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Abstract. Threshold-linear networks (TLNs) are recurrent networks where the dynamics are5
threshold-linear (linearly rectified at zero). Mathematically, they consist of coupled non-smooth6
ordinary differential equations. When the nodes in the network are assumed to be neurons or7
neuronal populations, TLNs represent firing rate models. We investigate the dynamics of a subclass8
of TLNs referred to as competitive TLNs where all the connections between different nodes are9
inhibitory. We prove the existence of periodic solutions in competitive TLNs with three nodes using10
a combination of mathematical analysis and numerical simulations. We calculate the analytical11
expressions of the periodic solutions, then we consider a reduced system of transcendental equations12
and apply a Kantorovich’s convergence result to demonstrate the existence of these solutions. We13
then analyze the attributes (frequency and amplitude) of these periodic solutions as the model14
parameters vary. Finally, we study the entrainment properties of competitive TLNs in the oscillatory15
regime, by examining their response to external periodic inputs to one of the nodes in the network.16
We numerically determine the ranges of input amplitudes and frequencies for which competitive17
TLNs are able to follow the periodic input for three-node networks and larger networks with cyclic18
symmetry.19
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1. Introduction. Threshold-linear network (TLN) models describe the activity22

of connected nodes where the input to each cell in the network is a linear combination23

of the contribution of the other cells when this linear combination is above zero and24

zero otherwise. In their simplest description, the dynamics of the individual nodes are25

one-dimensional and linear. When the nodes in the network are neurons or neuronal26

populations, their activity is interpreted as their firing rate, and the TLNs represent27

firing rate models [11, 13, 32].28

Linear networks (linear node dynamics and linear connectivity) produce relatively29

simple dynamics where, in particular, sustained network oscillations are excluded. The30

TLNs we use here (nonlinear connectivity and linear node dynamics) are arguably31

the simplest nonlinear extension of linear networks that, despite their simplicity, are32

able to produce complex dynamics including multistability, periodic, quasiperiodic33

and chaotic temporal patterns, even when the number of nodes in the network is34

relatively small (e.g., three) [16, 24, 25].35

The systematic mathematical study of TLNs has primarily focused on the exis-36

tence and stability of fixed-points for symmetric TLNs [7, 8, 15] and non-symmetric37

competitive threshold-linear networks [9, 10, 25]. Competitive TLNs are a specific38

class of recurrent TLNs where all connectivity weights are negative and there are no39
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†Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bah́ıa

Blanca, Buenos Aires, Argentina – INMABB, CONICET, Bah́ıa Blanca, Buenos Aires, Argentina
(andrea.bel@uns.edu.ar).
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self-connections. Inhibitory networks arise in many neuronal systems and have been40

shown to underlie the generation of rhythmic activity in cognition and motor behavior41

[1, 3, 18, 21, 22, 28, 31]. Recent modeling work, primarily based on numerical simu-42

lations has showed that competitive TLNs with three or more nodes can show very43

rich dynamics, in particular limit cycle oscillations [9, 24, 25]. However, the existence44

of periodic solutions in competitive TLNs and their relationship with the networks’45

fixed-points has not been rigorously discussed.46

The goal of this paper is to analyze the existence of periodic solutions to compet-47

itive TLNs and their response to periodic inputs. For the specific model investigated48

in [25] where the periodic solutions were first observed we prove the existence of the49

limit cycle. This specific case describes the particular situation where the three nodes50

receive the same constant input. We combine a detailed mathematical analysis with51

numerical simulations. Our investigation is based on the theory of non-smooth dy-52

namical systems [12, 30]. We first carry out a bifurcation analysis that allows us53

to formulate a hypothesis for the existence of periodic solutions in the network as a54

function of the inputs to the participating nodes. Then, we calculate the analytical55

expressions for the periodic solutions and prove their existence by considering the56

solutions to a reduced system of equations associated to these analytical expressions.57

We subsequently study the dependence of periodic solutions with the model parame-58

ters. Finally, we analyze the response of competitive TLNs to periodic inputs applied59

to one of the participating nodes. We begin our study with three-node networks and60

then extend it to networks with a larger number of nodes and cyclic symmetry.61

The overview of the paper is as follows. In Section 2, we describe the three-node62

competitive TLN. We review some basic results about the model equilibria and their63

stability, and we compute and classify all bifurcations of these equilibria, which are the64

basis for the cycle generation analysis presented in the following sections. In Section65

3, we study the existence of periodic solutions with small amplitude: we calculate66

the analytical expression of these periodic solutions and analyze their stability. We67

also describe a reduced system of transcendental equations whose solutions are in68

correspondence with the limit cycles of the network, and use it to prove the existence69

of limit cycles for different values of the parameters. In Section 4, we describe how the70

periodic solutions of the network are affected by changes in the values of the constant71

input of the nodes or the connection strength connections between nodes. In Section72

5, we consider three-node networks in which oscillatory solutions are observed. We73

assume that an external sinusoidal input is added to one of the nodes and, by defining74

a Poincaré map, we numerically determine whether and how the oscillatory solutions75

are modified by this periodic input. Finally, in Section 6 we extend the previous76

work to competitive TLNs having three or more nodes, all-to-all connections and77

cyclic symmetry. Following the techniques used in Section 3, we find the analytical78

expressions of the oscillatory solutions. Then, we study the cycle attributes when79

either the number of nodes or the parameter values vary, and we briefly analyze the80

response of the network as an external sinusoidal input is added to one of the nodes.81

We discuss our results in Section 7.82

2. Three-node network: equilibria and bifurcations. In this section we83

describe the threshold-linear network that we will study in the following three sections.84

We first present some basic results about the model equilibria and their stability.85

Then, we calculate and classify all bifurcations of equilibria which are the basis for86

the cycle generation analysis presented in Section 3.87
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1

3

Fig. 1. Graph representation of a three-node network where a black arrow indicates weak
inhibition, whereas a gray arrow indicates strong inhibition between nodes.

We consider a non-smooth network with three nodes described by88

(2.1)
dxi

dt
= −xi +

 3∑
j=1

Wijxj + θi


+

, i = 1, 2, 3,89

where xi is the level of activity of node i (the firing rate), Wij represents the strength90

of the connection from node j to node i, θi > 0 is a constant input and [·]+ is the91

threshold-linear function defined by [y]+ = max(0, y).92

We assume that Wii = 0 for all i (so for each node self-inhibition results only93

from the second term on the left-hand side of (2.1)). In addition, we assume that all94

connections between nodes are inhibitory, that is, Wij < 0, for 1 ≤ i, j ≤ 3, i ̸= j. We95

follow the assumptions in [25] and consider the action of a strong global inhibition term96

(constant for all connectivity weights), which is added to the local connections between97

nodes. If the local connection is inhibitory (excitatory), it is said that the resulting98

inhibition is strong (weak). Therefore, even if the local connectivity is excitatory,99

the effect of the global inhibition may cause the network to be a competitive TLN.100

Also, following [25], we use −1 − δ, with δ > 0, for strong inhibition, and −1 + ϵ,101

with 0 < ϵ < 1, for weak inhibition. Because all the non-zero connectivity weights102

are negative, it can be proved easily that the activity of node i is bounded, moreover103

the activity xi remains in [0, θi] provided the initial conditions belong to that interval104

[4, 25].105

The connectivity matrix for the three-node network we use is given by106

(2.2)

W =

 0 −1− δ −1 + ϵ
−1 + ϵ 0 −1− δ
−1− δ −1 + ϵ 0

 =

 0 −1 −1
−1 0 −1
−1 −1 0

+

 0 −δ ϵ
ϵ 0 −δ
−δ ϵ 0

 ,107

and the network has the graph representation showed in Figure 1.108

The network (2.1)-(2.2) is the smallest one in which oscillatory activity has been109

observed [25]. In their simulations they used θi = 1 for all nodes. Two-node com-110

petitive TLNs are not expected to exhibit periodic oscillations since a mechanism of111

amplification accompanying the negative feedback necessary for sustained oscillatory112

activity is lacking. In three-node networks this mechanism can be provided by dis-113

inhibition (“inhibition of inhibition”). Below we describe these oscillatory solutions.114

To simplify the calculations and for the sake of clarity we consider that two nodes of115

the network have the same fixed constant input (θ1 = θ2 = θ) and the other node116

has an arbitrary positive input (θ3). The general case can be analyzed with similar117

techniques. Defining µ = θ3/θ and rescaling the variables (by the factor 1/θ), we118

obtain the system119

(2.3)
dx

dt
+ x = [ Wx+B ]+ ,120
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with W defined in (2.2) and B = [1, 1, µ]T .121

In the rest of the present section we consider the system (2.3), and we perform a122

dynamical system analysis for the bifurcation parameter µ and the auxiliary param-123

eters δ and ϵ.124

2.1. Equilibria and their stability. We begin the study of the network (2.3)125

by calculating the equilibria as functions of the model parameters. These equilibria126

are the solutions of127

(2.4) xi = [fi(x1, x2, x3)]+ , i = 1, 2, 3.128

where we define fi : R3 → R for i = 1, 2, 3, as129

(2.5) fi(x1, x2, x3) =
3∑

j=1

Wijxj + 1, i = 1, 2, f3(x1, x2, x3) =
3∑

j=1

W3jxj + µ.130

System (2.4) is piecewise linear and its solutions depend on the values of the131

functions fi. To clear up the calculations we define the transition planes (or, in the132

general case, transition hyperplanes)133

(2.6) Σi = {x ∈ R3 : fi(x) = 0}, i = 1, 2, 3,134

and the following seven regions in R3135

(2.7)

S123 = {x ∈ R3 : fi(x) > 0, ∀ i},
Sij = {x ∈ R3 : fi,j(x) > 0 ∧ fk(x) < 0, k ̸= i, j}, 1 ≤ i < j ≤ 3,

Si = {x ∈ R3 : fi(x) > 0 ∧ fj,k(x) < 0, j, k ̸= i}, i = 1, 2, 3.

136

Each region contains, at most, one solution of (2.4), that is, one equilibrium of (2.3).137

To calculate the equilibrium (if it exists within the region of interest) and its138

stability properties we use the corresponding linear system. For example, in the S123139

region, the equation (2.4) results x = Wx + B. In this case the equilibrium has the140

form x∗ = (I−W )−1B, provided that I−W is invertible and x∗ ∈ S123. It’s stability141

properties are analyzed by computing the eigenvalues of W − I.142

These equilibria are:143

(2.8)

x∗
123 = d1[ϵ

2 + δϵ+ δ2µ+ (2δ + ϵ)(µ− 1), δ2 + δϵ+ ϵ2µ− (2ϵ+ δ)(µ− 1),

δ2 + ϵ2 + δϵµ+ (ϵ− δ)(µ− 1)]T ,

x∗
13 = d2[1 + (ϵ− 1)µ, 0,−(1 + δ) + µ]T ,

x∗
23 = d2[0, 1− (1 + δ)µ, ϵ− 1 + µ]T ,

x∗
2 = [0, 1, 0]T , x∗

3 = [0, 0, µ]T ,

144

with d1 = ((3 + δ − ϵ)(δ2 + δϵ + ϵ2))−1 and d2 = (−δ + (δ + 1)ϵ)−1, and where the145

subscript indicates the region to which they belong. We note that while the underlying146

linear system may posses an equilibrium, this may be located outside the region we147

are analyzing (region of interest). We observe that in two cases, specifically for the148

regions S12 and S1, the equilibria for the corresponding linear system do not belong149

to the region for any value of the parameters δ, ϵ and µ, and therefore we do not150

include them in (2.8).151

The equilibrium in S123 is an unstable (stable) focus if ϵ < δ (ϵ > δ). The152

equilibria in the Sij regions are saddle points if 0 < ϵ < δ/(1 + δ), whereas they are153
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ϵ
µ (0, c1) (c1, c3) (c3, c4) (c4, c2) (c2,∞)(

0, δ
1+δ

) x∗
2 (s) x∗

2 (s) x∗
3 (s) x∗

3 (s)
x∗
23 (u) x∗

13 (u)
x∗
123 (u) x∗

123 (u) x∗
123 (u)

ϵ
µ (0, c3) (c3, c1) (c1, c2) (c2, c4) (c4,∞)(

δ
1+δ , 1

)
x∗
2 (s) x∗

23 (s) x∗
123 (u) if ϵ < δ x∗

13 (s) x∗
3 (s)

(s) if ϵ > δ

Table 1
Non-boundary equilibria of system (2.3) given in (2.8). For each equilibrium we indicate its

stability depending on the values of the parameters: (s) stable and (u) unstable. The critical values
ci are given in (2.9).

stable nodes if δ/(1 + δ) < ϵ < 1. Finally, the equilibria in the Si regions are stable154

nodes since the linear matrices of the corresponding systems have a triple eigenvalue155

−1. In Table 1 we summarize the information about the equilibria of system (2.3).156

We calculate the critical values of the parameter µ by solving the equations157

fi(x
∗) = 0 for the equilibria in (2.8). We obtain four critical values of µ given by158

(2.9) c1 =
2δ − δϵ+ ϵ− ϵ2

δ2 + 2δ + ϵ
, c2 =

δ2 + δ + δϵ+ 2ϵ

δ + 2ϵ− ϵ2
, c3 = (1− ϵ), c4 =

1

1− ϵ
,159

which verify the relations c1 < c2 and c3 < c4, for all values of the parameters δ > 0160

and 0 < ϵ < 1. For these critical values, system (2.3) has boundary equilibria (i.e.,161

equilibria in one of the transition planes Σi). In the following subsection we study162

the equilibrium bifurcations associated with the boundary equilibria in our system.163

Remark 2.1. If ϵ = δ/(δ + 1), the equilibria in regions S23 and S13 are non-164

hyperbolic. If ϵ = δ the equilibrium x∗
123 ∈ S123 is a linear center, i.e., a family of165

periodic solutions exists surrounding the equilibrium x∗
123.166

As an example, in Figure 2 we show one of the possible configurations of the equi-167

libria as the parameter µ varies. There are different branches of equilibria connected168

at the critical values of µ given in (2.9). These values of the parameter are associ-169

ated with bifurcations of the system (2.3). In the following subsections we describe170

the different equilibrium bifurcations and how they are related to the generation of171

periodic solutions.172

2.2. Boundary equilibrium bifurcations. In non-smooth continuous systems,173

a boundary equilibrium bifurcation occurs if (i) there is a boundary equilibrium (in a174

transition plane) at a critical value of the parameter, and (ii) certain non-degeneracy175

conditions are satisfied [12, 30]. There are two possible universal unfoldings of this176

bifurcation. In one of them, called a persistent (or border-crossing) scenario, when177

the parameter varies, a branch of equilibria lying in one region transitions into an-178

other branch of equilibria lying in other region. The other universal unfolding is179

the non-smooth fold scenario. In this bifurcation, when the parameter varies, two180

branches of equilibria collide at the boundary equilibrium and then disappear. For a181

n-dimensional system with only one transition variety, analytical conditions exist for182

distinguishing between the above two cases [12]. Applying this theory we obtain the183

following result describing all boundary equilibrium bifurcations for our model.184
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Fig. 2. Equilibria as functions of parameter µ for the fixed values δ = 1/2 and ϵ = 1/4. The
different types of lines correspond to different branches of equilibria. Stable (unstable) equilibria
are indicated in solid (dashed and dotted) line. The vertical gray lines correspond to the critical
values ci defined in (2.9). a. Norm ||x∗|| of the equilibria indicated in labels. b. Coordinates of the
equilibria in a.

Theorem 2.2. For fixed values of δ and ϵ, if ϵ ̸= δ/(1 + δ), the system (2.3) has185

a boundary equilibrium bifurcation at each critical value µ = ci defined in (2.9) for186

i = 1, . . . , 4. In all cases the bifurcation is a non-smooth fold if 0 < ϵ < δ/(1 + δ),187

and it is a persistent bifurcation if δ/(1 + δ) < ϵ < 1.188

Proof. For µ = c1 =
2δ − δϵ+ ϵ− ϵ2

δ2 + 2δ + ϵ
, the boundary equilibrium of (2.3), x∗ ∈ Σ1,189

results in190

(2.10) x∗ =

[
0,

δ + ϵ

δ2 + 2δ + ϵ
,

δ

δ2 + 2δ + ϵ

]T
.191

In a neighborhood of x∗, by defining the variables x̂ = x−x∗ and µ̂ = µ− c1, we192

express system (2.3) in the translated form193

(2.11)
dx̂

dt
=

{
N0x̂+Mµ̂, if CT x̂ ≥ 0,
N1x̂+Mµ̂ = (N0 + ECT )x̂+Mµ̂, if CT x̂ < 0,

194

where N0 =

 −1 −1− δ −1 + ϵ
−1 + ϵ −1 −1− δ
−1− δ −1 + ϵ −1

, M =

 0
0
1

, C =

 0
−1− δ
−1 + ϵ

 and195

E = [−1, 0, 0]
T
. The condition CT x̂ = 0 corresponds to values of x ∈ Σ1, and196

therefore the expression (2.11) represents the linear systems in the regions S123 and197

S23 separated by the plane Σ1.198

For µ̂ = 0, the system (2.11) has a boundary equilibrium at the origin. Since199

ϵ ∈ (0, 1) and ϵ ̸= δ/(1 + δ), it follows that det(N0) ̸= 0, CTN−1
0 M ̸= 0 and 1 +200

CTN−1
0 E ̸= 0. Thus, the system (2.11) has a boundary equilibrium bifurcation at201

the critical value µ̂ = 0. Moreover, using standard results [12] (see theorem 5.1 there)202

the universal unfolding of this bifurcation can be determined by the sign of203

(2.12) 1 + CTN−1
0 E =

−δ + (δ + 1)ϵ

(3 + δ − ϵ)(δ2 + δϵ+ ϵ2)
.204

Specifically, if 0 < ϵ < δ/(1 + δ), we then obtain 1 + CTN−1
0 E < 0, therefore the205

system (2.11) has a non-smooth fold bifurcation. If δ/(1 + δ) < ϵ < 1, we have206

1 + CTN−1
0 E > 0, and the system shows a persistent scenario.207
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For µ = c2 =
δ2 + δ + δϵ+ 2ϵ

δ + 2ϵ− ϵ2
, the boundary equilibrium x∗ ∈ Σ2 is given by208

(2.13) x∗ =

[
δ + ϵ

δ + 2ϵ− ϵ2
, 0,

ϵ

δ + 2ϵ− ϵ2

]T
.209

The proof is analogous to the above case with µ̂ = µ − c2, for the same matrices N0210

and M , and211

(2.14) C =

 −1 + ϵ
0

−1− δ

 , E =

 0
−1
0

 .212

For µ = c3 = (1− ϵ), the boundary equilibrium results in x∗ = [0, 1, 0]T ∈ Σ3. As213

before, the proof is analogous to the first case considering µ̂ = µ−c3 and the matrices214

(2.15) N0 =

 −1 0 0
−1 + ϵ −1 −1− δ
−1− δ −1 + ϵ −1

 , C =

 −1− δ
−1 + ϵ

0

 , E =

 0
0
−1

 .215

The system presents a boundary equilibrium bifurcation at µ̂ = 0 and 1+CTN−1
0 E =216

(−δ+(δ+1)ϵ)−1, then, from the sing of this constant the conclusions follow directly.217

Finally, for µ = c4 = 1/(1 − ϵ), the proof is similar to the case µ = c1 but218

considering the boundary equilibrium x∗ = [0, 0, µ]T ∈ Σ1, µ̂ = µ − c4 and the219

matrices220

(2.16) N0 =

 −1 −1− δ −1 + ϵ
0 −1 0

−1− δ −1 + ϵ −1

 , C =

 0
−1− δ
−1 + ϵ

 , E =

 −1
0
0

 .221

The above theorem indicates the critical values of the parameters for which the222

system (2.3) has equilibrium bifurcations, but, it does not describe how the branches223

of equilibria interact for values of the parameter µ near the critical values. To describe224

completely the various dynamical scenarios we consider the results in Theorem 2.2225

along with the information about the existence and stability of equilibria (see (2.8)226

and Table 1). We summarize some of these results in the following theorem.227

Theorem 2.3. In a small neighborhood of the critical values µ = c1 and µ =228

c2 given in (2.9), the system (2.3) has two branches of equilibria (depending on µ)229

verifying the following.230

• If 0 < ϵ < δ/(1 + δ), the system has a non-smooth fold bifurcation at µ = c1231

and µ = c2. Two equilibria exist for µ > c1 (µ < c2): an unstable focus232

x∗
123(µ) ∈ S123 and a saddle fixed point x∗

23(µ) ∈ S23 (x∗
13(µ) ∈ S13).233

• If δ/(1 + δ) < ϵ < δ, the system shows a persistent scenario at µ = c1 and234

µ = c2. In particular, near the critical value c1, a stable node x∗
23(µ) ∈ S23235

exists for µ < c1, and an unstable focus x∗
123(µ) ∈ S123 exists for µ > c1.236

Whereas, near the critical value c2, an unstable focus x∗
123(µ) ∈ S123 exists237

for µ < c2, and a stable node x∗
13(µ) ∈ S13 exists for µ > c2.238

In the above theorem we only analyze bifurcations involving an unstable focus239

because they are the equilibria related with the generation of limit cycles as we will240

show in the next section. In Figure 3 we show the two possible scenarios for the241

bifurcation at µ = c1. We consider the fixed value δ = 1/2 and two representative242
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a ba b

Fig. 3. Scheme of different bifurcations observed in system (2.3) at µ = c1. a. Non-smooth fold
bifurcation. b. Persistent bifurcation. We show the transition plane Σ1, the boundary equilibrium
(black dot) and the two branches of equilibria observed when the parameter varies. Stable (unstable)
equilibria are indicated in solid (dashed and dotted) line. The inset diagrams show one coordinate
of the equilibria as functions of µ.

values of ε. We show a non-smooth fold bifurcation (Fig. 3 a) where both interacting243

equilibria are unstable and they exist for values of µ > c1. Also, we show a persistent244

case (Fig. 3 b) where a stable node is transformed in an unstable focus when the245

value of µ is increased.246

3. Cycles generated in boundary equilibrium bifurcations: existence247

and stability. In Section 2 we described all boundary equilibrium bifurcations of248

system (2.3). In particular, we found conditions for the parameters for which the249

system has bifurcations with one branch of unstable foci. These dynamical scenarios250

are particularly interesting because the rotational field around the unstable focus251

allows that trajectories near the transition plane to come back on that plane. This252

behavior is one of the properties that enable the existence of periodic solutions in the253

system.254

In two dimensional systems the existence of cycles generated in an equilibrium255

bifurcation can be determined using analytical conditions like the ones presented in256

[12]. In three dimensional systems only a few results exist for very specific systems,257

for example, if the two equilibria interacting in the bifurcation are foci (see Chapter258

5 of [12]). However, in the general case, the existence of limit cycles and chaotic259

attractors in piecewise linear three dimensional systems is an open problem.260

In this section, we study the existence of periodic solutions related to the boundary261

equilibrium bifurcations already calculated for the network (2.3). If the amplitude is262

small enough, we find the analytical expression for the solutions by solving the system263

in each region separately and adding continuity conditions. Then, we analyze the264

stability of the cycles and prove their existence for different values of the parameters.265

3.1. Analytical expressions of limit cycles. If 0 < ε < δ system (2.3) has266

an unstable focus and shows one of the two different dynamical scenarios showed in267

the above section (see Figure 3). In both cases, periodic solutions could be generated268

in the boundary equilibrium bifurcations at the critical values µ = c1 or µ = c2.269

In this subsection we assume that a cycle with small enough amplitude exists and270

we determine its analytical expression for values of the parameter near these critical271

values.272

Here we consider the critical value µ = c1, where system (2.3) has the boundary273

equilibrium x∗ ∈ Σ1 given in (2.10). We define x̂ = x−x∗, µ̂ = µ− c1, the transition274
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Fig. 4. A periodic solution crossing the transition plane Σ̂1. The plane divides the solution in
two parts, p0 and p1. The dots indicate the initial condition p0(0) and p1(0).

plane Σ̂1, and the regions Ŝ123 and Ŝ23 as the translation of the original objects275

(defined in (2.6) and (2.7)). To analyze the behavior of the solutions to system (2.3)276

in some neighborhood of the bifurcation value we use the translated system (2.11).277

From Theorem 2.3 it follows that an unstable focus for (2.3) exists for µ > c1, therefore278

an unstable focus for (2.11) exists for µ̂ > 0. We emphasize that system (2.11) remains279

unchanged if we consider x̂ and µ̂ scaled by the same positive value (the system is280

scale invariant), therefore it is enough to study the case µ̂ = 1.281

Because system (2.11) is linear in each region, if a small amplitude periodic solu-282

tion p exists, the transition plane Σ̂1 must divide it in two parts, p0 and p1, belonging283

to the regions Ŝ123 and Ŝ23, respectively (see Fig. 4). We consider the intersection284

points p0(0) and p1(0), as the initial conditions to solve the system (2.11) in each one285

of these regions. Thus, we obtain the expressions286

(3.1) pi(t) = eNitpi(0) +

∫ t

0

eNis M ds, i = 0, 1,287

with N0 and M as in (2.11), and288

(3.2) N1 =

 −1 0 0
−1 + ϵ −1 −1− δ
−1− δ −1 + ϵ −1

 .289

We assume that p has period T = T0+T1, where Ti is the time that the periodic solu-290

tion expends in the region Ŝ123 and Ŝ23, respectively. Then, the following continuity291

conditions must be satisfied292

(3.3) p0(T0) = p1(0), p1(T1) = p0(0).293

Adding the initial conditions pi(0) ∈ Σ̂1, for i = 0, 1, to the conditions above we obtain294

a system of eight transcendental equations with eight unknowns: the coordinates of295

the points pi(0) and the times Ti for i = 0, 1. Solving this system we find the analytical296

expressions for the periodic solutions of small enough amplitude of (2.3) near the297

critical value µ = c1.298

Now we consider the critical value µ = c2, where the boundary equilibrium x∗ ∈299

Σ2 was defined in (2.13). Locally, in a neighborhood of the bifurcation, with a suitable300

change of variables, the system (2.3) can be expressed in the same form of system301
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(2.11) with302

(3.4) N1 =

 −1 −1− δ −1 + ϵ
0 −1 0

−1− δ −1 + ϵ −1

 .303

We observe that the unstable focus exists for values of µ < c2, so in the search for304

periodic solutions we consider µ̂ = −1. The expressions of the two parts of the cycles305

are defined in (3.1) with the matrix N1 defined in (3.4). Moreover, we consider the306

continuity conditions given by (3.3) and the initial conditions pi(0) ∈ Σ̂2, for i = 0, 1.307

Again, we obtain a system of eight transcendental equations. As in the previous308

case, solving this system we find the expressions of cycles generated in the boundary309

bifurcation at µ = c2.310

It is important to mention that, in a neighborhood of the boundary equilibrium311

bifurcation (at the critical values c1 and c2), the scale invariance of (2.11) ensures that312

the amplitude of the periodic solutions depends linearly on the parameter µ and their313

period is constant. This was observed and proved in other piecewise linear neural314

models [6, 29]. However, if the value of the constant input µ is far from the critical315

value, the cycles could show transformations (when they interact with the transition316

planes) that change their amplitude and period. We consider this situation in the317

subsection 4.1.318

3.2. Stability of the limit cycles. Once we found a periodic solution p we can319

calculate its stability by applying Floquet theory (see, for example, [14, 17]). The320

linearized equation for the perturbation ∆p of the cycle results in321

(3.5)
d∆p

dt
= J(p(t))∆p, ∆p(0) = ∆p0,322

where J is the Jacobian of the system evaluated along the cycle and ∆p0 is a small per-323

turbation of p(0). For our system the Jacobian is piecewise constant, the correspond-324

ing matrices are N0 or N1 depending on the region, then we obtain the monodromy325

matrix326

(3.6) Φ(T ) = eN1T1eN0T0 .327

The eigenvalues of Φ(T ) are the Floquet multipliers. There is always a multiplier328

equal to 1 associated with the cycle p (see, for example, [14, 17]). If the rest of the329

multipliers lie inside the unit circle, then the cycle is stable.330

We note that for the two critical values of µ considered in the above section, µ = c1331

and µ = c2, the difference in the monodromy matrix is given by the matrix N1, defined332

by (3.2) and (3.4), respectively. Also, we observe that the Floquet multipliers of the333

cycles with small enough amplitude do not depend on the values of the parameter µ334

because the period T of the cycles is constant near the critical values.335

3.3. Existence of limit cycles. In subsection 3.1 we found that the existence of336

cycles generated in a boundary equilibrium bifurcation is equivalent to the existence of337

solutions to certain system of transcendental equations. In this subsection we reduce338

the dimensionality of this system and prove the existence of solutions by using the339

Kantorovich theorem for the Newton-Raphson method [26].340

We consider the system given by341

(3.7) p0(T0) = p1(0), p1(T1) = p0(0), pi(0) ∈ Σ, i = 0, 1,342
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where pi are defined in (3.1) and Σ is the transition plane crossed by the cycle (Σ̂1 or343

Σ̂2 depending on the considered critical value). As we already mentioned, this system344

of transcendental equations has eight unknowns: the coordinates of the points pi(0)345

and the time values Ti, for i = 0, 1.346

The expressions (3.1) and the continuity conditions allow us to write the following347

equations348

(3.8) eN0T0p0(0)+

∫ T0

0

eN0s M ds = p1(0), eN1T1p1(0)+

∫ T1

0

eN1s M ds = p0(0).349

By replacing p0(0) on the left for the expression on the right and solving the integrals350

we obtain the following system of three equations351

(3.9) A p1(0) = B,352

where353

(3.10) A = (eN0T0eN1T1 − I),354

with I the 3× 3 identity matrix, and B is a 3× 1 matrix given by355

(3.11) B = eN0T0N−1
1 (I − eN1T1)M +N−1

0 (I − eN0T0)M.356

Since (3.6) has an eigenvalue equal to 1, det (A) = det
(
eN1T1eN0T0 − I

)
= 0 and357

the matrix A is non-invertible. Thus, the system (3.9) cannot be solved to find p1(0),358

hence we reduce it by considering the initial conditions pi(0) ∈ Σ. Since p1(0) ∈ Σ,359

we have n · p1(0) = 0, where n = [n1, n2, n3] is normal to the plane Σ. Thus, by360

considering p1(0) = (x̃1, x̃2, x̃3) and n3 ̸= 0, we can write the last coordinate x̃3 as a361

combination of the first two (here we suppose that n3 ̸= 0, if it is not the case, then362

we change the selection of coordinates on p1(0)). In the new coordinates the system363

(3.9) results in364

(3.12) D

[
x̃1

x̃2

]
=

[
b1
b2

]
,365

where366

(3.13) D =
1

n3

[
n3a11 − n1a13 n3a12 − n2a13
n3a21 − n1a23 n3a22 − n2a23

]
,367

being aij and bi the elements of A and B respectively.368

The elements in the matrix A depend on the times T0 and T1. For T0 and T1369

exist such that det(D) ̸= 0, we solve the system (3.12) and find the expressions of370

the coordinates x̃1(T0, T1) and x̃2(T0, T1). Thus, we obtain an expression of the point371

p1(0) as a function of T0 and T1.372

Now, the condition p0(0) ∈ Σ can be expressed in the form373

(3.14) F1(T0, T1) := n ·
(
eN1T1p1(0) +N−1

1 (eN1T1 − I)M
)
= 0,374

and the third equation in the system (3.9) yields375

(3.15) F2(T0, T1) := [a31, a32, a33] · p1(0)− b3 = 0.376
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So, we reduce the original system (3.7) to377

(3.16) (F1(T0, T1), F2(T0, T1)) = 0.378

A solution to equation (3.16) that satisfies det(D) ̸= 0, corresponds to a periodic379

solution of small enough amplitude for the network (2.3). Despite the low dimen-380

sionality of (3.16), its complexity makes it difficult to prove the existence of solutions381

in the general case. However, one advantage of this system is that its solutions can382

be interpreted as the intersection of curves in the (T0, T1) plane, which allows for a383

geometric (graphic) study of the system as the parameters vary. Once we find values384

for the parameters δ and ϵ such that (3.16) has a solution, we prove its existence by385

using the following Kantorovich’s convergence result [26].386

Let F : X → Y be an operator, where X and Y are Banach spaces. We consider387

the recurrent method defined by388

(3.17) xk+1 = xk − F ′(xk)
−1F (xk), k = 0, 1, . . . ,389

where F ′(xk) is the Fréchet derivative of F (x) at the point xk.390

Theorem 3.1 (Kantorovich). Assume that F is defined and twice continuously391

differentiable on a ball B = {x : ∥x−x0∥ ≤ r}, the linear operator F ′(x0) is invertible,392

∥F ′(x0)
−1F (x0)∥ ≤ η, ∥F ′(x0)

−1F ′′(x)∥ ≤ K, x ∈ B, and393

(3.18) h = Kη <
1

2
, r ≥ 1−

√
1− 2h

h
η.394

Then, the equation F (x) = 0 has a solution x∗ ∈ B, the process (3.17) is well defined
and converges to x∗ with quadratic rate:

∥xk − x∗∥ ≤ η

h2k
(2h)2

k

.

To apply this theorem to our system (3.16), we define the nonlinear operator395

F : R2 → R2 as F (T0, T1) = (F1(T0, T1), F2(T0, T1)). As a first example, we consider396

the fixed values δ = 1/2 and ϵ = 2/5. We choose the initial value x0 = (6, 2.7) and the397

ball B around x0 with ratio r = 0.25. Considering the expressions of F1 and F2, we398

prove that F is twice continuously differentiable on B, and that F ′(x0) is invertible.399

In addition, we have ∥F ′(x0)
−1F (x0)∥ ≤ η = 0.05 and ∥F ′(x0)

−1F ′′(x)∥ ≤ K = 8,400

for all x ∈ B. Thus, the hypotheses of the theorem are satisfied. This proves the401

existence of a unique solution x∗ of (3.16) in B, which could be calculated with the402

recursive method (3.17) (see Fig. 5 a). Next, we consider δ = 1/2 and ϵ = 1/4,403

the initial value x0 = (6.4, 6.6) and the ball B around x0 with radius r = 0.2. The404

operator F is twice continuously differentiable on B, and F ′(x0) is invertible. Also,405

we note that ∥F ′(x0)
−1F (x0)∥ ≤ η = 0.12 and ∥F ′(x0)

−1F ′′(x)∥ ≤ K = 3.7, for all406

x ∈ B. Thus, we can apply the theorem and prove the existence of a unique solution407

x∗ of (3.16) in B (see Fig. 5 b).408

We also note that system (3.16) has no solutions when the parameter ϵ is below409

some threshold value ϵ∗ which changes depending on δ. This can be easily seen from410

a graphical study of (3.16) when the value of ϵ decreases. In these cases, there are no411

small amplitude periodic solutions of (2.3) and numeric calculations indicate that all412

solutions are attracted by an equilibrium of the system (x∗
2 or x∗

3 depending on the413

considered region). When ϵ is decreasing and approaching to the threshold value, we414

see that T1 is increasing and T0 remains near a fixed value. The time T1 spent by the415
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Fig. 5. Solutions of (3.16) for fixed values of the parameters. a. δ = 1/2 and ε = 2/5. b.
δ = 1/2 and ε = 1/4. The point x0 is the initial condition and x∗ the unique solution on B.

limit cycle trajectory in the region S23 grows because this trajectory of the solution416

is near a stable direction of a saddle equilibrium. We conjecture that these behaviors417

are connected to the existence of a heteroclinic orbit in the system, but a detailed418

investigation of this issue is beyond the scope of the present work.419

3.4. Branches of cycles near the equilibrium bifurcations. For values of420

the parameter µ near a boundary equilibrium bifurcation, the existence of a solution421

to (3.16) implies the existence of a branch of periodic solutions generated in that422

bifurcation point. These branches exist for non-smooth fold and persistent bifurca-423

tions. For the cycles in these branches, the amplitude depends linearly on µ and the424

frequency is constant.425

For example, we consider the fixed values δ = 1/2 and ε = 1/4. The system426

(2.3) has a non-smooth fold bifurcation at the critical value µ = c1 = 17/24. We427

already know that (3.16) has a solution (Fig. 5 b). Now we find a branch of periodic428

solutions for values of the parameter µ > c1 and near that critical value. In Figure 6429

we show the amplitude of each variable for the cycles in the branch, and the variables430

as functions of the time for one of these cycles. The period for each cycle in the431

branch is T = T0 + T1 = 6.5137 + 6.6171 = 13.1308 and the Floquet multipliers are432

{1., 0.0148303, 9.02392× 10−16}, thus, the cycles are stable. For the same values of δ433

and ε, another branch of stable cycles exists for values of the parameter µ < c2 = 22/15434

and near that value (not shown).435

4. Dependence of the limit cycle properties on the model parameters.436

As we showed in the above section, limit cycles exist in a neighborhood of the critical437

values µ = c1 and µ = c2. In both cases, the amplitude of the cycles depends linearly438

on µ for values near the critical value. But, what is the dependence when the value of439

the parameter µ is far from the critical values? In this section we study the attributes440

(amplitude and period) of the periodic solutions of (2.3) for a large range of values441

for the parameter µ. In addition, we describe how the connection parameters δ and ε442

modify the periodic solutions.443

4.1. Constant input µ. By increasing (decreasing) the values of µ from the444

critical values c1 (c2), a branch of limit cycles is generated and the amplitude of each445
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Fig. 6. Branch of cycles generated in a non-smooth fold bifurcation. a. Amplitude of each
variable as function of the parameter µ. b. Coordinates of the cycle for µ = 0.76 as function of t.

variable grows until one of the cycles touches tangentially a transition plane different446

from the one it crossed originally. These contact points are called grazing points [12],447

next we describe them in the context of our model.448

Let p be a periodic solution of (2.3), and let Σ = {x ∈ R3 : f(x) = 0} be one449

of the transition planes (defined in (2.6)). The system has a regular grazing point in450

xg = p(tg) if ∇f(xg) ̸= 0 and the following conditions are satisfied451

(4.1) f(xg) = 0,
df(p(t))

dt

∣∣∣∣
t=tg

= 0,
d2f(p(t))

dt2

∣∣∣∣
t=tg

̸= 0.452

The solution p is called a grazing solution of the system. The first two conditions in453

(4.1) ensure that p is tangential to Σ in the point xg. The third condition establishes454

that, in a neighborhood of t = tg, the solution p belongs to one of the regions in R3455

determined by Σ.456

For a given branch of limit cycles generated in a boundary bifurcation, we cal-457

culate the grazing values µg using the analytical expression of the cycle and the first458

two conditions in (4.1). Then we check that the third condition is also satisfied. To459

this end, we calculate the grazing values µg in which a periodic solution of (2.3) has460

a regular grazing point. Since the calculated points are regular, the cycle does not461

disappear when the parameter µ varies. Moreover, it has the same curvature sign near462

the grazing point for values of the parameter near µg. However, both the amplitude463

and frequency of the cycle are modified after it crosses Σ, so the grazing values are464

important to describe them.465

As an example, in Figure 7 we show a regular grazing point of a cycle generated466

in a non-smooth fold bifurcation of (2.3). The situation is also presented in a 2D467

projection for clarity in the visualization. Originally, the cycle crosses the plane Σ1468

(Fig. 7 a). As the value of µ increases we find a grazing point at µ = µg with the469

plane Σ3 (Fig. 7 b). For values of µ > µg the cycle crosses Σ3 keeping the same470

curvature sign near the grazing point (Fig. 7 c).471

It is important to mention that, by varying the values of µ, the cycles cross472

different transition planes. For µ = 1 we observe that the limit cycle for system473

(2.3) is divided into exactly six parts and that it evolves along four regions in the474

following order: S23 → S123 → S13 → S123 → S12 → S123 (see Subsection 6.1475

for further details). Heuristically, we observe that for system (2.3) a cycle could be476

divided in at most six parts, but a proof of this result is beyond the scope of this477
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Fig. 7. Example of grazing point in a periodic solution of (2.3) at a grazing critical value µg.
Solution and transition planes in the 3D state space (upper row) and a projection in the x1-x2 plane
(lower row). Value of the parameter: a. µ < µg. b. µ = µg. c. µ > µg. The blue dots indicate the
intersection between the periodic solution and the transition planes.

paper. Regardless of the number of parts in which the cycle is divided, its analytical478

expression is calculated by applying the same ideas we developed for a cycle with479

two parts in Subsection 3.1 (by solving the equation in each region and considering480

continuity conditions). In all cases, by performing the reduction in Subsection 3.3,481

we obtain a system of transcendental equations that can be numerically solved. To482

calculate the different grazing values of µ we add the conditions in (4.1). We calculate483

the stability of these cycles by adapting the calculations in Subsection 3.2.484

In Figure 8 we show the periodic solutions observed in a non-smooth fold case for485

the indicated values of the parameters. We plot the amplitude of each variable of the486

cycle (Fig. 8 a) and its frequency (Fig. 8 b) as functions of the input parameter µ.487

We note that a stable limit cycle is generated in the bifurcation at the critical value488

µ = c1, then, it has four regular grazing points when the value of µ increases, and489

finally the cycle disappears in the bifurcation at µ = c2. As we mention, the frequency490

is constant for values of the parameter near the critical values. For µ = 1 the network491

has a cyclic symmetry, the activity of the nodes is the same with a translation in time492

(Fig. 9 b) so the amplitude is the same for each node, furthermore, this particular493

cycle has the largest frequency of the whole branch. For values of µ near the critical494

value, the activity of each node is concentrated around the correspondent unstable495

fixed point (Fig. 9 a and c). In addition, we observe that the activity of one node is496

near zero in a big part of the period whereas the other nodes are always active. The497

amount of input µ received by the third node (µ < 1 or µ > 1) determines which node498

remains almost deactivated for a long time (node 1 or node 2, respectively).499
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Fig. 8. Stable periodic solutions of network (2.3) varying the parameter µ for the fixed values
δ = 1/2 and ϵ = 1/4. a. Amplitude ((xmax−xmin)/2) of each variable. b. Frequency of the periodic
solutions. The vertical dashed lines correspond to grazing points with the indicated transition planes.
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Fig. 9. Periodic solutions of the network (2.3) varying the parameter µ for the fixed values
δ = 1/2 and ϵ = 1/4. a. µ = 0.75. b. µ = 1. c. µ = 1.4. The horizontal dotted lines are the
coordinates of the associated unstable focus.

4.2. Connection parameters. In this subsection we consider different values500

of the connection parameters ϵ and δ and show the different limit cycles produced.501

First we consider a fixed value of δ and a big range of the (µ, ϵ) parameter space, then502

we vary the value of the parameter δ.503

As a representative example we consider δ = 1/2. We obtain similar bifurcation504

diagrams for other values of δ > 0. For this value of δ we consider ϵ∗ < ϵ < δ,505

with ϵ∗ ≈ 0.159, since for values of ϵ < ϵ∗ cycles generated in boundary bifurcations506

are not found (see Subsection 3.3). In Figure 10 we show the resulting bifurcation507

diagram. The results regarding the equilibria and their bifurcations were presented508

in Section 2. For values of the parameter on the left vertical-lined region the unique509

stable solution of the system is the equilibrium x∗
2 = [0, 1, 0]T belonging to S2 (see510

(2.7)), so the node 2 is the only one active in the network. For values on the right511

vertical-lined region the unique stable solution is the equilibrium x∗
3 = [0, 0, µ]T in512

the region S3, and the node 3 is the only one active. The black curves correspond513

to the critical values ci, for i = 1, . . . , 4, defined in (2.9). In the shadowed region a514

stable limit cycle exists, which is generated (destroyed) in the boundary equilibrium515

bifurcation at c1 on the left (c2 on the right) as the value of µ increases. For values of516

the parameters near the black curves the amplitude of the periodic solutions is small517
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Fig. 10. Bifurcation diagram of network (2.3) for δ = 1/2. The black curves indicate the
critical values ci where boundary equilibria bifurcation are observed (see (2.9)). The left (right)
vertical-lined region corresponds to the existence of a stable equilibrium of the network belonging
to S2 (S3) (see (2.7)). The left (right) horizontal-lined region corresponds to the existence of a
equilibrium of the network belonging to S23 (S13). In the upper (lower) horizontal-lined regions the
equilibrium is stable (unstable). In the shadowed region the network has a stable limit cycle. In the
lined-shadowed regions the network shows multistability.

and depend linearly on µ (see Fig. 8). The value ϵc = δ/(1 + δ) divides the diagram518

in two parts depending on the type of equilibrium bifurcations. If ϵ > ϵc the network519

shows four persistent equilibrium bifurcations when the value of µ increases, whereas520

if ϵ∗ < ϵ < ϵc the network shows four non-smooth fold bifurcations. In the last case,521

the system shows bistability. There are two regions (lined-shadowed regions) where522

two stable attractors coexist, an equilibrium (x∗
2 on the left and x∗

3 on the right) and523

the limit cycle generated in the non-smooth fold bifurcation. We note that the region524

of multistability is larger for larger values of the constant input µ.525

Now, we consider different fixed values of µ, and the connection parameters ϵ and526

δ in a range where stable limit cycles exist (shadowed region in Fig. 10). First, we527

calculate the frequencies of the cycles (Fig. 11 a and b). We observe that for all528

values of ϵ and δ the largest frequencies are obtained when all the nodes have the529

same constant input, that is, when µ = 1. Also, we observe that the frequencies530

increase as the weak inhibition becomes weaker (the value of ϵ increases), and they531

tend to the same constant value as ϵ tends to δ (Fig. 11 a). In contrast, as the532

strong inhibition increases (the value of δ increases), the frequencies increase, reach533

a maximum and then decrease (Fig. 11 b). Finally, we mention that changes in534

the weak inhibition affect more the range of frequencies than variations in the strong535

inhibition. To compare the amplitudes we first consider the case µ = 1. As we already536

mentioned, for this value of µ there is a symmetry in the network and the amplitude537

is the same for each node, we calculate and show this amplitude as a function of the538

parameters (Fig. 11 c and d). We observe that the amplitude of the symmetric cycle539

decreases as the weak inhibition becomes weaker, whereas, it slightly decreases and540

then increases as the strong inhibition becomes stronger. For values of µ ̸= 1 some541

of the amplitude variables increase and others decrease depending on the coordinates542

of the unstable focus near the trajectory of the solution. However, we observe that,543

as the (weak or strong) inhibition between nodes is weaker (values of ϵ increases or544

values of δ decreases, respectively), the trajectory of each variable is more uniformly545

distributed around the coordinates of the unstable focus within a period (Fig. 12).546
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Fig. 11. Frequencies and amplitudes of periodic solutions of network (2.3). a. Frequency as
function of ϵ for the indicated values of µ and δ = 1/2. b. Frequency as function of δ for the
indicated values of µ and ϵ = 1/4. c. Amplitude as function of ϵ for µ = 1 and δ = 1/2. d.
Amplitude as function of δ for µ = 1 and ϵ = 1/4.
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Fig. 12. Variables for different cycles normalized to one period. a1. δ = 0.5, ϵ = 0.4 and
µ = 0.8. a2. δ = 1, ϵ = 0.4 and µ = 0.8. a3. δ = 1, ϵ = 0.2 and µ = 0.8.

5. Entrainment of cycles in three-node networks. In this section we con-547

sider a three-node threshold-linear network in the sustained oscillations regime. We548

assume that an external sinusoidal input is added to one of the nodes and, by defin-549

ing a Poincaré map, we numerically determine how the input modifies the oscillatory550

solutions of the network.551

We consider the network (2.3) with a sinusoidal input applied to the first node552

(5.1)
dxi

dt
+ xi =

 n∑
j=1

Wijxj +Bi + Iin,i(t)


+

, i = 1, 2, 3,553
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where B = [1, 1, µ]T , and the sinusoidal input is given by554

(5.2) Iin,1(t) = Ain
1 + sin(ωint)

2
,555

where Ain is the input amplitude and ωin is the input frequency, and Iin,i(t) = 0 for556

all i ̸= 1.557

The network (5.1) responds to the periodic input with a solution that could be558

periodic, quasi-periodic or chaotic. If the response is periodic with frequency ωrsp, and559

the response and input frequencies satisfy ωrsp/ωin = p/q, for a pair of values p, q ∈ N,560

it is said that the network is entrained by the input, and the response is a p : q mode-561

locked solution. We study the entrainment regions by considering the Arnold tongues562

of the network, which are bifurcation diagrams in the parameter space (ωin, Ain).563

The tongue borders correspond to parameter values where cycle bifurcations (such564

as period doubling and Neimark-Sacker) are observed. For values of the parameter565

inside the tongues the solutions are synchronized with the input (entrained) with p : q566

rate. In the rest of the parameter space the solutions are quasi-periodic or chaotic.567

The entrainment of oscillatory solutions in neural models for both single oscillators568

and oscillatory networks has been studied with different mathematical tools, and569

usually the investigation combines analytical and numerical results [5, 6, 19, 20, 23,570

27]. In our model it is possible to obtain systems of transcendental equations for which571

solutions are in correspondence with points in the tongue borders. These systems are572

obtained (as in [6]) adding bifurcation conditions to the analytical expressions of the573

cycles calculated in Section 3. However, the dimension and complexity of these system574

make them difficult to solve even by using numerical techniques. Because of this, we575

develop a numerical calculation of the Arnold tongues by defining a Poincaré section576

and an associated return map to find and describe the mode-locked cycles.577

We define the Poincaré section as the plane x1 = c∗, where c∗ is the first coordinate578

of the unstable equilibrium x∗
123 for the network without sinusoidal input (see (2.8)).579

For fixed values of the input parameters (Ain and ωin) we calculate the solutions and580

consider their values for a constant time, large enough to avoid the transitory effect of581

the initial conditions. To study the return map, we save all times Ti and points x(Ti)582

in which the solution crosses the Poincaré section in a selected direction. If the map583

has a fixed point, i.e., if x(Ti) is the same for all i, and the instant period Ti − Ti−1584

is constant, the solution is a 1 : q mode-locked solution. The q value is calculated585

as the average frequency (approximated by using the instant periods) divided by the586

input frequency. If the map has a cycle of period two and the instant periods form587

a sequence of two intercalated values, the network solution is a 2 : q mode-locked588

solution. In general, we extend the above procedure to cycles of period p in the map,589

to find the p : q mode-locked solutions. In all cases, the q value is calculated as we590

explained above.591

Remark 5.1. The proposed calculation of the Arnold tongues is not accurate if592

the input amplitude is large because of the grazing points that can appear in the593

solutions. In these cases, for example, a p : q mode-locked solution can be seen as594

a 1 : q mode-locked solution. One option to avoid this problem is consider different595

Poincaré sections and compare the different Arnold tongues.596

5.1. Results for the three-node network with cyclic symmetry. Figure 13597

shows the Arnold tongues for the three-node network (5.1) with µ = 1 and the values598

of the connection parameters indicated in the figure. We labeled each region with the599

p : q type of entrainment. As is expected, each region is expanded from a rational600
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Fig. 13. Numerical simulations of Arnold tongues for the three node network with sinusoidal
input, µ = 1, δ = 1/2 and ϵ = 1/4. The shadowed regions correspond to the different tongues and
the labels indicate the p : q type of entrainment. The cycle without input has frequency ω ≈ 0.553.

fraction of the frequency observed without input, and all regions have wedge form,601

since the entrained solutions are observed for a larger range of the input frequencies602

when the input amplitude increases. In Figure 14 we show four entrained responses, a603

1 : 1 mode-locked solution (Fig. 14 a), where both the response and input frequencies604

are the same, and examples of 1 : 2, 2 : 1 and 2 : 3 mode-locked solutions (Figs. 14605

b, c and d, respectively). Finally, in Figure 15 we show two quasi-periodic solutions.606

In this last case, to simplify the visualization, we only show the maximum values for607

the trajectories of each variable of the cycle.608

Now we consider a fixed value of the input amplitude and take a horizontal section609

of the Arnold tongues. Thus, we can represent a curve in the (ωin, ωrps/ωin) space,610

known as devil’s staircase, that shows different entrainment regions which correspond611

to the different Arnold tongues. We show an example (Fig. 16 a) of a devil’s staircase612

obtained for a fixed values of Ain and the other parameter values as in Figure 13. To613

reduce the calculations and compare the response of networks when the connection614

parameters vary, we calculate different devil’s staircases. In particular, we consider615

three different values of ϵ (Fig. 16 b). We observe that the entrainment regions are616

smaller when the weak inhibition is weaker (that is, as the value of ϵ increases), with617

exception of the 1 : 1 region that is slightly larger. In addition, we mention that, as618

the value of ϵ is increased, all entrainment regions are obtained for greater values of619

the input frequency, since the frequency of the network without input is increased.620

The Arnold tongues and their devil’s staircases contain a lot of information about621

the response frequency but do not provide us with any information about the response622

amplitude when the input varies. To analyze this we observe the amplitude of each623

variable in the 1 : 1 entrainment region considering two cases, a constant input am-624

plitude Ain or a constant input frequency ωin. In the first case, we observed that625

the response amplitudes are not constant when the value of the input frequency is626

increased (Fig. 16 a). Moreover, the smallest amplitudes are reached in the largest627

input frequency, and for the nodes 2 and 3 the amplitudes decrease in the whole628

range. In the second case (fixed values of the input frequency), the amplitude of the629

node 1 (receiving the input) is increasing as a function of the input amplitude, and630

it increases slower as the frequency is closer to the frequency without input (Fig. 16631

b). The amplitudes of node 2 and 3 are decreasing, with exception of the amplitude632
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Fig. 14. Examples of mode-locked cycles for the Arnold tongues in Figure 13. Left column:
trajectories as functions of t and a representation of the sinusoidal input (black curve). The input
is added to the node one (blue curve). Right column: cycle in the 3D space and its intersections
with the Poincaré plane. a. 1 : 1 mode-locked cycle for the input frequency ωin = 0.5. b. 1 : 2
mode-locked cycle for the input frequency ωin = 1. c. 2 : 1 mode-locked cycle for the input frequency
ωin = 0.26. d. 2 : 3 mode-locked cycle for the input frequency ωin = 0.82. In all cases we consider
Ain = 0.2, µ = 1, δ = 1/2 and ϵ = 1/4.

of node 2 when ωin is equal to the frequency without input.633

To summarize: If the forcing is strong enough, it entrains the network. When634

the inhibition (weak or strong) between nodes is strong, we observe a large amount635
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Fig. 15. Quasi-periodic cycles in the three-node network considered in Figure 13 (for the fixed
values µ = 1, δ = 1/2 and ϵ = 1/4). Left column: maximum of each variable as function of
t. Center column: solution in the 3D space and its intersections with the Poincaré plane. Right
column: Poincaré map. a. Input parameters: ωin = 0.15 and Ain = 0.2. b. Input parameters:
ωin = 0.75 and Ain = 0.1.
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Fig. 16. Devil’s staircase for different three-node networks. a. Devil’s staircase for the fixed
values Ain = 0.2, µ = 1, δ = 1/2 and ϵ = 1/4. We labeled the entrainment regions with the p : q
rate of entrainment. b. Networks for µ = 1, δ = 1/2 and different values of ϵ. The dots indicate
the frequency of the periodic solution to the network without input.

of entrainment regions in a fixed range of frequency inputs. We obtain quasi-periodic636

solutions if the input is weak or has frequency far from the resonant frequencies.637

6. Cycles in networks with cyclic symmetry and their entrainment.638

Here we extend the work developed in the previous sections by studying networks of639

three or more nodes with all-to-all connections and cyclic symmetry (see Fig. 18).640
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Fig. 17. Amplitude of each variable for the cycles in the 1 : 1 range. We also show the
amplitude of the variables without input (horizontal gray line) and frequency without input (vertical
dashed line). a1. Ain = 0.1. a2. Ain = 0.2. b1. ωin = 0.502. b2. ωin = 0.527. b3. ωin = 0.553.
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Fig. 18. Graph representation of a network with n nodes and directed connections. A black
arrow indicates weak inhibition, whereas a gray arrow indicates strong inhibition between nodes.

Following the ideas in Section 3, we find the analytical expressions for the oscillatory641

solutions and obtain a reduced system of two transcendental equations whose solutions642

correspond to the cycles considered. This leads to extend the proof of the existence of643

the limit cycles in a straightforward manner. Then, we study the cycle characteristics644

when the parameter values or the number of nodes vary. Finally, as in Section 5,645

an external sinusoidal input is added to one of the nodes and we analyze briefly the646

entrainment of the cycle as the input parameters vary.647

6.1. Cycles in the network of n nodes with all-to-all connections and648

cyclic symmetry. The system of differential equations for the threshold-linear net-649
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work of n nodes with cyclic symmetry is given by650

(6.1)
dxi

dt
= −xi +

 n∑
j=1

Wijxj + θi


+

, i = 1, . . . , n,651

where W is the n× n matrix given by652

(6.2) W =



0 −1− δ −1− δ . . . −1− δ −1 + ϵ
−1 + ϵ 0 −1− δ . . . −1− δ −1− δ
−1− δ −1 + ϵ 0 . . . −1− δ −1− δ

...
...

...
−1− δ −1− δ −1− δ . . . 0 −1− δ
−1− δ −1− δ −1− δ . . . −1 + ϵ 0


.653

As in the three node case, the values −1− δ (with δ > 0) and −1+ ϵ (with 0 < ϵ < 1)654

represent the strong and weak inhibitory connections, respectively.655

In particular we consider the network with constant input θi = 1 in each node.656

This last assumption generates a cyclic symmetry in the system (already mentioned657

in the three-node case) from which circular shifts of the nodes does not affect the658

response of the network.659

Following the notation in Section 2, we define660

(6.3) fi(x) =
n∑

j=1

Wijxj + 1, and Σi = {x ∈ Rn : fi(x) = 0}.661

The hyperplanes Σi divide the state space Rn in different regions in which the network662

(6.1) is linear.663

The linearity of the system in each region and the symmetry mentioned above664

allow us to find and calculate periodic solutions applying the techniques developed in665

Subsection 3.3.666

Suppose that a stable limit cycle p of period T exists in the network (6.1). Because667

of the symmetry in the system, it follows that668

(6.4) pi(t) = p1

(
t− i− 1

n
T

)
, i = 2, . . . , n.669

By definition of (6.1), it is necessary that the cycle p crosses at least one transition670

hyperplane Σi. Then, from condition (6.4) and the definition of Σi, it follows that671

the cycle crosses all the transition hyperplanes. To find the analytical expression of672

the cycle, we divide it in n equal parts and study the expression of each coordinate673

in one interval of length T/n (see Fig. 19 a).674

We want to determine which functions fi are active (have positive values) in each675

part of the cycle, in order to determine the corresponding linear system (6.1) in each676

interval. Without loss of generality, in the following calculations we consider the677

interval [0, T/n] and p(0) ∈ Σ1 (see Fig. 19 b). Thus, p(T/n) ∈ Σ2 and we observe678

that a value T1 ∈ (0, T/n) exists such that679

(6.5) p(T1) ∈

{
Σ1 if n = 3,

Σ4 if n ≥ 4,
680
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Fig. 19. Cycle in a network with 5 nodes. a. Coordinates of the cycle with period T . The
vertical lines correspond to the transition hyperplanes Σi. b. Coordinates in an interval of length
T/5. We consider p(0) ∈ Σ1, so this interval is the second strip in figure a.

and it is satisfied that f2,3(p(t)) > 0 for t ∈ (0, T1), and681

(6.6)

{
f1,2,3(p(t)) > 0 if n = 3,

f2,3,4(p(t)) > 0 if n ≥ 4,
682

for t ∈ (T1, T/n). Thus, the active functions in the interval (0, T1) are f2,3, whereas683

in the interval (T1, T/n) the active functions depend on the value of n.684

Given the above observations about the signs of the functions fi, we solve system685

(6.1) in the intervals (0, T1) and (T1, T/n) to find the analytical expression of p (as686

in equation (3.1)). In each interval we solve a linear system of n ordinary differential687

equations, by considering the initial condition p(0) ∈ Σ1, the continuity condition at688

t = T1 and the final condition p(T/n) ∈ Σ2. By performing calculations similar to689

the ones developed in the Subsection 3.3 (where system (3.7) is reduced to (3.16)),690

we obtain a two dimensional system of transcendental equations with unknowns T691

and T1. Then, we apply the Kantorovich’s result to prove the existence of periodic692

solutions. Finally, we calculate the stability of p by defining the monodromy matrix693

following the ideas in Subsection 3.2.694

In Figure 19 we show the periodic solution obtained for the network (6.1) with 5695

nodes, δ = 1/2 and ϵ = 1/4. In this case, the period is T = 18.9806 (and T1 = 3.1485),696

and the cycle is stable with Floquet multipliers {0.99953, 1.32651× 10−6,−4.61789×697

10−9 + 1.93239× 10−8i,−4.61789× 10−9 − 1.93239× 10−8i, 0}.698

6.2. Dependence of the oscillatory network dynamics with the model699

parameters. In this subsection we briefly study the periodic solution as either the700

connection parameter ϵ or the number of nodes vary.701

We observe that, for a fixed value of the parameter ϵ, the frequency decreases if702

the number of nodes increases (Fig. 20 a1). In contrast, for a fixed number of nodes,703

the frequency increases if the value of ϵ increases, as in the case of the three-node704

network considered in the above section.705

The amplitude of the cycles in a network having more than three nodes is almost706

the same as ϵ changes with some range, and they are always grater than the corre-707

sponding amplitude for the three-node case (Fig. 20 a2). In all cases the amplitude708

decreases as the values of ϵ increases, i.e., when the weak inhibition becomes weaker,709

but we observe that the three-node network is more sensitive to this variation.710

From the above observations it follows that, for fixed values of the connection711
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Fig. 20. a. Periodic solutions as functions of ϵ for the indicated values of n and δ = 1/2. a1.
Frequency. a2. Amplitude. b. Variables for different cycles normalized to one period. We consider
the fixed values δ = 1/2, ϵ = 2/5 and n = 3 (n = 6) in the upper (lower) row.

parameters, as the number of nodes in the network increases the period of the resulting712

cycle increases.713

Finally, we observe that in networks with a large number of nodes, the activity of714

each one is concentrated near its maximal value and it is near zero for a large amount715

of time in one period (Fig. 20 b).716

6.3. Entrainment of cycles in networks with cyclic symmetry. In this717

subsection we follow the ideas developed in Section 5 and consider the response of the718

network (6.1) with an oscillatory solution when a periodic input is applied to one of719

the nodes.720

In particular, we consider the network in (6.1) with n ≥ 3 and ϵ < δ (thus the721

network has a stable limit cycle), and we assume that a positive sinusoidal input is722

applied to the node labeled as number 1. The resulting system reads723

(6.7)
dxi

dt
= −xi +

 n∑
j=1

Wijxj + 1 + Iin,i(t)


+

, i = 1, . . . , n,724

where the input is given by725

(6.8) Iin,1(t) = Ain
1 + sin(ωint)

2
,726

being Ain the input amplitude and ωin the input frequency, and Iin,i(t) = 0 for all727

i ̸= 1.728

We calculate the devil’s staircases to compare the response of networks with729

different number of nodes and values of ϵ. As the number of nodes in the network730

increases we observe that the entrainment regions become smaller and they shift731

toward lower frequencies since the frequency without input is smaller for larger number732

of nodes (Fig. 21 a). This is seen clearly in the 1 : 1 region. Thus, the ability of733

the input to control the frequency of the response is reduced when the network has a734

large number of nodes.735

For a fixed number of nodes, as we observe for the three-node network (see Fig.736

16 b), the entrainment regions shift toward higher frequencies since the frequency737

without input increases as the value of the connection parameter ϵ is increased (Fig.738

21 b). However, the 1 : 1 entrainment region, which always includes the natural739
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Fig. 21. Devil’s staircases for different networks (6.7). a. Networks with different number of
nodes and fixed the values δ = 1/2 and ϵ = 1/4. b. Networks with four nodes, δ = 1/2 and the
indicated values of ϵ. The dots indicate the frequency of the periodic solution to the network without
input.

frequency (in the absence of any input), does not present big changes in its length.740

Finally, we note that the network has more entrainment regions in the same interval741

of input frequencies when the weak inhibition is stronger (lower values of ϵ).742

7. Conclusions. In this paper we studied the existence of periodic solutions743

to competitive TLNs and their response to periodic inputs. We first analyzed the744

three-node case and we later considered networks with three or more nodes, all-to-all745

connections and cyclic symmetry.746

In the three-node network we applied the theory of non-smooth dynamical systems747

[12, 30] to perform a detailed mathematical analysis of our system. In particular, we748

calculated and classified all bifurcations of equilibria, which are the basis for the cycle749

generation analysis that we performed in the Section 3. Because of the specific type of750

threshold-nonlinearity we dealt with, we were able to find an analytical expression of751

the periodic solutions and discuss their stability. In addition, by using a combination752

of mathematical analysis and numerical simulations, we demonstrated the existence of753

these periodic solutions by considering a reduced system of transcendental equations754

and using a Kantorovich’s convergence result. The existence of these limit cycles has755

been hypothesized before on the basis of numerical simulations, but to our knowledge756

no analytical demonstration of the existence of these oscillations has been provided757

[9, 24, 25].758

Once we proved the existence of periodic solutions, we carried out numerical759

simulations to study the dependence of them on the model parameters. If the values760

of the inputs to the nodes are close to each other (that is, if the value of µ is near 1), we761

observed that periodic solutions exist for a large range of the connection parameters.762

In contrast, if the inputs are significantly different from each other, the network needs763

more local excitation (a larger value of ϵ) to generate oscillatory solutions. If all the764

inputs have the same value, the network has a cyclic symmetry, and a stable periodic765

solution exists provided that ϵ < δ. For fixed values of the connection parameters,766

the frequency of this symmetric cycle is larger than the frequency of cycles for the767

non-symmetric networks (µ ̸= 1). Furthermore, we note that, despite the fact that the768

values of ϵ and δ modify the strength of the inhibitory connections, the attenuation769

caused by the local excitation (values of ϵ) has a stronger effect over the attributes of770

the cycles than the local inhibition (values of δ). In other words, the attributes of the771

periodic solutions are more sensitive to changes in the weak inhibition (see Subsection772
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4.2). In particular, we observed that (i) the frequency of the cycles increases as the773

local excitation increases, and (ii) changes in the local excitation affect more the774

range of observed frequencies than variations in the local inhibition. In addition, in775

the symmetric networks (with input µ = 1), we observed that the amplitude of the776

cycle decreases as the local excitation increases, whereas it slightly decreases and then777

increases as the local inhibition increases.778

It is important to mention that all periodic solutions that we found are stable.779

However, there are two regions in the µ-ϵ parameter space where the three-node net-780

work shows multistability. Two stable attractors coexist: an equilibrium and the limit781

cycle generated in a boundary equilibrium bifurcation. The region of multistability is782

larger for larger values of the constant input µ.783

An important question associated to oscillatory networks is their ability to follow784

oscillatory inputs; i.e., to be entrained [5, 6, 19, 20, 23, 27]. In order to address this785

issue, we analyzed the response of the three-node competitive TLN with an oscilla-786

tory solution when a sinusoidal input is added to one of the nodes. We numerically787

obtained the Arnold tongues of the network and find different entrainment regions788

as the amplitude and frequency of the input vary. As is expected, each entrainment789

region is expanded from a rational fraction of the frequency observed without input,790

and all regions have wedge form, since the entrained solutions are observed for a larger791

range of the input frequencies when the input amplitude increases. In other words,792

if the forcing is strong enough, it entrains the network. Quasi-periodic solutions are793

observed if the input is weak or its frequency is far from the resonant frequencies.794

As the value of the local excitation increases, we observed that (i) the entrainment795

regions are smaller, with exception of the 1 : 1 region that is slightly larger, and (ii)796

all entrainment regions shift toward higher values of the input frequency, since the797

frequency of the network without input increases. From these observations it follows798

that as the weak inhibition becomes weaker the amount of input frequencies that799

generate an mode-locked response becomes smaller.800

To extend our results, we considered competitive TLNs with three or more nodes801

and cyclic symmetry. We applied the techniques developed in Section 3 to find the802

periodic solutions and calculate their stability. Also, for these networks we analyzed803

the response to changes in the parameter values, different number of nodes and a804

sinusoidal input added to one node. The results we obtained by considering changes805

in the values of the local excitation are similar to the ones described in the three-806

node case (Section 4), for both the network with and without sinusoidal input. In807

addition, as the number of nodes in the network increases, the frequency of the cycle808

decreases, whereas its amplitude remains almost unchanged if the network has more809

than three nodes. In all cases, the amplitude decreases as the local excitation is810

increased. Furthermore, the activity of each node in the cycle is near zero for a larger811

time period as the number of nodes increases. Finally, we added a sinusoidal input812

to one node and briefly analyzed the network response. The entrainment regions are813

smaller and they are shifted towards lower frequencies as the number of nodes in the814

network increases (because the frequency without input is smaller). Thus, the ability815

of the input to control the frequency of the response is reduced when the network has816

a large number of nodes. This shrink of the entrainment regions has been observed,817

for example, in forced chains of neural oscillators [20, 27].818

In conclusion, the entrainment regions, in particular the length of the 1 : 1 range,819

depend more on the size of the network than on the values of the connections param-820

eters. In particular, we observed that the competitive TLNs with a small number of821

nodes can follow the input frequency for a larger amount of input frequencies than the822
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networks with a large number of nodes. One option to expand the entrainment regions823

in networks with a large number of nodes is to increase the input amplitude. However,824

this could generate grazing points capable of destroying the periodic response of the825

network. Analyzing this requires further research.826

A natural extension of our work, which is particularly interesting to us, is to827

consider the impact of synaptic delay in every connection between nodes. This delay828

could represent, for example, the distance between nodes or the action of graduated829

synapses. Some results about synchronized periodic solutions in competitive TLNs830

with delay were presented in [2]. However a more complete study of periodic solutions831

to such networks is still needed.832
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