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ABSTRACT

As deep reinforcement learning (RL) showcases its strengths in
networking, its pitfalls are also coming to the public’s attention.
Training on a wide range of network environments leads to subop-
timal performance, whereas training on a narrow distribution of
environments results in poor generalization.

This work presents GENET, a new training framework for learn-
ing better RL-based network adaptation algorithms. GENET is built
on curriculum learning, which has proved effective against sim-
ilar issues in other RL applications. At a high level, curriculum
learning gradually feeds more “difficult” environments to the train-
ing rather than choosing them uniformly at random. However,
applying curriculum learning in networking is nontrivial since the
“difficulty” of a network environment is unknown. Our insight is to
leverage traditional rule-based (non-RL) baselines: If the current RL
model performs significantly worse in a network environment than
the rule-based baselines, then further training it in this environ-
ment tends to bring substantial improvement. GENET automatically
searches for such environments and iteratively promotes them to
training. Three case studies—adaptive video streaming, congestion
control, and load balancing—demonstrate that GENET produces RL
policies that outperform both regularly trained RL policies and
traditional baselines.
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1 INTRODUCTION

Many recent techniques based on deep reinforcement learning
(RL) are now among the state of the arts for various networking
and systems adaptation problems, including congestion control
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(CC) [24], adaptive bitrate streaming (ABR) [32], load balancing
(LB) [31], wireless resource scheduling [10], and cloud schedul-
ing [34]. For a given distribution of training network environments
(e.g., network connections with certain bandwidth patterns, delay,
and queue length), RL trains a policy to optimize performance over
these environments.

However, these RL-based techniques face two challenges that
can ultimately impede their wide use in practice:

e Training in a wide range of environments: When the training
distribution spans a wide variety of network environments (e.g.,
a large range of possible bandwidth), an RL policy may perform
poorly even if tested in the environments drawn from the same
distribution as training.

o Generalization: RL policies trained on one distribution of syn-
thetic or trace-driven environments may have poor performance
and even erroneous behavior when tested in a new distribution
of environments.

Our analysis in §2 will reveal that, across three RL use cases in
networking, these challenges can cause well-trained RL policies
to perform much worse than traditional rule-based schemes in a
range of settings.

These problems are not unique to networking. In other domains
(e.g., robotics, gaming) where RL is widely used, it is also known
that RL models have performance issues in both new environments
drawn from the training distribution and new environments drawn
from an unseen distribution [27, 36, 37, 52, 59]. There have been
many efforts to address these issues by enhancing offline RL training
or retraining a deployed RL policy online. Since updating a deployed
model is not always possible or easy (e.g., loading a new kernel
module for congestion control or integrating an ABR logic into a
video player), we focus on improving RL training offline.

A well-studied paradigm that underpins many recent techniques
to improve RL training is curriculum learning [36]. Unlike traditional
RL training that samples training environments in a random order,
curriculum learning generates a training curriculum that gradually
increases the difficulty level of training environments, resembling
how humans are guided to comprehend more complex concepts.
Curriculum learning has been shown to improve generalization [6,
12, 35] as well as asymptotic performance [25, 53], namely the
final performance of a model after training runs to convergence.
Following an easy-to-difficult routine allows the RL model to make
steady progress and reach good performance.

In this work, we present GENET, the first training framework that
systematically introduces curriculum learning to RL-based networking
algorithms. GENET automatically generates training curricula for
network adaptation policies. The challenge of curriculum learning
in networking is how to sequence network environments in an order
that prioritizes highly rewarding environments where the current
RL policy’s reward can be considerably improved. Unfortunately,
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as we show in §3, several seemingly natural heuristics to identify
rewarding environments suffer from limitations.

o First, they use intrinsic properties of each environment (e.g., shorter
network or workload traces [34] and smoother network condi-
tions [19] are supposedly easier), but these intrinsic properties
fail to indicate whether the current RL model can be improved in
an environment.

o Second, they use handcrafted heuristics which may not capture all
aspects of an environment that affect RL training (e.g., bandwidth
smoothness does not capture the impact of router queue length on
congestion control, or buffer length on adaptive video streaming).
Each new application (e.g., load balancing) also requires a new
heuristic.

The idea behind GENET is simple: An environment is considered
rewarding if the current RL model has a large gap-to-baseline, i.e.,
how much the RL policy’s performance falls behind a traditional
rule-based baseline (e.g., Cubic or BBR for congestion control, MPC
or BBA for adaptive bitrate streaming) in the environment. We
show in §4.1 that the gap-to-baseline of an environment is highly
indicative of an RL model’s potential improvement in the environ-
ment. Intuitively, since the baseline already shows how to perform
better in the environment, the RL model may learn to “imitate” the
baseline’s known rules while training in the same environment,
bringing it on par with—if not better than—the baseline. On the flip
side, if an environment has a small or even negative gap-to-baseline,
chances are that the environment is intrinsically hard (a possible
reason why the rule-based baseline performs badly), or the current
RL policy already performs well and thus training on it is unlikely
to improve performance by a large margin. A small gap-to-baseline
might also arise when the rule-based baseline has poor performance
yet the RL model still has a large room for improvement. GENET
ignores this case, but we will discuss it in §7.

Inspired by the insight, GENET generates RL training curricula by
iteratively identifying rewarding environments where the current
RL model has a large gap-to-baseline and then adding them to RL
training (Figure 1). For each RL use case, GENET parameterizes the
network environment space, allowing us to search for rewarding
environments in both synthetically instantiated environments and
trace-driven environments. GENET also uses Bayesian Optimization
(BO) to facilitate the search in a large space. In particular, we cast the
search for environments with a large gap-to-baseline as a maximum-
search problem of a blackbox function in a high-dimensional space
where each point represents a set of environment configurations
and the function value is the gap-to-baseline. BO is then used to
find a set of training environments with large gap-to-baselines.
GENET is generic, since it does not use handcrafted heuristics to
measure the difficulty of a network environment; instead, it uses
rule-based algorithms, which are abundant in the literature of many
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networking and system problems, to generate training curricula.
Moreover, by focusing training on places where RL falls behind
rule-based baselines, GENET directly minimizes the chance of per-
formance regressions relative to the baselines. This is important,
because system operators are more willing to deploy an RL policy
if it outperforms the incumbent rule-based algorithm in production
without noticeable performance regressions.?

We have implemented GENET as a separate module with a uni-
fying abstraction that interacts with the existing codebases of RL
training to iteratively select rewarding environments and promote
them in the course of training. We have integrated GENET with
three existing deep RL codebases in the networking area—adaptive
video streaming (ABR) [4], congestion control (CC) [1], and load
balancing (LB) [3].

It stands to reason that GENET is not without limitations. For
instance, GENET-trained RL policies might not outperform all rule-
based baselines (§5.5 shows that when using a naive baseline to
guide GENET, the resulting RL policy could still be inferior to
stronger baselines). GENET-trained RL policies may also achieve un-
desirable performance in environments beyond the training ranges
(e.g., if we train a congestion-control algorithm on links with band-
width between 0 and 100 Mbps, GENET will not optimize for the
bandwidth of 1 Gbps). Moreover, GENET does not guarantee ad-
versarial robustness which sometimes conflicts with the goal of
generalization [41].

Using a combination of trace-driven simulation and real-world
tests across three use cases (ABR, CC, LB), we show that GENET
improves asymptotic performance by 8-25% for ABR, 14-24% for
CC, 15% for LB, compared with traditional RL training methods.
GENET aims to optimize an RL model’s asymptotic performance
(i.e., in-distribution generalizability), and it does not explicitly opti-
mize the generalization in arbitrary test environments (i.e., out-of-
distribution generalizability). That said, our empirical test results
show that GENET-trained models improve not only asymptotic
performance, but also the performance in unseen network environ-
ments.

The traces and scripts used in GENET are released at https://
github.com/GenetProject/Genet.

2 MOTIVATION

Deep reinforcement learning (RL) trains a deep neural net (DNN)
as the decision-making logic (policy) and is well-suited to many
sequential decision-making problems in networking [22, 31].3 We
use three use cases (summarized in Table 1) to make our discussion
concrete:

e An adaptive bitrate (ABR) algorithm adapts the chunk-level
video bitrate to the dynamics of throughput and playback buffer
(input state) over the course of a video session. ABR policies,
including RL-based ones (Pensieve [32]), choose the next chunk’s
bitrate (output decision) at the chunk boundary to maximize

2 An example of this mindset is that a new algorithm must compete with the incumbent
algorithm in A/B testing before being rolled out to production.

3There are rule-based alternatives to DNN-based policies, but they are not as expressive
and flexible as DNNs, which limits their performance. Oboe [5], for instance, sets
optimal hyperparameters for RobustMPC based on the mean and variance of network
bandwidth and as shown in §5.4, is a very competitive baseline, but it performs worse
than the best RL strategy.
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Use case Observed state (policy input) Action (policy output) Reward (performance)
Adaptive Bitrate (ABR) future chunk size, history throughput, current bitrate selected for the >.i(a - Rebuf; + § - Bitrate;
Streaming buffer length next video chunk + vy - BitrateChange;) /n

. RTT inflation, sending/receiving rate, change of sending rate in 2.i(a - Throughput;
Congestion Control (CC) avg RTT in a time window, min RTT the next time window + b - Latency; + ¢ - LossRate;) /n

past throughput, current request size, number

Load Balancing (LB) of queued requests per server

server selection for

— Y. Delay;
the current request 2; Delay;/n

Table 1: RL use cases in networked systems. Default reward parameters: @ = —10 (rebuffering in seconds), f = 1 (bitrate in Mbps), y = —1 (bitrate
change in Mbps), a = 120 (throughput in kbps), b = —1000 (latency in seconds), c = —2000. Details in A.5.

session-wide average bitrate, while minimizing rebuffering and
bitrate fluctuation.

e A congestion control (CC) algorithm at the transport layer
adapts the sending rate based on the sender’s observations of
the network conditions on a path (input state). An example of
RL-based CC policy (Aurora [24]) makes sending rate decisions
at the beginning of each interval (of length proportional to RTT),
to maximize the reward (a combination of throughput, latency,
and packet loss rate).

e A load balancing (LB) algorithm in a key-replicated distributed
database reroutes each request to one of the servers (whose real-
time resource utilization is unknown), based on the request arrival
intervals, resource demand of past requests, and the number of
outstanding requests currently assigned to each server.

We choose these use cases because they have open-source imple-
mentations (Pensieve [4] for ABR, Aurora [1] for CC, and Park [3]
for LB). Our goal is to improve existing RL training in networking.
Revising the RL algorithm per se (input, output, or DNN model) is
beyond our scope.

Network environments: We generate simulated training environ-
ments with a range of parameters, following prior work [24, 31, 32].
An environment can be synthetically generated using a list of pa-
rameters as configuration, e.g., in the context of ABR, a configuration
encompasses bandwidth range, frequency of bandwidth change,
chunk length, etc. Meanwhile, when recorded bandwidth traces are
available (for CC and ABR experiments), we can also create trace-
driven environments where the recorded bandwidth is replayed.
Note that bandwidth is only one dimension of an environment and
must be complemented with other synthetic parameters in order
to create a simulated environment. (Our environment generator
and a full list of parameters are documented in §A.2.) In recent pa-
pers, both trace-driven (e.g., [19, 32]) and synthetic environments
(e.g., [24, 31]) are used to train RL-based network algorithms. We
will explain in §4.2 how our technique applies to both types of
environments.

Traditional RL training: Given a user-specified distribution of
(trace-driven or synthetic) training environments, the traditional
RL training method works in iterations. Each iteration randomly
samples a subset of environments from the provided distribution
and then updates the DNN-based RL policy (via forward and back-
ward passes). For instance, Aurora [24] uses an iteration of 7200
steps (i.e., 30-50 30-second network environments) and applies
the PPO algorithm to update the policy network by simulating the
network environments in each batch.

Several previous efforts have demonstrated the promise of the
traditional RL training—given the distribution of target environ-
ments, an RL policy can be trained to perform well in these envi-
ronments (e.g., [24, 32]). Unfortunately, this approach falls short on
two fronts.

Challenge 1: Training over wide environment distributions.
When the training distribution of network environments has a wide-
spread (e.g., a large range of possible bandwidth values), RL training
tends to result in poor asymptotic performance (model performance
after reaching convergence) even when the test environments are
drawn from the same distribution as training.

In Figure 2, for each use case, we choose three target distributions
(with increasing parameter ranges), labeled RL1/RL2/RL3 ranges of
synthetic environment parameters in Table 3, 4, and 5. Figure 2(a)
compares the asymptotic performance of three RL policies (with dif-
ferent random seeds) with rule-based baselines, MPC [57] for ABR,
BBR [8] for CC, and least-load-first (LLF) policy for LB, in test envi-
ronments randomly sampled from the same ranges. It shows that
RL’s performance advantage over the baselines diminishes rapidly
when the range of target environments expands. Even though RL-
based policies still outperform the baselines on average, Figure 2(b)
reveals a more striking reality—their performance falls behind the
baselines in a substantial fraction of test environments.

An intuitive explanation is that in each RL training iteration, only
a batch of randomly sampled environments (typically 20-50) is used
to update the model, and when the entire training set spans a wide
range of environments, the batches between two iterations may
have dramatically different distributions which potentially push
the RL model to different directions. This causes the training to
converge slowly and makes it difficult to obtain a good policy [36].
Although this problem is not completely avoided in our solution, it
is mitigated by curriculum learning which draws the environments
of a batch from a “narrower” training environment distribution,
thus reducing the discrepancies between batches.

Challenge 2: Low generalizability. Another practical challenge
arises when the training process does not have access to the target
environment distribution. This calls for models with good general-
ization, i.e., the RL policies trained on one distribution also perform
well on a different environment distribution during testing. Unfor-
tunately, existing RL training methods often fall short of this ideal.
Figure 3 evaluates the generalizability of RL-based CC schemes in
two ways.

o First, we train an RL-based CC algorithm on the same range of
synthetic environments as specified in its original paper [24]. We
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(b) Even if RL schemes perform better on average, they are worse than the
baselines on a substantial fraction of test environments.

Figure 2: Challenges of RL training over a wider range of environments from small (RL1), medium (RL2), to large (RL3).
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(b) RL-based CC trained over one real trace set performs worse on another real
trace set than the rule-based baseline.

Figure 3: Generalization issues of RL-based schemes using CC as an example.

first validate the model by confirming its performance against a
rule-based baseline BBR, in environments that are independently
generated from the same range as training (Figure 3(a); left). Nev-
ertheless, when tested on real-world recorded network traces un-
der the category of “Cellular” and “Ethernet” from Pantheon [56]
(Table 2), the RL-based policy yields much worse performance
than the rule-based baseline.

e Second, we train the RL-based CC algorithm on the “Cellular”
trace set and test it on the “Ethernet” trace set (Figure 3(b); left), or
vice versa (Figure 3(b); right). Similarly, its performance degrades
significantly when tested on a different trace set.

The observations in Figure 3 are not unique to CC. Prior work [19]
also shows a lack of generalization of RL-based ABR algorithms.

Summary: In short, we observe two challenges faced by the tradi-
tional RL training mechanism:

e The asymptotic performance of the learned policies can be sub-
optimal, especially when they are trained over a wide range of
environments.

o The trained RL policies may generalize poorly to unseen network
environments.

3 CURRICULUM LEARNING FOR
NETWORKING

Given these observations regarding the limitations of RL training in
networking, a natural question to ask is how to improve RL training
such that the learned adaptation policies achieve good asymptotic
performance across a broad range of target network environments.*

Curriculum learning: We cast the training of RL-based network
adaptation to the well-studied framework of curriculum learning.

4 An alternative is to retrain the deployed RL policy whenever it meets a new domain
(e.g., a new network connection with unseen characteristics), but this does not apply
when the RL policy cannot be updated frequently. Besides, it is also challenging to
precisely detect model drift in the network conditions that necessitate retraining the
RL policy.

Unlike the traditional RL training that samples training environ-
ments from a fixed distribution in each iteration, curriculum learn-
ing varies the training environment distribution to gradually in-
crease the difficulty of training environments, so that training will
see more environments that are more likely to improve, which we
refer to as rewarding environments. In many RL applications, prior
work has shown the promise of curriculum learning, including
faster convergence, higher asymptotic performance, and better gen-
eralization (§6).

The theoretical intuition behind curriculum learning is that a
curriculum allows the model to optimize a family of gradually less
smooth loss functions and prevents it from being trapped in local
minima [7]. In the early stage of the curriculum, easier training
samples are selected to comprise a smoothed loss function that
reveals the big picture and is easier to optimize. The resulting
model serves as a good starting point when more difficult samples
are introduced to the training, reducing the smoothness of the loss
function and making it harder to optimize. By optimizing the model
on a sequence of loss functions with decreasing smoothness, the
curriculum is able to gradually bring the model parameters close
to the global optimum.

However, the challenge of employing curriculum learning lies
in determining which environments are rewarding. Apparently,
the answer to this question varies with applications, but three gen-
eral approaches exist: (1) training the current model on a set of
environments individually to determine in which environment the
training progresses faster; (2) using heuristics to quantify the eas-
iness of achieving model improvement an environment; and (3)
jointly training another model (typically DNN) to select rewarding
environments. Among them, the first option is prohibitively expen-
sive and thus not widely used, whereas the third introduces the
extra complexity of training a second DNN. Therefore, we take a
pragmatic stance and explore the second approach, while leaving
the other two for future work.
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Figure 4: A simple example where adding trace set X to training
has a different effect than adding Y. Adding X to training improves
performance on X only marginally but hurts Y, whereas adding Y
improves the performance on both X and Y.

Why sequencing training environments is difficult: A com-
mon strategy in curriculum learning for RL is to measure environ-
ment difficulty and gradually introduce more difficult environments
to training. To motivate our design choices, we first introduce three
strawman approaches, with different strengths and weaknesses.
They are used to determine how rewarding an environment is.
A good approach should always select network environments in
which the RL model has a large improvement in reward when
trained in them.

Strawman 1: inherent properties. The first idea is to quantify the
difficulty level of an environment using some of its inherent proper-
ties. In congestion control, for instance, network traces with higher
bandwidth variance are intuitively more difficult. This approach,
however, only distinguishes environments that differ in the hand-
picked properties and may not suffice under complex environments
(e.g., adding bandwidth traces with similar variance to training can
have different effects).

Strawman 2: performance of rule-based baselines. Alternatively,
one can use the test performance of a traditional algorithm to in-
dicate the difficulty of an environment. Lower performance may
suggest a more difficult environment [53]. While this method can
distinguish any two environments, it does not hint at how to im-
prove the current RL model during training.

Strawman 3: performance gap to the optimum. To fix the problem
of Strawman 2, one can use the performance gap between the
current RL policy and the optimum instead [19]. If the current
model performs much worse than the optimum in an environment
(e.g., obtained by using ground-truth bandwidth as the bandwidth
prediction), its performance might improve when trained in this
environment. A caveat of this approach is that the computation of
the optimal performance could be prohibitively expensive or even
infeasible. This approach may also fail to improve RL’s performance
in environments that are inherently hard (e.g., highly fluctuating
bandwidth in ABR and CC).

Example: Figure 4 shows a concrete example in ABR, where
“Strawman 3” leads to a suboptimal outcome. (§5.5 will empirically
test these three strawman approaches.) We first pretrain an RL-
based ABR policy which performs poorly on X and Y (two sets of
bandwidth traces from two different environment configurations,
details in §A.3). Since the performance gap between the current RL
model and the optimum is larger on X than on Y, Strawman 3 opts
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Figure 5: Contrasting (a) an inherently hard (possibly unsolvable)
environment with (b) an improvable environment. The difference is
that the rule-based policy’s reward is higher than the RL policy in (b),
whereas their rewards are similar in (a).

for adding X to the training in the next step. However, Figure 4
shows that training further on X yields only a marginal reward
improvement on X (and also hurts the performance on Y).

Instead, adding Y to training is a better choice at this point—the
performance on Y is significantly improved (and it also benefits the
performance on X though to a less extent).

To take a closer look, we plot two example traces from X and Y in
Figure 5: The trace from X fluctuates with a smaller magnitude but
more frequently, whereas the trace from Y fluctuates with a greater
magnitude but much less frequently. However, such observations
cannot generalize to an arbitrary pair of environments or a different
application.

4 DESIGN AND IMPLEMENTATION OF GENET

4.1 Curriculum generation

To identify rewarding environments, the idea of GENET is to find
environments with a large gap-to-baseline, i.e., the RL policy is
worse than a given rule-based baseline by a large margin. At a
high level, adding such environments to training has three practical
benefits.

First, when a rule-based baseline performs much better than the
RL policy in an environment, it means that the RL model may learn
to “imitate” the baseline’s known rules while training in the envi-
ronment, bringing it on par with—if not better than—the baseline. >
Therefore, a large gap-to-baseline indicates plausible room for the
current RL model to improve. Figure 6 empirically confirms this
with one example ABR policy and CC policy (both are intermedi-
ate models during GENET-based training). For example, among 73
randomly chosen synthetic environment configurations in CC, a
configuration with a larger gap-to-baseline is likely to yield more
improvement when adding its environments to the RL training.
Moreover, this correlation is stronger than using the performance
gap between the current model and the optimum (“Strawman 3”
in §3) to decide which environments are rewarding. Nonetheless,
the model’s training improvement does not only depend on the
gap-to-baseline. Other factors such as training hyperparameters
can affect the reward improvement of an RL model. For example,
too large a learning rate causes the RL model to jump over the

5This may not be true when the behavior of the rule-based algorithm cannot be
approximated by RL’s policy DNN, and we will discuss this issue in §7.
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Figure 6: Compared with the gap-to-optimum (left), the current
model’s gap-to-baseline (right) in an environment is more indicative
of its potential training improvement in the environment.

optima while too small a learning rate slows down the convergence.
In this work, we only focus on the gap-to-baseline and keep the
training hyperparameters (e.g., learning rate, batch size of each
iteration) unchanged in all the experiments.

Second, although not all rule-based algorithms are easily inter-
pretable or completely fail-proof, many of them have tradition-
ally been used in networked systems long before the RL-based ap-
proaches and are considered more trustworthy than black-box RL
algorithms. Therefore, operators tend to scrutinize any performance
disadvantages of the RL policy compared with the rule-based base-
lines currently deployed in the system. By promoting environments
with large gap-to-baselines, GENET directly reduces the possibility
that the RL policy causes performance regressions.

In short, the gap-to-baseline builds on the insight that rule-based
baselines are complementary to RL policies—they are less suscepti-
ble to any discrepancies between training and test environments,
whereas the performance of an RL policy is potentially sensitive to
the environments seen during training. In §5.5, we will discuss the
impact of different choices of rule-based baselines and why gap-
to-baseline is a better way of using the rule-based baseline than
alternatives. It is worth noting that the rewarding environments
(those with large gap-to-baselines) do not have particular meanings
outside the context of a given pair of RL model and baseline. For
instance, when an RL-based CC model has a greater gap-to-baseline
in some network environments, it only means that it is easier to
improve the RL model by training it in these environments; it does
not indicate if these environments are easy or challenging to any
traditional CC algorithm.

4.2 Training framework

Figure 7 depicts GENET’s high-level iterative workflow to realize
curriculum learning. Each iteration consists of three steps (which
will be detailed shortly):

1. First, we update the current RL model for a fixed number of
iterations over the current training environment distribution;
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2. Second, we select the environments where the current RL model
has a large gap-to-baseline; and

3. Third, we promote these selected environments in the training
environments distribution used by the RL training process in the
next iteration.

Training environment distribution: We define a distribution of
training environments as a probability distribution over the space of
configurations, each being a vector of 5-6 parameters (summarized
in Table 3, 4, 5) used to generate network environments. An example
configuration is: [BW: 2-3Mbps, BW changing frequency: 0-20s,
Buffer length: 5-10s]. GENET sets the initial training environment
distribution to be a uniform or exponential distribution along with
each parameter, and automatically updates the distribution used in
each iteration, effectively generating a training curriculum.

When recorded traces are available, GENET can augment the
training with trace-driven environments as follows. Here we use
bandwidth traces as an example. The first step is to categorize each
bandwidth trace along with the bandwidth-related parameters (i.e.,
bandwidth range and variance in our case). Each time a configura-
tion is selected by RL training to create new environments, with
a probability of w (30% by default), GENET samples a bandwidth
trace whose bandwidth-related parameters fall into the range of
the selected configuration.

In §5.2, we will show that adding trace-driven environments to
training improves the performance of RL policies, especially when
tested in unseen real traces from the same distribution. That said,
even if we do not use trace-driven environments in RL training,
our trained RL policies still outperform the traditional method of
training RL over real traces or synthetic traces.

Key components: Each round of GENET starts with training
the current model for a fixed number of iterations (defaults to
10). Here, GENET reuses the traditional training method in prior
work (i.e., uniform sampling of training environments per iteration),
which makes it possible to incrementally apply GENET to existing
codebases (see our implementation in §4.3). Recent work on domain
randomization [39, 45, 52] also shows that a similar training process
can benefit the generalization of RL policies [39, 45, 52]. The details
of the training process are described in Algorithm 1.

After a certain number of iterations, the current RL model and a
pre-determined rule-based baseline are given to a sequencing module
to search for the environments where the current RL model has a
large gap-to-baseline. Ideally, we want to test the current RL model
on all possible environments and identify the ones with the largest
gap-to-baseline, but this is prohibitively expensive. Instead, we use
Bayesian Optimization [17] (BO) as follows. We view the expected
gap-to-baseline over the environments created by configuration p
as a function of p: Gap(p) = R(ﬁ”’le,p) - R(ﬁgl,p), where R(7, p)
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is the average reward of a policy 7 (either the rule-based baseline
x"e or the RL model ﬂgl ) over k (10 by default) environments
randomly generated by configuration p. BO then searches in the
environment space for the configuration that maximizes Gap(p).

Once a new configuration is selected, the environments gener-
ated by this configuration are then added to the training distribution
as follows. When the RL training process samples a new training
environment, it will choose the new configuration with w probabil-
ity (30% by default) or uniformly sample a configuration from the
old distribution with 1 — w probability (70% by default), and then
create an environment based on the selected configuration. Next,
training is resumed over the new environment distribution.

It is important to notice that the BO-based search does not carry
its states when searching rewarding environments for a new RL
model. Instead, GENET restarts the BO search every time the RL
model is updated. The reason is that the rewarding environments
can change once the RL model changes.

Design rationale: The process described above embeds several
design decisions that make it efficient.

How to choose rule-based baselines? For GENET to be effective,
the baselines should not fail in simple environments; otherwise,
GENET would ignore them given that the RL policy could easily
beat the baselines. For instance, when using Cubic as the baseline
in training RL-based CC policies, we observe that the RL policy is
rarely worse than Cubic along the dimension of random loss rate,
because Cubic’s performance is susceptible to random packet losses.
That said, we find that the choice of baselines does not significantly
impact the effectiveness of GENET, although a better choice tends
to yield more improvement (as shown in §5.5).6

Why is BO-based exploration effective? GENET models the selec-
tion of network environments that maximize gap-to-baseline as
a parameter search procedure in a high-dimensional space—each
dimension of the space is a configuration of the network environ-
ment (e.g., link latency), each point in the space is a set of network
environments with the same configurations, and the desired points
are those whose environments have large gap-to-baselines. This
problem has two features: (1) the environment search space is high-
dimensional, and (2) evaluating the gap-to-baseline of a point in
the space is computationally expensive (partly due to the variance
among the environments with the same configurations). In this
context, BO is merely one of the candidate solutions among several
others to perform the parameter search. In §5.5, we will compare
BO’s efficiency with other candidate solutions and show that BO is
efficient at identifying rewarding environments.

Why not set a threshold for the gap-to-baseline of the selected
environments? While GENET uses BO to search rewarding environ-
ments with a fixed number of steps (default is 15), an alternative
is to run BO until it finds an environment configuration whose
gap-to-baseline is above a threshold. However, the latter strategy
may not end (or take a long time to finish) if the RL model is already
better than the baseline in most environments, which is possible
during training. Moreover, the threshold introduces another hyper-
parameter to be tuned with domain knowledge.

One possible refinement in this regard is to use an “ensemble” of rule-based heuristics,

and let the training scheduler focus on environments where the RL policy falls short
of any one of a set of rule-based heuristics.
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Figure 8: Components and interfaces needed to integrate GENET with
an existing RL training codebase.

Impact of forgetting? It is important that we train models over
the full range of environments. GENET does begin the training over
the whole space of environment in the first iteration, but each
subsequent iteration introduces a new configuration, thus diluting
the percentage of random environments in training. This might lead
to the classic problem of forgetting—the trained model may forget
how to handle environments seen before. While we do not address
this problem directly, we have found that GENET is affected by this
issue only mildly. The reason is that GENET stops the training after
changing the training distribution for 9 times, and by then, the
original environment distribution still accounts for about 10%.”

4.3 Implementation

GENET is fully implemented in Python and Bash, and has been
integrated with three existing RL training codebases. Next, we
describe the interface and implementation of GENET, as well as
optimizations for eliminating GENET’s performance bottlenecks.

API: GENET interacts with an existing RL training codebase with
two APIs (Figure 8): Train signals the RL to continue the training
using the given distribution of environment configurations and
returns a snapshot of the model after a specified number of training
iterations; Test calculates the average reward of a given algorithm
(RL model or a baseline) over a specified number of environments
drawn from the given distribution of configurations.

Integration with RL training: We have integrated GENET with
Pensieve ABR [4], Aurora CC [1], and Park LB [3], which use dif-
ferent RL algorithms (e.g., A3C, PPO) and network simulators (e.g.,
packet level, chunk level). We implement the two APIs above using
functionalities provided in the existing codebase.

Rule-based baselines: GENET takes advantage of the fact that
many RL training codebases (including our three use cases) have
already implemented at least one rule-based baseline (e.g., MPC in
ABR, Cubic in CC) that runs in their simulators. In addition, we also
implemented a few baselines by ourselves, including the shortest-
job-first in LB, and BBR in CC. The implementation is generally
straightforward, but sometimes the simulator (though sufficient
for the RL policy) lacks crucial features for a faithful implementa-
tion of the rule-based logic. Fortunately, GENET-based RL training
merely uses the baseline to select training environments, so the
consequence of having a suboptimal baseline is not considerable.

5 EVALUATION
The key takeaways of our evaluation are:
"When we impose a minimum fraction of “exploration” (i.e., uniformly randomly

picking an environment from the original training distribution) in the training (which
is a typical strategy to prevent forgetting [58]), GENET’s performance becomes worse.
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Name Use Training Testing
case  #traces, total length (s)  # traces, total length (s)

FCC ABR 85, 105.8k 290, 89.9k

Norway  ABR 115, 30.5k 310, 96.1k

Ethernet CC 64, 1.92k 112, 3.35k

Cellular CC 136, 4.08k 121, 3.64k

Table 2: Network traces used in ABR and CC tests.

o Across three RL use cases in networking, GENET improves the
performance of RL algorithms when tested in new environments
drawn from the training distributions that include wide ranges
of environments (§5.2).

o GENET improves the generalization of RL performance, allowing
models trained over synthetic environments to perform well even
in various trace-driven environments as well as on real-world
network connections (§5.3).

e GENET-trained RL policies have a much higher chance of out-
performing various rule-based baselines specified during GENET-
based RL training (§5.4).

o Finally, the design choices of GENET, such as its curriculum learn-
ing strategy and BO-based search, are shown to be effective com-
pared to seemingly natural alternatives (§5.5).

Given the success of curriculum learning in other RL domains,
these improvements are not particularly surprising. However, by
showing for the first time that curriculum learning facilitates RL
training in networking, we hope to inspire more follow-up research
in this direction.

5.1 Setup

We train GENET for three RL use cases in networking, using their
original simulators: congestion control (CC) [1], adaptive bitrate
streaming (ABR) [4], and load balancing (LB) [3]. As discussed in
§4.1, we train and test RL policies over two types of environments.

Synthetic environments: We generate synthetic environments
using the parameters described in detail in §A.2 and Table 3,4,5. We
choose these environment parameters to cover a variety of factors
that affect RL performance. For instance, in CC tests, our environ-
ment parameters specify bandwidth (e.g., the range, variance, and
how often it changes), delay, queue length, etc.

Trace-driven environments: We also use real traces for CC and
ABR (summarized in Table 2) to create trace-driven environments
(in both training and testing), where the bandwidth time series
are set by the real traces, but the remaining environment param-
eters (e.g., queue length or target video buffer length) are set as
in the synthetic environments. We test ABR policies by streaming
a pre-recorded video over 290 traces from FCC broadband mea-
surements [11] (labeled “FCC”) and 310 cellular traces [43] (labeled
“Norway”). We test CC policies on 121 cellular traces (labeled “Cel-
lular”) and 112 Ethernet traces (labeled “Ethernet”) collected by the
Pantheon platform [56].

Baselines: We compare GENET-trained policies with several base-
lines. First, traditional RL trains RL policies by uniformly sampling
environments from the target distribution per iteration. We train
three types of RL policies (RL1, RL2, RL3) over fixed-width uniform
distribution of synthetic environments, specified in Table 3, 4, 5.
From RL1 to RL3, the sizes of their training environment ranges
are in ascending order.
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Figure 9: Comparing the performance of GENET-trained RL policies
for CC, ABR, and LB, with baselines in unseen synthetic environments
drawn from the training distribution, which sets all environment

parameters to their full ranges.

We also train RL policies over trace-driven environments, i.e., ran-
domly picking bandwidth traces from one of the recorded sets. This
is the same as prior work, except that we also vary non-bandwidth-
related parameters (e.g., queue length, buffer length, video length,
etc) to increase its robustness. In addition, we test an early attempt
to improve RL [19] which generates new training bandwidth traces
that maximize the gap between the RL policy and optimal adapta-
tion with a non-smoothness penalty (§5.5).

Second, traditional rule-based algorithms include BBA [23] and
RobustMPC [57] for ABR, PCC-Vivace [14], BBR [8] and CUBIC
for CC, and least-load-first (LLF) for LB.2 They can be viewed as a
reference point for traditional non-ML solutions.

5.2 Asymptotic performance

We first compare GENET-trained policies and traditionally trained
RL policies, in terms of their asymptotic performance (i.e., test per-
formance over new test environments drawn independently from
the training distribution). In other words, we train RL policies over
environments from the target distribution and test them in new
environments from the same distribution.

Synthetic environments: We first test GENET-trained CC, ABR,
and LB policies under their perspective RL3 synthetic ranges (where
all parameters are set to their full ranges) as the target distribu-
tion. As shown in Figure 2, in these training ranges, traditional
RL training yields little performance improvement over the rule-
based baselines. Figure 9 compares GENET-trained CC, ABR, and
LB policies with their respective baselines over 200 new synthetic
environments randomly drawn with the target distribution.

Across three use cases, we can see that GENET consistently im-
proves over traditional RL-trained policies by 8-25% for ABR, 14—
24% for CC, 15% for LB, compared with traditional RL training
methods. We notice that there is no clear ranking among the three
traditional RL-trained policies. This is because RL1 helps training
to converge better but only sees a small slice of the target distribu-
tion, whereas RL3 sees the whole distribution but cannot train a
good model. In contrast, GENET outperforms them, as curriculum
learning allows it to learn more efficiently from the large target
distribution.

To show the performance more thoroughly, Figure 10 picks ABR
as an example and shows the performance across different values
along with six environment parameters. We vary one parameter at
a time while fixing other parameters at the same default values (see
Table 3, 4, 5). We see that GENET-trained RL policies enjoy consistent
performance advantages (in reward) over the RL policies trained by

8By default, we use RobustMPC as MPC and PCC Vivace-latency as Vivace, since they
appear to perform better than their perspective variants.
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traditional RL-trained models. This suggests that the improvement
of GENET shown in Figure 9 is not a result of improving rewards
in some environments at the cost of degrading rewards in others;
instead, GENET improves rewards in most cases. Figure 11 shows
that in the simulated environments [3], the GENET-trained LB policy
outperforms its baselines by 15%.

Trace-driven environments: Next, we set the target environment
distributions of ABR and CC to be the environments generated from
multiple real-world trace sets (FCC and Norway for ABR, Ethernet
and Cellular for CC). We partition each trace set as listed in Table 2.
GENET trains ABR and CC policies by combining trace-driven en-
vironments and synthetic environments (described in §4.2). For a
thorough comparison, both GENET and the traditional RL training
have access to the training portion of the real traces as well as
the synthetic environments. We vary the ratio of real traces and
synthetic environments and feed them to the traditional RL training
method, e.g., if the ratio of real traces is 20%, then the traditional
RL training randomly draws a trace-driven environment with 20%
probability and synthetic environments with 80% probability. That
is, we test different ways for the traditional RL training to com-
bine the training traces and synthetic environments. Figure 12 tests
GENET-trained ABR and CC policies with their respective tradi-
tional RL-trained baselines over new environments generated from
the traces in the testing set. Figure 12 shows that GENET-trained
policies outperform traditional RL training by 17-18%, regardless of
the ratio of real traces, including when training the model entirely
on real traces.

5.3 Generalization

Next, we take the RL policies of ABR and CC trained (by GENET
and other baselines) entirely over synthetic environments (the RL3
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Figure 13: Generalization test: Training of various methods is done
entirely in synthetic environments, but the testing is over various real
network trace sets.

synthetic environment range) and test their generalization in trace-
driven environments generated by the ABR (and CC) testing traces
in Table 2.

Figure 13 shows that they perform better than traditional RL
baselines trained over the same synthetic environment distribution.
Though Figure 13 uses the same testing environments as Figure 12
and has a similar relative ranking between GENET and traditional
RL training, the implications are different: Figure 13 also shows
that when the real traces are not accessible in training, GENET
can produce models with better generalization in real-trace-driven
environments than the baselines, whereas Figure 12 shows their
performance when the real traces are actively used in training of
GENET and the baselines.

5.4 Comparison with rule-based baselines

Impact of the choice of rule-based baselines: Figure 14 shows
the performance of GENET-trained policies when using different
rule-based baselines. We choose MPC and BBA as baselines in the
ABR experiments and BBR and Cubic as baselines in CC experi-
ments, respectively. We observe that in all cases, GENET-trained
policies outperform their respective rule-based baselines.

What if GENET uses naive rule-based baselines? As explained
in §4.2, the rule-based baseline should have a reasonable (though not
necessarily optimal) performance; otherwise, it would be unable to
indicate when the RL policy can be improved. To empirically verify
it, we use two unreasonable baselines: choosing the highest bitrate
when rebuffer in ABR, and choosing the highest loaded server in
LB. In both cases, the BO-based search fails to find useful training
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Figure 15: Fraction of real traces where GENET-trained policies (and
traditional RL) are better than the rule-based baselines.

environments, because the RL policy very quickly outperforms the
naive baseline everywhere. That said, the negative impact of using a
naive baseline is restricted to the selection of training environments,
rather than the RL training itself (a benefit of decoupling baseline-
driven environment selection and RL training), so in the worst case,
GENET would be roughly as good as traditional RL training.

How likely is GENET to outperform rule-based baselines?
One of GENET’s benefits is to increase how often the RL policy is
better than the rule-based baseline used in GENET. In Figure 15, we
create various versions of GENET-trained RL policies by setting the
rule-based baselines to be Cubic and BBR (for CC), and MPC and
BBA (for ABR). Compared to RL1, RL2, RL3 (unaware of rule-based
baselines), GENET-trained policies remarkably increase the fraction
of real-world traces (emulated) where the RL policy outperforms
the baseline used to train them. This suggests that operators can
specify a rule-based baseline, and GENET will train an RL policy
that outperforms it with high probability.

Breakdown of performance: Figure 17 takes one GENET-trained
ABR policy (with MPC as the rule-based baseline) and one GENET-
trained CC policy (with BBR as the rule-based baseline) and com-
pares their performance with a range of rule-based baselines along
with individual performance metrics. We see that the GENET-trained
ABR and CC policies stay on the frontier and outperform other
baselines.

Real-world tests: We also test the GENET-trained ABR and CC
policies in five real wide-area network paths (without emulated
delay/loss), between four nodes reserved from OpenNetLab [2, 16],
one laptop at home, and two cloud servers (§A.4), allowing us to
observe their interactions with real network traffic. For statistical
confidence, we run the GENET-trained policies and their baselines
back-to-back, each at least five times, and show their performance
in Figure 16. The system metrics behind each reward value are
shown in Table 6 and Table 7. In all but two cases, GENET out-
performs the baselines. On Path-2, GENET-trained ABR has little
improvement, because the bandwidth is always much higher than
the highest bitrate, and the baselines will simply use the highest bi-
trate, leaving no room for improvement. On Path-3, GENET-trained
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CC has negative improvement, because the network has a deeper
queue than used in training, so RL cannot handle it well. This is
an example where GENET can fail when tested out of the range of
training environments. These results do not prove that the poli-
cies generalize to all environments; instead, they show GENET’s
performance in a range of network settings.

5.5 Understanding GENET’s design choices

Alternative curriculum-learning schemes: Figure 18 compares
GENET’s training curve with that of traditional RL training and
three alternatives for selecting training environments described in
§3. CL1 uses hand-picked heuristics (gradually increasing the band-
width fluctuation frequency in the training environments), CL2 uses
the performance of a rule-based baseline (gradually adding environ-
ments where BBR for CC and MPC for ABR performs badly), and
CL3 adds traces where the current RL model is much worse than
the optimum (whereas GENET picks the traces where the current
RL model is much worse than a rule-based baseline). Compared to
these baselines, In Figure 18, we show that GENET’s training curves
have faster ramp-ups, suggesting that with the same number of
training iterations, GENET can arrive at a much better policy, which
corroborates the reasoning in §3.

In addition, “Robustifying” [19]° (which learns an adversarial
bandwidth generator) also tries to improve ABR logic by adding
more challenging environments to training. For a more direct com-
parison with GENET, we implement a variant of GENET where BO
picks configurations that maximize the gap between RL and the
optimal reward (penalized by bandwidth non-smoothness with dif-
ferent weights of p). Figure 19 compares the resulting RL policies
with GENET-trained RL policy and MPC as a baseline on the syn-
thetic traces in Figure 10. We see that they perform worse than
GENET-trained ones and that by changing the BO’s environment se-
lection criteria, GENET becomes less effective. GENET outperforms
Robustifying, because the non-smoothness metric used in [19] may
not completely capture the inherent difficulty of bandwidth traces
(Figure 5 shows a concrete example).

BO-based search efficiency: GENET uses BO to explore the multi-
dimensional environment space environment to find the environ-
ment configuration with a large gap-to-baseline. While BO may not
always find the single optimal point in arbitrary blackbox function
between environment parameters and gap-to-baseline, we found
it to be a pragmatic solution. To show it, we randomly choose an
intermediate RL model during the GENET training of ABR and CC.
Figure 20 shows the gap-to-baseline of the configuration selected by
BO for each model within 15 search steps. Within a small number
of steps, it can identify a configuration that is almost as good as
randomly searching for 100 points, which is much more expensive.
Figure 20 also includes the grid search as a reference, which starts
with all configurations initialized to their respective midpoints and
then searches and updates the best value for each configuration
one by one. We observe that it does not converge as fast as BO.

°In lack of a public implementation, we follow the description in [19] (e.g., non-
smoothness weight) and apply it to Pensieve (with the only difference being that for
fair comparisons with other baselines, we apply it on Pensieve trained on our synthetic
training environments). We have verified that our implementation of Robustifying
achieves similar improvements in the setting of original paper. More details are in
Appendix A.6.
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Figure 18: GENET’s training ramps up faster than alternative cur-
riculum learning strategies.
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Figure 19: GENET outperforms Robustifying [19] that improves RL
performance by generating adversarial bandwidth traces, and vari-
ants of GENET using Robustifying’s criteria in BO-based environment
selection.

6 RELATED WORK

Improving RL for networking: Some of our findings regarding
the lack of generalization corroborate those in previous work [13,
19, 24, 32, 44, 54]. To improve RL for networking use cases, prior
work has attempted to apply and customize techniques from the ML

many recent enhancements of RL and demonstrates its benefits
across multiple applications.

Curriculum learning for RL: There is a substantial literature on
improving deep RL with curricula ([21, 36, 40] give more compre-
hensive surveys on this subject). Each component of curriculum
learning has been extensively studied, including how to generate
tasks (environments) with potentially various difficulties [48, 50],
how to sequence tasks [42, 51], and how to add a new task to
training (transfer learning). In this work, we focus on sequencing
tasks to facilitate RL training. It is noticed that, for general tasks
that do not have a clear definition of difficulty (like networking
tasks), optimal task sequencing is still an open question. Some ap-
proaches, such as self-paced learning [28] advocate the use of easier
training examples first, while the other approaches prefer to use
harder examples first [9]. Recent work tries to bridge the gap by
suggesting that an ideal next training task should be difficult for
the current model’s hypothesis, while it is also beneficial to prefer
easier points with respect to the target hypothesis [21]. In other
words, we should prefer an easy environment that the current RL
model cannot handle well, which confirms the intuition elaborated
in Bengio’s seminal paper [7], which hypothesizes that “it would
be beneficial to make learning focus on ‘interesting’ examples that
are neither too hard nor too easy” GENET is an instantiation of this
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idea in the context of networking adaptation, and the way to iden-
tify the rewarding (or “interesting”) environments is by using the
domain-specific rule-based schemes to identify where the current
RL policy has a large room for improvement.

Automatic generation of curricula also benefits generalization,
particularly when used together with domain randomization [39].
Several schemes boost RL’s training efficiency by iteratively creat-
ing a curriculum of challenging training environments (e.g., [12, 35])
where the RL performance is much worse than the optimal out-
come (i.e., maximal regret). When the optimal policy is unavailable,
they learn a competitive baseline [12] to approximate the optimal
policy or a metric [35] to approximate the regret. GENET falls in
this category, but proposes a domain-specific way of identifying
rewarding environments using rule-based algorithms.

Some proposals in safe policy improvement (SPI) for RL also use
rule-based schemes [18, 29], though for different purposes than
GENET. While GENET uses the performance of rule-based schemes
to identify where the RL policy can be maximally improved, SPI
uses the decisions of rule-based algorithms to avoid violation of
failures during training.

7 DISCUSSION

Does a small gap-to-baseline always mean that an RL model
has small improvement when trained on it?

Although a small gap-to-baseline on a network environment indi-
cates that the RL model already performs quite closely with the
rule-based baseline, there is still a chance that the RL model could be
greatly improved when trained in that environment. This is because
if the rule-based baseline performs very badly in an environment,
the gap-to-baseline will no longer be indicative of the potential im-
provement of RL training. For example, Cubic may perform poorly
on a high-bandwidth link with occasional random packet loss, as
Cubic does not differentiate random packet loss and congestion-
induced loss, causing it to lower congestion window size when the
available bandwidth does not drop. In such cases, even if an RL
model has a small gap-to-baseline with Cubic, there could still be
room for the RL model to improve performance, but GENET may
not choose to prioritize such environments. That said, this problem
could be mitigated by using a more performant baseline or an “en-
semble” of existing baselines (i.e., measuring the maximum gap to
any baseline from a set).

Does training in environments of large gap-to-baseline al-
ways lead to large RL model improvement?

Unfortunately, the answer is not always. RL models may not al-
ways be able to approximate the performance of rule-based base-
lines, e.g., due to an RL model’s coarse decision granularity. For
instance, Aurora (an RL-based CC) is a monitor-interval-based CC
algorithm. Each monitor interval needs to be long enough to accu-
mulate enough packet acks (e.g., 10-50) to compute the features
(throughput, latency, etc.) for the RL model to select the sending
rate. In contrast, traditional TCP algorithms like Cubic and BBR
can update sending rate (cwnd) on the arrival of each packet ack.
Thus, Aurora has a much coarser decision granularity than tradi-
tional TCPs, rendering it hard for the RL model to approximate the
traditional TCP’s behavior when the network condition suddenly
changes. For instance, during sudden bandwidth drops and rapid
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queue buildups, the inter-packet interval dramatically increases,
and so does Aurora’s monitor interval, whereas TCP Cubic or BBR
can still update its sending rate on each packet ack. In these cases,
Aurora will never ramp up or reduce sending rate as fast as its
rule-based baselines, so even with a large gap-to-baseline in such
environments, Aurora may not see a large reward improvement.

What if a rule-based baseline does not exist?

The current GENET training framework requires the existence of
a rule-based baseline for the target networking problem. If the
problem does not have a well-studied rule-based baseline, there are
three alternative training methods that GENET can fall back to. First,
GENET can fall back on traditional RL training. Although it loses the
benefits of curriculum learning, it may still produce a reasonable
RL-based policy. Second, we can use the performance gap between
an optimal solution based on ground truth knowledge (such as
future bandwidth variation) and the current RL model as the guid-
ance of rewarding network environment selection. [19] trains an
ABR RL model using network traces from a bandwidth-generating
model. The training of the bandwidth-generating model is then
guided by the performance gap between the optimal solution and
the current RL model. This training method works well when the
optimal solution is feasible and computationally cheap. Third, a
trained RL model can be treated as a rule-based baseline. [12] trains
two RL models (with identical model architecture) competitively
on the environments produced by an adversarial generator. The
adversarial generator is a neural network that aims to maximize the
reward difference between the two RL models. However, the train-
ing complexity increases due to the increased number of models to
be trained. Even though GENET can fall back on alternative training
methods, how to extend it to work in applications domains that do
not have an existing rule-based baseline remains to be investigated.

8 CONCLUSION

We present GENET, a new training framework to improve the train-
ing of deep RL-based network adaptation algorithms. For the first
time, we introduce curriculum learning to the networking domain
as the key to reaching better RL performance and generalization.
To make curriculum learning efficient in networking, the main
challenge is how to automatically identify the “rewarding” environ-
ments that can maximally benefit from retraining. GENET addresses
this challenge with a simple-yet-efficient idea that highly rewarding
network environments are where the current RL performance falls
significantly behind that of a rule-based baseline scheme. Our evalu-
ation on three RL use cases shows that GENET improves RL policies
(in both performance and generalization) in various environments
and workloads.

Ethics: This work does not raise any ethical issues.
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A APPENDICES

Appendices are supporting material that has not been peer-reviewed.

A.1 Details of RL implementation

The input of RL algorithm consists of a space of configurations, an
initial policy parameters and predefined total number of iterations
to train. The space of configurations is constructed by ranges of
environment configurations. Each range is marked by the config-
uration’s min and max values. Within a training iteration, each
dimension of the space of configurations is uniformly sampled to
create K configurations. For each configuration, N random envi-
ronments are created. Thus, rollouts are collected by running the
policy on total K X N environments to update the policy. When the
policy is updated for the predefined number of iterations, the RL
algorithm stops training and outputs a trained policy.

Algorithm 1 Traditional Reinforecment Learning (RL)

Input: Q: space of configurations, : initial policy parameters, Njzers: # of
iterations
Output: 6: returned policy parameters

1: for i from 1 to Njzers do

2 Qrang < 0

3 for 1 to K do > K: # configs per iteration
4 pi ~ Random(Q) > Uniformly sampled config in Q
5: for 1 to N do > N: # random envs per config
6 E «— S(pi) > Create a simulated env by p;
7 rollout ¢ ~ g (;E) > Rollout policy g on E
8 @rand <« PranaV P

9 end for
10: end for

11: with ®,.,,4 update:
12: 0 — 0+ v Vg J(mg)
13: end for
4: return 6

> Gradient update with rate v

—
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Algorithm 2 GENET training framework

Input: Q: uniform configuration distribution (equal probability on each
configuration), z"%!€: rule-based policy.
Output: 6: final RL policy parameters
1: function GENET(Q, 774!€)

2: 6 < Random initial policy parameters

3: Qeur «— Q > Qcqyr will be updated and used for training
4: for from 1 to Njze,r do > # of exploration iterations
5: BO.INITIALIZE(Q) > Initialize with full config space Q
6: for from 1 to NpoTrials do > # of trial configs by BO
7: p < BO.GETNEXTCHOICE()

8: adv < CALCBASELINEGAP(p, 71'6’,1, n'“le)

9: BO.UPDATE(p, adv)

10: end for

11: Pnew <BO.GETDECISION()

12: > Weight new config pnew by w and old configs by 1 — w
13: Qeur — (1= w) - Qeur + W+ {pPrew}

14: 6 «—UNIFORMDOMAINRAND (Q¢yr, 0, Niters)

15: end for

16: return 0

17: end function
18: function CALCBASELINEGAP(p, ngl L rul €)

19: Initialize: samples «— 0

20: for 1 to Npesss do > # of reward comparisons
21: E «— S(p) > Create a simulated env by p;
22: rollout ¢! ~ 7l (-; E) > Rollout RL 7!
23: rollout ¢rule ~ g"ule (. F) > Rollout rule-based 7" %%€
24: add Reward(¢”‘le) - Reward(¢rl) to samples

25: end for

26: return MEAN (samples)

27: end function

A.2 Trace generator logic

ABR: For the simulation in ABR, the link bandwidth trace has the
format of [timestamp (s), throughput (Mbps)]. Our synthetic trace
generator includes 4 parameters: minimum BW (Mbps), maximum
BW (Mbps), BW changing interval (s), and trace duration (s). Each
timestamp represents one second with a uniform [-0.5, 0.5] noise.
Each throughput follows a uniform distribution between [min BW,
max BW]. The BW changing interval controls how often through-
put change over time, with uniform [1, 3] noise. Trace duration
represents the total time length of the current trace.

CC: The trace generator in the CC simulation takes 6 inputs: max-
imum BW (Mbps), BW changing interval (s), link one-way latency
(ms), queue size (packets), link random loss rate, delay noise (ms),
and duration (s). It outputs a series of timestamps with 0.1s step
length and dynamic bandwidth series. Each bandwidth value is
drawn from a uniform distribution of range [1, max BW] Mbps.
The BW changing interval allows bandwidth to change every cer-
tain seconds. The link one-way latency is used to simulate packet
RTT. The queue size simulates a single queue in a sender-receiver
network. Link random loss rate determines the chance of random
packet loss in the network. Delay noise determines how large a
Gaussian noise is added to a packet. The trace duration is deter-
mined by the duration input.

LB: We use the similar workload traces generator as the Park [3]
project, where jobs arrive according to a Poisson process, and the
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ABR Parameter RL1 RL2 RL3 Default Original
Max playback buffer (s) [2, 10] [2, 50] [2, 100] 60 60
Video chunk length (s) [1, 4] [1, 6] [1, 10] 4 4
Min link RTT (ms) [20,30] [20,220] [20, 1000] 80 80
Video length (s) [40,45] [40,200]  [40, 400] 196 196
Bandwidth change interval (s) [2, 2] [2, 20] [2, 100] 5

Max link bandwidth (Mbps) [2, 5] [2,100]  [2,1000] 5

Table 3: Parameters in ABR simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The

synthetic trace generator is described in §A.2.

CC Parameter RL1 RL2 RL3 Default  Original
Maximum link bandwidth (Mbps) [0.5, 7] [0.4,14] [0.1, 100] 3.16 [1.2, 6]
Minimum link RTT (ms) [205,250]  [156,288] [10, 400] 100  [100, 500]
Bandwidth change interval (s) [11, 13] [8,3] [0, 30] 7.5

Random loss rate [0.01,0.014] [0.007,0.02] [0, 0.05] 0 [0, 0.05]
Queue (packets) [2, 6] [2,11] [2, 200] 10 [2,2981]

Table 4: Parameters in CC simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The
synthetic trace generator is described in §A.2. The range of RL1 is defined as 1/9 of the range of RL3 and the range of RL2 is defined as 1/3 of RL3.

The CC parameters shown here for RL1 and RL2 are example sets.

LB Parameter RL1 RL2 RL3 Default Original
Service rate [0.1, 2] [0.1, 5] [0.1,10] [0.5, 1.0, 2.0] [2, 4]
Job size (byte) [100, 200]  [100, 10%] [1,104] 2000 [100, 1000]
Job interval (ms) [0.01, 0.05]  [0.01, 0.1] [0.1, 1] 0.1 0.2
Number of jobs [10,100] [10,1000] [10, 5000] 2000 1000
Queue shuffled probability [0.1,0.2] [0.1,0.5] [0.1, 1] 0.5

Table 5: Parameters in LB simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The

synthetic trace generator is described in §A.2.

job sizes follow a Pareto distribution with parameters [shape, scale].
In the simulation, all servers process jobs from their queues at iden-
tical rates.

A.3 Details of Figure 4

Trace sets in Figure 4 was generated by two configurations. For
trace set X, we used BW range: 0-5Mbps, BW changing frequency:
0-2s. For trace set Y, we used BW range: 0-10Mbps, BW changing
frequency: 4-15s. As a motivation example, each trace set contains
20 traces to show the testing reward trend.

A4 Testbed setup

ABR: To test our model on a client-side system, we first leverage
the testbed from Pensieve [4], which modifies dash.js (version 2.4)
to support MPC, BBA, and RL-based ABR algorithms. We use the
“Envivio- Dash3” video which format follows the Pensieve settings.
In this emulation setup, the client video player is a Google Chrome
browser (version 85) and the video server (Apache version 2.4.7)
run on the same machine as the client. We use Mahimabhi [38] to
emulate the network environments from our pre-recorded FCC [30],
cellular [43], Puffer [55] network traces, along with an 80 ms RTT,
between the client and server. All above experiments are performed
on UChicago servers.

CC: We build up CC testbed on Pantheon [56] platform on a Dell In-
spiron 5521 machine. Pantheon uses network emulator Mahimahi [38]
and a network tunnel which records packet status inside the net-
work link. We run local customized network emulation in Mahimahi
by providing a bandwidth trace and network configurations. We
run remote network experiment by deplopying pantheon platform
on the nodes shown in Figure 21. Among all the CC algorithms
tested, BBR [8] and TCP Cubic [20] are provided by Linux kernel
and are called via iperf3. PCC-Aurora [24] and PCC-Vivace [14] are
implemented on top of UDP. We train our models in python and
Tensorflow framework and port the models into the Aurora C++
code.

Real network testbed: We also test the GENET-trained ABR and
CC policies in real wide-area network paths (depicted in Figure 21),
including four nodes reserved from [2], one laptop at home, and
two cloud servers.

A.5 Details on reward definition

ABR: The reward function of ABR is a linear combination of
bitrate, rebuffering time, and bitrate change. The bitrate is observed
in kbps, and the rebuffering time is in seconds, and bitrate change
is the bitrate change between bitrate of current video chunk and
that of the previous video chunk. Therefore, a reward value can be
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Figure 21: Real-world network paths used to test ABR and CC policies.

computed for a video chunk. The total reward of a video is the sum
of the rewards of all video chunks.

CC: The reward function of CC is a linear combination of the
throughput (packets per second), average latency (s), and packet loss
(percentage) over a network connection. In training, a reward value
is computed using the above metrics observed within a monitor
interval. The total reward is the sum of the rewards of all monitor
intervals in a connection.

LB: The reward function of LB is the average runtime delay of
a job set, which is measured by milliseconds. For each server, we
observe its total work waiting time in the queue and the remaining
work currently being processed. After the incoming job is assigned,
the server would summarize and update the delay of all active jobs.

A.6 Baseline implementation

According to the paper [19], we train an additional RL model for
Robustify to improve the main RL-policy model by generating
adversarial network traces inside ABR. The state of the adversary
model contains the bitrate chosen by the protocol for the previous
chunk, the client buffer occupancy, the possible sizes of the next
chunk, the number of remaining chunks, and the throughput and
download time for the last downloaded video chunk. The action is
to generate the next bandwidth in the networking trace, in order to
optimize the gap between the ABR optimal policy, RL-policy, and
the unsmoothness, which is the absolute difference between the
last two chosen bandwidths. Here, the penalty of unsmoothness is
set as 1, same as the paper.

We use PPO as the training algorithm, and train the Robustify ad-
versary model with a RL model until they both converge. Afterward,
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Figure 22: Training RL and CL with more iterations still cannot
outperform GENET.

we add the traces Robustify model generated into the RL training
process to retrain the RL. The PPO parameter settings follow the
original paper.

As an alternative implementation, we also use the reward defined
in Robustify as the training signal for BO to search and update
environments. For the unsmoothness penalty here, we empirically
tried three numbers: 0.1, 0.5, 1. From our results, penalty=0.5 works
better than others.

A.7 Reward value breakdown

Table 6 and Table 7 contain the system metrics behind the reward
values in Figure 16 for ABR and CC, respectively. The breakdown is
done by decomposing the reward equations introduced in Table 1.

For ABR, Table 6 shows that GENET tends to train a model that leads
to less rebuffering and more smoothed bitrate selection without

significantly sacrificing the average bitrate. For CC, Table 7 shows
that GENET-trained model tends to have a lower 90th percentile
latency and packet loss rate while not reducing throughput too
much on Path 2 and 3. On Path 1, the performance gain is mainly
from the larger throughput that GENET-trained model enables.

A.8 Train RLs and CLs with more iterations

To understand whether baselines like RLs and CLs can outperform
GENET if they are given more training iterations, we trained RLs
and CLs with twice as many training iterations as GENET. We
empirically found that training with more iterations did not help
the models trained by RLs and CLs as much as those trained by
GENET. Their learning curves are shown in Figure 22.
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ABR  Bitrate (Mbps) Rebuffering (s) Bitrate change (Mbps) Reward

MPC 3.98 0.03 0.02 3.66

Path1 BBA 3.84 0.018 0.15 3.51
GENET 3.87 0.006 0.04 3.77

MPC 3.22 0.041 0.07 2.74

Path2 BBA 2.81 0.014 0.12 2.55
GENET 3.15 0.008 0.07 3.01

MPC 2.24 0.042 0.04 1.78

Path3 BBA 1.75 0.03 0.05 1.40
GENET 2.26 0.033 0.02 1.91

MPC 2.93 0.013 0.04 2.76

Path4 BBA 2.96 0.05 0.03 2.43
GENET 2.88 0.002 0.02 2.84

MPC 2.35 0.027 0.05 2.03

Path5 BBA 1.82 0.022 0.04 1.56
GENET 2.32 0.004 0.03 2.25

Table 6: Reward breakdown of Figure 16(a) in ABR real-world experiment.

Path CC  Throughput (Mbps) 90th percentile latency (ms) Packet loss rate Reward

BBR 164.2 57.25 0.0906 -35.62
Path1 Cubic 158.2 56.60 0.0072 104.2
GENET 180.5 55.54 0.0063 152.1
BBR 0.2108 3346 0.0407 -1721
Path2 Cubic 0.2149 6978 0.2206 -4273
GENET 0.1975 6381 0.0267 -3178
BBR 5.40 1581 0.0136 -705.9
Path3  Cubic 6.63 1400 0.0382 -719.1
GENET 491 1180 0.0075 -439.9

Table 7: Reward breakdown of Figure 16(b) in CC real-world experiments.
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