which could be calculated with the
recursive method (3.17) (see Fig. 5 a). Next, we consider 6 = 1/2 and ¢ = 1/4,
the initial value zg = (6.4,6.6) and the ball B around zo with radius » = 0.2. The
operator F' is twice continuously differentiable on B, and F’(xq) is invertible. Also,
we note that ||[F'(xo)  F(zo)|| < n = 0.12 and ||F'(z¢) ' F"(z)|| < K = 3.7, for all
x € B. Thus, we can apply the theorem and prove the existence of a unique solution
x* of (3.16) in B (see Fig. 5 b).

We also note that system (3.16) has no solutions when the parameter € is below
some threshold value €* which changes depending on d. This can be easily seen from
a graphical study of (3.16) when the value of ¢ decreases. In these cases, there are no
small amplitude periodic solutions of (2.3) and numeric calculations indicate that all
solutions are attracted by an equilibrium of the system (x3 or x3 depending on the
considered region). When ¢ is decreasing and approaching to the threshold value, we
see that T} is increasing and T remains near a fixed value. The time T3 spent by the
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a b
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To To

F1G. 5. Solutions of (3.16) for fized values of the parameters. a. § = 1/2 and € = 2/5. b.
§ =1/2 and e = 1/4. The point xq is the initial condition and x* the unique solution on B.

limit cycle trajectory in the region Ss3 grows because this trajectory of the solution
is near a stable direction of a saddle equilibrium. We conjecture that these behaviors
are connected to the existence of a heteroclinic orbit in the system, but a detailed
investigation of this issue is beyond the scope of the present work.

3.4. Branches of cycles near the equilibrium bifurcations. For values of
the parameter p near a boundary equilibrium bifurcation, the existence of a solution
to (3.16) implies the existence of a branch of periodic solutions generated in that
bifurcation point. These branches exist for non-smooth fold and persistent bifurca-
tions. For the cycles in these branches, the amplitude depends linearly on p and the
frequency is constant.

For example, we consider the fixed values 6 = 1/2 and ¢ = 1/4. The system
(2.3) has a non-smooth fold bifurcation at the critical value p = ¢; = 17/24. We
already know that (3.16) has a solution (Fig. 5 b). Now we find a branch of periodic
solutions for values of the parameter p > ¢; and near that critical value. In Figure 6
we show the amplitude of each variable for the cycles in the branch, and the variables
as functions of the time for one of these cycles. The period for each cycle in the
branch is T =Ty + 11 = 6.5137 + 6.6171 = 13.1308 and the Floquet multipliers are
{1.,0.0148303,9.02392 x 10716}, thus, the cycles are stable. For the same values of &
and ¢, another branch of stable cycles exists for values of the parameter u < co = 22/15
and near that value (not shown).

4. Dependence of the limit cycle properties on the model parameters.
As we showed in the above section, limit cycles exist in a neighborhood of the critical
values pt = ¢; and g = co. In both cases, the amplitude of the cycles depends linearly
on p for values near the critical value. But, what is the dependence when the value of
the parameter p is far from the critical values? In this section we study the attributes
(amplitude and period) of the periodic solutions of (2.3) for a large range of values
for the parameter p. In addition, we describe how the connection parameters § and e
modify the periodic solutions.

4.1. Constant input p. By increasing (decreasing) the values of u from the
critical values ¢; (¢g), a branch of limit cycles is generated and the amplitude of each
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Fic. 6. Branch of cycles generated in a non-smooth fold bifurcation. a. Amplitude of each
variable as function of the parameter p. b. Coordinates of the cycle for u = 0.76 as function of t.

variable grows until one of the cycles touches tangentially a transition plane different
from the one it crossed originally. These contact points are called grazing points [12],
next we describe them in the context of our model.

Let p be a periodic solution of (2.3), and let ¥ = {z € R® : f(x) = 0} be one
of the transition planes (defined in (2.6)). The system has a regular grazing point in
xzg = p(ty) if Vf(z4) # 0 and the following conditions are satisfied

df (p(t)) d*f(p(t))
dt dt2

t=t, t=t,

(4.1) flzg) =0, #0.

The solution p is called a grazing solution of the system. The first two conditions in
(4.1) ensure that p is tangential to X in the point x,. The third condition establishes
that, in a neighborhood of ¢ = ¢4, the solution p belongs to one of the regions in R?
determined by X.

For a given branch of limit cycles generated in a boundary bifurcation, we cal-
culate the grazing values ug using the analytical expression of the cycle and the first
two conditions in (4.1). Then we check that the third condition is also satisfied. To
this end, we calculate the grazing values p4 in which a periodic solution of (2.3) has
a regular grazing point. Since the calculated points are regular, the cycle does not
disappear when the parameter p varies. Moreover, it has the same curvature sign near
the grazing point for values of the parameter near n,. However, both the amplitude
and frequency of the cycle are modified after it crosses X, so the grazing values are
important to describe them.

As an example, in Figure 7 we show a regular grazing point of a cycle generated
in a non-smooth fold bifurcation of (2.3). The situation is also presented in a 2D
projection for clarity in the visualization. Originally, the cycle crosses the plane ¥
(Fig. 7 a). As the value of y increases we find a grazing point at pu = pg with the
plane X3 (Fig. 7 b). For values of y > p, the cycle crosses X3 keeping the same
curvature sign near the grazing point (Fig. 7 ¢).

It is important to mention that, by varying the values of u, the cycles cross
different transition planes. For g = 1 we observe that the limit cycle for system
(2.3) is divided into exactly six parts and that it evolves along four regions in the
following order: Saz — Sias — Si3 — Sia3 — S12 — Si2s (see Subsection 6.1
for further details). Heuristically, we observe that for system (2.3) a cycle could be
divided in at most six parts, but a proof of this result is beyond the scope of this
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FIG. 7. Ezample of grazing point in a periodic solution of (2.3) at a grazing critical value pig.
Solution and transition planes in the 3D state space (upper row) and a projection in the x1-z2 plane
(lower Tow). Value of the parameter: a. p < pg. b. = pg. ¢. > pg. The blue dots indicate the
intersection between the periodic solution and the transition planes.

paper. Regardless of the number of parts in which the cycle is divided, its analytical
expression is calculated by applying the same ideas we developed for a cycle with
two parts in Subsection 3.1 (by solving the equation in each region and considering
continuity conditions). In all cases, by performing the reduction in Subsection 3.3,
we obtain a system of transcendental equations that can be numerically solved. To
calculate the different grazing values of p we add the conditions in (4.1). We calculate
the stability of these cycles by adapting the calculations in Subsection 3.2.

In Figure 8 we show the periodic solutions observed in a non-smooth fold case for
the indicated values of the parameters. We plot the amplitude of each variable of the
cycle (Fig. 8 a) and its frequency (Fig. 8 b) as functions of the input parameter p.
We note that a stable limit cycle is generated in the bifurcation at the critical value
1 = c1, then, it has four regular grazing points when the value of u increases, and
finally the cycle disappears in the bifurcation at u = co. As we mention, the frequency
is constant for values of the parameter near the critical values. For y = 1 the network
has a cyclic symmetry, the activity of the nodes is the same with a translation in time
(Fig. 9 b) so the amplitude is the same for each node, furthermore, this particular
cycle has the largest frequency of the whole branch. For values of p near the critical
value, the activity of each node is concentrated around the correspondent unstable
fixed point (Fig. 9 a and c). In addition, we observe that the activity of one node is
near zero in a big part of the period whereas the other nodes are always active. The
amount of input u received by the third node (u < 1 or g > 1) determines which node
remains almost deactivated for a long time (node 1 or node 2, respectively).
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F1G. 8. Stable periodic solutions of network (2.3) varying the parameter u for the fized values
6 =1/2 and e =1/4. a. Amplitude ((Tmaz—Tmin)/2) of each variable. b. Frequency of the periodic
solutions. The vertical dashed lines correspond to grazing points with the indicated transition planes.
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Fi1Gc. 9. Periodic solutions of the network (2.3) varying the parameter p for the fized values
6=1/2 and e = 1/4. a. p =0.75. b. p=1. e¢. p = 1.4. The horizontal dotted lines are the
coordinates of the associated unstable focus.

4.2. Connection parameters. In this subsection we consider different values
of the connection parameters € and § and show the different limit cycles produced.
First we consider a fixed value of § and a big range of the (u, €) parameter space, then
we vary the value of the parameter §.

As a representative example we consider § = 1/2. We obtain similar bifurcation
diagrams for other values of § > 0. For this value of § we consider €* < ¢ < 4,
with €* ~ 0.159, since for values of € < €* cycles generated in boundary bifurcations
are not found (see Subsection 3.3). In Figure 10 we show the resulting bifurcation
diagram. The results regarding the equilibria and their bifurcations were presented
in Section 2. For values of the parameter on the left vertical-lined region the unique
stable solution of the system is the equilibrium x3 = [0,1,0]7 belonging to S (see
(2.7)), so the node 2 is the only one active in the network. For values on the right
vertical-lined region the unique stable solution is the equilibrium x3 = [0,0, u]” in
the region Ss, and the node 3 is the only one active. The black curves correspond
to the critical values ¢;, for i = 1,...,4, defined in (2.9). In the shadowed region a
stable limit cycle exists, which is generated (destroyed) in the boundary equilibrium
bifurcation at ¢; on the left (¢o on the right) as the value of p increases. For values of
the parameters near the black curves the amplitude of the periodic solutions is small
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Fic. 10. Bifurcation diagram of network (2.3) for § = 1/2. The black curves indicate the
critical values ¢; where boundary equilibria bifurcation are observed (see (2.9)). The left (right)
vertical-lined region corresponds to the existence of a stable equilibrium of the network belonging
to Sa (S3) (see (2.7)). The left (right) horizontal-lined region corresponds to the existence of a
equilibrium of the network belonging to Saz (S13). In the upper (lower) horizontal-lined regions the
equilibrium is stable (unstable). In the shadowed region the network has a stable limit cycle. In the
lined-shadowed regions the network shows multistability.

518 and depend linearly on pu (see Fig. 8). The value ¢, = §/(1 + 0) divides the diagram
19 in two parts depending on the type of equilibrium bifurcations. If € > €. the network
shows four persistent equilibrium bifurcations when the value of p increases, whereas
if € < e < €. the network shows four non-smooth fold bifurcations. In the last case,
the system shows bistability. There are two regions (lined-shadowed regions) where
two stable attractors coexist, an equilibrium (x5 on the left and x% on the right) and
the limit cycle generated in the non-smooth fold bifurcation. We note that the region
of multistability is larger for larger values of the constant input pu.

Now, we consider different fixed values of i, and the connection parameters € and
d in a range where stable limit cycles exist (shadowed region in Fig. 10). First, we
calculate the frequencies of the cycles (Fig. 11 a and b). We observe that for all
values of € and ¢ the largest frequencies are obtained when all the nodes have the
same constant input, that is, when pu = 1. Also, we observe that the frequencies
increase as the weak inhibition becomes weaker (the value of € increases), and they
tend to the same constant value as e tends to J (Fig. 11 a). In contrast, as the
strong inhibition increases (the value of § increases), the frequencies increase, reach
a maximum and then decrease (Fig. 11 b). Finally, we mention that changes in
the weak inhibition affect more the range of frequencies than variations in the strong
inhibition. To compare the amplitudes we first consider the case p = 1. As we already
mentioned, for this value of p there is a symmetry in the network and the amplitude
is the same for each node, we calculate and show this amplitude as a function of the
parameters (Fig. 11 ¢ and d). We observe that the amplitude of the symmetric cycle
decreases as the weak inhibition becomes weaker, whereas, it slightly decreases and
then increases as the strong inhibition becomes stronger. For values of 1 # 1 some
of the amplitude variables increase and others decrease depending on the coordinates
of the unstable focus near the trajectory of the solution. However, we observe that,
as the (weak or strong) inhibition between nodes is weaker (values of ¢ increases or
values of & decreases, respectively), the trajectory of each variable is more uniformly
distributed around the coordinates of the unstable focus within a period (Fig. 12).
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Fic. 11. Frequencies and amplitudes of periodic solutions of network (2.3). a. Frequency as
function of € for the indicated values of p and § = 1/2. b. Frequency as function of § for the
indicated values of p and ¢ = 1/4. ¢. Amplitude as function of € for p = 1 and § = 1/2. d.
Amplitude as function of § for p =1 and e =1/4.
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Fic. 12. Variables for different cycles normalized to one period. al. 6 = 0.5, ¢ = 0.4 and

u=08. a2. §=1,e=04and pn=0.8. a3. 6 =1, e =0.2 and up = 0.8.

5. Entrainment of cycles in three-node networks. In this section we con-
sider a three-node threshold-linear network in the sustained oscillations regime. We
assume that an external sinusoidal input is added to one of the nodes and, by defin-
ing a Poincaré map, we numerically determine how the input modifies the oscillatory
solutions of the network.

We consider the network (2.3) with a sinusoidal input applied to the first node

Z Wijl'j + Bz + Iin,i(t) s
j=1

dZL'i

(5.1) — b= i=1,2,3,
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where B = [1,1, )", and the sinusoidal input is given by

(5.2) i () = Am%@mt),
where A;, is the input amplitude and w, is the input frequency, and I;,, ;(t) = 0 for
all 4 # 1.

The network (5.1) responds to the periodic input with a solution that could be
periodic, quasi-periodic or chaotic. If the response is periodic with frequency wyp, and
the response and input frequencies satisfy wysp/win = p/q, for a pair of values p, ¢ € N,
it is said that the network is entrained by the input, and the response is a p : ¢ mode-
locked solution. We study the entrainment regions by considering the Arnold tongues
of the network, which are bifurcation diagrams in the parameter space (win, Ain).
The tongue borders correspond to parameter values where cycle bifurcations (such
as period doubling and Neimark-Sacker) are observed. For values of the parameter
inside the tongues the solutions are synchronized with the input (entrained) with p : ¢
rate. In the rest of the parameter space the solutions are quasi-periodic or chaotic.

The entrainment of oscillatory solutions in neural models for both single oscillators
and oscillatory networks has been studied with different mathematical tools, and
usually the investigation combines analytical and numerical results [5, 6, 19, 20, 23,
27]. In our model it is possible to obtain systems of transcendental equations for which
solutions are in correspondence with points in the tongue borders. These systems are
obtained (as in [6]) adding bifurcation conditions to the analytical expressions of the
cycles calculated in Section 3. However, the dimension and complexity of these system
make them difficult to solve even by using numerical techniques. Because of this, we
develop a numerical calculation of the Arnold tongues by defining a Poincaré section
and an associated return map to find and describe the mode-locked cycles.

We define the Poincaré section as the plane x1 = ¢*, where ¢* is the first coordinate
of the unstable equilibrium x3j,5 for the network without sinusoidal input (see (2.8)).
For fixed values of the input parameters (A;, and w;,) we calculate the solutions and
consider their values for a constant time, large enough to avoid the transitory effect of
the initial conditions. To study the return map, we save all times 7; and points x(77;)
in which the solution crosses the Poincaré section in a selected direction. If the map
has a fixed point, i.e., if x(T;) is the same for all 4, and the instant period T; — T;_1
is constant, the solution is a 1 : ¢ mode-locked solution. The g value is calculated
as the average frequency (approximated by using the instant periods) divided by the
input frequency. If the map has a cycle of period two and the instant periods form
a sequence of two intercalated values, the network solution is a 2 : ¢ mode-locked
solution. In general, we extend the above procedure to cycles of period p in the map,
to find the p : ¢ mode-locked solutions. In all cases, the ¢ value is calculated as we
explained above.

Remark 5.1. The proposed calculation of the Arnold tongues is not accurate if
the input amplitude is large because of the grazing points that can appear in the
solutions. In these cases, for example, a p : ¢ mode-locked solution can be seen as
a 1 : ¢ mode-locked solution. One option to avoid this problem is consider different
Poincaré sections and compare the different Arnold tongues.

5.1. Results for the three-node network with cyclic symmetry. Figure 13
shows the Arnold tongues for the three-node network (5.1) with = 1 and the values
of the connection parameters indicated in the figure. We labeled each region with the
p : q type of entrainment. As is expected, each region is expanded from a rational
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Fic. 13. Numerical simulations of Arnold tongues for the three node network with sinusoidal
input, p =1, § = 1/2 and € = 1/4. The shadowed regions correspond to the different tongues and
the labels indicate the p : q type of entrainment. The cycle without input has frequency w ~ 0.553.

fraction of the frequency observed without input, and all regions have wedge form,
since the entrained solutions are observed for a larger range of the input frequencies
when the input amplitude increases. In Figure 14 we show four entrained responses, a
1: 1 mode-locked solution (Fig. 14 a), where both the response and input frequencies
are the same, and examples of 1 : 2, 2: 1 and 2 : 3 mode-locked solutions (Figs. 14
b, ¢ and d, respectively). Finally, in Figure 15 we show two quasi-periodic solutions.
In this last case, to simplify the visualization, we only show the maximum values for
the trajectories of each variable of the cycle.

Now we consider a fixed value of the input amplitude and take a horizontal section
of the Arnold tongues. Thus, we can represent a curve in the (wip,wrps/win) space,
known as dewvil’s staircase, that shows different entrainment regions which correspond
to the different Arnold tongues. We show an example (Fig. 16 a) of a devil’s staircase
obtained for a fixed values of A;, and the other parameter values as in Figure 13. To
reduce the calculations and compare the response of networks when the connection
parameters vary, we calculate different devil’s staircases. In particular, we consider
three different values of e (Fig. 16 b). We observe that the entrainment regions are
smaller when the weak inhibition is weaker (that is, as the value of € increases), with
exception of the 1 : 1 region that is slightly larger. In addition, we mention that, as
the value of € is increased, all entrainment regions are obtained for greater values of
the input frequency, since the frequency of the network without input is increased.

The Arnold tongues and their devil’s staircases contain a lot of information about
the response frequency but do not provide us with any information about the response
amplitude when the input varies. To analyze this we observe the amplitude of each
variable in the 1 : 1 entrainment region considering two cases, a constant input am-
plitude A;, or a constant input frequency wj,. In the first case, we observed that
the response amplitudes are not constant when the value of the input frequency is
increased (Fig. 16 a). Moreover, the smallest amplitudes are reached in the largest
input frequency, and for the nodes 2 and 3 the amplitudes decrease in the whole
range. In the second case (fixed values of the input frequency), the amplitude of the
node 1 (receiving the input) is increasing as a function of the input amplitude, and
it increases slower as the frequency is closer to the frequency without input (Fig. 16
b). The amplitudes of node 2 and 3 are decreasing, with exception of the amplitude
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Fic. 14. Ezamples of mode-locked cycles for the Arnold tongues in Figure 13. Left column:
trajectories as functions of t and a representation of the sinusoidal input (black curve). The input
is added to the node one (blue curve). Right column: cycle in the 3D space and its intersections
with the Poincaré plane. a. 1 : 1 mode-locked cycle for the input frequency win = 0.5. b. 1:2
mode-locked cycle for the input frequency w;, = 1. c. 2 : 1 mode-locked cycle for the input frequency
win = 0.26. d. 2: 3 mode-locked cycle for the input frequency w;n = 0.82. In all cases we consider
Ain =02, u=1,86§=1/2 and e =1/4.

of node 2 when w;, is equal to the frequency without input.
To summarize: If the forcing is strong enough, it entrains the network. When
the inhibition (weak or strong) between nodes is strong, we observe a large amount
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Fia. 15. Quasi-periodic cycles in the three-node network considered in Figure 13 (for the fized
values p = 1, § = 1/2 and € = 1/4). Left column: mazimum of each variable as function of
t. Center column: solution in the 8D space and its intersections with the Poincaré plane. Right
column: Poincaré map. a. Input parameters: wi, = 0.15 and A;, = 0.2. b. Input parameters:
win = 0.75 and A;, = 0.1.
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Fi1G. 16. Dewvil’s staircase for different three-node networks. a. Deuvil’s staircase for the fixed
values Ajp, = 0.2, p=1,8 =1/2 and e = 1/4. We labeled the entrainment regions with the p : g
rate of entrainment. b. Networks for p =1, § = 1/2 and different values of €. The dots indicate
the frequency of the periodic solution to the network without input.

of entrainment regions in a fixed range of frequency inputs. We obtain quasi-periodic
solutions if the input is weak or has frequency far from the resonant frequencies.

6. Cycles in networks with cyclic symmetry and their entrainment.
Here we extend the work developed in the previous sections by studying networks of
three or more nodes with all-to-all connections and cyclic symmetry (see Fig. 18).
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Fic. 18. Graph representation of a network with n nodes and directed connections. A black
arrow indicates weak inhibition, whereas a gray arrow indicates strong inhibition between nodes.

Following the ideas in Section 3, we find the analytical expressions for the oscillatory
solutions and obtain a reduced system of two transcendental equations whose solutions
correspond to the cycles considered. This leads to extend the proof of the existence of
the limit cycles in a straightforward manner. Then, we study the cycle characteristics
when the parameter values or the number of nodes vary. Finally, as in Section 5,
an external sinusoidal input is added to one of the nodes and we analyze briefly the
entrainment of the cycle as the input parameters vary.

6.1. Cycles in the network of n nodes with all-to-all connections and
cyclic symmetry. The system of differential equations for the threshold-linear net-
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work of n nodes with cyclic symmetry is given by

dl‘i
dt

= —x; + Zlexj—i—Ql , 1=1,...,n,

j=1

(6.1)

+

where W is the n x n matrix given by

0 -1-6 —-1-6 ... =1—-6 —1+4c¢€]
~1+e 0 —1-§ ... —1-§ —1-3
—1-5 —14e 0 ... —1-6 —1-3§
(6.2) W=
—1-6 —1-6 —1-6 ... 0 —1-6
| —1-0 —1-6 —1-6 ... —1+c¢ 0 |

As in the three node case, the values —1 —§ (with § > 0) and —1+¢€ (with 0 < e < 1)
represent the strong and weak inhibitory connections, respectively.

In particular we consider the network with constant input 6; = 1 in each node.
This last assumption generates a cyclic symmetry in the system (already mentioned
in the three-node case) from which circular shifts of the nodes does not affect the
response of the network.

Following the notation in Section 2, we define

j=1

The hyperplanes ¥; divide the state space R™ in different regions in which the network
(6.1) is linear.

The linearity of the system in each region and the symmetry mentioned above
allow us to find and calculate periodic solutions applying the techniques developed in
Subsection 3.3.

Suppose that a stable limit cycle p of period T exists in the network (6.1). Because
of the symmetry in the system, it follows that

(6.4) pi(t):pl(t—lan), i=2,...n

By definition of (6.1), it is necessary that the cycle p crosses at least one transition
hyperplane ;. Then, from condition (6.4) and the definition of X, it follows that
the cycle crosses all the transition hyperplanes. To find the analytical expression of
the cycle, we divide it in n equal parts and study the expression of each coordinate
in one interval of length T'/n (see Fig. 19 a).

We want to determine which functions f; are active (have positive values) in each
part of the cycle, in order to determine the corresponding linear system (6.1) in each
interval. Without loss of generality, in the following calculations we consider the
interval [0,7/n] and p(0) € 31 (see Fig. 19 b). Thus, p(T'/n) € £5 and we observe
that a value T; € (0,7/n) exists such that

21 if 7’L:37

(6.5) p(Th) € {24 it >4,
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Fic. 19. Cycle in a network with 5 nodes. a. Coordinates of the cycle with period T. The
vertical lines correspond to the transition hyperplanes ¥;. b. Coordinates in an interval of length
T/5. We consider p(0) € 31, so this interval is the second strip in figure a.

and it is satisfied that f2 3(p(t)) > 0 for ¢t € (0,7}), and

(6.6) Fona(p(t)) >0 if n >4,

{f1,2,3(p(t)) >0 if n=3,
for t € (Th,T/n). Thus, the active functions in the interval (0,77) are fo 3, whereas
in the interval (77,7 /n) the active functions depend on the value of n.

Given the above observations about the signs of the functions f;, we solve system
(6.1) in the intervals (0,731) and (T1,7/n) to find the analytical expression of p (as
in equation (3.1)). In each interval we solve a linear system of n ordinary differential
equations, by considering the initial condition p(0) € ¥, the continuity condition at
t = Ty and the final condition p(T'/n) € 3. By performing calculations similar to
the ones developed in the Subsection 3.3 (where system (3.7) is reduced to (3.16)),
we obtain a two dimensional system of transcendental equations with unknowns 7'
and T7. Then, we apply the Kantorovich’s result to prove the existence of periodic
solutions. Finally, we calculate the stability of p by defining the monodromy matrix
following the ideas in Subsection 3.2.

In Figure 19 we show the periodic solution obtained for the network (6.1) with 5
nodes, 6 = 1/2 and € = 1/4. In this case, the period is T' = 18.9806 (and T} = 3.1485),
and the cycle is stable with Floquet multipliers {0.99953,1.32651 x 1075, —4.61789 x
1072 +1.93239 x 10781, —4.61789 x 1072 — 1.93239 x 1078i,0}.

6.2. Dependence of the oscillatory network dynamics with the model
parameters. In this subsection we briefly study the periodic solution as either the
connection parameter € or the number of nodes vary.

We observe that, for a fixed value of the parameter ¢, the frequency decreases if
the number of nodes increases (Fig. 20 al). In contrast, for a fixed number of nodes,
the frequency increases if the value of ¢ increases, as in the case of the three-node
network considered in the above section.

The amplitude of the cycles in a network having more than three nodes is almost
the same as e changes with some range, and they are always grater than the corre-
sponding amplitude for the three-node case (Fig. 20 a2). In all cases the amplitude
decreases as the values of € increases, i.e., when the weak inhibition becomes weaker,
but we observe that the three-node network is more sensitive to this variation.

From the above observations it follows that, for fixed values of the connection

This manuscript is for review purposes only.



712
713
714
715
716
eve
718
719
720
721
722
723

26 A. BEL, R. COBIAGA, W. REARTES AND H. G. ROTSTEIN

al a2 b
1.2 0.400 1.0
n= Qe 0.8 Ty xT9 T3
1.0 e 0.375 06
., 0.350 0.4
§ — n= g 0.325 0.0 ;
S 06 =, 0.300 =
= g - n =4 10
04 3 0275 08 1 Ty T3 Ty Ty T
0.250 ) 0.6
0.2 —— n=6 0.4
0.225 0.2
0.1 02 03 04 05 0.1 02 03 04 05 ()40
€ € ’ t

Fia. 20. a. Periodic solutions as functions of € for the indicated values of n and § = 1/2. al.
Frequency. a2. Amplitude. b. Variables for different cycles normalized to one period. We consider
the fized values 6 = 1/2, ¢ =2/5 and n =3 (n = 6) in the upper (lower) row.

parameters, as the number of nodes in the network increases the period of the resulting
cycle increases.

Finally, we observe that in networks with a large number of nodes, the activity of
each one is concentrated near its maximal value and it is near zero for a large amount
of time in one period (Fig. 20 b).

6.3. Entrainment of cycles in networks with cyclic symmetry. In this
subsection we follow the ideas developed in Section 5 and consider the response of the
network (6.1) with an oscillatory solution when a periodic input is applied to one of
the nodes.

In particular, we consider the network in (6.1) with n > 3 and e < § (thus the
network has a stable limit cycle), and we assume that a positive sinusoidal input is
applied to the node labeled as number 1. The resulting system reads

d!Ei
dt

=—x;+ ZWij$j+1+Iin,i(t) ) i=1,...,n,
j=1

(6.7)
.

where the input is given by

(6.8) Lina(t) = Am%@”t),
being A;, the input amplitude and wj,, the input frequency, and I, ;(t) = 0 for all
i # 1.

We calculate the devil’s staircases to compare the response of networks with
different number of nodes and values of €. As the number of nodes in the network
increases we observe that the entrainment regions become smaller and they shift
toward lower frequencies since the frequency without input is smaller for larger number
of nodes (Fig. 21 a). This is seen clearly in the 1 : 1 region. Thus, the ability of
the input to control the frequency of the response is reduced when the network has a
large number of nodes.

For a fixed number of nodes, as we observe for the three-node network (see Fig.
16 b), the entrainment regions shift toward higher frequencies since the frequency
without input increases as the value of the connection parameter e is increased (Fig.
21 b). However, the 1 : 1 entrainment region, which always includes the natural
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Fia. 21. Dewil’s staircases for different networks (6.7). a. Networks with different number of
nodes and fized the values § = 1/2 and € = 1/4. b. Networks with four nodes, 6 = 1/2 and the
indicated values of €. The dots indicate the frequency of the periodic solution to the network without
nput.

frequency (in the absence of any input), does not present big changes in its length.
Finally, we note that the network has more entrainment regions in the same interval
of input frequencies when the weak inhibition is stronger (lower values of €).

7. Conclusions. In this paper we studied the existence of periodic solutions
to competitive TLNs and their response to periodic inputs. We first analyzed the
three-node case and we later considered networks with three or more nodes, all-to-all
connections and cyclic symmetry.

In the three-node network we applied the theory of non-smooth dynamical systems
[12, 30] to perform a detailed mathematical analysis of our system. In particular, we
calculated and classified all bifurcations of equilibria, which are the basis for the cycle
generation analysis that we performed in the Section 3. Because of the specific type of
threshold-nonlinearity we dealt with, we were able to find an analytical expression of
the periodic solutions and discuss their stability. In addition, by using a combination
of mathematical analysis and numerical simulations, we demonstrated the existence of
these periodic solutions by considering a reduced system of transcendental equations
and using a Kantorovich’s convergence result. The existence of these limit cycles has
been hypothesized before on the basis of numerical simulations, but to our knowledge
no analytical demonstration of the existence of these oscillations has been provided
[9, 24, 25].

Once we proved the existence of periodic solutions, we carried out numerical
simulations to study the dependence of them on the model parameters. If the values
of the inputs to the nodes are close to each other (that is, if the value of p is near 1), we
observed that periodic solutions exist for a large range of the connection parameters.
In contrast, if the inputs are significantly different from each other, the network needs
more local excitation (a larger value of €) to generate oscillatory solutions. If all the
inputs have the same value, the network has a cyclic symmetry, and a stable periodic
solution exists provided that € < §. For fixed values of the connection parameters,
the frequency of this symmetric cycle is larger than the frequency of cycles for the
non-symmetric networks (u # 1). Furthermore, we note that, despite the fact that the
values of € and § modify the strength of the inhibitory connections, the attenuation
caused by the local excitation (values of €) has a stronger effect over the attributes of
the cycles than the local inhibition (values of §). In other words, the attributes of the
periodic solutions are more sensitive to changes in the weak inhibition (see Subsection
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4.2). In particular, we observed that (i) the frequency of the cycles increases as the
local excitation increases, and (ii) changes in the local excitation affect more the
range of observed frequencies than variations in the local inhibition. In addition, in
the symmetric networks (with input u = 1), we observed that the amplitude of the
cycle decreases as the local excitation increases, whereas it slightly decreases and then
increases as the local inhibition increases.

It is important to mention that all periodic solutions that we found are stable.
However, there are two regions in the p-e parameter space where the three-node net-
work shows multistability. Two stable attractors coexist: an equilibrium and the limit
cycle generated in a boundary equilibrium bifurcation. The region of multistability is
larger for larger values of the constant input p.

An important question associated to oscillatory networks is their ability to follow
oscillatory inputs; i.e., to be entrained [5, 6, 19, 20, 23, 27]. In order to address this
issue, we analyzed the response of the three-node competitive TLN with an oscilla-
tory solution when a sinusoidal input is added to one of the nodes. We numerically
obtained the Arnold tongues of the network and find different entrainment regions
as the amplitude and frequency of the input vary. As is expected, each entrainment
region is expanded from a rational fraction of the frequency observed without input,
and all regions have wedge form, since the entrained solutions are observed for a larger
range of the input frequencies when the input amplitude increases. In other words,
if the forcing is strong enough, it entrains the network. Quasi-periodic solutions are
observed if the input is weak or its frequency is far from the resonant frequencies.
As the value of the local excitation increases, we observed that (i) the entrainment
regions are smaller, with exception of the 1 : 1 region that is slightly larger, and (ii)
all entrainment regions shift toward higher values of the input frequency, since the
frequency of the network without input increases. From these observations it follows
that as the weak inhibition becomes weaker the amount of input frequencies that
generate an mode-locked response becomes smaller.

To extend our results, we considered competitive TLNs with three or more nodes
and cyclic symmetry. We applied the techniques developed in Section 3 to find the
periodic solutions and calculate their stability. Also, for these networks we analyzed
the response to changes in the parameter values, different number of nodes and a
sinusoidal input added to one node. The results we obtained by considering changes
in the values of the local excitation are similar to the ones described in the three-
node case (Section 4), for both the network with and without sinusoidal input. In
addition, as the number of nodes in the network increases, the frequency of the cycle
decreases, whereas its amplitude remains almost unchanged if the network has more
than three nodes. In all cases, the amplitude decreases as the local excitation is
increased. Furthermore, the activity of each node in the cycle is near zero for a larger
time period as the number of nodes increases. Finally, we added a sinusoidal input
to one node and briefly analyzed the network response. The entrainment regions are
smaller and they are shifted towards lower frequencies as the number of nodes in the
network increases (because the frequency without input is smaller). Thus, the ability
of the input to control the frequency of the response is reduced when the network has
a large number of nodes. This shrink of the entrainment regions has been observed,
for example, in forced chains of neural oscillators [20, 27].

In conclusion, the entrainment regions, in particular the length of the 1 : 1 range,
depend more on the size of the network than on the values of the connections param-
eters. In particular, we observed that the competitive TLNs with a small number of
nodes can follow the input frequency for a larger amount of input frequencies than the
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networks with a large number of nodes. One option to expand the entrainment regions
in networks with a large number of nodes is to increase the input amplitude. However,
this could generate grazing points capable of destroying the periodic response of the
network. Analyzing this requires further research.

A natural extension of our work, which is particularly interesting to us, is to
consider the impact of synaptic delay in every connection between nodes. This delay
could represent, for example, the distance between nodes or the action of graduated
synapses. Some results about synchronized periodic solutions in competitive TLNs
with delay were presented in [2]. However a more complete study of periodic solutions
to such networks is still needed.
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