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Abstract: We investigate a minimal network model consisting of a 2D linear (non-
oscillatory) resonator and a 1D linear cell, mutually inhibited with piecewise-linear
graded synapses. We demonstrate that this network can produce oscillations in cer-
tain parameter regimes and the corresponding limit gradually transition from regular
oscillations (of non-relaxation type) to relaxation oscillations as the levels of mutual
inhibition increase.

1 Introduction

Membrane potential (subthreshold) resonance (MPR) refers to the ability of a neuron
to exhibit a peak in their voltage amplitude response to oscillatory input currents at
a preferred (resonant) input frequency (f,..) [1-4] (Fig. 1-A). MPR results from the
interplay of an autocatalytic process (positive feedback) and a slower negative feedback
effect. For neurons, these are provided by the participating currents. Neurons may also
exhibit membrane potential (subthreshold) oscillations either damped or sustained in
the absence of any time-dependent input. However, MPR and intrinsic oscillations are
different phenomena governed by different mechanisms as demonstrated by the fact that
2D linear systems may exhibit MPR in the absence of damped oscillations [2-4]. We
refer to the neurons that exhibit MPR as resonators. Here we focus on resonators that
are not damped oscillators.

MPR has been measured in a variety of neuron types and it has been investigated
theoretically [1,2,4,5] (and references therein). However, the role that MPR play in the
generation of network oscillations is not well understood (but see [6-8]). In this paper we
demonstrate by means of a numerical simulation example that a minimal network model
(Fig 1-B) consisting of a 2D linear resonator (e.g., Fig. 1-A, blue) and 1D linear passive
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2 Resonance-based mechanisms of generation of oscillations

cell (e.g., Fig. 1-A, red) mutually inhibited with piecewise-linear (PWL) graded synapses
(Fig. 1-C) can produce oscillations in certain parameter regimes. The corresponding
limit cycles experience a transition from regular oscillations (of non-relaxation type) to
relaxation oscillations as the levels of mutual inhibition increase.
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FIGURE 1. A. Representative impedance (Z) profiles for a band-pass (blue) and
low-pass (red) filters. For linear systems receiving sinuscidal inputs with frequency f,
the output is also a sinuscidal function with the same frequency and phase-shifted.
B. Network diagram of a mutually inhibited resonator (band-pass filter) and a non-
resonator (low-pass filter). C. Representative PWL connectivity function for the graded
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2 Model: Networks of linearized cells with piecewise linear
graded synapses

We used linearized biophysical (conductance-based) models for the individual cells and
piecewise linear (PWL) graded synaptic connections. The linearization process for
conductance-based models (around the resting potential for the voltage variable) for sin-
gle cells has been previously described in [2,3]. We refer the reader to these references
for details.

The dynamics of a network of two mutually inhibitory cells are described by

du,
(1) C d_: = —0Lk Uk — Gk Wi — Ginjk Soc (V) (Ve — Ein),
(2) T % = Uj — Wy,

for k = 1,2, j # k. In egs. (1)-(2) ¢ is time, vy represents the voltage (mV), wy
represents the normalized gating variable for the resonant ionic current, Cp = 1 is the
capacitance, grp is the linearized leak maximal conductance, gp is the ionic current
linearized conductance, 7 is the linearized time constant and the last term in eq. (1) is
the graded synaptic current modulated by the activity of the other cell where Gy & is
the maximal synaptic conductance, E;, = —20 is the synaptic reversal potential (referred
to the resting potential) and S(v) is a PWL function of sigmeid type (Fig. 1-C) of the
form

0 if vy
(3) Sc)=1{ (va—w) tv—w) if p<v<u
1 if v>uw,
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where v, and v are constants. In this paper we use gz =0 (cell 2 is 1D), vy = —v,; and
Gin = Ginji2 = Ginm.

We use the following units: mV for v and wg, ms for ¢, p.Fl,r'cmE for capacitance,
pA /em? for current and mS /em? for the maximal conductances.

The numerical solutions were computed by using the modified Euler method (Runge-
Kutta, order 2) [9] with a time step At = 0.1 ms in MATLAB (The Mathworks, Natick,
MA). Smaller values of At have been used to check the accuracy of the results.

3 Results

Fig. 2 shows the results of our numerical simulations for representative values of Giy.
Because the network is mutually inhibitory the two cells oscillate in antiphase. The
network oscillations emerge for Gy ~ 0.1206. As Gj, increases the oscillation amplitude
increases, first abruptly and the gradually (Fig. 3-A). As this happens, the network
oscillation frequency decreases (Fig. 3-B). The network oscillations are terminated for
Gin ~ 0.176 (not shown).

These oscillations (Fig. 2) are a network phenomena since for the parameter values
we used the resonator is not a damped oscillator and the passive cell is 1D. Sustained
(limit cycle) oscillations require the interplay of a resonant (negative feedback) and am-
plifying (positive feedback) processes [10]. For the network oscillations in Fig. 2, the
resonant process is provided by the resonator and the amplifying process is provided by
the network connectivity mediated by the passive cell [8].
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FIGURE 2. Representative voltage traces for the resonator /passive cell mu-
tually inhibitory network (Fig. 1-B) A. Gin = 01206, B. Gin = 0.132. C.
&yn = 0.16. The resonator has f,.., ~ 10.4. We used the following parameter values:
Ci = Cj =1, Ora = U.EE, g1 = D.Eﬁ, ™ = 1[[]1 Orz = D.Er, L— 31 Uy = —31 E.n = —Q.’D,
and Gin = Gl.'n.,'l.ﬂ = Gl.'n.,?i-

The transition from regular oscillations (non-relaxation type) to relaxation oscilla-
tions as (;, increases in Fig. 2 is a network phenomenon. There is a time scale separation
between the activator (vy) and the inhibitor (wy) in the resonator (m; = 100). However,
for this time scale separation at the individual cell level to be communicated to the net-
work level to produce network relaxation oscillations the levels of mutual inhibition have
to be relatively large.

4 Discussion

We have demonstrated that a minimal network model (2D resonator, 1D linear cell
and mutual inhibition) can produce sustained network oscillations in certain parameter
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F1GURE 3. Dependence of the oscillations amplitude and frequency on the
levels of mutual inhibition for the resonator /passive cell mutually inhibitory
network (Fig. 1-B). The parameter values are as in Fig. 2. A. Amplitude vs. G,
curve. We plotted the amplitude of v1. B. Network oscillations frequency ve. Gin.

regimes. These oscillations crucially depend on the negative feedback provided by the
resonator. Mutual inhibition mediated by the passive cell is responsible for the amplifi-
cation necessary to support the existence of a limit cycle. Our results provide an example
of an oscillatory network of non-oscillatory cells where resonance and amplification at
different levels of organization interact to produce network oscillations. For high enough
levels of mutual inhibition the time scale between the two variables in the resonator is
communicated to the network level to produce relaxation oscillations. If the levels of
mutual inhibition are not high enough, this time scale separation remains occluded.

Our results highlight the role of MPR in isolated neurons for the generation of network
oscillations, and have implications for neuronal network dynamics described either by
conductance-based models or firing rate models with adaptation.
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