
Parameterized Radix-r Bruck Algorithm for
All-to-all Communication

Ke Fan
University of Alabama at Birmingham

Birmingham, USA
kefan@uab.edu

Sidharth Kumar
University of Alabama at Birmingham

Birmingham, USA
sid14@uab.edu

I. INTRODUCTION

MPI collectives perform an important set of global commu-
nication tasks such as broadcast, gather, and reduction, and are
therefore essential for HPC applications [7]. MPI_Alltoall
is one of the most widely used collective routines that facili-
tates uniform data exchange between each pair of processes.
The standard implementation of MPI_Alltoall in MPI
libraries (e.g., MPICH [2], OpenMPI [3]) uses a combination
of techniques, such as the spread-out algorithm [2] and the
Bruck algorithm with radix-two [1]. In terms of process count
P , the spreadout algorithm has a linear complexity, but the
Bruck algorithm with radix-two has a logarithmic complexity.
A selection between them is made at runtime based on the
message size and the number of processes. The Hockney
performance model [4] evaluates the minimum communication
cost of collective operations in terms of latency (the required
number of communication steps) and bandwidth (the actual
data transfer time) [5]. Compared with the spread-out algo-
rithm, the Bruck algorithm with radix-two transfers more data
with fewer communication steps. As a result, it works well for
short messages (latency-dominated).

In fact, the radix of the Bruck algorithm can be tuned from 2
to P−1. This ability makes it possible to tune the total number
of communication steps along with the total amount of data
transmitted (Fig. 1), which allows performance tuning. Cur-
rently, the Bruck algorithm with radix-two and the spread-out
algorithm are at opposite ends of the communication spectrum,
with a great deal of unexplored parameter space in between.
Therefore, in this work, we formalized a generalized formula
and implementation of the Bruck algorithm and performed an
experimental investigation of the tunable Bruck algorithm with
varying radix-r. We demonstrated that the Bruck algorithm
with radix r = ⌈

√
P ⌉ (P : total number of processes) is the

most effective in most cases. Furthermore, we derive a formula
to calculate the number of data-blocks transferred at each
communication step. The formula can be used to determin-
istically precalculate the total workload per communication
step for all possible radix-r. In addition, we optimized the
Bruck algorithm by using a modified Bruck algorithm [6] that
eliminates the final rotation phase that is required by Bruck.
We performed scaling studies for a range of message sizes,
and radices, and demonstrated that Bruck with optimal radix

outperforms vendor-optimized Cray’s MPI_Alltoall by as
much as 57% for some workloads and scales.

II. GENERALIZED RADIX-R BRUCK

Fig. 1: Examples of the Bruck algorithm with 6 processes and
varying radix r: (a) r = 2 (3 comm steps), (b) r = 4 (5 comm
steps), and (c) r = 5 (5 (P − 1) comm steps).

In all-to-all data exchange, each process has a send data
buffer, which is logically comprised of P data-blocks. Each
data-block is made up of some number of data-elements that
are always transferred together. For MPI_Alltoall, the
number of elements is the same for all data-blocks. Similarly,
processes also have a receive buffer (initially empty). Both the
send buffer and the receive buffer are contiguous 1-D arrays
where all data-blocks are laid out in increasing block order.
During all-to-all communication, each process i needs to send
a data-block j (0 ≦ j ≤ P ) to and receive a data-block i from
the corresponding process j.

In its original form, the Bruck algorithm has three phases: an
initial rotation phase that moves its data up by p (the process
rank) data-blocks; a communication phase with multiple steps
that perform the actual data exchange (seen Fig. 1); and a final
rotation phase that places the received data blocks in ascending
order. We present the decomposition of the communication
phase into a sequence of point-to-point communication rounds,
assuming a 1-port fully connected message-passing model in
which each process can communicate with only one other
process simultaneously. The id of the ith data-block per
process is j after the first rotation phase, which can be encoded



using radix-r (2 ≦ r < P ) representation with w = ⌈logPr ⌉
digits. We then go through the digits from 0 to w − 1 in
sequence. For each digit k, the Bruck algorithm also includes
at most r − 1 substeps, corresponding to the r − 1 different
non-zero values of k. Therefore, the number of communication
steps numC is as shown in (1).

numC = w × (r − 1) (1)

However, if rw > P , the k = w − 1 round has fewer
substeps than the other rounds. Therefore, the actual number
of communication steps numC is calculated by (2).

numC = w × (r − 1)− ⌊(rw − P )/rw−1)⌋ (2)

In addition, for each substep z (0 < z < r) in x (0 ≦ x <
w) round, each process sends at least lc = P/rx+1× rx data-
blocks to its destination, and the remaining number of data-
blocks is re = P % rx+1. The number of actual exchanged
data-blocks per substep numD is then as below:

t = re− z × rx, numD =


lc, if (t ≦ 0)

lc+ rx, else if (t/rx > 0)

lc+ t % rx, else
(3)

We can calculate numC and numD per process for any
given P using these equations, as demonstrated in Fig. 2a. This
figure shows that numC increases near linearly, but numD
decreases dramatically when r is no more than ⌈

√
P ⌉. When

r = ⌈
√
P ⌉, numD roughly doubles the linear value, but

numC is much less than the linear one. Fig. 2b demonstrated
an example of comparing Bruck with MPI_Alltoall on
theta supercomputer. We double r from 2 to 64, and we
observe that r = 48(⌈

√
2048⌉ = 46) delivers the best

performance (N : size in bytes per data-block).

(a)
.

(b)
Fig. 2: (a) numC (orange) increases while numD (blue) de-
creases when radix-r (2 ≦ r < P ) is increasing (P = 4096).
(b) Comparing Bruck with varying radix r with MPI Alltoall
on the Theta supercomputer (P = 2048, N = 512).

III. EVALUATION

All our experiments are performed on the Theta supercom-
puter at the Argonne Leadership Computing Facility (ALCF).
We repeated each experiment 100 times and plotted the mean
along with the standard deviations (as error bars).

We implemented both the basic Bruck and modified Bruck
algorithms with tuneable parameter radix r. With these im-
plementations, we then report three sets of experiments to
compare them with vendor’s optimized MPI_Alltoall: 1)
varying radix r with fixed process count P and size per data-
block N (seen Fig. 3); 2) varying N with fixed P and r (seen
Fig. 4a); and 3) varying P with fixed N and r (seen Fig. 4b).

Fig. 3: Comparing Bruck with MPI Alltoall: varying radix r.

Fig. 3 depicts the outcomes of the 512-process (a and b)
and 4096-process (c and d). The radix r in the 512-process
experiment ranged from 2 to 56, and it ranged from 2 to 80 in
the 4096-process experiment, while the data-block size N was
fixed at 64 (a and c) and 1024 bytes (b and d) respectively.
From the results, we observe three key trends: (a) the Bruck
method with radix-2 does not perform well in most cases; (b)
modified Bruck outperforms Bruck when N is relatively large
which has a higher final rotation cost, but the improvement
is extremely limited; and (c) the Bruck algorithm with r near
⌈
√
P ⌉ works well in most cases. For example, for P = 512,

the modified Bruck algorithm with radix-22 is 50.46% faster
than MPI_Alltoall at 64 bytes and 25.42% faster at 1024
bytes. For P = 4096, the modified Bruck algorithm with
radix-64 is 53.58% faster than MPI_Alltoall at 64 bytes
and 39.85% faster at 1024 bytes.

Fig. 4: Comparing Bruck with MPI Alltoall: (a) varying size
per data-block (N ), (b) varying process counts.

Furthermore, for the 4096-process in Fig. 4a, we fixed r at
64 while varied N from 16 to 1024 bytes. Except for extremely
short messages, this result illustrates that Bruck with optimal
r works well for all Ns. In Fig. 4b, we fixed N = 1024 bytes
and r to be optimal for all P (512 ≦ P ≧ 4096). We can
clearly see that Bruck with optimal r performs much better
than MPI_Alltoall for all P s.

IV. CONCLUSION

In this paper, we formalized and implemented the open-
sourced parameterized Bruck algorithm where the radix can
be tuned from 2 to P-1. Then, we conducted an experiment
with various Bruck radixes for a wide variety of workloads
and process counts. According to the evaluation results, we
demonstrated that the Bruck with radix around r = ⌈

√
P ⌉ (P :

total number of processes) is the most effective in most cases.
In comparison to the vendor-optimized MPI_Alltoall on
the Theta supercomputer, the Bruck with the optimal radix is
up to 57% faster for certain workloads and scales.



REFERENCES

[1] Bruck, Jehoshua, et al. “Efficient algorithms for all-to-all communi-
cations in multiport message-passing systems.” IEEE Transactions on
parallel and distributed systems 8.11 (1997): 1143-1156.

[2] MPICH Home Page. https://www.mpich.org.
[3] OpenMPI Home Page. https://www.open-mpi.org.
[4] Hockney, Roger W. “The communication challenge for MPP: Intel

Paragon and Meiko CS-2.” Parallel computing 20.3 (1994): 389-398.
[5] Loch, Wilton Jaciel, and Guilherme Piêgas Koslovski. “Sparbit: a new

logarithmic-cost and data locality-aware MPI Allgather algorithm.” 2021
IEEE 33rd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 2021.

[6] Träff, Jesper Larsson, Antoine Rougier, and Sascha Hunold. “Im-
plementing a classic: Zero-copy all-to-all communication with MPI
datatypes.” Proceedings of the 28th ACM international conference on
Supercomputing. 2014.

[7] Jocksch, Andreas, Matthias Kraushaar, and David Daverio. “Optimized
all-to-all communication on multicore architectures applied to FFTs
with pencil decomposition.” Concurrency and Computation: Practice and
Experience 31.16 (2019): e4964.


