

1 **PERIODIC SOLUTIONS IN THRESHOLD-LINEAR NETWORKS**
2 **AND THEIR ENTRAINMENT***

3 ANDREA BEL[†], ROMINA COBIAGA[‡], WALTER REARTES[‡], AND HORACIO G.
4 ROTSTEIN[§]

5 **Abstract.** Threshold-linear networks (TLNs) are recurrent networks where the dynamics are
6 threshold-linear (linearly rectified at zero). Mathematically, they consist of coupled non-smooth
7 ordinary differential equations. When the nodes in the network are assumed to be neurons or
8 neuronal populations, TLNs represent firing rate models. We investigate the dynamics of a subclass
9 of TLNs referred to as competitive TLNs where all the connections between different nodes are
10 inhibitory. We prove the existence of periodic solutions in competitive TLNs with three nodes using
11 a combination of mathematical analysis and numerical simulations. We calculate the analytical
12 expressions of the periodic solutions, then we consider a reduced system of transcendental equations
13 and apply a Kantorovich's convergence result to demonstrate the existence of these solutions. We
14 then analyze the attributes (frequency and amplitude) of these periodic solutions as the model
15 parameters vary. Finally, we study the entrainment properties of competitive TLNs in the oscillatory
16 regime, by examining their response to external periodic inputs to one of the nodes in the network.
17 We numerically determine the ranges of input amplitudes and frequencies for which competitive
18 TLNs are able to follow the periodic input for three-node networks and larger networks with cyclic
19 symmetry.

20 **Key words.** recurrent neural networks, non-smooth dynamical systems, periodic solutions

21 **AMS subject classifications.** 37N25, 34C25

22 **1. Introduction.** Threshold-linear network (TLN) models describe the activity
23 of connected nodes where the input to each cell in the network is a linear combination
24 of the contribution of the other cells when this linear combination is above zero and
25 zero otherwise. In their simplest description, the dynamics of the individual nodes are
26 one-dimensional and linear. When the nodes in the network are neurons or neuronal
27 populations, their activity is interpreted as their firing rate, and the TLNs represent
28 firing rate models [11, 13, 32].

29 Linear networks (linear node dynamics and linear connectivity) produce relatively
30 simple dynamics where, in particular, sustained network oscillations are excluded. The
31 TLNs we use here (nonlinear connectivity and linear node dynamics) are arguably
32 the simplest nonlinear extension of linear networks that, despite their simplicity, are
33 able to produce complex dynamics including multistability, periodic, quasiperiodic
34 and chaotic temporal patterns, even when the number of nodes in the network is
35 relatively small (e.g., three) [16, 24, 25].

36 The systematic mathematical study of TLNs has primarily focused on the existence
37 and stability of fixed-points for symmetric TLNs [7, 8, 15] and non-symmetric
38 competitive threshold-linear networks [9, 10, 25]. Competitive TLNs are a specific
39 class of recurrent TLNs where all connectivity weights are negative and there are no

*

[†]Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Buenos Aires, Argentina – INMABB, CONICET, Bahía Blanca, Buenos Aires, Argentina (andrea.bel@uns.edu.ar).

[‡]Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Buenos Aires, Argentina.

[§]Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ. Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ. Graduate Faculty, Behavioral Neurosciences Program, Rutgers University. Corresponding Investigator, CONICET, Argentina.

40 self-connections. Inhibitory networks arise in many neuronal systems and have been
 41 shown to underlie the generation of rhythmic activity in cognition and motor behavior
 42 [1, 3, 18, 21, 22, 28, 31]. Recent modeling work, primarily based on numerical simu-
 43 lations has showed that competitive TLNs with three or more nodes can show very
 44 rich dynamics, in particular limit cycle oscillations [9, 24, 25]. However, the existence
 45 of periodic solutions in competitive TLNs and their relationship with the networks'
 46 fixed-points has not been rigorously discussed.

47 The goal of this paper is to analyze the existence of periodic solutions to compet-
 48 itive TLNs and their response to periodic inputs. For the specific model investigated
 49 in [25] where the periodic solutions were first observed we prove the existence of the
 50 limit cycle. This specific case describes the particular situation where the three nodes
 51 receive the same constant input. We combine a detailed mathematical analysis with
 52 numerical simulations. Our investigation is based on the theory of non-smooth dy-
 53 namical systems [12, 30]. We first carry out a bifurcation analysis that allows us
 54 to formulate a hypothesis for the existence of periodic solutions in the network as a
 55 function of the inputs to the participating nodes. Then, we calculate the analytical
 56 expressions for the periodic solutions and prove their existence by considering the
 57 solutions to a reduced system of equations associated to these analytical expressions.
 58 We subsequently study the dependence of periodic solutions with the model parame-
 59 ters. Finally, we analyze the response of competitive TLNs to periodic inputs applied
 60 to one of the participating nodes. We begin our study with three-node networks and
 61 then extend it to networks with a larger number of nodes and cyclic symmetry.

62 The overview of the paper is as follows. In Section 2, we describe the three-node
 63 competitive TLN. We review some basic results about the model equilibria and their
 64 stability, and we compute and classify all bifurcations of these equilibria, which are the
 65 basis for the cycle generation analysis presented in the following sections. In Section
 66 3, we study the existence of periodic solutions with small amplitude: we calculate
 67 the analytical expression of these periodic solutions and analyze their stability. We
 68 also describe a reduced system of transcendental equations whose solutions are in
 69 correspondence with the limit cycles of the network, and use it to prove the existence
 70 of limit cycles for different values of the parameters. In Section 4, we describe how the
 71 periodic solutions of the network are affected by changes in the values of the constant
 72 input of the nodes or the connection strength connections between nodes. In Section
 73 5, we consider three-node networks in which oscillatory solutions are observed. We
 74 assume that an external sinusoidal input is added to one of the nodes and, by defining
 75 a Poincaré map, we numerically determine whether and how the oscillatory solutions
 76 are modified by this periodic input. Finally, in Section 6 we extend the previous
 77 work to competitive TLNs having three or more nodes, all-to-all connections and
 78 cyclic symmetry. Following the techniques used in Section 3, we find the analytical
 79 expressions of the oscillatory solutions. Then, we study the cycle attributes when
 80 either the number of nodes or the parameter values vary, and we briefly analyze the
 81 response of the network as an external sinusoidal input is added to one of the nodes.
 82 We discuss our results in Section 7.

83 **2. Three-node network: equilibria and bifurcations.** In this section we
 84 describe the threshold-linear network that we will study in the following three sections.
 85 We first present some basic results about the model equilibria and their stability.
 86 Then, we calculate and classify all bifurcations of equilibria which are the basis for
 87 the cycle generation analysis presented in Section 3.

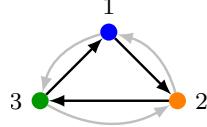


FIG. 1. *Graph representation of a three-node network where a black arrow indicates weak inhibition, whereas a gray arrow indicates strong inhibition between nodes.*

88 We consider a non-smooth network with three nodes described by

89 (2.1)
$$\frac{dx_i}{dt} = -x_i + \left[\sum_{j=1}^3 W_{ij} x_j + \theta_i \right]_+, \quad i = 1, 2, 3,$$

90 where x_i is the level of activity of node i (the firing rate), W_{ij} represents the strength
 91 of the connection from node j to node i , $\theta_i > 0$ is a constant input and $[\cdot]_+$ is the
 92 threshold-linear function defined by $[y]_+ = \max(0, y)$.

93 We assume that $W_{ii} = 0$ for all i (so for each node self-inhibition results only
 94 from the second term on the left-hand side of (2.1)). In addition, we assume that all
 95 connections between nodes are inhibitory, that is, $W_{ij} < 0$, for $1 \leq i, j \leq 3, i \neq j$. We
 96 follow the assumptions in [25] and consider the action of a strong global inhibition term
 97 (constant for all connectivity weights), which is added to the local connections between
 98 nodes. If the local connection is inhibitory (excitatory), it is said that the resulting
 99 inhibition is strong (weak). Therefore, even if the local connectivity is excitatory,
 100 the effect of the global inhibition may cause the network to be a competitive TLN.
 101 Also, following [25], we use $-1 - \delta$, with $\delta > 0$, for strong inhibition, and $-1 + \epsilon$,
 102 with $0 < \epsilon < 1$, for weak inhibition. Because all the non-zero connectivity weights
 103 are negative, it can be proved easily that the activity of node i is bounded, moreover
 104 the activity x_i remains in $[0, \theta_i]$ provided the initial conditions belong to that interval
 105 [4, 25].

106 The connectivity matrix for the three-node network we use is given by

107 (2.2)
$$W = \begin{bmatrix} 0 & -1 - \delta & -1 + \epsilon \\ -1 + \epsilon & 0 & -1 - \delta \\ -1 - \delta & -1 + \epsilon & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & -\delta & \epsilon \\ \epsilon & 0 & -\delta \\ -\delta & \epsilon & 0 \end{bmatrix},$$

108 and the network has the graph representation showed in Figure 1.

109 The network (2.1)-(2.2) is the smallest one in which oscillatory activity has been
 110 observed [25]. In their simulations they used $\theta_i = 1$ for all nodes. Two-node com-
 111 petitive TLNs are not expected to exhibit periodic oscillations since a mechanism of
 112 amplification accompanying the negative feedback necessary for sustained oscillatory
 113 activity is lacking. In three-node networks this mechanism can be provided by dis-
 114 inhibition (“inhibition of inhibition”). Below we describe these oscillatory solutions.
 115 To simplify the calculations and for the sake of clarity we consider that two nodes of
 116 the network have the same fixed constant input ($\theta_1 = \theta_2 = \theta$) and the other node
 117 has an arbitrary positive input (θ_3). The general case can be analyzed with similar
 118 techniques. Defining $\mu = \theta_3/\theta$ and rescaling the variables (by the factor $1/\theta$), we
 119 obtain the system

120 (2.3)
$$\frac{d\mathbf{x}}{dt} + \mathbf{x} = [W\mathbf{x} + B]_+,$$

121 with W defined in (2.2) and $B = [1, 1, \mu]^T$.

122 In the rest of the present section we consider the system (2.3), and we perform a
123 dynamical system analysis for the bifurcation parameter μ and the auxiliary parameters δ and ϵ .

125 **2.1. Equilibria and their stability.** We begin the study of the network (2.3)
126 by calculating the equilibria as functions of the model parameters. These equilibria
127 are the solutions of

128 (2.4)
$$x_i = [f_i(x_1, x_2, x_3)]_+, \quad i = 1, 2, 3.$$

129 where we define $f_i : \mathbb{R}^3 \rightarrow \mathbb{R}$ for $i = 1, 2, 3$, as

130 (2.5)
$$f_i(x_1, x_2, x_3) = \sum_{j=1}^3 W_{ij}x_j + 1, \quad i = 1, 2, \quad f_3(x_1, x_2, x_3) = \sum_{j=1}^3 W_{3j}x_j + \mu.$$

131 System (2.4) is piecewise linear and its solutions depend on the values of the
132 functions f_i . To clear up the calculations we define the transition planes (or, in the
133 general case, transition hyperplanes)

134 (2.6)
$$\Sigma_i = \{\mathbf{x} \in \mathbb{R}^3 : f_i(x) = 0\}, \quad i = 1, 2, 3,$$

135 and the following seven regions in \mathbb{R}^3

136 (2.7)
$$\begin{aligned} S_{123} &= \{\mathbf{x} \in \mathbb{R}^3 : f_i(x) > 0, \forall i\}, \\ S_{ij} &= \{\mathbf{x} \in \mathbb{R}^3 : f_{i,j}(x) > 0 \wedge f_k(x) < 0, \quad k \neq i, j\}, \quad 1 \leq i < j \leq 3, \\ S_i &= \{\mathbf{x} \in \mathbb{R}^3 : f_i(x) > 0 \wedge f_{j,k}(x) < 0, \quad j, k \neq i\}, \quad i = 1, 2, 3. \end{aligned}$$

137 Each region contains, at most, one solution of (2.4), that is, one equilibrium of (2.3).

138 To calculate the equilibrium (if it exists within the region of interest) and its
139 stability properties we use the corresponding linear system. For example, in the S_{123}
140 region, the equation (2.4) results $\mathbf{x} = W\mathbf{x} + B$. In this case the equilibrium has the
141 form $\mathbf{x}^* = (I - W)^{-1}B$, provided that $I - W$ is invertible and $\mathbf{x}^* \in S_{123}$. It's stability
142 properties are analyzed by computing the eigenvalues of $W - I$.

143 These equilibria are:

144 (2.8)
$$\begin{aligned} \mathbf{x}_{123}^* &= d_1[\epsilon^2 + \delta\epsilon + \delta^2\mu + (2\delta + \epsilon)(\mu - 1), \delta^2 + \delta\epsilon + \epsilon^2\mu - (2\epsilon + \delta)(\mu - 1), \\ &\quad \delta^2 + \epsilon^2 + \delta\epsilon\mu + (\epsilon - \delta)(\mu - 1)]^T, \\ \mathbf{x}_{13}^* &= d_2[1 + (\epsilon - 1)\mu, 0, -(1 + \delta) + \mu]^T, \\ \mathbf{x}_{23}^* &= d_2[0, 1 - (1 + \delta)\mu, \epsilon - 1 + \mu]^T, \\ \mathbf{x}_2^* &= [0, 1, 0]^T, \quad \mathbf{x}_3^* = [0, 0, \mu]^T, \end{aligned}$$

145 with $d_1 = ((3 + \delta - \epsilon)(\delta^2 + \delta\epsilon + \epsilon^2))^{-1}$ and $d_2 = (-\delta + (\delta + 1)\epsilon)^{-1}$, and where the
146 subscript indicates the region to which they belong. We note that while the underlying
147 linear system may posses an equilibrium, this may be located outside the region we
148 are analyzing (region of interest). We observe that in two cases, specifically for the
149 regions S_{12} and S_1 , the equilibria for the corresponding linear system do not belong
150 to the region for any value of the parameters δ , ϵ and μ , and therefore we do not
151 include them in (2.8).

152 The equilibrium in S_{123} is an unstable (stable) focus if $\epsilon < \delta$ ($\epsilon > \delta$). The
153 equilibria in the S_{ij} regions are saddle points if $0 < \epsilon < \delta/(1 + \delta)$, whereas they are

$\epsilon \setminus \mu$	$(0, c_1)$	(c_1, c_3)	(c_3, c_4)	(c_4, c_2)	(c_2, ∞)
$(0, \frac{\delta}{1+\delta})$	$\mathbf{x}_2^*(s)$ $\mathbf{x}_{23}^*(u)$ $\mathbf{x}_{123}^*(u)$	$\mathbf{x}_2^*(s)$ $\mathbf{x}_{23}^*(u)$		$\mathbf{x}_3^*(s)$ $\mathbf{x}_{13}^*(u)$ $\mathbf{x}_{123}^*(u)$	$\mathbf{x}_3^*(s)$
$(\frac{\delta}{1+\delta}, 1)$	$\mathbf{x}_2^*(s)$	$\mathbf{x}_{23}^*(s)$	$\mathbf{x}_{123}^*(u)$ if $\epsilon < \delta$ (s) if $\epsilon > \delta$	$\mathbf{x}_{13}^*(s)$	$\mathbf{x}_3^*(s)$

TABLE 1

Non-boundary equilibria of system (2.3) given in (2.8). For each equilibrium we indicate its stability depending on the values of the parameters: (s) stable and (u) unstable. The critical values c_i are given in (2.9).

154 stable nodes if $\delta/(1 + \delta) < \epsilon < 1$. Finally, the equilibria in the S_i regions are stable
155 nodes since the linear matrices of the corresponding systems have a triple eigenvalue
156 -1 . In Table 1 we summarize the information about the equilibria of system (2.3).

157 We calculate the critical values of the parameter μ by solving the equations
158 $f_i(\mathbf{x}^*) = 0$ for the equilibria in (2.8). We obtain four critical values of μ given by

$$159 \quad (2.9) \quad c_1 = \frac{2\delta - \delta\epsilon + \epsilon - \epsilon^2}{\delta^2 + 2\delta + \epsilon}, \quad c_2 = \frac{\delta^2 + \delta + \delta\epsilon + 2\epsilon}{\delta + 2\epsilon - \epsilon^2}, \quad c_3 = (1 - \epsilon), \quad c_4 = \frac{1}{1 - \epsilon},$$

160 which verify the relations $c_1 < c_2$ and $c_3 < c_4$, for all values of the parameters $\delta > 0$
161 and $0 < \epsilon < 1$. For these critical values, system (2.3) has boundary equilibria (i.e.,
162 equilibria in one of the transition planes Σ_i). In the following subsection we study
163 the equilibrium bifurcations associated with the boundary equilibria in our system.

164 *Remark 2.1.* If $\epsilon = \delta/(\delta + 1)$, the equilibria in regions S_{23} and S_{13} are non-
165 hyperbolic. If $\epsilon = \delta$ the equilibrium $\mathbf{x}_{123}^* \in S_{123}$ is a linear center, i.e., a family of
166 periodic solutions exists surrounding the equilibrium \mathbf{x}_{123}^* .

167 As an example, in Figure 2 we show one of the possible configurations of the equi-
168 libria as the parameter μ varies. There are different branches of equilibria connected
169 at the critical values of μ given in (2.9). These values of the parameter are associ-
170 ated with bifurcations of the system (2.3). In the following subsections we describe
171 the different equilibrium bifurcations and how they are related to the generation of
172 periodic solutions.

173 **2.2. Boundary equilibrium bifurcations.** In non-smooth continuous systems, ■
174 a boundary equilibrium bifurcation occurs if (i) there is a boundary equilibrium (in a
175 transition plane) at a critical value of the parameter, and (ii) certain non-degeneracy
176 conditions are satisfied [12, 30]. There are two possible universal unfoldings of this
177 bifurcation. In one of them, called a persistent (or border-crossing) scenario, when
178 the parameter varies, a branch of equilibria lying in one region transitions into an-
179 other branch of equilibria lying in other region. The other universal unfolding is
180 the non-smooth fold scenario. In this bifurcation, when the parameter varies, two
181 branches of equilibria collide at the boundary equilibrium and then disappear. For a
182 n -dimensional system with only one transition variety, analytical conditions exist for
183 distinguishing between the above two cases [12]. Applying this theory we obtain the
184 following result describing all boundary equilibrium bifurcations for our model.

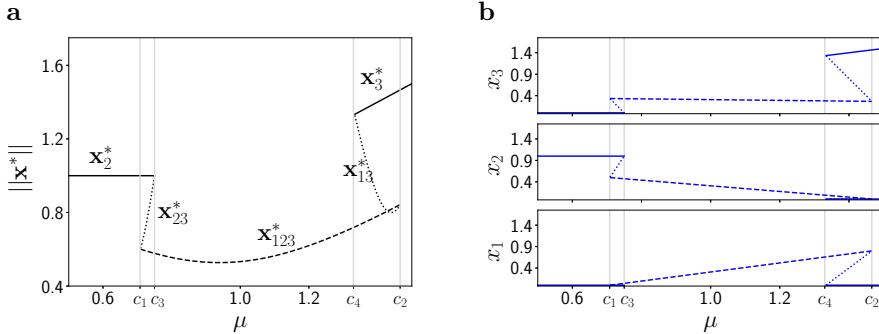


FIG. 2. Equilibria as functions of parameter μ for the fixed values $\delta = 1/2$ and $\epsilon = 1/4$. The different types of lines correspond to different branches of equilibria. Stable (unstable) equilibria are indicated in solid (dashed and dotted) line. The vertical gray lines correspond to the critical values c_i defined in (2.9). **a.** Norm $\|\mathbf{x}^*\|$ of the equilibria indicated in labels. **b.** Coordinates of the equilibria in **a.**

185 THEOREM 2.2. For fixed values of δ and ϵ , if $\epsilon \neq \delta/(1 + \delta)$, the system (2.3) has
 186 a boundary equilibrium bifurcation at each critical value $\mu = c_i$ defined in (2.9) for
 187 $i = 1, \dots, 4$. In all cases the bifurcation is a non-smooth fold if $0 < \epsilon < \delta/(1 + \delta)$,
 188 and it is a persistent bifurcation if $\delta/(1 + \delta) < \epsilon < 1$.

189 *Proof.* For $\mu = c_1 = \frac{2\delta - \delta\epsilon + \epsilon - \epsilon^2}{\delta^2 + 2\delta + \epsilon}$, the boundary equilibrium of (2.3), $\mathbf{x}^* \in \Sigma_1$,
 190 results in

$$191 \quad (2.10) \quad \mathbf{x}^* = \left[0, \frac{\delta + \epsilon}{\delta^2 + 2\delta + \epsilon}, \frac{\delta}{\delta^2 + 2\delta + \epsilon} \right]^T.$$

192 In a neighborhood of \mathbf{x}^* , by defining the variables $\hat{\mathbf{x}} = \mathbf{x} - \mathbf{x}^*$ and $\hat{\mu} = \mu - c_1$, we
 193 express system (2.3) in the translated form

$$194 \quad (2.11) \quad \frac{d\hat{\mathbf{x}}}{dt} = \begin{cases} N_0 \hat{\mathbf{x}} + M \hat{\mu}, & \text{if } C^T \hat{\mathbf{x}} \geq 0, \\ N_1 \hat{\mathbf{x}} + M \hat{\mu} = (N_0 + EC^T) \hat{\mathbf{x}} + M \hat{\mu}, & \text{if } C^T \hat{\mathbf{x}} < 0, \end{cases}$$

195 where $N_0 = \begin{bmatrix} -1 & -1 - \delta & -1 + \epsilon \\ -1 + \epsilon & -1 & -1 - \delta \\ -1 - \delta & -1 + \epsilon & -1 \end{bmatrix}$, $M = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 \\ -1 - \delta \\ -1 + \epsilon \end{bmatrix}$ and
 196 $E = [-1, 0, 0]^T$. The condition $C^T \hat{\mathbf{x}} = 0$ corresponds to values of $\mathbf{x} \in \Sigma_1$, and
 197 therefore the expression (2.11) represents the linear systems in the regions S_{123} and
 198 S_{23} separated by the plane Σ_1 .

199 For $\hat{\mu} = 0$, the system (2.11) has a boundary equilibrium at the origin. Since
 200 $\epsilon \in (0, 1)$ and $\epsilon \neq \delta/(1 + \delta)$, it follows that $\det(N_0) \neq 0$, $C^T N_0^{-1} M \neq 0$ and $1 + C^T N_0^{-1} E \neq 0$. Thus, the system (2.11) has a boundary equilibrium bifurcation at
 201 the critical value $\hat{\mu} = 0$. Moreover, using standard results [12] (see theorem 5.1 there)
 202 the universal unfolding of this bifurcation can be determined by the sign of
 203

$$204 \quad (2.12) \quad 1 + C^T N_0^{-1} E = \frac{-\delta + (\delta + 1)\epsilon}{(3 + \delta - \epsilon)(\delta^2 + \delta\epsilon + \epsilon^2)}.$$

205 Specifically, if $0 < \epsilon < \delta/(1 + \delta)$, we then obtain $1 + C^T N_0^{-1} E < 0$, therefore the
 206 system (2.11) has a non-smooth fold bifurcation. If $\delta/(1 + \delta) < \epsilon < 1$, we have
 207 $1 + C^T N_0^{-1} E > 0$, and the system shows a persistent scenario.

208 For $\mu = c_2 = \frac{\delta^2 + \delta + 2\epsilon}{\delta + 2\epsilon - \epsilon^2}$, the boundary equilibrium $\mathbf{x}^* \in \Sigma_2$ is given by

209 (2.13)
$$\mathbf{x}^* = \left[\frac{\delta + \epsilon}{\delta + 2\epsilon - \epsilon^2}, 0, \frac{\epsilon}{\delta + 2\epsilon - \epsilon^2} \right]^T.$$

210 The proof is analogous to the above case with $\hat{\mu} = \mu - c_2$, for the same matrices N_0
211 and M , and

212 (2.14)
$$C = \begin{bmatrix} -1 + \epsilon \\ 0 \\ -1 - \delta \end{bmatrix}, \quad E = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}.$$

213 For $\mu = c_3 = (1 - \epsilon)$, the boundary equilibrium results in $\mathbf{x}^* = [0, 1, 0]^T \in \Sigma_3$. As
214 before, the proof is analogous to the first case considering $\hat{\mu} = \mu - c_3$ and the matrices

215 (2.15)
$$N_0 = \begin{bmatrix} -1 & 0 & 0 \\ -1 + \epsilon & -1 & -1 - \delta \\ -1 - \delta & -1 + \epsilon & -1 \end{bmatrix}, \quad C = \begin{bmatrix} -1 - \delta \\ -1 + \epsilon \\ 0 \end{bmatrix}, \quad E = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}.$$

216 The system presents a boundary equilibrium bifurcation at $\hat{\mu} = 0$ and $1 + C^T N_0^{-1} E = (-\delta + (\delta + 1)\epsilon)^{-1}$, then, from the sing of this constant the conclusions follow directly.

217 Finally, for $\mu = c_4 = 1/(1 - \epsilon)$, the proof is similar to the case $\mu = c_1$ but
218 considering the boundary equilibrium $\mathbf{x}^* = [0, 0, \mu]^T \in \Sigma_1$, $\hat{\mu} = \mu - c_4$ and the
219 matrices

221 (2.16)
$$N_0 = \begin{bmatrix} -1 & -1 - \delta & -1 + \epsilon \\ 0 & -1 & 0 \\ -1 - \delta & -1 + \epsilon & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 \\ -1 - \delta \\ -1 + \epsilon \end{bmatrix}, \quad E = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}. \quad \square$$

222 The above theorem indicates the critical values of the parameters for which the
223 system (2.3) has equilibrium bifurcations, but, it does not describe how the branches
224 of equilibria interact for values of the parameter μ near the critical values. To describe
225 completely the various dynamical scenarios we consider the results in Theorem 2.2
226 along with the information about the existence and stability of equilibria (see (2.8)
227 and Table 1). We summarize some of these results in the following theorem.

228 **THEOREM 2.3.** *In a small neighborhood of the critical values $\mu = c_1$ and $\mu =$
229 c_2 given in (2.9), the system (2.3) has two branches of equilibria (depending on μ)
230 verifying the following.*

- 231 • If $0 < \epsilon < \delta/(1 + \delta)$, the system has a non-smooth fold bifurcation at $\mu = c_1$
232 and $\mu = c_2$. Two equilibria exist for $\mu > c_1$ ($\mu < c_2$): an unstable focus
233 $\mathbf{x}_{123}^*(\mu) \in S_{123}$ and a saddle fixed point $\mathbf{x}_{23}^*(\mu) \in S_{23}$ ($\mathbf{x}_{13}^*(\mu) \in S_{13}$).
- 234 • If $\delta/(1 + \delta) < \epsilon < \delta$, the system shows a persistent scenario at $\mu = c_1$ and
235 $\mu = c_2$. In particular, near the critical value c_1 , a stable node $\mathbf{x}_{23}^*(\mu) \in S_{23}$
236 exists for $\mu < c_1$, and an unstable focus $\mathbf{x}_{123}^*(\mu) \in S_{123}$ exists for $\mu > c_1$.
237 Whereas, near the critical value c_2 , an unstable focus $\mathbf{x}_{123}^*(\mu) \in S_{123}$ exists
238 for $\mu < c_2$, and a stable node $\mathbf{x}_{13}^*(\mu) \in S_{13}$ exists for $\mu > c_2$.

239 In the above theorem we only analyze bifurcations involving an unstable focus
240 because they are the equilibria related with the generation of limit cycles as we will
241 show in the next section. In Figure 3 we show the two possible scenarios for the
242 bifurcation at $\mu = c_1$. We consider the fixed value $\delta = 1/2$ and two representative

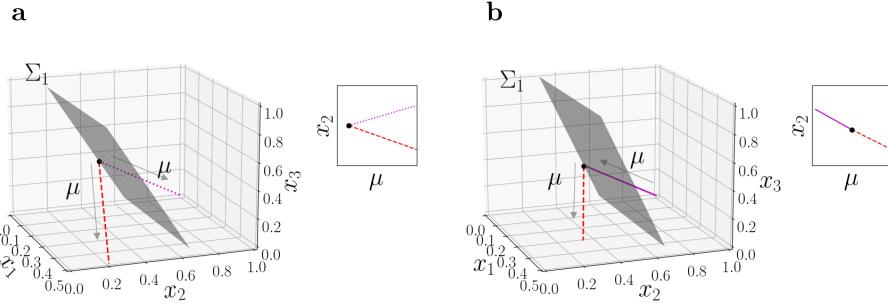


FIG. 3. Scheme of different bifurcations observed in system (2.3) at $\mu = c_1$. **a.** Non-smooth fold bifurcation. **b.** Persistent bifurcation. We show the transition plane Σ_1 , the boundary equilibrium (black dot) and the two branches of equilibria observed when the parameter varies. Stable (unstable) equilibria are indicated in solid (dashed and dotted) line. The inset diagrams show one coordinate of the equilibria as functions of μ .

243 values of ϵ . We show a non-smooth fold bifurcation (Fig. 3 a) where both interacting
 244 equilibria are unstable and they exist for values of $\mu > c_1$. Also, we show a persistent
 245 case (Fig. 3 b) where a stable node is transformed in an unstable focus when the
 246 value of μ is increased.

247 **3. Cycles generated in boundary equilibrium bifurcations: existence
 248 and stability.** In Section 2 we described all boundary equilibrium bifurcations of
 249 system (2.3). In particular, we found conditions for the parameters for which the
 250 system has bifurcations with one branch of unstable foci. These dynamical scenarios
 251 are particularly interesting because the rotational field around the unstable focus
 252 allows that trajectories near the transition plane to come back on that plane. This
 253 behavior is one of the properties that enable the existence of periodic solutions in the
 254 system.

255 In two dimensional systems the existence of cycles generated in an equilibrium
 256 bifurcation can be determined using analytical conditions like the ones presented in
 257 [12]. In three dimensional systems only a few results exist for very specific systems,
 258 for example, if the two equilibria interacting in the bifurcation are foci (see Chapter
 259 5 of [12]). However, in the general case, the existence of limit cycles and chaotic
 260 attractors in piecewise linear three dimensional systems is an open problem.

261 In this section, we study the existence of periodic solutions related to the boundary
 262 equilibrium bifurcations already calculated for the network (2.3). If the amplitude is
 263 small enough, we find the analytical expression for the solutions by solving the system
 264 in each region separately and adding continuity conditions. Then, we analyze the
 265 stability of the cycles and prove their existence for different values of the parameters.

266 **3.1. Analytical expressions of limit cycles.** If $0 < \epsilon < \delta$ system (2.3) has
 267 an unstable focus and shows one of the two different dynamical scenarios showed in
 268 the above section (see Figure 3). In both cases, periodic solutions could be generated
 269 in the boundary equilibrium bifurcations at the critical values $\mu = c_1$ or $\mu = c_2$.
 270 In this subsection we assume that a cycle with small enough amplitude exists and
 271 we determine its analytical expression for values of the parameter near these critical
 272 values.

273 Here we consider the critical value $\mu = c_1$, where system (2.3) has the boundary
 274 equilibrium $\mathbf{x}^* \in \Sigma_1$ given in (2.10). We define $\hat{\mathbf{x}} = \mathbf{x} - \mathbf{x}^*$, $\hat{\mu} = \mu - c_1$, the transition

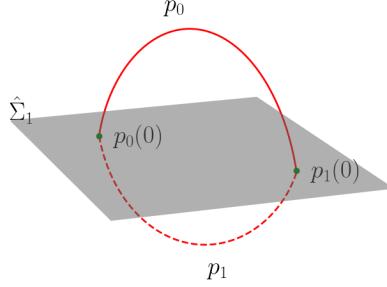


FIG. 4. A periodic solution crossing the transition plane $\hat{\Sigma}_1$. The plane divides the solution in two parts, p_0 and p_1 . The dots indicate the initial condition $p_0(0)$ and $p_1(0)$.

275 plane $\hat{\Sigma}_1$, and the regions \hat{S}_{123} and \hat{S}_{23} as the translation of the original objects
276 (defined in (2.6) and (2.7)). To analyze the behavior of the solutions to system (2.3)
277 in some neighborhood of the bifurcation value we use the translated system (2.11).
278 From Theorem 2.3 it follows that an unstable focus for (2.3) exists for $\mu > c_1$, therefore
279 an unstable focus for (2.11) exists for $\hat{\mu} > 0$. We emphasize that system (2.11) remains
280 unchanged if we consider $\hat{\mathbf{x}}$ and $\hat{\mu}$ scaled by the same positive value (the system is
281 scale invariant), therefore it is enough to study the case $\hat{\mu} = 1$.

282 Because system (2.11) is linear in each region, if a small amplitude periodic solution
283 p exists, the transition plane $\hat{\Sigma}_1$ must divide it in two parts, p_0 and p_1 , belonging
284 to the regions \hat{S}_{123} and \hat{S}_{23} , respectively (see Fig. 4). We consider the intersection
285 points $p_0(0)$ and $p_1(0)$, as the initial conditions to solve the system (2.11) in each one
286 of these regions. Thus, we obtain the expressions

$$287 \quad (3.1) \quad p_i(t) = e^{N_i t} p_i(0) + \int_0^t e^{N_i s} M \, ds, \quad i = 0, 1,$$

288 with N_0 and M as in (2.11), and

$$289 \quad (3.2) \quad N_1 = \begin{bmatrix} -1 & 0 & 0 \\ -1 + \epsilon & -1 & -1 - \delta \\ -1 - \delta & -1 + \epsilon & -1 \end{bmatrix}.$$

290 We assume that p has period $T = T_0 + T_1$, where T_i is the time that the periodic solution
291 expends in the region \hat{S}_{123} and \hat{S}_{23} , respectively. Then, the following continuity
292 conditions must be satisfied

$$293 \quad (3.3) \quad p_0(T_0) = p_1(0), \quad p_1(T_1) = p_0(0).$$

294 Adding the initial conditions $p_i(0) \in \hat{\Sigma}_1$, for $i = 0, 1$, to the conditions above we obtain
295 a system of eight transcendental equations with eight unknowns: the coordinates of
296 the points $p_i(0)$ and the times T_i for $i = 0, 1$. Solving this system we find the analytical
297 expressions for the periodic solutions of small enough amplitude of (2.3) near the
298 critical value $\mu = c_1$.

299 Now we consider the critical value $\mu = c_2$, where the boundary equilibrium $\mathbf{x}^* \in$
300 Σ_2 was defined in (2.13). Locally, in a neighborhood of the bifurcation, with a suitable
301 change of variables, the system (2.3) can be expressed in the same form of system

302 (2.11) with

303 (3.4)
$$N_1 = \begin{bmatrix} -1 & -1 - \delta & -1 + \epsilon \\ 0 & -1 & 0 \\ -1 - \delta & -1 + \epsilon & -1 \end{bmatrix}.$$

304 We observe that the unstable focus exists for values of $\mu < c_2$, so in the search for
 305 periodic solutions we consider $\hat{\mu} = -1$. The expressions of the two parts of the cycles
 306 are defined in (3.1) with the matrix N_1 defined in (3.4). Moreover, we consider the
 307 continuity conditions given by (3.3) and the initial conditions $p_i(0) \in \hat{\Sigma}_2$, for $i = 0, 1$.
 308 Again, we obtain a system of eight transcendental equations. As in the previous
 309 case, solving this system we find the expressions of cycles generated in the boundary
 310 bifurcation at $\mu = c_2$.

311 It is important to mention that, in a neighborhood of the boundary equilibrium
 312 bifurcation (at the critical values c_1 and c_2), the scale invariance of (2.11) ensures that
 313 the amplitude of the periodic solutions depends linearly on the parameter μ and their
 314 period is constant. This was observed and proved in other piecewise linear neural
 315 models [6, 29]. However, if the value of the constant input μ is far from the critical
 316 value, the cycles could show transformations (when they interact with the transition
 317 planes) that change their amplitude and period. We consider this situation in the
 318 subsection 4.1.

319 **3.2. Stability of the limit cycles.** Once we found a periodic solution p we can
 320 calculate its stability by applying Floquet theory (see, for example, [14, 17]). The
 321 linearized equation for the perturbation Δp of the cycle results in

322 (3.5)
$$\frac{d\Delta p}{dt} = J(p(t))\Delta p, \quad \Delta p(0) = \Delta p_0,$$

323 where J is the Jacobian of the system evaluated along the cycle and Δp_0 is a small per-
 324 turbation of $p(0)$. For our system the Jacobian is piecewise constant, the correspond-
 325 ing matrices are N_0 or N_1 depending on the region, then we obtain the monodromy
 326 matrix

327 (3.6)
$$\Phi(T) = e^{N_1 T_1} e^{N_0 T_0}.$$

328 The eigenvalues of $\Phi(T)$ are the Floquet multipliers. There is always a multiplier
 329 equal to 1 associated with the cycle p (see, for example, [14, 17]). If the rest of the
 330 multipliers lie inside the unit circle, then the cycle is stable.

331 We note that for the two critical values of μ considered in the above section, $\mu = c_1$
 332 and $\mu = c_2$, the difference in the monodromy matrix is given by the matrix N_1 , defined
 333 by (3.2) and (3.4), respectively. Also, we observe that the Floquet multipliers of the
 334 cycles with small enough amplitude do not depend on the values of the parameter μ
 335 because the period T of the cycles is constant near the critical values.

336 **3.3. Existence of limit cycles.** In subsection 3.1 we found that the existence of
 337 cycles generated in a boundary equilibrium bifurcation is equivalent to the existence of
 338 solutions to certain system of transcendental equations. In this subsection we reduce
 339 the dimensionality of this system and prove the existence of solutions by using the
 340 Kantorovich theorem for the Newton-Raphson method [26].

341 We consider the system given by

342 (3.7)
$$p_0(T_0) = p_1(0), \quad p_1(T_1) = p_0(0), \quad p_i(0) \in \Sigma, \quad i = 0, 1,$$

343 where p_i are defined in (3.1) and Σ is the transition plane crossed by the cycle ($\hat{\Sigma}_1$ or
 344 $\hat{\Sigma}_2$ depending on the considered critical value). As we already mentioned, this system
 345 of transcendental equations has eight unknowns: the coordinates of the points $p_i(0)$
 346 and the time values T_i , for $i = 0, 1$.

347 The expressions (3.1) and the continuity conditions allow us to write the following
 348 equations

349 (3.8)
$$e^{N_0 T_0} p_0(0) + \int_0^{T_0} e^{N_0 s} M ds = p_1(0), \quad e^{N_1 T_1} p_1(0) + \int_0^{T_1} e^{N_1 s} M ds = p_0(0).$$

350 By replacing $p_0(0)$ on the left for the expression on the right and solving the integrals
 351 we obtain the following system of three equations

352 (3.9)
$$A p_1(0) = B,$$

353 where

354 (3.10)
$$A = (e^{N_0 T_0} e^{N_1 T_1} - I),$$

355 with I the 3×3 identity matrix, and B is a 3×1 matrix given by

356 (3.11)
$$B = e^{N_0 T_0} N_1^{-1} (I - e^{N_1 T_1}) M + N_0^{-1} (I - e^{N_0 T_0}) M.$$

357 Since (3.6) has an eigenvalue equal to 1, $\det(A) = \det(e^{N_1 T_1} e^{N_0 T_0} - I) = 0$ and
 358 the matrix A is non-invertible. Thus, the system (3.9) cannot be solved to find $p_1(0)$,
 359 hence we reduce it by considering the initial conditions $p_i(0) \in \Sigma$. Since $p_1(0) \in \Sigma$,
 360 we have $n \cdot p_1(0) = 0$, where $n = [n_1, n_2, n_3]$ is normal to the plane Σ . Thus, by
 361 considering $p_1(0) = (\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)$ and $n_3 \neq 0$, we can write the last coordinate \tilde{x}_3 as a
 362 combination of the first two (here we suppose that $n_3 \neq 0$, if it is not the case, then
 363 we change the selection of coordinates on $p_1(0)$). In the new coordinates the system
 364 (3.9) results in

365 (3.12)
$$D \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},$$

366 where

367 (3.13)
$$D = \frac{1}{n_3} \begin{bmatrix} n_3 a_{11} - n_1 a_{13} & n_3 a_{12} - n_2 a_{13} \\ n_3 a_{21} - n_1 a_{23} & n_3 a_{22} - n_2 a_{23} \end{bmatrix},$$

368 being a_{ij} and b_i the elements of A and B respectively.

369 The elements in the matrix A depend on the times T_0 and T_1 . For T_0 and T_1
 370 exist such that $\det(D) \neq 0$, we solve the system (3.12) and find the expressions of
 371 the coordinates $\tilde{x}_1(T_0, T_1)$ and $\tilde{x}_2(T_0, T_1)$. Thus, we obtain an expression of the point
 372 $p_1(0)$ as a function of T_0 and T_1 .

373 Now, the condition $p_0(0) \in \Sigma$ can be expressed in the form

374 (3.14)
$$F_1(T_0, T_1) := n \cdot (e^{N_1 T_1} p_1(0) + N_1^{-1} (e^{N_1 T_1} - I) M) = 0,$$

375 and the third equation in the system (3.9) yields

376 (3.15)
$$F_2(T_0, T_1) := [a_{31}, a_{32}, a_{33}] \cdot p_1(0) - b_3 = 0.$$

377 So, we reduce the original system (3.7) to

378 (3.16)
$$(F_1(T_0, T_1), F_2(T_0, T_1)) = 0.$$

379 A solution to equation (3.16) that satisfies $\det(D) \neq 0$, corresponds to a periodic
 380 solution of small enough amplitude for the network (2.3). Despite the low dimen-
 381 sionality of (3.16), its complexity makes it difficult to prove the existence of solutions
 382 in the general case. However, one advantage of this system is that its solutions can
 383 be interpreted as the intersection of curves in the (T_0, T_1) plane, which allows for a
 384 geometric (graphic) study of the system as the parameters vary. Once we find values
 385 for the parameters δ and ϵ such that (3.16) has a solution, we prove its existence by
 386 using the following Kantorovich's convergence result [26].

387 Let $F : X \rightarrow Y$ be an operator, where X and Y are Banach spaces. We consider
 388 the recurrent method defined by

389 (3.17)
$$x_{k+1} = x_k - F'(x_k)^{-1}F(x_k), \quad k = 0, 1, \dots,$$

390 where $F'(x_k)$ is the Fréchet derivative of $F(x)$ at the point x_k .

391 **THEOREM 3.1** (Kantorovich). *Assume that F is defined and twice continuously
 392 differentiable on a ball $B = \{x : \|x - x_0\| \leq r\}$, the linear operator $F'(x_0)$ is invertible,
 393 $\|F'(x_0)^{-1}F(x_0)\| \leq \eta$, $\|F'(x_0)^{-1}F''(x)\| \leq K$, $x \in B$, and*

394 (3.18)
$$h = K\eta < \frac{1}{2}, \quad r \geq \frac{1 - \sqrt{1 - 2h}}{h}\eta.$$

Then, the equation $F(x) = 0$ has a solution $x^* \in B$, the process (3.17) is well defined
 and converges to x^* with quadratic rate:

$$\|x_k - x^*\| \leq \frac{\eta}{h2^k} (2h)^{2^k}.$$

395 To apply this theorem to our system (3.16), we define the nonlinear operator
 396 $F : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ as $F(T_0, T_1) = (F_1(T_0, T_1), F_2(T_0, T_1))$. As a first example, we consider
 397 the fixed values $\delta = 1/2$ and $\epsilon = 2/5$. We choose the initial value $x_0 = (6, 2.7)$ and the
 398 ball B around x_0 with ratio $r = 0.25$. Considering the expressions of F_1 and F_2 , we
 399 prove that F is twice continuously differentiable on B , and that $F'(x_0)$ is invertible.
 400 In addition, we have $\|F'(x_0)^{-1}F(x_0)\| \leq \eta = 0.05$ and $\|F'(x_0)^{-1}F''(x)\| \leq K = 8$,
 401 for all $x \in B$. Thus, the hypotheses of the theorem are satisfied. This proves the
 402 existence of a unique solution x^* of (3.16) in B , which could be calculated with the
 403 recursive method (3.17) (see Fig. 5 a). Next, we consider $\delta = 1/2$ and $\epsilon = 1/4$,
 404 the initial value $x_0 = (6.4, 6.6)$ and the ball B around x_0 with radius $r = 0.2$. The
 405 operator F is twice continuously differentiable on B , and $F'(x_0)$ is invertible. Also,
 406 we note that $\|F'(x_0)^{-1}F(x_0)\| \leq \eta = 0.12$ and $\|F'(x_0)^{-1}F''(x)\| \leq K = 3.7$, for all
 407 $x \in B$. Thus, we can apply the theorem and prove the existence of a unique solution
 408 x^* of (3.16) in B (see Fig. 5 b).

409 We also note that system (3.16) has no solutions when the parameter ϵ is below
 410 some threshold value ϵ^* which changes depending on δ . This can be easily seen from
 411 a graphical study of (3.16) when the value of ϵ decreases. In these cases, there are no
 412 small amplitude periodic solutions of (2.3) and numeric calculations indicate that all
 413 solutions are attracted by an equilibrium of the system (\mathbf{x}_2^* or \mathbf{x}_3^* depending on the
 414 considered region). When ϵ is decreasing and approaching to the threshold value, we
 415 see that T_1 is increasing and T_0 remains near a fixed value. The time T_1 spent by the

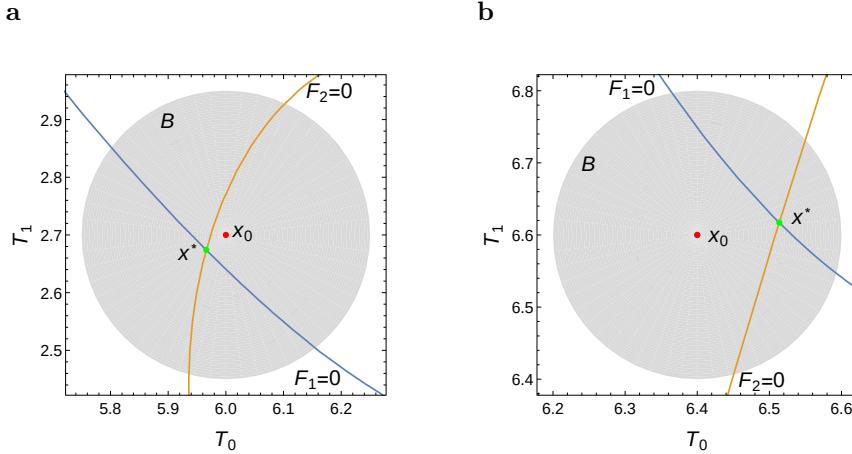


FIG. 5. *Solutions of (3.16) for fixed values of the parameters. a. $\delta = 1/2$ and $\epsilon = 2/5$. b. $\delta = 1/2$ and $\epsilon = 1/4$. The point x_0 is the initial condition and x^* the unique solution on B .*

416 limit cycle trajectory in the region S_{23} grows because this trajectory of the solution
 417 is near a stable direction of a saddle equilibrium. We conjecture that these behaviors
 418 are connected to the existence of a heteroclinic orbit in the system, but a detailed
 419 investigation of this issue is beyond the scope of the present work.

420 **3.4. Branches of cycles near the equilibrium bifurcations.** For values of
 421 the parameter μ near a boundary equilibrium bifurcation, the existence of a solution
 422 to (3.16) implies the existence of a branch of periodic solutions generated in that
 423 bifurcation point. These branches exist for non-smooth fold and persistent bifurca-
 424 tions. For the cycles in these branches, the amplitude depends linearly on μ and the
 425 frequency is constant.

426 For example, we consider the fixed values $\delta = 1/2$ and $\epsilon = 1/4$. The system
 427 (2.3) has a non-smooth fold bifurcation at the critical value $\mu = c_1 = 17/24$. We
 428 already know that (3.16) has a solution (Fig. 5 b). Now we find a branch of periodic
 429 solutions for values of the parameter $\mu > c_1$ and near that critical value. In Figure 6
 430 we show the amplitude of each variable for the cycles in the branch, and the variables
 431 as functions of the time for one of these cycles. The period for each cycle in the
 432 branch is $T = T_0 + T_1 = 6.5137 + 6.6171 = 13.1308$ and the Floquet multipliers are
 433 $\{1, 0.0148303, 9.02392 \times 10^{-16}\}$, thus, the cycles are stable. For the same values of δ
 434 and ϵ , another branch of stable cycles exists for values of the parameter $\mu < c_2 = 22/15$
 435 and near that value (not shown).

436 **4. Dependence of the limit cycle properties on the model parameters.**
 437 As we showed in the above section, limit cycles exist in a neighborhood of the critical
 438 values $\mu = c_1$ and $\mu = c_2$. In both cases, the amplitude of the cycles depends linearly
 439 on μ for values near the critical value. But, what is the dependence when the value of
 440 the parameter μ is far from the critical values? In this section we study the attributes
 441 (amplitude and period) of the periodic solutions of (2.3) for a large range of values
 442 for the parameter μ . In addition, we describe how the connection parameters δ and ϵ
 443 modify the periodic solutions.

444 **4.1. Constant input μ .** By increasing (decreasing) the values of μ from the
 445 critical values c_1 (c_2), a branch of limit cycles is generated and the amplitude of each

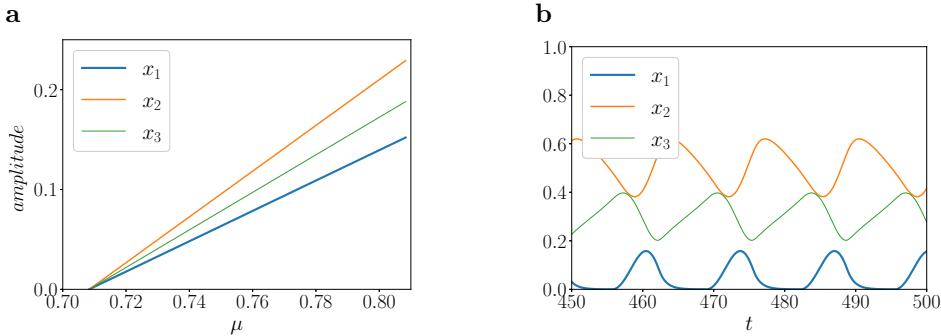


FIG. 6. Branch of cycles generated in a non-smooth fold bifurcation. **a.** Amplitude of each variable as function of the parameter μ . **b.** Coordinates of the cycle for $\mu = 0.76$ as function of t .

446 variable grows until one of the cycles touches tangentially a transition plane different
447 from the one it crossed originally. These contact points are called grazing points [12],
448 next we describe them in the context of our model.

449 Let p be a periodic solution of (2.3), and let $\Sigma = \{x \in \mathbb{R}^3 : f(x) = 0\}$ be one
450 of the transition planes (defined in (2.6)). The system has a *regular grazing point* in
451 $x_g = p(t_g)$ if $\nabla f(x_g) \neq 0$ and the following conditions are satisfied

$$452 \quad (4.1) \quad f(x_g) = 0, \quad \left. \frac{df(p(t))}{dt} \right|_{t=t_g} = 0, \quad \left. \frac{d^2 f(p(t))}{dt^2} \right|_{t=t_g} \neq 0.$$

453 The solution p is called a *grazing solution* of the system. The first two conditions in
454 (4.1) ensure that p is tangential to Σ in the point x_g . The third condition establishes
455 that, in a neighborhood of $t = t_g$, the solution p belongs to one of the regions in \mathbb{R}^3
456 determined by Σ .

457 For a given branch of limit cycles generated in a boundary bifurcation, we calculate
458 the *grazing values* μ_g using the analytical expression of the cycle and the first
459 two conditions in (4.1). Then we check that the third condition is also satisfied. To
460 this end, we calculate the grazing values μ_g in which a periodic solution of (2.3) has
461 a regular grazing point. Since the calculated points are regular, the cycle does not
462 disappear when the parameter μ varies. Moreover, it has the same curvature sign near
463 the grazing point for values of the parameter near μ_g . However, both the amplitude
464 and frequency of the cycle are modified after it crosses Σ , so the grazing values are
465 important to describe them.

466 As an example, in Figure 7 we show a regular grazing point of a cycle generated
467 in a non-smooth fold bifurcation of (2.3). The situation is also presented in a 2D
468 projection for clarity in the visualization. Originally, the cycle crosses the plane Σ_1
469 (Fig. 7 a). As the value of μ increases we find a grazing point at $\mu = \mu_g$ with the
470 plane Σ_3 (Fig. 7 b). For values of $\mu > \mu_g$ the cycle crosses Σ_3 keeping the same
471 curvature sign near the grazing point (Fig. 7 c).

472 It is important to mention that, by varying the values of μ , the cycles cross
473 different transition planes. For $\mu = 1$ we observe that the limit cycle for system
474 (2.3) is divided into exactly six parts and that it evolves along four regions in the
475 following order: $S_{23} \rightarrow S_{123} \rightarrow S_{13} \rightarrow S_{123} \rightarrow S_{12} \rightarrow S_{123}$ (see Subsection 6.1
476 for further details). Heuristically, we observe that for system (2.3) a cycle could be
477 divided in at most six parts, but a proof of this result is beyond the scope of this

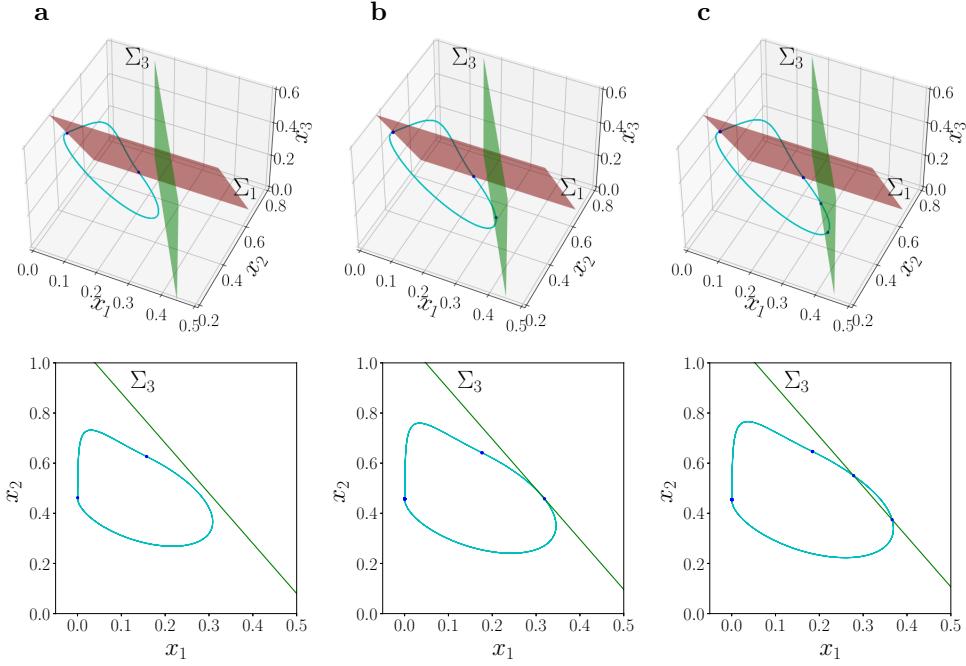


FIG. 7. Example of grazing point in a periodic solution of (2.3) at a grazing critical value μ_g . Solution and transition planes in the 3D state space (upper row) and a projection in the x_1 - x_2 plane (lower row). Value of the parameter: a. $\mu < \mu_g$. b. $\mu = \mu_g$. c. $\mu > \mu_g$. The blue dots indicate the intersection between the periodic solution and the transition planes.

478 paper. Regardless of the number of parts in which the cycle is divided, its analytical
 479 expression is calculated by applying the same ideas we developed for a cycle with
 480 two parts in Subsection 3.1 (by solving the equation in each region and considering
 481 continuity conditions). In all cases, by performing the reduction in Subsection 3.3,
 482 we obtain a system of transcendental equations that can be numerically solved. To
 483 calculate the different grazing values of μ we add the conditions in (4.1). We calculate
 484 the stability of these cycles by adapting the calculations in Subsection 3.2.

485 In Figure 8 we show the periodic solutions observed in a non-smooth fold case for
 486 the indicated values of the parameters. We plot the amplitude of each variable of the
 487 cycle (Fig. 8 a) and its frequency (Fig. 8 b) as functions of the input parameter μ .
 488 We note that a stable limit cycle is generated in the bifurcation at the critical value
 489 $\mu = c_1$, then, it has four regular grazing points when the value of μ increases, and
 490 finally the cycle disappears in the bifurcation at $\mu = c_2$. As we mention, the frequency
 491 is constant for values of the parameter near the critical values. For $\mu = 1$ the network
 492 has a cyclic symmetry, the activity of the nodes is the same with a translation in time
 493 (Fig. 9 b) so the amplitude is the same for each node, furthermore, this particular
 494 cycle has the largest frequency of the whole branch. For values of μ near the critical
 495 value, the activity of each node is concentrated around the correspondent unstable
 496 fixed point (Fig. 9 a and c). In addition, we observe that the activity of one node is
 497 near zero in a big part of the period whereas the other nodes are always active. The
 498 amount of input μ received by the third node ($\mu < 1$ or $\mu > 1$) determines which node
 499 remains almost deactivated for a long time (node 1 or node 2, respectively).

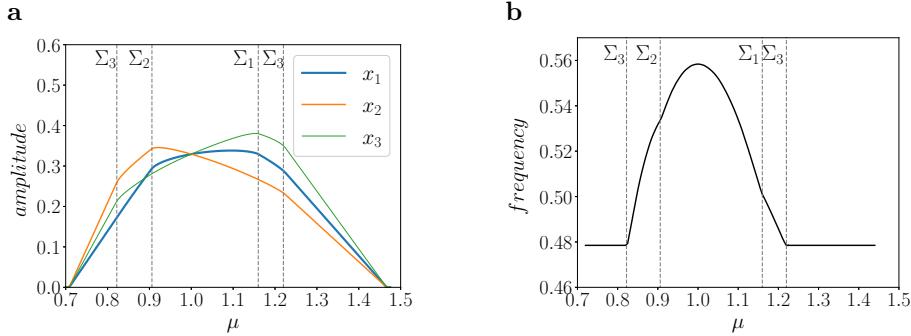


FIG. 8. Stable periodic solutions of network (2.3) varying the parameter μ for the fixed values $\delta = 1/2$ and $\epsilon = 1/4$. **a.** Amplitude $((x_{\max} - x_{\min})/2)$ of each variable. **b.** Frequency of the periodic solutions. The vertical dashed lines correspond to grazing points with the indicated transition planes.

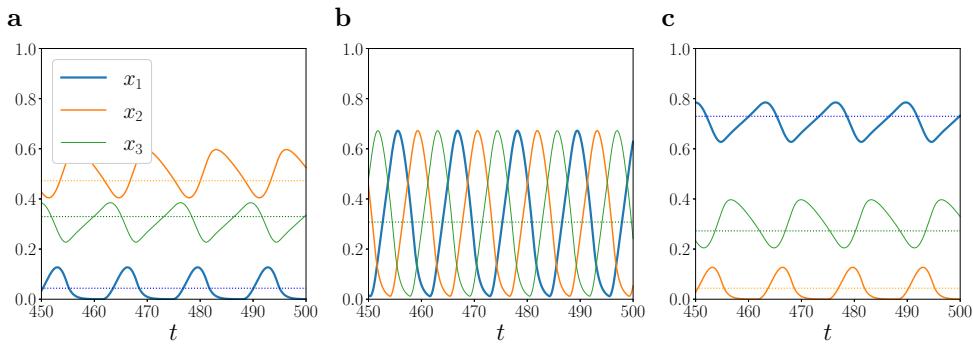


FIG. 9. Periodic solutions of the network (2.3) varying the parameter μ for the fixed values $\delta = 1/2$ and $\epsilon = 1/4$. **a.** $\mu = 0.75$. **b.** $\mu = 1$. **c.** $\mu = 1.4$. The horizontal dotted lines are the coordinates of the associated unstable focus.

500 **4.2. Connection parameters.** In this subsection we consider different values
 501 of the connection parameters ϵ and δ and show the different limit cycles produced.
 502 First we consider a fixed value of δ and a big range of the (μ, ϵ) parameter space, then
 503 we vary the value of the parameter δ .

504 As a representative example we consider $\delta = 1/2$. We obtain similar bifurcation
 505 diagrams for other values of $\delta > 0$. For this value of δ we consider $\epsilon^* < \epsilon < \delta$,
 506 with $\epsilon^* \approx 0.159$, since for values of $\epsilon < \epsilon^*$ cycles generated in boundary bifurcations
 507 are not found (see Subsection 3.3). In Figure 10 we show the resulting bifurcation
 508 diagram. The results regarding the equilibria and their bifurcations were presented
 509 in Section 2. For values of the parameter on the left vertical-lined region the unique
 510 stable solution of the system is the equilibrium $\mathbf{x}_2^* = [0, 1, 0]^T$ belonging to S_2 (see
 511 (2.7)), so the node 2 is the only one active in the network. For values on the right
 512 vertical-lined region the unique stable solution is the equilibrium $\mathbf{x}_3^* = [0, 0, \mu]^T$ in
 513 the region S_3 , and the node 3 is the only one active. The black curves correspond
 514 to the critical values c_i , for $i = 1, \dots, 4$, defined in (2.9). In the shadowed region a
 515 stable limit cycle exists, which is generated (destroyed) in the boundary equilibrium
 516 bifurcation at c_1 on the left (c_2 on the right) as the value of μ increases. For values of
 517 the parameters near the black curves the amplitude of the periodic solutions is small

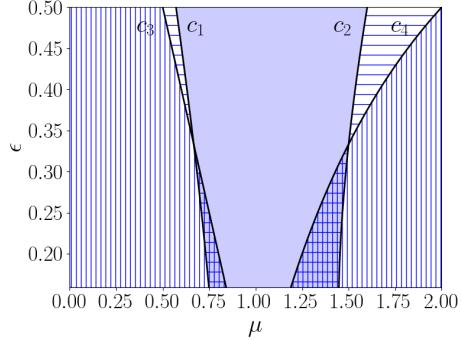


FIG. 10. Bifurcation diagram of network (2.3) for $\delta = 1/2$. The black curves indicate the critical values c_i where boundary equilibria bifurcation are observed (see (2.9)). The left (right) vertical-lined region corresponds to the existence of a stable equilibrium of the network belonging to S_2 (S_3) (see (2.7)). The left (right) horizontal-lined region corresponds to the existence of a equilibrium of the network belonging to S_{23} (S_{13}). In the upper (lower) horizontal-lined regions the equilibrium is stable (unstable). In the shadowed region the network has a stable limit cycle. In the lined-shadowed regions the network shows multistability.

518 and depend linearly on μ (see Fig. 8). The value $\epsilon_c = \delta/(1 + \delta)$ divides the diagram
 519 in two parts depending on the type of equilibrium bifurcations. If $\epsilon > \epsilon_c$ the network
 520 shows four persistent equilibrium bifurcations when the value of μ increases, whereas
 521 if $\epsilon^* < \epsilon < \epsilon_c$ the network shows four non-smooth fold bifurcations. In the last case,
 522 the system shows bistability. There are two regions (lined-shadowed regions) where
 523 two stable attractors coexist, an equilibrium (\mathbf{x}_2^* on the left and \mathbf{x}_3^* on the right) and
 524 the limit cycle generated in the non-smooth fold bifurcation. We note that the region
 525 of multistability is larger for larger values of the constant input μ .

526 Now, we consider different fixed values of μ , and the connection parameters ϵ and
 527 δ in a range where stable limit cycles exist (shadowed region in Fig. 10). First, we
 528 calculate the frequencies of the cycles (Fig. 11 a and b). We observe that for all
 529 values of ϵ and δ the largest frequencies are obtained when all the nodes have the
 530 same constant input, that is, when $\mu = 1$. Also, we observe that the frequencies
 531 increase as the weak inhibition becomes weaker (the value of ϵ increases), and they
 532 tend to the same constant value as ϵ tends to δ (Fig. 11 a). In contrast, as the
 533 strong inhibition increases (the value of δ increases), the frequencies increase, reach
 534 a maximum and then decrease (Fig. 11 b). Finally, we mention that changes in
 535 the weak inhibition affect more the range of frequencies than variations in the strong
 536 inhibition. To compare the amplitudes we first consider the case $\mu = 1$. As we already
 537 mentioned, for this value of μ there is a symmetry in the network and the amplitude
 538 is the same for each node, we calculate and show this amplitude as a function of the
 539 parameters (Fig. 11 c and d). We observe that the amplitude of the symmetric cycle
 540 decreases as the weak inhibition becomes weaker, whereas, it slightly decreases and
 541 then increases as the strong inhibition becomes stronger. For values of $\mu \neq 1$ some
 542 of the amplitude variables increase and others decrease depending on the coordinates
 543 of the unstable focus near the trajectory of the solution. However, we observe that,
 544 as the (weak or strong) inhibition between nodes is weaker (values of ϵ increases or
 545 values of δ decreases, respectively), the trajectory of each variable is more uniformly
 546 distributed around the coordinates of the unstable focus within a period (Fig. 12).

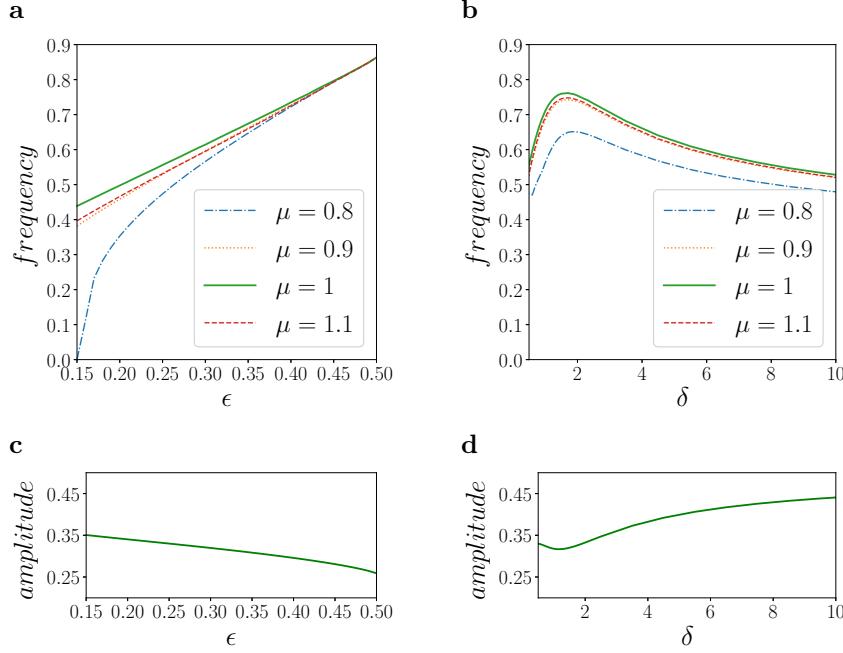


FIG. 11. Frequencies and amplitudes of periodic solutions of network (2.3). **a.** Frequency as function of ϵ for the indicated values of μ and $\delta = 1/2$. **b.** Frequency as function of δ for the indicated values of μ and $\epsilon = 1/4$. **c.** Amplitude as function of ϵ for $\mu = 1$ and $\delta = 1/2$. **d.** Amplitude as function of δ for $\mu = 1$ and $\epsilon = 1/4$.

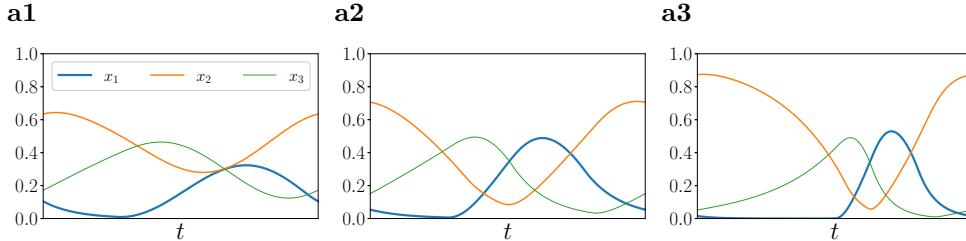


FIG. 12. Variables for different cycles normalized to one period. **a1.** $\delta = 0.5$, $\epsilon = 0.4$ and $\mu = 0.8$. **a2.** $\delta = 1$, $\epsilon = 0.4$ and $\mu = 0.8$. **a3.** $\delta = 1$, $\epsilon = 0.2$ and $\mu = 0.8$.

547 **5. Entrainment of cycles in three-node networks.** In this section we con-
 548 sider a three-node threshold-linear network in the sustained oscillations regime. We
 549 assume that an external sinusoidal input is added to one of the nodes and, by defin-
 550 ing a Poincaré map, we numerically determine how the input modifies the oscillatory
 551 solutions of the network.

552 We consider the network (2.3) with a sinusoidal input applied to the first node

$$553 \quad (5.1) \quad \frac{dx_i}{dt} + x_i = \left[\sum_{j=1}^n W_{ij} x_j + B_i + I_{in,i}(t) \right]_+, \quad i = 1, 2, 3,$$

554 where $B = [1, 1, \mu]^T$, and the sinusoidal input is given by

555 (5.2)
$$I_{in,1}(t) = A_{in} \frac{1 + \sin(\omega_{in}t)}{2},$$

556 where A_{in} is the input amplitude and ω_{in} is the input frequency, and $I_{in,i}(t) = 0$ for
557 all $i \neq 1$.

558 The network (5.1) responds to the periodic input with a solution that could be
559 periodic, quasi-periodic or chaotic. If the response is periodic with frequency ω_{rsp} , and
560 the response and input frequencies satisfy $\omega_{rsp}/\omega_{in} = p/q$, for a pair of values $p, q \in \mathbb{N}$,
561 it is said that the network is *entrained* by the input, and the response is a $p : q$ *mode-locked*
562 solution. We study the entrainment regions by considering the Arnold tongues
563 of the network, which are bifurcation diagrams in the parameter space (ω_{in}, A_{in}) .
564 The tongue borders correspond to parameter values where cycle bifurcations (such
565 as period doubling and Neimark-Sacker) are observed. For values of the parameter
566 inside the tongues the solutions are synchronized with the input (entrained) with $p : q$
567 rate. In the rest of the parameter space the solutions are quasi-periodic or chaotic.

568 The entrainment of oscillatory solutions in neural models for both single oscillators
569 and oscillatory networks has been studied with different mathematical tools, and
570 usually the investigation combines analytical and numerical results [5, 6, 19, 20, 23,
571 27]. In our model it is possible to obtain systems of transcendental equations for which
572 solutions are in correspondence with points in the tongue borders. These systems are
573 obtained (as in [6]) adding bifurcation conditions to the analytical expressions of the
574 cycles calculated in Section 3. However, the dimension and complexity of these system
575 make them difficult to solve even by using numerical techniques. Because of this, we
576 develop a numerical calculation of the Arnold tongues by defining a Poincaré section
577 and an associated return map to find and describe the mode-locked cycles.

578 We define the Poincaré section as the plane $x_1 = c^*$, where c^* is the first coordinate
579 of the unstable equilibrium \mathbf{x}_{123}^* for the network without sinusoidal input (see (2.8)).
580 For fixed values of the input parameters (A_{in} and ω_{in}) we calculate the solutions and
581 consider their values for a constant time, large enough to avoid the transitory effect of
582 the initial conditions. To study the return map, we save all times T_i and points $\mathbf{x}(T_i)$
583 in which the solution crosses the Poincaré section in a selected direction. If the map
584 has a fixed point, i.e., if $\mathbf{x}(T_i)$ is the same for all i , and the instant period $T_i - T_{i-1}$
585 is constant, the solution is a $1 : q$ mode-locked solution. The q value is calculated
586 as the average frequency (approximated by using the instant periods) divided by the
587 input frequency. If the map has a cycle of period two and the instant periods form
588 a sequence of two intercalated values, the network solution is a $2 : q$ mode-locked
589 solution. In general, we extend the above procedure to cycles of period p in the map,
590 to find the $p : q$ mode-locked solutions. In all cases, the q value is calculated as we
591 explained above.

592 *Remark 5.1.* The proposed calculation of the Arnold tongues is not accurate if
593 the input amplitude is large because of the grazing points that can appear in the
594 solutions. In these cases, for example, a $p : q$ mode-locked solution can be seen as
595 a $1 : q$ mode-locked solution. One option to avoid this problem is consider different
596 Poincaré sections and compare the different Arnold tongues.

597 **5.1. Results for the three-node network with cyclic symmetry.** Figure 13
598 shows the Arnold tongues for the three-node network (5.1) with $\mu = 1$ and the values
599 of the connection parameters indicated in the figure. We labeled each region with the
600 $p : q$ type of entrainment. As is expected, each region is expanded from a rational

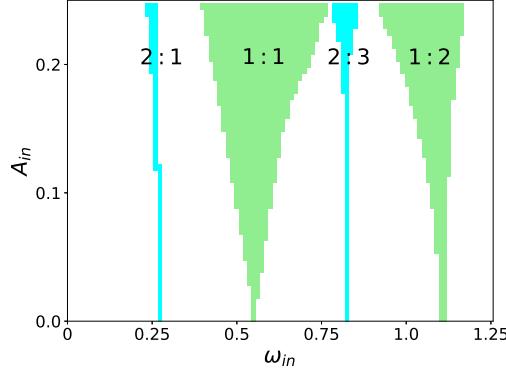


FIG. 13. Numerical simulations of Arnold tongues for the three node network with sinusoidal input, $\mu = 1$, $\delta = 1/2$ and $\epsilon = 1/4$. The shadowed regions correspond to the different tongues and the labels indicate the $p : q$ type of entrainment. The cycle without input has frequency $\omega \approx 0.553$.

601 fraction of the frequency observed without input, and all regions have wedge form,
 602 since the entrained solutions are observed for a larger range of the input frequencies
 603 when the input amplitude increases. In Figure 14 we show four entrained responses, a
 604 $1 : 1$ mode-locked solution (Fig. 14 a), where both the response and input frequencies
 605 are the same, and examples of $1 : 2$, $2 : 1$ and $2 : 3$ mode-locked solutions (Figs. 14
 606 b, c and d, respectively). Finally, in Figure 15 we show two quasi-periodic solutions.
 607 In this last case, to simplify the visualization, we only show the maximum values for
 608 the trajectories of each variable of the cycle.

609 Now we consider a fixed value of the input amplitude and take a horizontal section
 610 of the Arnold tongues. Thus, we can represent a curve in the $(\omega_{in}, \omega_{rps}/\omega_{in})$ space,
 611 known as *devil's staircase*, that shows different entrainment regions which correspond
 612 to the different Arnold tongues. We show an example (Fig. 16 a) of a devil's staircase
 613 obtained for a fixed values of A_{in} and the other parameter values as in Figure 13. To
 614 reduce the calculations and compare the response of networks when the connection
 615 parameters vary, we calculate different devil's staircases. In particular, we consider
 616 three different values of ϵ (Fig. 16 b). We observe that the entrainment regions are
 617 smaller when the weak inhibition is weaker (that is, as the value of ϵ increases), with
 618 exception of the $1 : 1$ region that is slightly larger. In addition, we mention that, as
 619 the value of ϵ is increased, all entrainment regions are obtained for greater values of
 620 the input frequency, since the frequency of the network without input is increased.

621 The Arnold tongues and their devil's staircases contain a lot of information about
 622 the response frequency but do not provide us with any information about the response
 623 amplitude when the input varies. To analyze this we observe the amplitude of each
 624 variable in the $1 : 1$ entrainment region considering two cases, a constant input am-
 625 plitude A_{in} or a constant input frequency ω_{in} . In the first case, we observed that
 626 the response amplitudes are not constant when the value of the input frequency is
 627 increased (Fig. 16 a). Moreover, the smallest amplitudes are reached in the largest
 628 input frequency, and for the nodes 2 and 3 the amplitudes decrease in the whole
 629 range. In the second case (fixed values of the input frequency), the amplitude of the
 630 node 1 (receiving the input) is increasing as a function of the input amplitude, and
 631 it increases slower as the frequency is closer to the frequency without input (Fig. 16
 632 b). The amplitudes of node 2 and 3 are decreasing, with exception of the amplitude

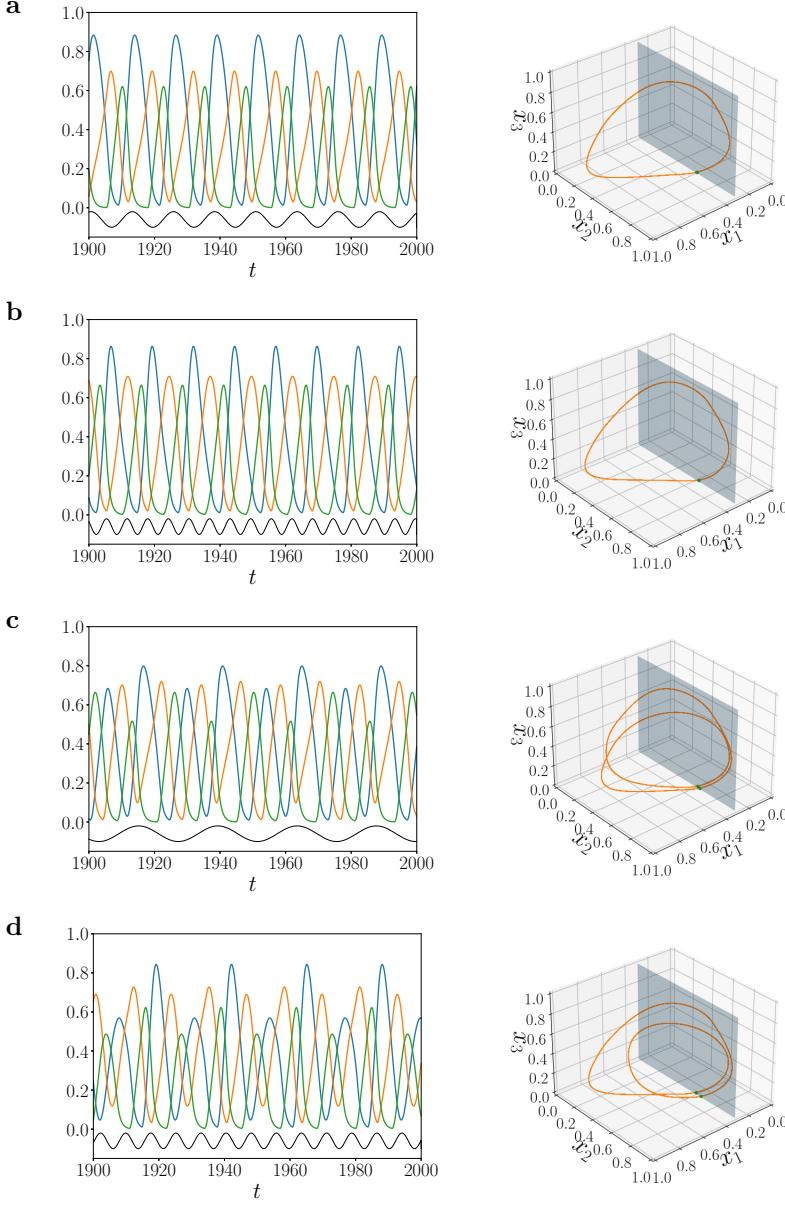


FIG. 14. Examples of mode-locked cycles for the Arnold tongues in Figure 13. Left column: trajectories as functions of t and a representation of the sinusoidal input (black curve). The input is added to the node one (blue curve). Right column: cycle in the 3D space and its intersections with the Poincaré plane. **a.** 1 : 1 mode-locked cycle for the input frequency $\omega_{in} = 0.5$. **b.** 1 : 2 mode-locked cycle for the input frequency $\omega_{in} = 1$. **c.** 2 : 1 mode-locked cycle for the input frequency $\omega_{in} = 0.26$. **d.** 2 : 3 mode-locked cycle for the input frequency $\omega_{in} = 0.82$. In all cases we consider $A_{in} = 0.2$, $\mu = 1$, $\delta = 1/2$ and $\epsilon = 1/4$.

633 of node 2 when ω_{in} is equal to the frequency without input.

634 To summarize: If the forcing is strong enough, it entrains the network. When
635 the inhibition (weak or strong) between nodes is strong, we observe a large amount

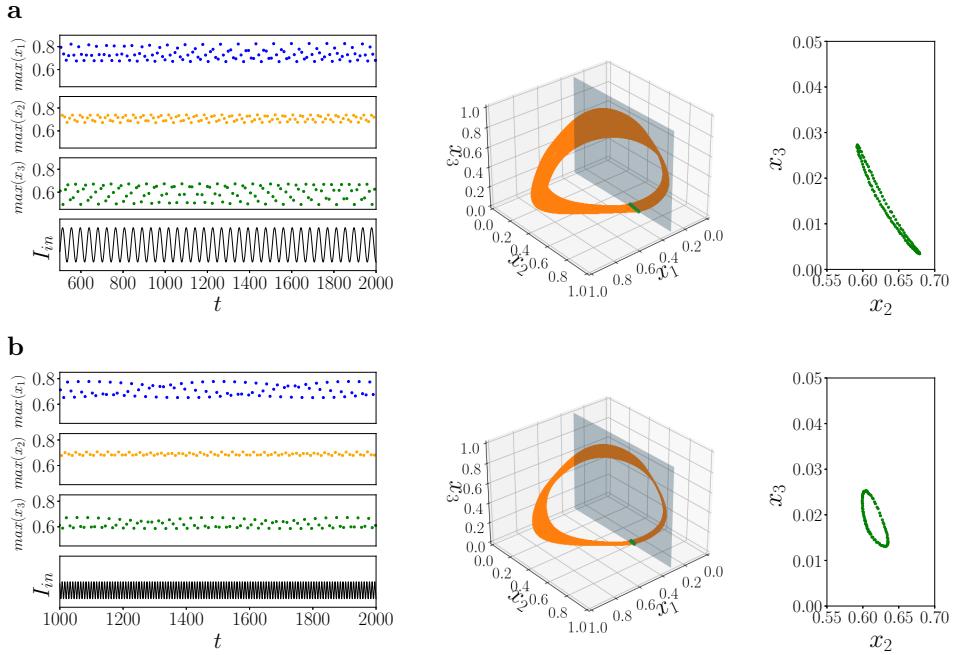


FIG. 15. Quasi-periodic cycles in the three-node network considered in Figure 13 (for the fixed values $\mu = 1$, $\delta = 1/2$ and $\epsilon = 1/4$). Left column: maximum of each variable as function of t . Center column: solution in the 3D space and its intersections with the Poincaré plane. Right column: Poincaré map. **a.** Input parameters: $\omega_{in} = 0.15$ and $A_{in} = 0.2$. **b.** Input parameters: $\omega_{in} = 0.75$ and $A_{in} = 0.1$.

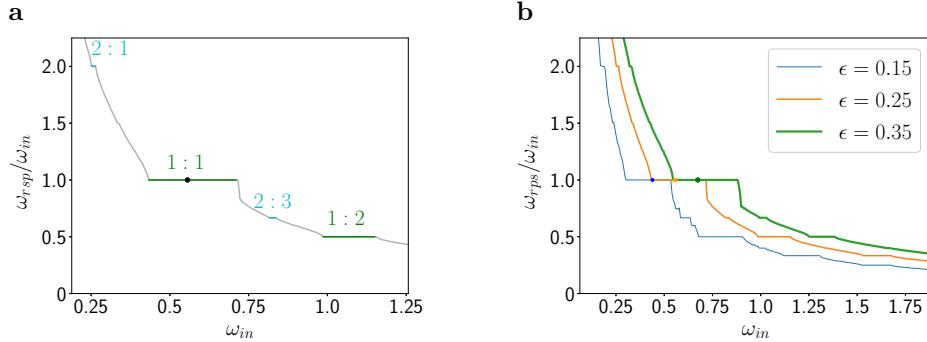


FIG. 16. Devil's staircase for different three-node networks. **a.** Devil's staircase for the fixed values $A_{in} = 0.2$, $\mu = 1$, $\delta = 1/2$ and $\epsilon = 1/4$. We labeled the entrainment regions with the $p : q$ rate of entrainment. **b.** Networks for $\mu = 1$, $\delta = 1/2$ and different values of ϵ . The dots indicate the frequency of the periodic solution to the network without input.

636 of entrainment regions in a fixed range of frequency inputs. We obtain quasi-periodic
637 solutions if the input is weak or has frequency far from the resonant frequencies.

638 **6. Cycles in networks with cyclic symmetry and their entrainment.**
639 Here we extend the work developed in the previous sections by studying networks of
640 three or more nodes with all-to-all connections and cyclic symmetry (see Fig. 18).

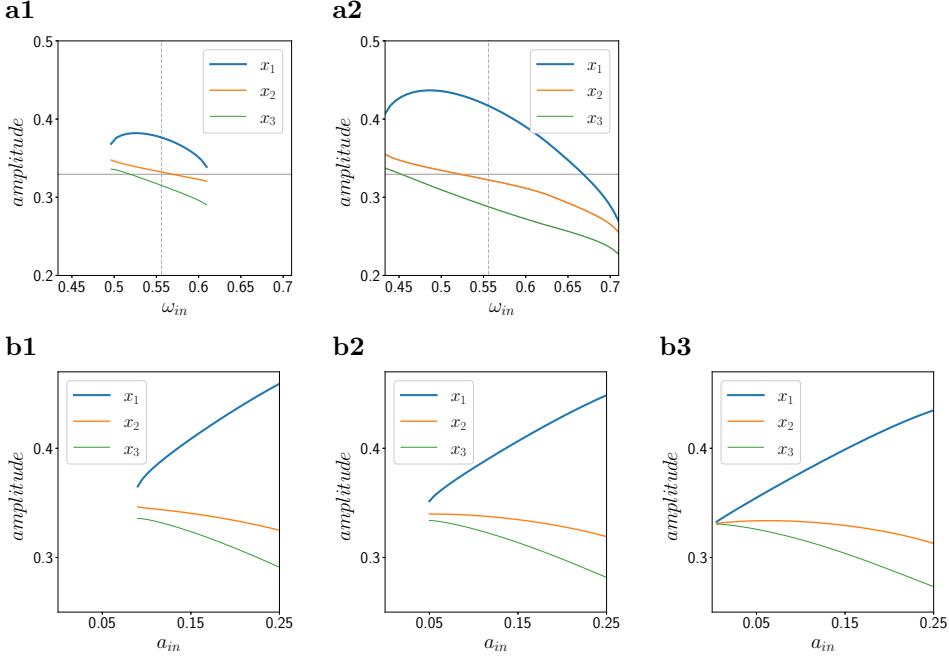


FIG. 17. Amplitude of each variable for the cycles in the $1 : 1$ range. We also show the amplitude of the variables without input (horizontal gray line) and frequency without input (vertical dashed line). **a1.** $A_{in} = 0.1$. **a2.** $A_{in} = 0.2$. **b1.** $\omega_{in} = 0.502$. **b2.** $\omega_{in} = 0.527$. **b3.** $\omega_{in} = 0.553$.

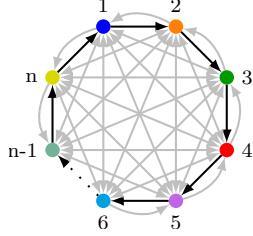


FIG. 18. Graph representation of a network with n nodes and directed connections. A black arrow indicates weak inhibition, whereas a gray arrow indicates strong inhibition between nodes.

641 Following the ideas in Section 3, we find the analytical expressions for the oscillatory
 642 solutions and obtain a reduced system of two transcendental equations whose solutions
 643 correspond to the cycles considered. This leads to extend the proof of the existence of
 644 the limit cycles in a straightforward manner. Then, we study the cycle characteristics
 645 when the parameter values or the number of nodes vary. Finally, as in Section 5,
 646 an external sinusoidal input is added to one of the nodes and we analyze briefly the
 647 entrainment of the cycle as the input parameters vary.

648 **6.1. Cycles in the network of n nodes with all-to-all connections and**
 649 **cyclic symmetry.** The system of differential equations for the threshold-linear net-

650 work of n nodes with cyclic symmetry is given by

651 (6.1)
$$\frac{dx_i}{dt} = -x_i + \left[\sum_{j=1}^n W_{ij}x_j + \theta_i \right]_+, \quad i = 1, \dots, n,$$

652 where W is the $n \times n$ matrix given by

653 (6.2)
$$W = \begin{bmatrix} 0 & -1 - \delta & -1 - \delta & \dots & -1 - \delta & -1 + \epsilon \\ -1 + \epsilon & 0 & -1 - \delta & \dots & -1 - \delta & -1 - \delta \\ -1 - \delta & -1 + \epsilon & 0 & \dots & -1 - \delta & -1 - \delta \\ \vdots & \vdots & \vdots & & & \\ -1 - \delta & -1 - \delta & -1 - \delta & \dots & 0 & -1 - \delta \\ -1 - \delta & -1 - \delta & -1 - \delta & \dots & -1 + \epsilon & 0 \end{bmatrix}.$$

654 As in the three node case, the values $-1 - \delta$ (with $\delta > 0$) and $-1 + \epsilon$ (with $0 < \epsilon < 1$)
655 represent the strong and weak inhibitory connections, respectively.

656 In particular we consider the network with constant input $\theta_i = 1$ in each node.
657 This last assumption generates a cyclic symmetry in the system (already mentioned
658 in the three-node case) from which circular shifts of the nodes does not affect the
659 response of the network.

660 Following the notation in Section 2, we define

661 (6.3)
$$f_i(x) = \sum_{j=1}^n W_{ij}x_j + 1, \quad \text{and} \quad \Sigma_i = \{x \in \mathbb{R}^n : f_i(x) = 0\}.$$

662 The hyperplanes Σ_i divide the state space \mathbb{R}^n in different regions in which the network
663 (6.1) is linear.

664 The linearity of the system in each region and the symmetry mentioned above
665 allow us to find and calculate periodic solutions applying the techniques developed in
666 Subsection 3.3.

667 Suppose that a stable limit cycle p of period T exists in the network (6.1). Because
668 of the symmetry in the system, it follows that

669 (6.4)
$$p_i(t) = p_1 \left(t - \frac{i-1}{n} T \right), \quad i = 2, \dots, n.$$

670 By definition of (6.1), it is necessary that the cycle p crosses at least one transition
671 hyperplane Σ_i . Then, from condition (6.4) and the definition of Σ_i , it follows that
672 the cycle crosses all the transition hyperplanes. To find the analytical expression of
673 the cycle, we divide it in n equal parts and study the expression of each coordinate
674 in one interval of length T/n (see Fig. 19 a).

675 We want to determine which functions f_i are active (have positive values) in each
676 part of the cycle, in order to determine the corresponding linear system (6.1) in each
677 interval. Without loss of generality, in the following calculations we consider the
678 interval $[0, T/n]$ and $p(0) \in \Sigma_1$ (see Fig. 19 b). Thus, $p(T/n) \in \Sigma_2$ and we observe
679 that a value $T_1 \in (0, T/n)$ exists such that

680 (6.5)
$$p(T_1) \in \begin{cases} \Sigma_1 & \text{if } n = 3, \\ \Sigma_4 & \text{if } n \geq 4, \end{cases}$$

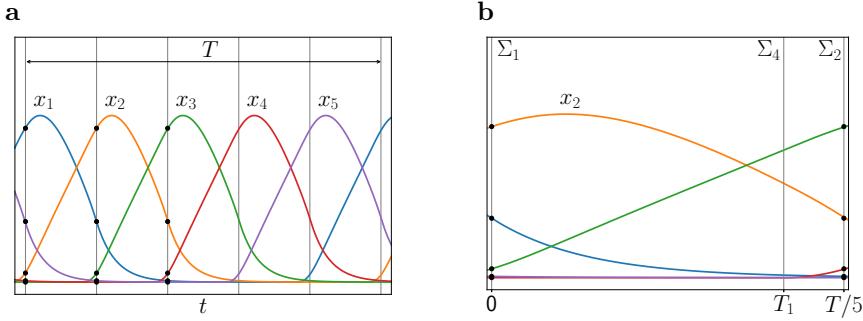


FIG. 19. *Cycle in a network with 5 nodes.* **a.** *Coordinates of the cycle with period T . The vertical lines correspond to the transition hyperplanes Σ_i .* **b.** *Coordinates in an interval of length $T/5$. We consider $p(0) \in \Sigma_1$, so this interval is the second strip in figure a.*

681 and it is satisfied that $f_{2,3}(p(t)) > 0$ for $t \in (0, T_1)$, and

682 (6.6)
$$\begin{cases} f_{1,2,3}(p(t)) > 0 & \text{if } n = 3, \\ f_{2,3,4}(p(t)) > 0 & \text{if } n \geq 4, \end{cases}$$

683 for $t \in (T_1, T/n)$. Thus, the active functions in the interval $(0, T_1)$ are $f_{2,3}$, whereas
684 in the interval $(T_1, T/n)$ the active functions depend on the value of n .

685 Given the above observations about the signs of the functions f_i , we solve system
686 (6.1) in the intervals $(0, T_1)$ and $(T_1, T/n)$ to find the analytical expression of p (as
687 in equation (3.1)). In each interval we solve a linear system of n ordinary differential
688 equations, by considering the initial condition $p(0) \in \Sigma_1$, the continuity condition at
689 $t = T_1$ and the final condition $p(T/n) \in \Sigma_2$. By performing calculations similar to
690 the ones developed in the Subsection 3.3 (where system (3.7) is reduced to (3.16)),
691 we obtain a two dimensional system of transcendental equations with unknowns T
692 and T_1 . Then, we apply the Kantorovich's result to prove the existence of periodic
693 solutions. Finally, we calculate the stability of p by defining the monodromy matrix
694 following the ideas in Subsection 3.2.

695 In Figure 19 we show the periodic solution obtained for the network (6.1) with 5
696 nodes, $\delta = 1/2$ and $\epsilon = 1/4$. In this case, the period is $T = 18.9806$ (and $T_1 = 3.1485$),
697 and the cycle is stable with Floquet multipliers $\{0.99953, 1.32651 \times 10^{-6}, -4.61789 \times$
698 $10^{-9} + 1.93239 \times 10^{-8}i, -4.61789 \times 10^{-9} - 1.93239 \times 10^{-8}i, 0\}$.

699 **6.2. Dependence of the oscillatory network dynamics with the model
700 parameters.** In this subsection we briefly study the periodic solution as either the
701 connection parameter ϵ or the number of nodes vary.

702 We observe that, for a fixed value of the parameter ϵ , the frequency decreases if
703 the number of nodes increases (Fig. 20 a1). In contrast, for a fixed number of nodes,
704 the frequency increases if the value of ϵ increases, as in the case of the three-node
705 network considered in the above section.

706 The amplitude of the cycles in a network having more than three nodes is almost
707 the same as ϵ changes with some range, and they are always greater than the corre-
708 sponding amplitude for the three-node case (Fig. 20 a2). In all cases the amplitude
709 decreases as the values of ϵ increases, i.e., when the weak inhibition becomes weaker,
710 but we observe that the three-node network is more sensitive to this variation.

711 From the above observations it follows that, for fixed values of the connection

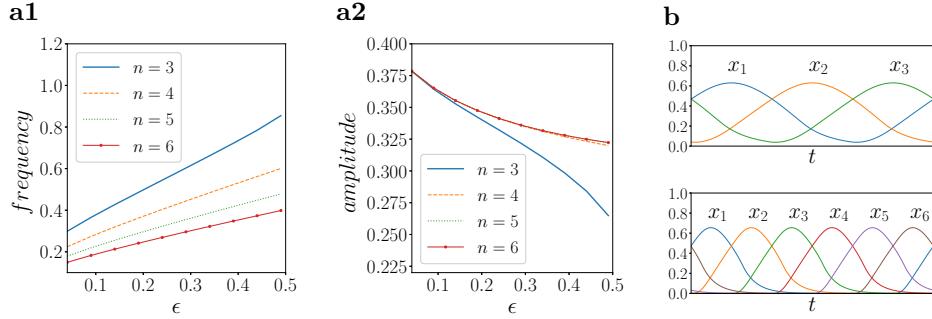


FIG. 20. **a.** Periodic solutions as functions of ϵ for the indicated values of n and $\delta = 1/2$. **a1.** Frequency. **a2.** Amplitude. **b.** Variables for different cycles normalized to one period. We consider the fixed values $\delta = 1/2$, $\epsilon = 2/5$ and $n = 3$ ($n = 6$) in the upper (lower) row.

712 parameters, as the number of nodes in the network increases the period of the resulting
713 cycle increases.

714 Finally, we observe that in networks with a large number of nodes, the activity of
715 each one is concentrated near its maximal value and it is near zero for a large amount
716 of time in one period (Fig. 20 b).

717 **6.3. Entrainment of cycles in networks with cyclic symmetry.** In this
718 subsection we follow the ideas developed in Section 5 and consider the response of the
719 network (6.1) with an oscillatory solution when a periodic input is applied to one of
720 the nodes.

721 In particular, we consider the network in (6.1) with $n \geq 3$ and $\epsilon < \delta$ (thus the
722 network has a stable limit cycle), and we assume that a positive sinusoidal input is
723 applied to the node labeled as number 1. The resulting system reads

$$724 \quad (6.7) \quad \frac{dx_i}{dt} = -x_i + \left[\sum_{j=1}^n W_{ij} x_j + 1 + I_{in,i}(t) \right]_+, \quad i = 1, \dots, n,$$

725 where the input is given by

$$726 \quad (6.8) \quad I_{in,1}(t) = A_{in} \frac{1 + \sin(\omega_{in}t)}{2},$$

727 being A_{in} the input amplitude and ω_{in} the input frequency, and $I_{in,i}(t) = 0$ for all
728 $i \neq 1$.

729 We calculate the devil's staircases to compare the response of networks with
730 different number of nodes and values of ϵ . As the number of nodes in the network
731 increases we observe that the entrainment regions become smaller and they shift
732 toward lower frequencies since the frequency without input is smaller for larger number
733 of nodes (Fig. 21 a). This is seen clearly in the 1 : 1 region. Thus, the ability of
734 the input to control the frequency of the response is reduced when the network has a
735 large number of nodes.

736 For a fixed number of nodes, as we observe for the three-node network (see Fig.
737 16 b), the entrainment regions shift toward higher frequencies since the frequency
738 without input increases as the value of the connection parameter ϵ is increased (Fig.
739 21 b). However, the 1 : 1 entrainment region, which always includes the natural

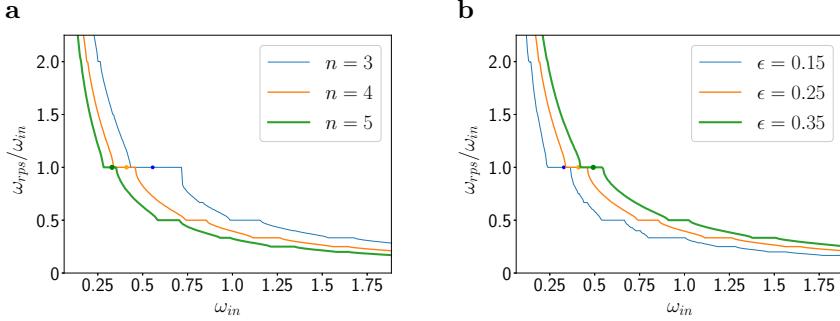


FIG. 21. Devil's staircases for different networks (6.7). **a.** Networks with different number of nodes and fixed the values $\delta = 1/2$ and $\epsilon = 1/4$. **b.** Networks with four nodes, $\delta = 1/2$ and the indicated values of ϵ . The dots indicate the frequency of the periodic solution to the network without input.

frequency (in the absence of any input), does not present big changes in its length. Finally, we note that the network has more entrainment regions in the same interval of input frequencies when the weak inhibition is stronger (lower values of ϵ).

743 7. Conclusions. In this paper we studied the existence of periodic solutions to competitive TLNs and their response to periodic inputs. We first analyzed the three-node case and we later considered networks with three or more nodes, all-to-all connections and cyclic symmetry.

744 In the three-node network we applied the theory of non-smooth dynamical systems [12, 30] to perform a detailed mathematical analysis of our system. In particular, we 745 calculated and classified all bifurcations of equilibria, which are the basis for the cycle 746 generation analysis that we performed in the Section 3. Because of the specific type of 747 threshold nonlinearity we dealt with, we were able to find an analytical expression of 748 the periodic solutions and discuss their stability. In addition, by using a combination 749 of mathematical analysis and numerical simulations, we demonstrated the existence of 750 these periodic solutions by considering a reduced system of transcendental equations 751 and using a Kantorovich's convergence result. The existence of these limit cycles has 752 been hypothesized before on the basis of numerical simulations, but to our knowledge 753 no analytical demonstration of the existence of these oscillations has been provided 754 [9, 24, 25].

755 Once we proved the existence of periodic solutions, we carried out numerical 756 simulations to study the dependence of them on the model parameters. If the values 757 of the inputs to the nodes are close to each other (that is, if the value of μ is near 1), we 758 observed that periodic solutions exist for a large range of the connection parameters. 759 In contrast, if the inputs are significantly different from each other, the network needs 760 more local excitation (a larger value of ϵ) to generate oscillatory solutions. If all the 761 inputs have the same value, the network has a cyclic symmetry, and a stable periodic 762 solution exists provided that $\epsilon < \delta$. For fixed values of the connection parameters, 763 the frequency of this symmetric cycle is larger than the frequency of cycles for the 764 non-symmetric networks ($\mu \neq 1$). Furthermore, we note that, despite the fact that the 765 values of ϵ and δ modify the strength of the inhibitory connections, the attenuation 766 caused by the local excitation (values of ϵ) has a stronger effect over the attributes of 767 the cycles than the local inhibition (values of δ). In other words, the attributes of the 768 periodic solutions are more sensitive to changes in the weak inhibition (see Subsection 769 770 771 772

773 4.2). In particular, we observed that (i) the frequency of the cycles increases as the
 774 local excitation increases, and (ii) changes in the local excitation affect more the
 775 range of observed frequencies than variations in the local inhibition. In addition, in
 776 the symmetric networks (with input $\mu = 1$), we observed that the amplitude of the
 777 cycle decreases as the local excitation increases, whereas it slightly decreases and then
 778 increases as the local inhibition increases.

779 It is important to mention that all periodic solutions that we found are stable.
 780 However, there are two regions in the μ - ϵ parameter space where the three-node net-
 781 work shows multistability. Two stable attractors coexist: an equilibrium and the limit
 782 cycle generated in a boundary equilibrium bifurcation. The region of multistability is
 783 larger for larger values of the constant input μ .

784 An important question associated to oscillatory networks is their ability to follow
 785 oscillatory inputs; i.e., to be entrained [5, 6, 19, 20, 23, 27]. In order to address this
 786 issue, we analyzed the response of the three-node competitive TLN with an oscilla-
 787 tory solution when a sinusoidal input is added to one of the nodes. We numerically
 788 obtained the Arnold tongues of the network and find different entrainment regions
 789 as the amplitude and frequency of the input vary. As is expected, each entrainment
 790 region is expanded from a rational fraction of the frequency observed without input,
 791 and all regions have wedge form, since the entrained solutions are observed for a larger
 792 range of the input frequencies when the input amplitude increases. In other words,
 793 if the forcing is strong enough, it entrains the network. Quasi-periodic solutions are
 794 observed if the input is weak or its frequency is far from the resonant frequencies.
 795 As the value of the local excitation increases, we observed that (i) the entrainment
 796 regions are smaller, with exception of the 1 : 1 region that is slightly larger, and (ii)
 797 all entrainment regions shift toward higher values of the input frequency, since the
 798 frequency of the network without input increases. From these observations it follows
 799 that as the weak inhibition becomes weaker the amount of input frequencies that
 800 generate an mode-locked response becomes smaller.

801 To extend our results, we considered competitive TLNs with three or more nodes
 802 and cyclic symmetry. We applied the techniques developed in Section 3 to find the
 803 periodic solutions and calculate their stability. Also, for these networks we analyzed
 804 the response to changes in the parameter values, different number of nodes and a
 805 sinusoidal input added to one node. The results we obtained by considering changes
 806 in the values of the local excitation are similar to the ones described in the three-
 807 node case (Section 4), for both the network with and without sinusoidal input. In
 808 addition, as the number of nodes in the network increases, the frequency of the cycle
 809 decreases, whereas its amplitude remains almost unchanged if the network has more
 810 than three nodes. In all cases, the amplitude decreases as the local excitation is
 811 increased. Furthermore, the activity of each node in the cycle is near zero for a larger
 812 time period as the number of nodes increases. Finally, we added a sinusoidal input
 813 to one node and briefly analyzed the network response. The entrainment regions are
 814 smaller and they are shifted towards lower frequencies as the number of nodes in the
 815 network increases (because the frequency without input is smaller). Thus, the ability
 816 of the input to control the frequency of the response is reduced when the network has
 817 a large number of nodes. This shrink of the entrainment regions has been observed,
 818 for example, in forced chains of neural oscillators [20, 27].

819 In conclusion, the entrainment regions, in particular the length of the 1 : 1 range,
 820 depend more on the size of the network than on the values of the connections param-
 821 eters. In particular, we observed that the competitive TLNs with a small number of
 822 nodes can follow the input frequency for a larger amount of input frequencies than the

823 networks with a large number of nodes. One option to expand the entrainment regions
 824 in networks with a large number of nodes is to increase the input amplitude. However,
 825 this could generate grazing points capable of destroying the periodic response of the
 826 network. Analyzing this requires further research.

827 A natural extension of our work, which is particularly interesting to us, is to
 828 consider the impact of synaptic delay in every connection between nodes. This delay
 829 could represent, for example, the distance between nodes or the action of graduated
 830 synapses. Some results about synchronized periodic solutions in competitive TLNs
 831 with delay were presented in [2]. However a more complete study of periodic solutions
 832 to such networks is still needed.

833 **Acknowledgments.** This work was supported by the Universidad Nacional del
 834 Sur grant PGI 24/L113-2019 (AB, RC, WR) and the National Science Foundation
 835 grant DMS-1608077 (HGR).

836 REFERENCES

- 837 [1] M. ARRIAGA AND E. B. HAN, *Dedicated hippocampal inhibitory networks for locomotion and*
 838 *immobility*, Journal of Neuroscience, 37 (2017), pp. 9222–9238, <https://doi.org/10.1523/JNEUROSCI.1076-17.2017>.
- 840 [2] A. BEL, R. COBIAGA, AND W. REARTES, *Periodic orbits and chaos in nonsmooth delay differential equations*, International Journal of Bifurcation and Chaos, 29 (2019), p. 1950137,
 841 <https://doi.org/10.1142/S0218127419501372>.
- 843 [3] D. A. BURKE, H. G. ROTSTEIN, AND V. A. ALVAREZ, *Striatal local circuitry: a new framework*
 844 *for lateral inhibition*, Neuron, 96 (2017), pp. 267–284, <https://doi.org/10.1016/j.neuron.2017.09.019>.
- 846 [4] U. CHIALVA AND W. REARTES, *Heteroclinic cycles in a competitive network*, International
 847 *Journal of Bifurcation and Chaos*, 27 (2017), p. 1730044, <https://doi.org/10.1142/S0218127417300440>.
- 849 [5] S. COOMBES AND P. C. BRESSLOFF, *Mode locking and arnold tongues in integrate-and-fire neural oscillators*, Phys. Rev. E, 60 (1999), pp. 2086–2096, <https://doi.org/10.1103/PhysRevE.60.2086>. Erratum (2001) Phys Rev E 63:059901.
- 852 [6] S. COOMBES, R. THUL, AND K. WEDGWOOD, *Nonsmooth dynamics in spiking neuron models*,
 853 *Physica D: Nonlinear Phenomena*, 241 (2012), pp. 2042–2057, <https://doi.org/10.1016/j.physd.2011.05.012>.
- 855 [7] C. CURTO, A. DEGERATU, AND V. ITSKOV, *Flexible memory networks*, Bulletin of Mathematical
 856 *Biology*, 74 (2012), pp. 590–614, <https://doi.org/10.1007/s11538-011-9678-9>.
- 857 [8] C. CURTO, A. DEGERATU, AND V. ITSKOV, *Encoding binary neural codes in networks of*
 858 *threshold-linear neurons*, Neural Computation, 25 (2013), pp. 2858–2903, https://doi.org/10.1162/NECO_a.00504.
- 860 [9] C. CURTO, J. GENESON, AND K. MORRISON, *Fixed points of competitive threshold-linear networks*,
 861 *Neural Computation*, 31 (2019), pp. 94–155, https://doi.org/10.1162/neco_a.01151.
 862 PMID: 30462583.
- 863 [10] C. CURTO AND K. MORRISON, *Pattern completion in symmetric threshold-linear networks*,
 864 *Neural Computation*, 28 (2016), pp. 2825–2852, https://doi.org/10.1162/NECO_a.00869.
 865 PMID: 27391688.
- 866 [11] P. DAYAN AND L. F. ABBOTT, *Theoretical Neuroscience: Computational and Mathematical
 867 Modeling of Neural Systems*, The MIT Press, 2001.
- 868 [12] M. DI BERNARDO, C. J. BUDD, A. R. CHAMPNEYS, AND P. KOWALCZYK, *Piecewise-smooth
 869 Dynamical Systems. Theory and Applications*, Springer-Verlag, New York, 2008.
- 870 [13] G. B. ERMENTROUT AND D. H. TERMAN, *Mathematical Foundations of Neuroscience*, vol. 35,
 871 Springer, 2010.
- 872 [14] J. GUCKENHEIMER AND P. HOLMES, *Nonlinear Oscillations, Dynamical Systems, and Bifurcations
 873 of Vector Fields*, vol. 42 of Applied Mathematical Sciences, Springer, 1983.
- 874 [15] R. H. R. HAHNLOSER, H. S. SEUNG, AND J. J. SLOTINE, *Permitted and forbidden sets in sym-
 875 metric threshold-linear networks*, Neural Computation, 15 (2003), pp. 621–638, <https://doi.org/10.1162/089976603321192103>.
- 877 [16] R. L. T. HAHNLOSER, *On the piecewise analysis of networks of linear threshold neurons*, Neural
 878 Networks, 11 (1998), pp. 691–697, [https://doi.org/10.1016/S0893-6080\(98\)00012-4](https://doi.org/10.1016/S0893-6080(98)00012-4).

879 [17] J. HALE, *Ordinary Differential Equations*, New York: Wiley-Interscience, 1969.

880 [18] E. C. Y. HO, M. STRÜBER, M. BARTOS, L. ZHANG, AND F. K. SKINNER, *Inhibitory net-*
881 *works of fast-spiking interneurons generate slow population activities due to excitatory*
882 *fluctuations and network multistability*, 32 (2012), pp. 9931–9946, <https://doi.org/10.1523/JNEUROSCI.5446-11.2012>.

884 [19] J. KEENER, F. HOPPENSTEADT, AND J. RINZEL, *Integrate-and-fire models of nerve membrane*
885 *response to oscillatory input*, SIAM Journal on Applied Mathematics, 41 (1981), pp. 503–
886 517, <https://doi.org/10.1137/0141042>.

887 [20] N. KOPELL, G. ERMENTROUT, AND T. WILLIAMS, *On chains of oscillators forced at one end*,
888 SIAM Journal on Applied Mathematics, 51 (1991), pp. 1397–1417, <https://doi.org/10.1137/0151070>.

890 [21] E. MARDER AND D. BUCHER, *Central pattern generators and the control of rhythmic*
891 *movements*, Current Biology, 11 (2001), pp. R986–996, [https://doi.org/10.1016/S0960-9822\(01\)00581-4](https://doi.org/10.1016/S0960-9822(01)00581-4).

893 [22] E. MARDER AND R. L. CALABRESE, *Principles of rhythmic motor pattern generation*, Physiological
894 Reviews, 76 (1996), pp. 687–717, <https://doi.org/10.1152/physrev.1996.76.3.687>.

895 [23] N. MASSARELLI, G. CLAPP, K. HOFFMAN, AND T. KIEMEL, *Entrainment ranges for chains of*
896 *forced neural and phase oscillators*, The Journal of Mathematical Neuroscience, 6 (2016),
897 p. 6, <https://doi.org/10.1186/s13408-016-0038-9>.

898 [24] K. MORRISON AND C. CURTO, *Chapter 8 - Predicting neural network dynamics via graphical*
899 *analysis*, in Algebraic and Combinatorial Computational Biology, R. Robeva and
900 M. Macauley, eds., MSE/Mathematics in Science and Engineering, Academic Press, 2019,
901 pp. 241 – 277, <https://doi.org/10.1016/B978-0-12-814066-6.00008-8>.

902 [25] K. MORRISON, A. DEGERATU, V. ITSKOV, AND C. CURTO, *Diversity of emergent dynamics*
903 *in competitive threshold-linear networks: a preliminary report*, arXiv, (2016), p. 12 pp,
904 <https://arxiv.org/pdf/1605.04463v1.pdf>.

905 [26] B. T. POLYAK, *Newton-Kantorovich method and its global convergence*, Journal of Mathematical
906 Sciences, 133 (2006), pp. 1513–1523, <https://doi.org/10.1007/s10958-006-0066-1>.

907 [27] J. P. PREVITE, N. SHEILS, K. A. HOFFMAN, T. KIEMEL, AND E. D. TYTELL, *Entrainment*
908 *ranges of forced phase oscillators*, Journal of Mathematical Biology, 62 (2011), pp. 589–
909 603, <https://doi.org/10.1007/s00285-010-0348-6>.

910 [28] S. RICH, H. M. CHAMEH, M. RAFIEE, K. FERGUSON, F. K. SKINNER, AND T. A. VALIANTE,
911 *Inhibitory network bistability explains increased interneuronal activity prior to seizure*
912 *onset*, Frontiers in Neural Circuits, 13 (2020), p. 81, <https://doi.org/10.3389/fncir.2019.00081>.

914 [29] H. G. ROTSTEIN, S. COOMBES, AND A. M. GHEORGHE, *Canard-like explosion of limit cycles in*
915 *two-dimensional piecewise-linear models of fitzhugh-nagumo type*, SIAM Journal Applied
916 Dynamical Systems, 11 (2012), pp. 135–180, <https://doi.org/10.1137/100809866>.

917 [30] D. J. W. SIMPSON, *Bifurcations in piecewise-smooth continuous systems*, World Scientific, 2010.

918 [31] M. A. WHITTINGTON, R. D. TRAUB, N. KOPELL, G. B. ERMENTROUT, AND E. H.
919 BUHL, *Inhibition-based rhythms: experimental and mathematical observations on net-*
920 *work dynamics*, Int J of Psychophysiol, 38 (2000), pp. 315–336, [https://doi.org/10.1016/S0167-8760\(00\)00173-2](https://doi.org/10.1016/S0167-8760(00)00173-2).

922 [32] H. R. WILSON AND J. D. COWAN, *Excitatory and inhibitory interactions in localized popula-*
923 *tions of model neurons*, Biophysical Journal, 12 (1972), pp. 1–24, [https://doi.org/10.1016/S0006-3495\(72\)86068-5](https://doi.org/10.1016/S0006-3495(72)86068-5).