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Abstract

Parameter estimation from observable or experimental data is a crucial stage in any modeling study.
Identifiability refers to one’s ability to uniquely estimate the model parameters from the available data.
Structural unidentifiability in dynamic models, the opposite of identifiability, is associated with the notion
of degeneracy where multiple parameter sets produce the same pattern. Therefore, the inverse function
of determining the model parameters from the data is not well defined. Degeneracy is not only a math-
ematical property of models, but it has also been reported in biological experiments. Classical studies
on structural unidentifiability focused on the notion that one can at most identify combinations of uniden-
tifiable model parameters. We have identified a different type of structural degeneracy/unidentifiability
present in a family of models, which we refer to as the Lambda-Omega (A-2) models. These are an
extension of the classical lambda-omega (A\-w) models that have been used to model biological systems,
and display a richer dynamic behavior and waveforms that range from sinusoidal to square-wave to spike-
like. We show that the A-Q2 models feature infinitely many parameter sets that produce identical stable
oscillations, except possible for a phase-shift (reflecting the initial phase). These degenerate parameters
are not identifiable combinations of unidentifiable parameters as is the case in structural degeneracy. In
fact, reducing the number of model parameters in the A-2 models is minimal in the sense that each one
controls a different aspect of the model dynamics and the dynamic complexity of the system would be
reduced by reducing the number of parameters. We argue that the family of A-Q2 models serves as a
framework for the systematic investigation of degeneracy and identifiability in dynamic models and for the
investigation of the interplay between structural and other forms of unidentifiability resulting on the lack of
information from the experimental/observational data.

1 Introduction

Mathematical models are useful tools that can be used to interpret experimental or observational data,
make quantitative predictions that are amenable for experimental testing, and identify the mechanisms
that underlie the generation of pattern of activity in terms of the interactions among the system’s com-
ponents [1-3]. An important step in connecting models with experimental or observational data is to

*Current address: Department of Psychology, The University of Texas at San Antonio

E-mail: horacio@nijit.edu, corresponding author

fGraduate Faculty, Behavioral Neurosciences Program, Rutgers University; Corresponding Investigator, CONICET, Argentina;
Affiliated Faculty, Institute for Future Technologies, NJIT.



estimate the model parameters by fitting the model outputs to the available data (Fig. 1). The ability of
models to make predictions, provide mechanistic explanations, and be useful for decision making all de-
pends on the accuracy and reliability of the parameter estimation process. A large number of parameter
estimation tools are available to scientists as well as methods to discover data-drive nonlinear dynamic
equations [4-20] (and references therein) and tools to link data with models continue to develop.
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Figure 1: Representative parameter estimation diagram. The model parameter sets are represented by p1, p2, p3, p4 and
ps (within the framework on the left of each panel). The data (or data sets), either experimental/observational data or ground truth
(output) model data, are represented by the graphs on the right of each panel. A. Schematic example of identifiability. Each data
set is generated by one and only one parameter set. B. Schematic example of unidentifiability. Some data sets are generated by
more than one parameter set.

A key feature of these tools is the minimization of an error function, a metric of the difference be-
tween the model output (simulations using estimated parameters) and the available (target) experimen-
tal/observed data. These data can be continuous (data collected with a high-frequency sampling, as
compared to the scale of the process of interest, so that one can make the continuous approximation for
mathematical purposes) or discrete (point process capturing the occurrence of events of interest). Error
functions can be constructed by using all the data available in a point-to-point fashion (e.g., Fig. 2-A) or
by computing one or more attributes that characterize these data (e.g., oscillation frequency, oscillation
amplitude, oscillation duty cycle, stationary states, characteristic raise and decay times; Fig. 2-B).

There are several difficulties associated with the implementation of parameter estimation tools. These
difficulties are data-related (lack of access to all state variables, inconsistent gaps across trials), compu-
tational (algorithmic nature), statistical (data is noisy and therefore one can at best expect to estimate
distributions of parameter values around a “true" mean), and structural (degeneracy, mathematical na-
ture).

In an ideal situation, there would be a unique parameter set that fits the experimental/observational
data (e.g., Fig. 1-A). We refer to the underlying model as identifiable [24]. In mathematical terms, the
function linking parameter sets and data is bijective. In practice, these systems are subject to fluctuations
from uncertain sources and one obtains a distribution of parameter sets (in a high-dimensional spaces
whose dimensions are equal to the number of parameters of interest) centered at the “true" parameter
set. The former has been termed structural identifiability, while the second has been termed practical
identifiability or estimability [25]. Roughly speaking, the narrower the estimated parameters distribution
(the smaller the variance), the more precise the parameter estimation process. However, this assumes
that the center of the distribution is a good approximation to the “true" value. When necessary, the
necessary validation of this assumption and the circumstance under which it is true can be done by



2000 2000 2500
—V —V
—T period —T
1500 —T 2000 -
1500
1500
1000 >
1000
1000
500 500
H H H H H H H H H H amplitude H H “ ” “ ” ” “ {\ {E
0 500 : : : 0
0 20 40 60 80 100 0 10 20 30 0 20 40 60 80 100
t [day] t [day] t [day]
D1 D2 D3
2000 ¢ 2000
0.5- . —V
Period level set ’m —T
0.45 1500 1500 —T
0.4-
©.0.35 1000 1000
03 500" 500
0.25-
0.2 0 0
1.5 2 25 3 0 20 40 60 80 100 0 20 40 60 80 100
p t [day] t [day]

Figure 2: Dynamics and attributes for the oscillatory patterns in a HIV-1 model. The variables represent the concentrations
of uninfected cells (T), infected cells (T"*) and virus particles (V). A. Representative oscillatory pattern. The oscillation period is
~ 9.71 days. B. Three attributes for V': period, amplitude and duty cycle. These attributes can be computed similarly for 7" and
T*. These attributes can be extracted from data if the data is regular enough. C. Representative oscillatory pattern for a stochastic
logistic growth rate p of the T-cells. The mean period is ~ 9.82 days. The mean period after 10 trials is ~ 9.61 days. The average
frequency of the irregular pattern in Fig. 2-C is almost equal to the frequency of the regular pattern in Fig. 2-A. Both were created
using the same parameter values, except for the rate of logistic growth of the uninfected T-cells, which was constant in Fig. 2-A
and normally distributed around this constant value in Fig. 2-C. Therefore, the frequency can be used as a reliable attribute, but
not necessarily the amplitude, whose quantification may require statistical processing. We used the HIV-1 model (1)-(3) [21] (see
also [22, 23]) with the following paramter values: § = 10, a = 0.02, p = 3, 8 = 0.24, Tinax = 1500, v = 2.4, k£ = 0.0027,
N =10 and 7 = 1. In panel C, p was drawn from a normal distribution with mean zero and and variance equal to 2. We rejected
the negative values of p (the negative values of p were substituted by zero). D. Period level set in the p-5 parameter space for the
same period as in panel A (~ 9.71 days).
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Figure 3: Dynamics and attributes of a representative neuronal spiking pattern. A. Membrane potential V' (blue) and spike
times (black). The attributes are the V' trace (curve of V' as a function of ¢) or the spike times sequence if one has no access to
V' during the interspike intervals (ISIs) or chooses not to use that information (e.g., if it is too noisy). B. Interspike interval (ISI)
histogram (light blue) and approximation using an difference of exponentials F' (red). The ISI sequence is defined as the difference
of two consecutive spike times. F is defined by F' = A[e™(7—70)/Taccay _ ¢=(7=70)/Trisc | The attributes are Finaz, Taccay, Trise
and 7o. C. Subthreshold membrane potential V' histogram. The peak at V = —60 corresponds to the transition from spiking to the
reset voltage V;.-. The mean is equal to —53.71 and the variance is equal to 4.63. We used a leaky integrate-and-fire (LIF) model
in the noise-driven regime. The model is defined by eq. (59), describing the dynamics of the so-called passive cell (an RC circuit)
with the addition of a voltage threshold Vi, for spike generation and a reset values V,.s; after a spike has occurred. Spikes (action
potentials) are generated when V' reaches Vi1, after which V' resets to the prescribed value V,s: (below the so-called resting
potential or stable equilibrium of the underlying circuit). In the absence of noise, V' reaches an equilibrium and therefore spikes are
created by the presence of noise. For higher values of I,,, (and no noise), V' spikes periodically. When noise is added, it disrupts
the periodicity of the oscillations. Even if one has access to the subthreshold V' data, the error minimization process might be not
easy to accomplish because of the noisy subthreshold behavior. If this is the case, one can use the spike-times (panel A, black
dots), a discrete variable, at the expense of losing some information, and the spike-time statistics (panel B) to characterize the data.
We used the following parameter values C' = 1 p F/em?, G = 0.1 mS/cm?, I, = 0.8 mA/cm?, Er, = 60 mV, Vip, = —50 mV,
Vist = —60 mV and a white noise variance D = 0.25. We run the simulation for a total time of 1,000,000 ms with a time step
At = 0.1 ms.



using ground truth data generated by mathematical models. When continuous data is too noisy to be
amenable for parameter estimation purposes, one might be able to extract useful discrete data in the form
of attributes that capture the most relevant aspects of these data or point processes that are embedded
in the data (e.g., Fig. 2-C and Fig. 3 ). However, this is done at the expense of loosing information
and therefore has consequences for the accuracy of the parameter estimation process. Additional issues
emerge when not all state variables are accessible or if gaps in discrete data sets are inconsistent across
trials, requiring the use of imputation tools.

Unidentifiability, the opposite of identifiability [25-31], is associated with the concept of degeneracy.
Degeneracy refers to these situations where multiple sets of parameter values can produce the same ob-
servable output (e.g.,Fig. 1-B, Fig. 2-D1 if the output is the period), therefore making the inverse problem
(of finding parameters given the data) ill-posed. In mathematical terms, the function linking parameter
sets and data is not injective (at most surjective). (There is in fact an implicit assumption that these links
are surjective.) Degeneracy is not a problem associated with the statistical uncertainty in the knowledge
of a unique parameter set from which the data is generated referred to above, but a structural problem
inherent to mathematical models where the same patterns (e.g., temporal, spatial) can be obtained from
multiple parameter sets. Degeneracy gives rise to the concept of level sets in parameter space (e.g.,
Fig. 2-D1) [32,33]. These are geometric objects (curves, surfaces, hypersurfaces) along which a given
attribute of activity remains constant (see additional examples and a detailed discussion in the Appendix
A), and are the geometric instantiation of the idea that a number of well-defined combinations of uniden-
tifiable parameters can form an identifiable set. In other words, one can at most identify combinations of
unidentifiable parameters.

Identifiability and unidentifiability have been studied in a number of systems. Structural identifiability
has been studied using different approaches, including differential algebra [27,34-39], Taylor series [40],
similarity transformations [41, 42] and the Fisher information matrix [26, 43—45] (see also [46—48]). In
recent work [32] we have used numerical simulations and dynamical systems tools to characterize the
frequency and duty cycle level sets and explain what are the dynamic mechanisms responsible for their
generation in the FitzHugh-Nagumo (FHN) [49] model and the Morris-Lecar model [50,51] in the oscil-
latory regimes. Within a given attribute level set (e.g., period), the oscillatory patterns are non-identical
(similarly to Fig. 2-D), and therefore dynamic balances operate to maintain the attribute of interest. The
Morris-Lecar model is a neuronal model describing the interplay of two ionic currents (calcium and potas-
sium), a leak (linear) current and a capacitive current. The FHN model is a caricature model that has
been used to capture the oscillatory behavior in a number of fields (see Appendix A.3). In the relaxation
oscillations regime, the oscillatory behavior of the FHN model is qualitatively similar to the one exhibited
by the Morris-Lecar model and other models of biological relevance [2,52,53]. When the time scales are
not well separated, the FHN model exhibits oscillations qualitatively similar to the HIV model in Fig. 2.

The use of non-trivial attributes makes the comparison between data and model output computation-
ally less expensive; instead of having to use a large set of points (e.g., the histogram envelope captured
by the red curve in Fig. 3-B or the full time courses in Fig. 2 ) one can use a significantly smaller number
of attributes. In general, attributes refer to the parameters that characterize the data according to the way
one chooses the data to be organized. On one extreme, the attributes are the whole set of data points
and one ideally has access to all the model’s state variables. On the other extreme, the attributes are the
minimal number of “numbers" necessary to fully characterize the available data. For example, frequency
and amplitude are enough to describe a sinusoidal oscillation. A third attribute would be necessary if this
oscillation is not centered at zero. Additional attributes such as the time constant governing the transition
from an active (up) to a passive (down) phases would be necessary to discriminate between sinusoidal
and relaxation oscillations. In the example in Fig. 2 the oscillations can be characterized by the frequency,
amplitude and duty cycle. In the example in Fig. 3, the data consists of the interspike (or interpeak) inter-
vals (ISls or IPIs) histogram, which releases us from making detailed spike-time comparisons that could
be strongly affected by noise and therefore complicates the error minimization process. This histogram
can be characterized by four attributes (Fig. 3-B): the histogram peak Fi,.., the characteristic rise and
decay constants 7,5, and T4ecay, respectively, and the value of 7 at which the histogram “begins”, 7y. Ad-



ditional attributes are the mean and variance of the ISI distribution. (Neuronal spiking behavior typically
approximates a Poisson process [54, 55] and therefore the mean ISl is equal to its standard deviation.)
Similar type of histograms could be computed for the frequency, amplitude and duty cycle in the HIV-1
viral kinetics example in Fig. 2-C. Note that attributes are used in connection with the data, while param-
eters are used in connection to the model used to generate or describe these data. A detailed discussion
about the relationship between attributes (of patterns of activity) and model parameters in simple mod-
els including the prototypical FitzhHugh-Nagumo oscillator [49] and a Hepatitis C viral model [56] (see
also [57]) is presented in the Appendix A.

Oscillations are ubiquitous in dynamical systems, particularly in biological systems [2,21,52,53,58—63]
where degeneracy has been observed, not only in models, but also in experiments [64—66] (see also
[32,33]). The mechanisms underlying the presence of degeneracies in biological oscillations are not well
understood. It is also unclear how the presence of degeneracies affect the parameter estimation process
for models describing biological oscillations and oscillations in general.

We have identified a family of canonical models for unidentifiability/degeneracy where the limit cycle
trajectories are unidentifiable and the degeneracy can be analytically computed. There are infinitely
many parameter sets that produce identical stable oscillations, except possible for a for a phase-shift,
which depends on the initial phase. In other words, all the attributes of the of the oscillatory patterns
are degenerate and have the same level sets, which can be analytically computed. We refer to the
generic formulation of this model as the A-Q2 model. It is a generalization of the so-called A\-w system
[67,68], also referred to as the Poincaré oscillator [69, 70]. These are real-valued special cases of the
complex Ginzburg-Landau equation [71-74] and their role for modeling biological systems are discussed
in detail in [58] (see references therein). The general formulation can exhibit bistability and a number of
bifurcations. The classical A-Q2 exhibit sinusoidal oscillations. Extended versions of this model produce
oscillations with more complex waveforms, including relaxation and spike-like oscillations, and a rich
repertoire of dynamic behavior, including bistability and even multistability. In contrast to other models
showing structural unidentifiability due to redundancy in the number of parameters with physical meaning
(see Appendix A for a detailed discussion), the number of parameters in the A-Q2 models cannot be
reduced without reducing the model complexity. To our knowledge, the issues of unidentifiability and
degeneracy in the family of A-Q2 models has not been raised before.

Because of the properties described above, the family of A-Q2 models are an ideal system to ask
fundamental questions about degeneracy of dynamical systems and their relationship with parameter
estimation unidentifiability. The goal of this paper is to address these issues. Our results contribute to the
development of a framework for the investigation of unidentifiability in dynamic models.

2 Methods

2.1 A viral infection kinetic model

For illustrative purposes we will use the HIV viral infection model presented in [21] (see also [22, 23]),
which, as noted in [23] belongs to a more general class of viral infection models [75]. The model is
described by the following equations for the concentration T of the uninfected T-cells, the concentration
T of productively infected T-cells, and the concentration V' of free virus particles in the blood

dT
Ezé—aT—i—pT(l—T/Tmaz)—kVT, (1)
dT*

=BT +kVT 2
7 BT + ; (2)
dv
—r =7V +NBT —ikVT, (3)



where o (day 1), B (day—') and v (day ') are the death rates of the uninfected T-cells, the infected T-cells
and the virus particles, respectively, k¥ (mm? day~!)is the contact rate of the uninfected T-cells and the
viral particles, § (mm—3 day—!) represents the constant production of the T-cells, IV is the average number
of virus particles produced by an infected T-cell, p (day~!) and T4 (MM™3) are the growth rate and the
carrying capacity, respectively, associated to the logistic growth of uninfected T-cells in the absence of
virus particles, infected T-cells and other factors. As shown in Fig. 2, this model displays oscillatory
behavior. Oscillations are typically observed in a number of virus dynamical systems [21,76-78].

2.2 Lambda-Omega (A-(2) models: general formulation

The A-Q) systems have the general form

dx
=AM -0y, @
W _ g A 5
ﬁ_ (T)‘T—i_ (T)ya ()
with
r’=a® + 7, (6)

where x and y are state variables and ¢ is time. The functions A and ) are typically chosen to be
polynomials of degree two or four [67,69,70], but they could in principle be well-behaved enough functions
with the necessary properties to support oscillations as discussed in this paper.

2.3 Modified A-) models: general formulation
The modified A-2 modes have the general form

dzr

= Az -0y, )
dy  ~ ~
2 — Qe +A0)y, ®

where the functions A and 2 are different from the functions A and €2, but belong to the same class. We
use this formulation to investigate the consequences of the break of symmetry present when A = A and
Q=Q.

2.4 Parameter estimation algorithms

To study the impacts of the A-2 model’s degenerate mathematical structure on the estimation of its
parameters, the behavior of three parameter estimation algorithms, covering a range of methods, were
characterized. These include a Genetic Algorithm (GA) [10,11,79,80], Gradient Descent Algorithm [6,81],
and Sequential Neural Posterior Estimation (SNPE) method [15, 82,83]. The purpose of each of them
is to find parameter values that fully minimize the difference between estimated solutions produced by
the algorithm’s output and a data set representing the target (optimal) solution to the model. In practical
applications of parameter estimation, experimental (or observational) data typically acts as this set of
target data, however, for the purpose of this study, when working with the A-w model a simulated output
using a predetermined set of parameters (A = 1, w = 1, a = 1, b = 1) acts as a ground truth data set
(GTD) to stand in as a proxy for experimental data. To categorize the impacts of noise on the identifiability
of the model’s parameters, each parameter estimation algorithm was tested using data sets with variable
levels of noise applied to the GTD. We used Gaussian white noise with mean zero and variance D



(D = 0,100, 250), added to the both equations in the A-w model. This approach seeks to activate the
transient dynamics of the system by perturbing its trajectory from the limit cycle. Under certain conditions,
the activation of transients is believed to resolve some types of unidentifiability issues. Specifically in the
case of the A-w model, if one is able to estimate A from the transient dynamics, then the estimation of
b is straightforward, eliminating the unidentifiability of the two parameters. In our simulations we used
At = 0.01.

2.4.1 Stochastic Optimization: Genetic algorithms (GA)

The GA is an evolutionary algorithm based on the principles of natural selection, in which only “fit" indi-
viduals of a given generation are used to create subsequent generations [79, 80] (see also [10-13]). The
fitness of parameter sets within the population are those that produce an output most closely resembling
the GTD. In our numerical experiments, we quantify this as the difference between the ground truth and
the simulated differences and amplitudes. However, other implementations of the algorithm can consider
the attributes independently or simply use the time series produced by each parameter set as a whole.
Both of these approaches were tested and showed no improvement on the identifiability of parameters.
We used a multiobjective GA, where the estimation process begins by creating an initial population of
randomly distributed parameter sets [79]; for the purposes of this study, populations were created using
random values within the range of [0,2]. In each generation, only the top half of the population that
most optimally matches the GTD are used as “parents” to build the next generation. The next generation
consists of both crosses between two independent parent sets and the original parent sets themselves
with random mutations being added to parameter values at a rate of 1 over the number of parameters
estimated. The number of generations produced and population size is specified by the user, with exe-
cutions in our study using 500 generations and populations of 250 individuals. To ensure the adequacy
of these conditions, trials with a larger population size (up to 2000 individuals) and/or higher number of
generations (up to 1000 generations) were tested and shown to have no impact on the performance of
the GA.

2.4.2 Sequential Neural Posterior Estimation (SNPE)

We implemented SNPE using the simulation-based inference (SBI) developer toolbox [15,82,83]. SNPE
falls under a larger category of algorithms called Sequential Neural Processes, which use Bayesian
inference to estimate parameter values [15,82,83]. This technique is a statistical method for calculating
likelihood of events based on prior observations, and it is applied to determine which parameter values
are most likely to produce the behavior observed in the GTD [15, 82, 83]. Similarly to the GA, Sequential
Neural Processes start with an initial distribution of parameters, which is then refined, in this case using
Bayesian inference. For this application of SNPE, an initial uniform distribution on [0, 2] is created as a
prior distribution. Then, 10000 simulations of the model are created by sampling from parameter sets
within this distribution in order to infer a posterior distribution based on which sets produce an output
most closely matching the GTD.

3 Results

3.1 Unidentifiability and degeneracy: a preliminary discussion using simple mod-
els

Here we introduce some ideas related to unidentifiability and degeneracy in dynamical systems, including
the concepts of activity attributes, level sets and parameter redundancy in models and their outputs. We
do this in the context of relatively simple models. A detailed mathematical description of these models
and the unidentifiability analysis are presented in the Appendix A.



In the 1D minimal model example discussed in the Appendix A.1, the minimal model has no level
sets. The number of minimal model parameters is equal to the number of attributes that characterize
the pattern. In fact, the minimal model parameters are themselves the attributes. In the 2D minimal
model example discussed in the Appendix A.2, there are no level sets for the time constant 7 and this
attribute is determined uniquely by the minimal model parameter b in eq. (63). In contrast, the damped
oscillations frequency w (64) is a combination of the minimal model parameters b and ¢ and has level
sets in this parameter space. Clearly, if one can estimate the two attributes 7 and w, one can identify
the minimal model parameters b and c¢. If one can only estimate w, then the model has degeneracy.
Typically, by design, the minimal model parameters have no physical (or biological) meaning, but only
dynamic meaning. They are a minimal set of model parameters in that eliminating one of them reduces
the dynamic complexity.

The situation changes when models are created to reproduce or explain experimental or observational
data. The number of physically meaningful model parameters is larger than the number of minimal model
parameters needed to maintain the model dynamic complexity. The level sets and degeneracy that we
find in the realistic models in both cases (Appendices A.1 and A.2) emerge because the minimal model
parameters (with dynamic meaning) are combinations of (realistic) parameters with physical meaning.
From that perspective, the realistic parameters generate a dynamic redundancy, which is reflected by the
fact that the minimal model parameters are combinations of physical parameters. This type of degeneracy
cannot be resolved unless one has access to additional data.

The FHN model discussed in the Appendix A.3 is a nonlinear minimal model in the oscillatory regime.
In the example presented in the Appendix A.3, there are level sets, which emerge as two or more minimal
model parameter sets dynamically balance each other to maintain an attribute constant (e.g., frequency,
see Fig. 17-A and -B) [32] similarly to the HIV model oscillations discussed in the context of Fig. 2.
Attribute level sets such as frequency, amplitude, and duty-cycle do not coincide except perhaps in some
specific cases [32]. Additional degeneracies emerge in realistic models (e.g., Morris-Lecar model [32]) as
the number of parameters with biological meaning increases with the consequent increase in parameter
redundancies. However, it is not always possible to reduce nonlinear models to minimal models.

Fig. 17-C in the Appendix A.1 illustrates the fact that additional attributes may be necessary to
characterize oscillatory patterns. The nonidentical sinusoidal and square-wave functions have identi-
cal frequency, amplitude and duty cycle. This raises the need of identifying the appropriate attributes to
characterize a given pattern and their optimal number.

3.2 The A-Q) systems are canonical models for unidentifiability/degeneracy

Here we discuss the role of the A-Q2 models generically described by eqgs. (4)-(6) as canonical models for
unidentifiability where a limit cycle with the same frequency can be generated by multiple combinations
of model parameters.

A change of coordinates from Cartesian to polar

x =1 cos(f) and y =1 sin(6), 9)
transforms system (4)-(5) into
dr
=7 A(r), (10)
de
pri Q(r). (11)

The equation for the radius of the limit cycle is independent of the the angular velocity 6. Therefore,
the limit cycles are circles around zero and their radii i are the solutions of

A(F) = 0. (12)



The number of limit cycles 7 depends on the form and complexity of the function A(r). Since r > 0, a
limit cycle of radius 7 is stable if and only if A’(7) < 0. The frequency of the solution along this limit
cycle is Q(7) and the period is 27/Q(7). Because, if a stable limit cycle exists, in the limit of ¢t — oo
the dynamics are described completely by Q(7), A-Q systems are often referred to as phase oscillators.
Note that 7 = 0 corresponds to a fixed-point and therefore the A-() systems always have a fixed-point
whose stability properties also depend on the sign of A’(0).

Limit cycle and frequency degeneracy emerges when the function A is defined by two or more pa-
rameters. Additional degeneracy in the frequency results from the parameters defining the function 2.

3.3 Lambda-omega systems of order 2: limit cycle degeneracy

A-Q) systems of order 2 (A-Q) correspond to the following quadratic choices for A(r) and Q(r)

Alry=X— br? and Qr)=w+ ar?, (13)

where w, A\, a and b are constant. Egs. (4)-(5) become

Cfi—f =A=brHr— (wt+ar?)y, (14)
dy 2 2
E:(w—l—ar)x—l—(/\—br)y. (15)

Following [67], we refer to these models as A\-w models. They have been also referred to as Poincaré os-
cillators [69] and are real -valued special cases of the complex Ginzburg-Landau equation as mentioned
above [71-74].

The parameters A and w control the linear dynamics and the parameters a and b control the contri-
bution of the nonlinear terms to the system’s dynamics. In this sense, the A\-w model is minimal. As
we will see, the parameters \ and w play a stronger role in controlling the transient dynamics than the
parameters a and b.

Limit cycles, fixed-points, stability and oscillation frequency

These \-w systems have a single limit cycle for

F= @ (16)

if A\/b > 0, which is stable if and only if A < 0. Otherwise, the fixed-point (z,y) = (0,0) is stable. Along
the limit cycle, the frequency is constant, and given by

Sl

w=w+a (17)

In Cartesian coordinates, along the limit cycle

q =—-wy, and — =Wz, (18)
whose solution satisfying (0) = 0 and y(0) = 1 is given by

dx dy

x(t) = \/% sin (&wt) and y(t) = % cos (&t). (19)

Solutions for other initial conditions are phase-shifts of this solution. This implies that limit cycles are
identical and trajectories moving along the limit cycle have the same frequency. Fig. 4-A illustrates the
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x- and y-traces for representative parameter values. Fig. 4-B shows the corresponding phase-plane
diagram, including the circular limit cycle characteristic of sinusoidal trajectories. Finally, Fig. 4-C shows
the speed diagram, also characteristic of sinusoidal trajectories.

Limit cycle degeneracy: the level sets for all possible attributes coincide
Along the limit cycle

5 A de

T=7 and i
The limit cycles have the same amplitude for the infinitely many combinations of values X\ and b for which
their quotient is constant and they have the same frequency for the infinitely many combinations of the
four parameters such that @ is constant. The amplitude level sets are curves in the two-dimensional
A-b parameter space and the frequency level sets are hypersurfaces in the four-dimensional A-b-w-a
parameters space. Note that even along an amplitude level set there is frequency degeneracy along the
limit cycle.

Fig. 5 illustrates the identical limit cycles for different combinations of parameter values. The different
phase-plane diagrams supporting this limit cycle degeneracy indicate that the transient dynamics are
different for the different cases. This is also clear from eq. (10). The time constant associated with the
evolution of the envelope oscillations approaching the limit cycle (or moving away from it, if it is unstable)
is A-dependent.

- Q. (20)

r=1 Q=2
a b c
—x 2 —x-nulicline
1.5 —y y-nulicline 2
—trajectory
1 1 < ;
0.5
o
0 >0 X 0 |
-0.5 -1
-1
-1
-2
-1.5 -2
0 5 10 -2 -1 0 1 2 2 -1 0 1 2
t X X

Figure 4: Dynamics of the \-w system for representative parameter values. a. Traces (curves of = and y as a function of t).
b. Phase-plane diagram. The z- and y-nuliclines are the set of state points in the z-y plane that make dz/dt = 0 and dy/dt = 0,
respectively. c. Speed diagram for = (curves of dz/dt as a function of the state variable ). We used the following parameter
values: A =1, w=1,a=1and b= 1.

Limit cycle degeneracy: symmetries in the phase-plane diagram

The z- and y-nullclines for the A-w system are given by the solutions y = F(z) and x = G(y) of

ay? +bry’ +(wraz?)y—A—baP)z =0 (21)

and
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ax3—bx2y+(w+ay2)x+(/\—by2)y20, (22)

respectively.

The phase-plane diagram in Fig. 4-b shows the nullclines and trajectory for the solution to the A\-w
system for representative parameter values whose solution is shown in Fig. 4-a. We express the y-
nullcline as a function of y, and not of x, because as a function of x this nullcline is not invertible (Fig.
4-b).

System (14)-(15) is preserved under the following changes of coordinates: (i) (z,y) — (—z, —y), (ii)
(z,y) = (—y,z), and (i) (z,y) — (y, —x), but not under (z,y) — (y,z) and (x,y) — (—y,—z). The
preservation property (i) reflects the fact that the two nullclines are odd-functions: F'(z) = —F(—x) and
G(y) = —G(—y). The preservation properties (ii) and (iii) reflect the fact that the two nullclines are the
negative of one another F(x) = —G(z). Taken together, these properties reflect the fact that the two
nullclines are orthogonally identical in the sense that they can be obtained from one another by a /2
rotation (Fig. 4-b). The limit cycles are preserved if both nuliclines are rotated by the same angle [74].
Fig. 5 illustrates that these asymmetries are preserved for parameter values for different values of the
amplitude and frequency of the limit cycle.

3.4 Compensation mechanisms of generation of level sets in the \-w model

Here we investigate the dynamic mechanisms of generation of level sets in terms of the model parameters
by focusing on the geometric properties of the phase-plane diagrams in Cartesian coordinates. We aim
to identify the geometric constraints in the phase-plane diagrams for the parameter values that belong to
the same level sets and give rise to the limit cycle degeneracy.

In our analysis, we assume to have no information about the properties of the limit cycles and level
sets from the polar coordinates analysis above. The reason for doing so is to develop tools to analyze the
models when the symmetries of the A-w model are broken and the level sets for the different attributes
are split. In these cases Cartesian coordinates are more amenable for analysis than polar coordinates.

Because of the model symmetries reflected in the geometric properties of the x- and y-nuliclines it is
natural to assume that if a limit cycle exists, then it has circular shape and it is centered at the origin.

3.4.1 Level sets in the \-b parameter space

Setting y = 0 in the z-nulicline (21) shows that it crosses the z-axis at v = i\/)\_/b, independently of
the values of w and \. Likewise, setting x = 0 in the y-nulicline (22) shows that it crosses the y-axis at
y = £+4/A/b, independently of the values of w and X (Fig. 7-a).

The assumption that the limit cycle is circular and centered at the origin implies that the limit cycle
trajectory is vertical on the z-axis and horizontal on the y-axis. This requires limit cycle trajectory to
intersect the z-nullcline when the latter intersects the z-axis (at x = i\/)\_/b) and to intersect the y-
nullcline when the latter intersects the y-axis (at y = i\/)\_/b). In other words, the intersection of the
x-nullcline with the x-axis (or the intersection of the y-nullcline with the y-axis) determines the radius of
the limit cycle trajectory without the need of the transformation to polar coordinates.

In general, changes in A and b change the shape of the nullclines (compare Figs. 5-a, -b and -c).
However, when A and b change in such a way that A\/b remains constant, then the intersection of the
x-nullcline with the x-axis is constant and therefore the radius of the limit cycle is constant. In other
words, along a given level set A and b compensate for each other so as to maintain the intersection of
the z-nulicline with the z-axis constant (or, by symmetry, the intersection of the y-nulicline with the y-axis
constant).

Along these level sets the frequency of the oscillations on the limit cycle is constant since from (14)-
(15) with A — br? = 0 it follows that
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Figure 5: Phase-plane diagrams for the \-w system on two frequency and amplitude levels. a7 = landQ =2. b7 =1
and 2 = 3. We used the following parameter values: w =1, a = 1.
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dx A

= —w+adw. (@3)
dy A

E—(w—i—ab)x, (24)

whose solution is a sinusoidal function of frequency w + a Ab~! and phase tan=!(1). This implies that
solutions belonging to the same level set are identical.

a b c

Alb=1 w+ad/b=2

Alb=1 A=1

Figure 6: Compensation mechanisms for amplitude and frequency level sets in the \-w. system. Each panel shows two
superimposed phase-plane diagrams. The red curves represent the x-nullclines, the green curves represent the y-nullclines and
the blue circles represent the limit cycles. a. Nullclines for values of A and b on the same level set (A\/b = const) intersect at
the same point lying on the limit cycle. We used the following parameter values: A = b = 0.25 (dotted), A = b = 1 (solid) and
A = b = 2 (dashed). We used w = 1 and a = 1 for all cases. b. Nullclines for values of the four parameters on the same frequency
level (w + ab/X = const) and values of A and b on the same amplitude level set (A/b = const) have the same slope at their point
of intersection for the same value of A\. We used the following parameter values: w = 1.75 and a = 0.25 (dotted), w = land a = 1
(solid) and w = 0.25 and a = 1.75 (dotted). We used A = 1 and b = 1 for all cases. ¢. The slope of the nullclines at their point
of intersection depends on the values of A for values of the four parameters on the same frequency level (w + ab/\ = const) and
values of A and b on the same amplitude level set (\/b = const). We used the following parameter values: A = 1,6 =1, w =1
and a = 1 (solid) and A = 0.25, b = 0.25, w = 0.5 and a = 1.5 (dashed).

3.4.2 frequency level sets in the w-a parameter space: static compensation mechanisms
when )\ and w belong to the same level set

Computation of the derivative of the z-nullcline (21) at (v Ab~1,0) gives

dy 2\

A 2

dt ~ Twtanjb (29)
Similarly, computation of the derivative of the y-nullcline (22) at (0, =V A b~1) gives

@7:&“"'“)‘/17_ (26)

dt 2\

Therefore, the nuliclines for parameter values on the same frequency level set (w 4+ a b/ A = cont) for

the same value of \ are tangent at their point of intersection (Fig. 7-b). This constraint is lost when A
changes, even though the parameter values may belong to the same amplitude level set (Fig. 7-c).
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Figure 7: Dynamics compensation mechanisms in the \-w- model for two sets of parameter values in the same frequency
level set but different amplitude level sets. In all panels the frequency is w + a b/ = 2 and the amplitudes are ¥ = 1 (solid)
and 7 = 2 (dashed). a. Traces (z- and y-time courses). The dashed voltage traces evolve faster to compensate for the large limit
cycle diameter. b. Superimposed phase-plane diagrams. The red curves represent the z-nullclines, the green curves represent the
y-nullclines and the blue circles represent the limit cycles. €. Superimposed z-speed diagram. We used the following parameter
values: A\=1,w=1,a=1landb=1(solid)and A =2, w=1,a=0.5and b= 1.

3.4.3 frequency level sets in the w-a parameter space: dynamic compensation mecha-
nisms when )\ and b do not belong to the same level set

Here we focus on frequency level sets (w+a b/ = const) for parameter values such that \/b # const. In
these cases the oscillation amplitudes are different (Fig. 8-a and -b). The z- and y-nuliclines still intersect
the corresponding limit cycles at the z- and y-axis, respectively, but, in order to maintain a constant
frequency, the speed of the limit cycle trajectory needs to be greater than the limit cycle radius (Fig. 8-c).

3.5 Unfolding of attribute level sets for different attributes due to symmetry
breaking

The complete degeneracy of the limit cycle oscillations’ in the A\-w model results from a number of symme-
tries present in the model, and a break in this symmetry is expected to disrupt the degeneracy. However,
from previous work [32, 33] and our discussion above in the context of the HIV model (Fig. 2) we expect
degeneracies to remain for the attributes characterizing the oscillation patterns. Here we address this
issue by using the modified A-Q2 model (7)-(8) where all the functions are quadratic and r is given by (6).
The resulting modified A\-w model reads

dzr

E:(/\—brﬂ):z:—(w+a7’2)y, (27)
%:(@—i—dr?)x—i—(;\—f)r?)y, (28)

and reduces to the A-w model discussed above for A = \, & = w, @ = a and b = b.

Geometrically, from the dynamical systems point of view, there are four primary ways of breaking the
symmetry between the z- and y-nullclines: (i) generating of a time scale separation between the two
variables, (ii) expanding or shrinking the linear component of one equation with respect to the other, (iii)
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rotating one nullcline while keeping the other fixed, and (iv) displacing one nullcline while keeping the
other fixed.

Here, we systematically analyze the effects of these symmetry breaking actions by choosing the
appropriate values of the parameters in eq. (28) while keeping the parameter values in eq. (27) fixed. For
simplicity, we focus on the amplitude and frequency level sets that emerge for each one of the models.
In all cases, the canonical level sets are not preserved and new level sets emerge, which are different for
different attributes and the four different ways of breaking the model symmetry. As expected, degeneracy
remains for these attributes. As the parameter values move away from symmetry, both the shapes of the
limit cycles and the shapes of the speed diagrams change, indicating that new dynamic compensation
mechanisms to maintain the attributes’ degeneracy arise.

3.5.1 Onset of frequency and amplitude level sets due to the presence of a time scale
separation

A time scale separation between the first and second equations is generated by multiplying each one of
the parameters in the y-equation by a parameter ¢
&= ew, A= e, a=ca, b=cbh. (29)
Fig. 8-A shows the frequency and amplitude level sets for representative parameter values. The
presence of a time scale separation does not break the rotational symmetry of the two nuliclines, but
only the relative dynamics of the two variables, which is reflected in shapes of the limit cycles (Fig. 8-B2
and -C2) and the non-uniform speed along the limit cycle (Fig. 8-B3 and -C3) as well as the shapes
of the oscillatory patterns (Fig. 8-B1 and -C1). The speed diagrams show the presence of dynamic
compensation mechanisms responsible for the generation of the level sets.

3.5.2 Onset of frequency and amplitude level sets due to changes in the linear properties
of the y-nulicline

The region of linear behavior around the origin of the y-nullcline can be expanded or shrunk by multiplying
the linear parameters w and A by a constant ¢ > 1, while leaving the nonlinear parameters a and b
unchanged
O =cw, A=cA, a=a, b=b. (30)
Fig. 9 shows our results for three values of c: ¢ = 1 (symmetry), ¢ = 1.25 and ¢ = 1.5. The amplitude
level sets almost coincide, but the frequency level sets are more separated (Fig. 9-A). This is reflected in
the shapes of the limit cycles (Fig. 9-B2 and -C2) and speed diagrams ((Fig. 9-B3 and -C3). The speed
diagrams show the presence of dynamic compensation mechanisms responsible for the generation of
the level sets. These mechanisms are different from the ones discussed above.

3.5.3 Onset of frequency and amplitude level sets due to rotation of the y-nullcline with
respect to the z-nullcline

In order for the y-nulicline to be rotated by an angle ¢, the parameters @, A, @ and b must be given by
(see appendix B.1)

d = a cos(¢p) — b sin(¢), (31)

b= a sin(¢) + b cos(¢), (32)
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Figure 8: The canonical amplitude and frequency () level sets are not preserved under changes in the time scale
separation (¢) between = and y. A. Amp (solid) and Freq (dashed) level sets in the \-b parameter space for w = a = 1 and
representative values of e. A1. A/b=1and Q@ = 2. A2. \/b = 1.5and Q = 3.25. For ¢ = 1 (blue) the Amp and Freq level sets are
superimposed. B. Representative examples of two oscillators on the same Amp (= 1) level set in A for e = 0.1. C. Representative
examples of two oscillators on the same Freq level set (2 = 2) in A for e = 0.1. Left columns: Superimposed traces for O;
and O2. Middle columns: Superimposed phase-plane diagrams for O; and O2. The red curves represent the z-nullclines, the
green curves represent the y-nuliclines and the blue curves represent the limit cycles (LC; and LCs) for the two oscillators. Right
columns: Superimposed z-speed diagrams for O; (solid) and Oz (dashed).
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Figure 9: The canonical amplitude and frequency level sets are not preserved under changes in the linear properties of
the y-nulicline. A. Amp (solid) and Freq (dashed) level sets in the \-b parameter space for w = a = 1 and representative values
of the linearization coefficient c. A1. A\/b = 1and @ = 2. A2. \/b = 1.5 and Q2 = 3.25. For ¢ = 1 (blue) the Amp and Freq
level sets are superimposed. B. Representative examples of two oscillators on the same Amp (= 1) level set in A for ¢ = 2. C.
Representative examples of two oscillators on the same Freq level set (2 = 2) in A for ¢ = 2. Left columns: Superimposed traces
for O; and O2. Middle columns: Superimposed phase-plane diagrams for O; and O2. The red curves represent the z-nullclines,
the green curves represent the y-nullclines and the blue curves represent the limit cycles (LC, and LC.) for the two oscillators.
Right columns: Superimposed z-speed diagrams for O; (solid) and O (dashed).
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W = w cos(¢) + A sin(¢), (33)

A=\ cos(¢) — w sin(¢). (34)

Fig. 10 shows our results for three values of ¢: ¢ = 0 (symmetry), ¢ = 7/6 and ¢ = 7/3. The
frequency and amplitude level sets do not coincide. The speed diagrams show the presence of dynamic
compensation mechanisms responsible for the generation of the level sets. Comparison with the previous
cases shows that these mechanisms are different from the ones discussed above. In particular, the speed
diagrams in Figs. 10-B3 and -C3 have prominent intersections, which are almost entirely absent in the
cases discussed above.

3.5.4 Onset of frequency and amplitude level sets due to the displacement of the y-
nullcline with respect to the xz-nulicline

The modified A-wy system where the y-nullcline is displaced . units in the horizontal direction from the
position determined by system (14)-(15) is given by

dx

= =(=br)z—(wtar?)y, (35)
dy 2 2
ﬁz(w—i—ar):C—i—()\—br)y—i—P(:v,y), (36)
where
P(z,y) = —3azc.2® —axe.y? + 2bx.xy +3azz —baly —axd —wz.. (37)

Fig. 11 shows our results for three values of z.: g = 0 (symmetry), x. = 0.2 and x. = 0.4. These
results are similar to the previous cases, in that the frequency and amplitude level sets do not coincide
and the speed diagrams show the presence of dynamic compensation mechanisms responsible for the
generation of the level sets with prominent intersections (Figs. 11-B3 and -C3) as is only observed in
Section 3.5.3.

3.6 Lambda-Omega systems of order 4: degeneracy, Hopf bifurcations and the
emergence of bistability

A-Q systems of order 4 (A-§24) correspond to the following quartic choices for A(r) and Q(r)

A(r)y=X—br? +cr? and Qr) =w+ar®+drt. (38)

They are the normal forms of the Hopf bifurcation [84], and they have been used to model the dynamics
of oscillatory systems in response to external inputs [85, 86].
The limit cycles, if they exist are given by

b+ Vb2 — 4
2\ '

F= (39)
The fixed-points and limit cycles are stable (unstable) if —b+2¢72 < 0 (—b+ 2¢#2 > 0).

Bistability emerges when there is a stable fixed-point, a stable limit cycle and an unstable limit cycle
in between. There are a number of alternative scenarios that include the presence of one or two limit
cycles. Along the limit cycles, the frequency is given by
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Figure 10: The canonical amplitude and frequency level sets are not preserved under rotations of the y-nulicline by an
angle ¢ clockwise. A. Amp (solid) and Freq (dashed) level sets in the A-b parameter space for w = a = 1 and representative
values of the rotation angle ¢. A1. A/b = 1and 2 = 2. A2, \/b = 1.5 and Q = 3.25. For ¢ = 0 (blue) the Amp and Freq
level sets are superimposed. B. Representative examples of two oscillators on the same Amp (= 1) level set in A for ¢ = 7 /6. C.
Representative examples of two oscillators on the same Freq level set (2 = 2) in A for ¢ = 7/6. Left columns: Superimposed
traces for O; and O2. Middle columns: Superimposed phase-plane diagrams for O; and O2. The red curves represent the
z-nullclines, the green curves represent the y-nuliclines and the blue curves represent the limit cycles (LC; and LC:) for the two
oscillators. Right columns: Superimposed z-speed diagrams for O; (solid) and Oz (dashed).
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Figure 11: The canonical amplitude and frequency () level sets are not preserved under the displacement of the y-
nullcline in a horizontal direction. A. Amp (solid) and Freq (dashed) level sets in the \-b parameter space for w = a = 1 and
representative values of z.. A1. A/b = 1and Q = 2. A2. \/b = 1.5 and 2 = 3.25. For ¢ = 1 (blue) the Amp and Freq level
sets are superimposed. B. Representative examples of two oscillators on the same Amp (= 1) level set in A for z. = —0.4. C.
Representative examples of two oscillators on the same Freq level set (2 = 2) in A for x. = —0.4. Left columns: Superimposed
traces for O; and O2. Middle columns: Superimposed phase-plane diagrams for O; and Oz. The red curves represent the
z-nullclines, the green curves represent the y-nuliclines and the blue curves represent the limit cycles (LC; and LC:) for the two
oscillators. Right columns: Superimposed z-speed diagrams for O; (solid) and Oz (dashed).
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O=w+ar+drt. (40)

The degeneracies that emerge in this system, particularly in the bistable case, are more complex than
in the A\-w system discussed above and the level sets live in higher-dimensional parameter spaces. The
analysis of these degeneracies and the compensation mechanisms that give rise to them goes along the
same lines of the discussion above for the A\-w system, however a detailed analysis is beyond the scope
of this paper.

3.7 Degeneracy in extended \-w systems with generic waveforms: from sinu-
soidal to square and spike-like waveforms

The limit cycle in the standard A-w systems have sinusoidal waveforms. However, non-sinusoidal wave-
forms are ubiquitous in biological systems. Variations of the A\-w system showing square-wave and
spike-like waveforms have been introduced in [87]. Here we discuss the presence of degeneracy, in
particular the complete limit cycle degeneracy in these systems.

The extended lambda-omega A\-w systems (or extended Poincare oscillators) have the form

dx
E:f(a?,y;p), (41)
d
d—z = g(z,y; ), (42)
where
3
fayp) = Ao —wy— (ba+ay) (@@ +17) —cy [ 1+ ——— | ~d 52—,  (43)
Va2 +y? x? +y?
and
2
c) 2 2 €z zy
g(z,y;p) =wax+ Ay + (az —by) (z°+y°) +cy <1+W>+dm. (44)

The parameters p (w, A, a, b, c and d) are non-negative constants. For ¢ = d = 0, system (4)-(5) reduces
to the standard \-w system. The parameters A and w control the linear dynamics, the parameters a and b
control the cubic-like nonlinear terms (the nonlinearities in the standard A-w system) and the parameters
c and d control the remaining nonlinear terms.

A change of coordinates from Cartesian to polar

x =1 cos(f) and y =7 sin(6), (45)
transforms system (4)-(5) into

dr

—_— = — 2

g (A=br")r, (46)
d0 2 2 -2

= —w+Hartf2ccos (6/2) + dsin®(0), (47)

where r is given by (6)
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Sinusoidal, spike-like and square-wave sustained oscillatory patterns for the extended
A-w system

From eq. (10), the extended \-w system (4)-(5) has a circular limit cycle of radius

= \/g (48)

provided A/b > 0 (Fig. 4). The limit cycle is stable if and only if A < 0. Otherwise, the fixed-point
(z,y) = (0,0) is stable. The properties of the right-hand side of eq. (73)

F)=w+ a% + 2ccos?(0/2) + dsin®(6) (49)

determine the various types of temporal patterns along these limit cycles.
For the ¢ = d = 0, F(0) is constant (Fig. 12-A2), and therefore A-w evolves linearly with time (Fig.
12-A3). The solutions are sinusoidal (Fig. 12-A1) with period

2T
T = a9 (50)
where
Q—wia % (51)

For d = 0, F(9) peaks at § = 0 (Fig. 12-B2) causing 6 to evolve in a fast-slow manner (Fig. 12-B3)
giving rise to spike-like patterns (Fig. 12-B1). The period is given by (see Appendix B)
27

=/ %2)

For ¢ = 0, F'(0) peaks twice at § = +x/2 (Fig. 12-C2) causing 6 to evolve in a fast slow manner,
changing from fast to slow and vice versa twice within a cycle (Fig. 12-C3) and give rise to square-wave
patterns (Fig. 12-C1). The period is given by (see Appendix B)

27

3.7.1 Amplitude and period level sets

The amplitude level sets are as for the standard A\-w system discussed above. The frequency level sets
for the extended A-w system depend on the values of ¢ and d. It is illustrative to consider two separate
cases: (i) ¢ = 0 and (ii) d = 0 for which the period T' can be easily computed.

From (52), for d = 0, the period level sets are given by the solution to

VOVIF e = Kjrey. (54)

By solving one gets

A
w—i—ag:—c—i—,/cQ—i—K]%Teq. (55)

Similarly, from (52), for ¢ = 0, the period level sets are given by the solution to

VOV d = Kfreg. (56)

By solving one gets
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Figure 12: Representative limit cycle patterns within the same amplitude level set (\/b = 1). The angular velocity is given
by F(0) = w +aXb™" + 2ccos?(0/2) + dsin?(9). A. Sinusoidal oscillations for uniform angular velocity (c = d = 0). B. Spike-like
oscillations with slow-fast angular velocity (¢ = 10 and d = 0). F(0) peaks once within the cycle at # = 0. C. Square-wave
oscillations with slow-fast angular velocity. F'(6) peaks twice within the cycle, at & = —7/2 and 6 = 7 /2. We used the following
parameter values: A =b=1,w =0.1and a = 0.1.
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—d+/d* +4K3 ,
w—i—a%: 5 fred (57)

Similarly to the standard A\-w system (¢ = d = 0), for all combinations of parameter values satisfying
72 = \/b and either (55) or (57) the system has the same amplitude and frequency level sets.

3.8 Parameter estimation algorithms recover at most parameter values on a level
set.

One potential way to disambiguate degenerate models is to obtain information about the transient behav-
ior of trajectories. For example, for the A\-w models, the parameter A controls the evolution of the envelope
of the oscillations with increasing amplitude converging to the limit cycle (with amplitude /\/b). How-
ever, in realistic situations one does not have clean access to the transient evolution of trajectories unless
one is able to perform perturbations to the oscillatory patterns. It has been argued that the presence of
noise is useful to improve parameter estimation results since noise causes trajectories to explore wider
regions of the phase-space and therefore more information about the dynamics, particularly the transient
behavior of trajectories, is available to estimate parameters.

We used the two parameter estimation algorithms described in Section 2.4. In Fig. 13 we fixed the
values of w = a = 1 and attempted to estimate the values of A and b using ground truth data (GTD)
generated by using A = b = w = 1. In Fig. 14 we used the same GTD and attempted to estimate the
four parameters.

Our results show that relatively small levels of noise are not enough to provide useful information,
while higher levels of noise affect the efficacy of the parameter estimation algorithm. While these results
are not conclusive, they illustrate that the degeneracy present in the models poses an obstacle to the
ability to estimate the model parameters.

4 Discussion

Parameter estimation from experimental or observational data is a critical stage in any modeling study.
There are several issues that conspire against the accurate estimation of model parameters, particularly
the parameters in dynamic models (e.g, described by differential equations). Data are noisy and therefore
one can at best expect to be able to identify a distribution of model parameters centered around the “true”
parameter set (if it exists and is unique). In addition, one may not have access to data for all the state
variables assumed to describe the process. Moreover, one may have experimental/observational access
to discrete events (e.g., sequence neuronal spike times, record of a viral infection), but not the data that
underlie the generation of these events (e.g., membrane potential, concentrations of the virus, infected
and uninfected cells). Besides, if the data are too noisy or exhibit strong irregularities, one may only
have reliable access to a number of activity attributes (e.g., oscillation preferred frequency, neuronal
spiking mean firing rate) that may not be enough to capture the complete dynamic structure of these data
(e.g., sinusoidal and relaxation oscillations may have the same frequency, amplitude and duty cycle).
Furthermore, there may be gaps in the data sets and these gaps may be inconsistent across trials.
Finally, even if one has clean experimental/observational access to all the state variables and the data is
noiseless, the models may exhibit parameter degeneracy (multiple combinations of parameter give rise
to the same pattern), rendering them structurally unidentifiable.
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Figure 13: Parameter estimation algorithms recover at most parameter values on a level set. Column 1. Curves of
as a function of ¢ for representative levels of noise increasing from top to bottom. Column 2. Recovered parameters (A and b, for
w = a = 1) using a simulation based inference (SBI) approach (magenta) and genetic algorithm (GA) (cyan). The ground truth
parameters used are A = b = w = a = 1 (black dots). Neither method is able to capture the true ground truth parameters. Column
3. Histogram of w against 7 for the recovered parameter values (A and b). Both parameter estimation approaches return parameter
values that approximate the w = 2 and ¥ = 1 corresponding to the ground truth model parameters (black circles in column 2).
Increasing levels of noise do not improve the estimates in either method. The attributes of the corresponding ground truth signal as
measured by the peak detection routine (amplitude threshold = 0.1) are indicated by the circle, triangle, and square for respective
levels of noise. Note the discrepancy between the values in panels C3 and A3. A. No noise. B. Intermediate level of noise. C. High
level of noise.
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Figure 14: Parameter estimation algorithms recover at most parameter values on a level set. Column 1. Curves of z as a
function of ¢ for representative levels of noise increasing from top to bottom. Column 2. Recovered parameters (A, b, w and a) using
a simulation based inference (SBI) approach (magenta) and genetic algorithm (GA) (cyan). The ground truth parameters used are
A =b=w = a =1 (black dots). Neither method is able to capture the true ground truth parameters. Column 3. Histogram of
w against 7 for the recovered parameter values (A, b, w and a). Both parameter estimation approaches return parameter values
that approximate the w = 2 and 7 = 1 corresponding to the ground truth model parameters (black circles in column 2). Increasing
levels of noise do not improve the estimates in either method. The attributes of the corresponding ground truth signal as measured
by the peak detection routine (amplitude threshold = 0.1) are indicated by the circle, triangle, and square for respective levels of
noise. Note the discrepancy between the values in panels C3 and A3. A. No noise. B. Intermediate level of noise. C. High level of
noise.
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Classical structural unidentifiability is associated with the notion that one can at most identify combi-
nations of unidentifiable model parameters [25,26]. This is due to an excess in the number of parameters
with physical meaning as compared to the number of parameters necessary to compute the attributes
that describe these data. We discussed these ideas in detail using a number of simple representative
model examples with increasing levels of complexity in the Appendix A. A more thorough discussion can
be found in [25, 26] (and references therein).

In this paper we set out to analyze a different type of structural degeneracy/unidentifiability present in
the family of A-Q2 models [67-70,87]. We found that A-Q2 models have infinitely many parameter sets
that produce identical stable oscillations, except possible for a phase-shift (reflecting the initial phase), but
this parameters are not identifiable combinations of unidentifiable parameters as is the case in structural
degeneracy. The number of model parameters in the A-2 models is minimal in the sense that each
one controls a different aspect of the model dynamics and the dynamic complexity of the system would
be reduced by reducing the number of parameters. The level sets and the phase-plane diagrams can
be computed analytically as well as the degenerate solutions. This adds clarity to the problem, leaving
out other possible causes for unidentifiability (e.g., numerical, algorithmic), and facilitates the analytical
investigation of the underlying compensation mechanisms.

Mathematically, degeneracy can be described in terms of level sets in parameter space for a given
attribute (e.g., frequency, amplitude, duty cycle). An attribute level set is the set of all combinations of
parameter values that produce solutions with a constant attribute [32]. In general, for a given model,
level sets for different attributes may or may not coincide or be constrained by one another. For the A-Q2
models, the level sets for all possible attributes coincide.

The family of A-Q2 models produces a rich dynamic behavior, including monostable oscillations, bista-
bility between oscillations and equilibria, Hopf bifurcations, and saddle-node bifurcations of limit cycles.
The classical A-Q2 models show sinusoidal oscillations, while the extended A-2 models exhibit more
complex waveforms, including square-wave (relaxation-type) and spike-like oscillations. Therefore, the
A-Q models serve as canonical models for degeneracy/unidentifiability for a large variety of realistic os-
cillatory processes. In addition, these canonical models can be used to investigate the consequences of
degeneracy in single cells for their response to external perturbations [87] and the dynamics of networks
in which these cells are embedded.

Degeneracy of oscillatory patterns has been the focus of various studies in the context of neuronal
systems both experimentally and theoretically [32, 33, 64, 88—-94]. Degeneracy is an inherent property
of dynamical systems and is believed to arise from compensation mechanisms that generate balances
among the participating processes (e.g., neuronal ionic currents) that control the dynamics [32,33]. Be-
cause the dynamic mechanisms of generation of biological oscillations involve the interplay of positive
and negative feedback effects operating at different time scales, unidentifiability is likely to be present
in the majority, if not all biological oscillatory systems. Therefore, the A-{2 models can serve as a first,
guiding step to understand the mechanisms leading to degeneracy in biological oscillators and biological
oscillatory networks [67,68].

The full degeneracy present in the A-Q2 models results from the symmetries present in the model,
which are captured by the phase-plane diagrams. We found that a systematic break of these symmetries
for the A-w models leading to the phase-plane diagrams characteristic of more realistic models (e.g.,
relaxation oscillators) preserve the degeneracies of the attributes, although the level sets for different at-
tributes do not necessarily coincide. Therefore, the A\-w models serve as reference models to investigate
the mechanisms of generation of attribute level sets for biological oscillators as perturbations to the cor-
responding A\-w models that exhibits full degeneracy. We hypothesize that this is the case for the whole
family of A-Q2 models. More research is needed to test this hypothesis and clarify these issues.

In addition to biological oscillators, our results predict that the phenomenon of degeneracy may arise
in other oscillatory systems in physics and chemistry since the A\-w models are real-valued special cases
of the complex Ginzburg-Landau equation [71,72,72-74,95, 96]. Establishing these ideas requires addi-
tional research.

Unidentifiability in parameter estimation is a fundamental problem arising in the field of data science
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in connection to the models needed to analyze the available data. Degeneracy, the other side of the coin,
is also a biological fact reported in biological experiments [64—66] (see also [32, 33]) and is expected
to be pervasive in oscillatory systems. While on one hand degeneracy reflects the lack of information
necessary to understand the underlying mechanism in term of the participating process, one the other
hand, degeneracy has been proposed to endow systems with functional flexibility [97], thus adding a new
dimension to the investigation of degenerate/unidentifiable systems. The family of A-Q2 models serves as
a framework to investigate these issues and is expected to have implications for the data-driven discovery
of nonlinear dynamic equations [19,20]. Furthermore, the family of A-Q models serves as the canonical
models to calibrate parameter estimation algorithms. In contrast to the classical unidentifiable models,
the family of A-2 models is potentially identifiable if one has enough information about the transient
behavior. However, as we pointed out above, this is information is not available in realistic situations. Our
results using noisy ground truth data where transients are activated by noise were not useful to resolve
the unidentifiability.

The family of A-Q models also serves as a framework for the systematic investigation of degeneracy
in dynamic models and the interplay between structural unidentifiability and the various forms of uniden-
tifiability raised above resulting for lack of experimental/observational access to the state variables. The
development of this framework and the implications for the investigation of degeneracy and identifiability
in more realistic models requires more research.
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A Model parameters, data-based activity attributes, unidentifiabil-
ity and attribute level sets in simple models

A.1 One-dimensional linear models

A.1.1  Minimal model
We first consider the following 1D linear model

av _
where 7 is the time constant, V is the steady-state and V} is the initial condition. The solution to eq. (58)

is given by
V)=V + (Vo—V)e /.

V decays (increases or decreases) monotonically towards the steady-state 1 with a speed controlled by
the time constant 7 (Fig. 15-A). These parameters may or may not have any physical meaning, but they
have a dynamic meaning in the sense that they are necessary (and sufficient) to describe the type of
evolution curve shown in Fig. 15-A.

If the measured output is directly V' (¢), then V; can be estimated from the initial conditions, V' can be
estimated from the steady state response lim;_,~, V'(¢), and 7 can be estimated by computing the time it
takes to V' to reach 63 % of the gap between V; and V (Fig. 15-A). In this situation, all parameters are
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identifiable. They are structurally identifiable and remain practically identifiable when the available data is
noisy, but a clean curve can be extracted by averaging across many trials, for example.

In this simple model scenario, the three model parameters are identical to the three activity attributes
of the V-trace (curve of V' as a function of t): the initial conditions, the time constant capturing the tran-
sient dynamics, and the steady-state (Fig. 15-A). We use the term attributes to refer to these parameters
that characterize the data (observed data pattern). In these case, they are the minimal set of parameters
that are necessary to characterize the data in terms of the model. If one can extract this information from
the data, the error function is computationally less expensive by using the attributes instead of using the
full data set.

If, instead, the measured output is W (t) = kV(t) where k is a (measurement) constant, then one
can at most identify the three combinations of parameters &V, kV and 7 by following the procedure
described above, but not each one of the four parameters V5, V, 7 and k. Multiple combinations of
values of k and Vj will satisfy kVy = W, = W(0) and multiple combinations of k£ and V will satisfy

Geometrically, this give rise to the W, and W level sets, respectively, describing curves in the cor-
responding 2D parameter spaces (or surfaces/hypersurfaces in the 3D/higher-dimensional parameter
spaces) for which W, and W are constant. In the literature, this situation is referred to as the unidentifi-
able parameters (Vj, 7, V and k) forming identifiable parameter combinations (k Vp, £V and 7) [25]. In
other words, there is not enough information in the V traces to identify the four parameters. The number

of model parameters has increased (four), but the number of attributes remains the same (three: Wy, W
and 7).

A.1.2 Model with realistic parameters

We consider here the following 1D linear model

av
C = ==GL(V = Ep) + lup V(0) = Vq (59)

representing the dynamics of the membrane potential of a so-called passive cell, where C' is the capaci-
tance, G'r is the (passive or leak) conductance, E7, is the reversal potential and I,,,,, is an applied (DC)
constant current. This equation is obtained after applying Kirchhoff’s law to an electric circuit having a
capacitor, a resistor and a DC input [98]. Each of the five parameters have a biophysical meaning.
By rescaling
c _ Lopp

_C V-E
G Lt g,

eg. (59) can be expressed in the form of eq. (58). These rescaled parameters have the dynamic meaning
discussed above (they fully describe the evolution of the V-trace). If the measured output is V (¢), then
Vo,V = Ep, + I.pp/Gr and 7 = C/Gy, can be estimated as for the minimal model discussed above.
While the combinations C/Gy, Er + I.pp/G1, and Vy are identifiable, the set {C, G, Er, Iopp, Vo } is not
and therefore the model is unidentifiable.

This (dynamic) redundancy in the biophysical parameters generate attribute level sets. The parame-
ters C and G, generate 2D T-level sets and the parameters Ey, I,,, and G, generate 3D V-level sets.
Additional data and knowledge can come to the rescue. For example, if one knows I,,,, and one has data
for two values of I,,, (e.9., I4pp, = 0 and an additional non-zero value), then one can estimate Fr, from
V in response to I,,, = 0, then one can estimate G, form V' in response to I,,, # 0, by knowing this
value, and then one can estimate C from 7. Following the same ideas as in Section A.1.1, the system
remains unidentifiable (and more complex) if the output is W (¢) = kV(¢t).
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Figure 15: Activity attributes for simple models. A. 1D linear model. The model is defined by eq. (58). The activity attributes
are the steady-state V/, the time constant 7 and the initial condition V5. The activity attributes coincide with the model parameters.
B. 2D linear model. The model is defined by eq. (60). B1. Real eigenvalues (negative). Y is a difference of exponentials. The
activity attributes are the steady-state Y, the time constants 71 and 7» (inverse of the eigenvalues), and the initial condition Y;. B2.
Complex eigenvalues (negative real part). The activity attributes are the the steady-state Y, the frequency w (equal to the inverse
of the period T'), the time constant 7, governing the evolution of the oscillations envelope, and the initial condition Y,. B3. Real
eigenvalues (negative). Y is a sum of exponentials. The activity attributes are the steady-state Y, the time constants 7, and 7
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(inverse of the eigenvalues), and the initial condition Y,. There is a separation of time scales: 71 < 72.
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A.2 Two-dimensional linear models

A.2.1 Minimal model

We consider the following 2D linear model

d’y dY dY /
where a, b and A are constants. The steady state solution is given by
_ A
Y =— (61)
C
and the eigenvalues are given by
—b+Vb? —4c
7,2 = 5 (62)

If the eigenvalues are real, the time constants are given by 71 > = ri%. For certain parameter regimes,
the solution exhibits an overshoot (Fig. 15-B1) or sag, which may not be detectable if one of the time
constants is dominant, in which case the solution will look like a monotonically increasing (or decreasing)
function. The attributes are the steady-state Y, the time constants 7; and 7 and the initial condition Yj.
The time constants could be replaced by other time metrics measuring the rise and decay phases of the
solution during the transient overshoot. Alternative one of the time constants could be replaced by the
overshoot peak (or sag trough). Note that the three of them are not independent attributes since one
can be computed as a function of the others. For other parameter regimes, the solution is monotonically
decreasing (Fig. 15-B3). When the time scales are well separated (e.g., 1 < 72 in Fig. 15-B3) the
solution is separated in two regimes: a rapid decay phase and a slower decay phase. The time constants
for these two phases can be taken as attributes together with the steady state Y. Alternatively, the
approximate transition between the two (black dot n Fig. 15-B3) can be taken as an attribute in place of
one of the time constants.

If the eigenvalues are complex, then the frequency of the damped oscillations is given by

w= 7”’22_40 (63)

and the time constant governing the evolution of the damped oscillations amplitude is given by

2
T=-7 (64)
The solution exhibits damped oscillations (Fig. 15-B2). The attributes are the the steady-state Y, the
frequency w (equal to the inverse of the period T'), the oscillation amplitude envelop time constant = and
the initial condition Y.

In contrast to the 1D linear minimal model (58) discussed above, the attributes for the 2D linear
minimal model (60) do not coincide with the model parameters. However, the former can be computed
from the latter by appropriately using egs. (61)-(64) and the initial conditions, and therefore they are
identifiable. These (dynamic) parameters and the attributes they determine are necessary to reproduce
the type of curves shown in Fig. 15-B.

As for the 1D linear minimal model, if the output is Z(t) = kY (¢t) where k is a (measurement)
constant, then the parameters A and Y; become unidentifiable, while the products kA and kY, are
identifiable (combinations of unidentifiable parameters).
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A.2.2 Model with realistic parameters: two-node network

We consider here the following 2D linear system representing the dynamics of a simple network (Fig. 16)
for the state variables X; and X3

dX
d—tl = Ain + k12 X2 — (ko1 + k1) X1, (65)
dX.
d—t2 = ko1 X1 — (ko2 + k12) Xa. (66)

Cell 1 receives a constant input A;,,, interacts with cell 2 and the output is proportional to X7,
Y =0QX;.

The other parameters are the transition constants (k12 and ko) for the interaction between cells 1 and
2, and the degradation (ko1 and kp2) constants for the two cells. The model has six unknown physical
parameters (parameters with physical meaning). If one assumes the input A;,, is known and the output
is directly measured over X1, then the number of unknown parameters is reduced to four.

System (65)- (66) can be rewritten as a second order ODE in terms of the variable Y’

a2y ay
— +b— Y =A 7
7 + 7 +c (67)
where
b=ko1+ koo + kiz+ ko,
c= (ko + k21) (ko2 + ki2) — ki2ka,
and

A= (ko + k12)QA;.

The parameters b, c and A are, in principle, identifiable following from our discussion about the activity
attributes above, but the parameters ko 1, ko2, k12, k21, @ and A are not. Even, by assuming Q =1
(direct measurement of X; and knowledge of the input A;,,, the remaining parameters are not identi-
fiable. The physical parameters are dynamically redundant and create level sets in the corresponding

parameters spaces.
/\ !
k
A, A
k12

kO1 kOZ

Figure 16: Diagram of a simple network.
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A.2.3 Model with realistic parameters: reduced hepatitis C virus (HCV) model during
antiviral therapy

We consider here another 2D linear model [56] describing the dynamics of the infected cells I and the
viral load V/

dav co
O —-msmV -1, (69)

where Ty represent the target (uninfected) cells, assumed to be constant and equal to the target cell
level at the beginning of the therapy, 8 represents the rate of infection, ¢ represents the rate of loss of
the infected cell, c represents the rate of clearance of viral load. The rate of production of viral load is
approximated by ¢ /(8 To. This is the quasi-steady state of the 3D nonlinear model (for T, V and I) from
which the linear model (68)-(69) was reduced [56] (see also [57]). The parameters ¢ and 7 represent the
efficacy of the treatment in blocking the production of V' and I, respectively. The initial conditions are
V(0) = Vp and I(0) = VyTpB/4, corresponding to the values of these variables at the steady state after
therapy initiation [56].
System (68)-(69) can be rewritten as a second order ODE in terms of the variable V/

%
dt
with V' (0) = V5 and dV/dt(0) = —cVpe. The coefficients of dV/dt and V in eq. (70) represent the
parameters b and c in the minimal model (60).

For the parameter regimes considered in [56] (see also [57]), the solution decreases to V' = 0 in two
well separated phases, first very fast and then slower, similar to the evolution of Y in Fig. 15-B3. In this
case, the two time constants 7 and 75 can be estimated.

The parameter V; and the product ce can be computed from the initial conditions. The remaining
parameters, either ¢ or ¢, n and § need to be computed from the two attributes (the two eigenvalues or
one eigenvalue and the transition point), therefore rendering the problem unidentifiable. We note that
the unidentifiability could be stronger if one were not able to make some approximations (e.g, the initial
condition Iy).

+(c+5)cii—‘t/+c5[1—(l—e)(l—n)]V:O (70)

A.3 FitzHugh-Nagumo model: nonlinear oscillations
We use here the FitzHugh-Nagumo (FHN) model [49] in the following form

Vi=—hV3+aV?—w, (71)
w=c(aV-A—w), (72)
for the activation and inhibition variables V' and w, respectively. In (71)-(72), a, A and ¢ are constants,
e > 0, a > 0, and the V-nullcline Ny (V) = —h V3 + aV? is a cubic function. Each one of these

parameters plays a different dynamic role by controlling the geometry of the phase-plane diagram or
representing the time constants. The parameters h and a control the shape of the V-nulicline in the
phase-plane diagram. The parameters o and A control the slope of the w-nullcline N,,(V) = av — A
and its position relative to the V-nullcline respectively. And the parameter e represents the time scale
separation between the two variables. For 0 < € < 1, the oscillations are of relaxation type, exhibiting
abrupt transitions between the active and silent phases (Fig. 17-A and -B). As € increases the oscillations,
if they exist, transition from relaxation to oscillations of sinusoidal type. Fig. 17-C captures the two
extremes of this type of transitions.
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This model is minimal in the sense that each one of the parameters plays a dynamic role, and this
parameter cannot be substituted by anther parameter, much in the same way was the cases discussed
above. The FHN model has been used as a caricature model for various processes in nonlinear dy-
namics, including chemistry and neurobiology. Realistic models such as the Oregonator [99] (for the
Belousov-Zhabotinsky chemical reaction [100, 101]) and the Morris-Lecar model [50,51] (neuronal os-
cillations) have a similar dynamic structure to the FHN model in the sense that the nuliclines in the
phase-plane diagram are qualitatively similar.

The three natural attribute candidates are the oscillation frequency (or period), the oscillation ampli-
tude and the duty cycle (fraction of the period that the variable is above its mean). However, these three
attributes are not enough to differentiate between oscillations with different wave forms such as the ones
presented in Fig. 17-C, and additional attributes are needed. One option is to incorporate the notion
of a time constant capturing the time it takes for the variable to decrease from the peak to 37 % of the
amplitude or the time it takes the variable to decrease from peak to trough.
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Figure 17: Period (frequency) level sets for the FHN model. A. Representative examples of oscillatory patterns belonging to
a period (T = 100) level set in the (a,\)-level set. We used h = 2, a = 3 and ¢ = 0.01. The two patterns belong to different
duty-cycle level sets and are close to the same amplitude level set. B. Representative examples of oscillatory patterns belonging
to a period (7' = 100) level set in the (h,s)-level set. We used o = 4, A = 0.1 and ¢ = 0.01. The two patterns belong to the
same duty-cycle level set, but different amplitude level sets. C. Sinusoidal and square waves have the same period (frequency),
amplitude and duty cycle level sets.

B Solutions to the theta equation

% =w+ar? +2ccos?(0/2) + dsin’(6), (73)

The solution to eq. (73) with d = 0 is given by
6(t) = 2tan~! ot 2 tan vava+ 2Ct (74)

Va 2
where

a=w+a % (75)

The solution to eq. (73) with ¢ = 0 is given by
0(t) = tan~! va tan(vava + dt) (76)

va+d
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The computation of the period T' in both cases requires taking into account the symmetric properties
of the function F'(0). For the first integral it is enough to compute twice the integral in [0, 7] and for the
second integral it is enough to compute four times the integral in [0, 7 /2].

B.1 Rotated lambda-omega systems of order 2
Each point in the z- and y-nuliclines (16)-(21) can be expressed in polar form as

x = p cos(¢) and y = p sin(¢). (77)
Substitution into (16)-(21) yields equations for the z- and y-nuliclines in polar form

P’ [a sin(p) +beos(p) ] + p [w sin(p) — A cos(p) ] =0, (78)

and

p’ [a cos(p) — bsin(p) ]+ pw cos(p) + A sin(p)] = 0. (79)

In order to rotate the nullclines by an angle a while preserving their shape we substitute ¢ by ¢ +
in (78)-(79), rearrange terms and define

i = a cos(a) — b sin(a), (80)
b= a sin(a) + b cos(a), (81)
& = w cos(a) + A sin(a), (82)
A = A cos(a) — w sin(a). (83)

The resulting nullclines have the form (78)-(79) with w, A, a and b substituted by w, \, @ and b,
respectively.
In Cartesian coordinates, the resulting rotated A-wy system is given by

%:(;\—I;rg):v—(d)-i-dr?)y, (84)
dy A A2 S a2
E:(w—i—ar)x—i—(x\—br)y. (85)
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