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We present a new estimator for the self-energy based on a combination of two equations of motion and discuss
its benefits for numerical renormalization group (NRG) calculations. In challenging regimes, NRG results from
the standard estimator, a ratio of two correlators, often suffer from artifacts: The imaginary part of the retarded
self-energy is not properly normalized and, at low energies, overshoots to unphysical values and displays wiggles.
We show that the new estimator resolves the artifacts in these properties as they can be determined directly from
the imaginary parts of auxiliary correlators and do not involve real parts obtained by Kramers—Kronig transform.
Furthermore, we find that the new estimator yields converged results with reduced numerical effort (for a lower
number of kept states) and thus is highly valuable when applying NRG to multiorbital systems. Our analysis is
targeted at NRG treatments of quantum impurity models, especially those arising within dynamical mean-field
theory, but most results can be straightforwardly generalized to other impurity or cluster solvers.
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I. INTRODUCTION

Quantum impurity systems, a small number of interacting
degrees of freedom embedded in a noninteracting bath, play
an important role in many-body physics. On the one hand,
they are fascinating on their own right, serving as a paradigm
for strong-coupling phenomena and as the underlying model
of quantum dot devices [1]. On the other hand, they gained
much attention recently in the study of strongly correlated
lattice systems within the dynamical mean-field theory
(DMFT) [2].

For conventional quantum impurity models, central dy-
namic correlation functions are, e.g., the spectral function
(local density of states) or the magnetic susceptibility. By
contrast, in DMFT, the quintessential object is the (local but
frequency-dependent) self-energy. It enters many observables,
such as the momentum-dependent spectral function (used
to describe angle-resolved photoemission spectroscopy), all
types of conductivities in transport measurements, nonlocal
susceptibilities that make up structure factors, and is needed to
determine the Fermi-liquid parameters that pervade most low-
energy properties. Moreover, for almost all lattices—the pop-
ular Bethe lattice being an exception—the self-energy is the
crucial ingredient of the DMFT self-consistency iteration [2].

The numerical renormalization group (NRG) [3] is the gold
standard for solving quantum impurity models [4]. It is often
used as a real-frequency impurity solver for DMFT, in Hub-
bard models with one [5-11], two [12—-17], and three orbitals
[18-21], and recently even for realistic material systems [22].
Modern formulations of NRG, also known as full density-
matrix (fdm) NRG [23,24], give very accurate results for
correlation functions of local operators. Yet, the self-energy
% is no such correlation function but an irreducible vertex
object, and must be computed by different means. Since a
direct inversion of the Dyson equation is numerically disad-
vantageous, X is routinely computed through an equation of
motion (eom) as a quotient between two correlators [25]. In
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challenging (e.g., multiorbital) situations, however, the results
for ¥ are not always as accurate as one expects from NRG.
First, its spectral weight is not guaranteed to be properly
normalized in fdm NRG, so that the (analytically known)
high-frequency asymptote may be violated. Moreover, the
imaginary part of the retarded self-energy Im X, can over-
shoot to positive values at low energies even though causality
requires Im X, < 0. This is often accompanied by wiggles in
small values of Im X,,.

In fact, while the high-energy resolution of NRG can be
increased by averaging techniques [8,26,27], these tricks do
not help much in resolving the problems of Im X, at low
energies—where NRG is most powerful. So far, the over-
shooting and wiggles in Im X, could only be tackled by
brute-force increase of numerical effort (increasing the num-
ber of kept states), so that accurate results for ¥ were a
computational bottleneck.

In this paper, we present a new formula for the self-energy,
based on a combination of a one- [25] and twofold [28]
application of the eom. This result strongly alleviates the pre-
viously mentioned artifacts: The high-frequency asymptote of
Re ¥ is fulfilled exactly, overshooting of Im ¥ is ruled out,
and the value of Im X at zero energy is improved by several or-
ders of magnitude. Our formula involves three instead of two
[25] correlators. While this naively increases the numerical
costs by a factor of 1.5, we find that accurate results with the
new formula are obtained already with less numerical effort
(a lower number of kept states) compared to the standard
scheme. Hence, our approach also makes NRG computations
of ¥ more efficient and thus helps to equip DMFT+NRG with
the tools needed for treating Hubbard models with ever more
orbitals.

The rest of the paper is organized as follows. In Sec. II,
we give an overview of the theoretical framework as well
as the previous and new self-energy estimators. The deriva-
tion of these expressions and their properties is found in the
subsequent Sec. III. In Sec. IV, we demonstrate the benefits

©2022 American Physical Society
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of the new approach with numerical results. There, we start
with the single-orbital Anderson impurity model and proceed
with one-, two-, and three-orbital Hubbard models treated
in DMFT. Section V contains our conclusions, Appendix A
discusses the generalization to matrix-valued correlation func-
tions, and Appendix B provides additional numerical data.

II. OVERVIEW
A. Definitions

Quantum impurity models are naturally divided into the
interacting impurity and the noninteracting bath. We denote
electron creation operators of the former by d and those of
the latter by c,ia. The index o enumerates spin (o) and possibly
orbital (1) quantum numbers; the bath modes are further la-
beled by k, standing, e.g., for momentum. The noninteracting
part of the Hamiltonian H = Hy + Hj, generally reads

_ § : T § il
H() = Ed,adada + €kaCry Cha
o k,a

+ ) (Viedjcia + He.). M
k,a

For the interacting part, we consider two examples. The
single-orbital (@ = o) Anderson impurity model [29] has

Hy =Umny, n, =d.d,. 2)

In the multiorbital case [« = (o, m)], we use the generaliza-
tion of Eq. (2) introduced by Dworin and Narath [30,31],

Hiy = 3JN + 1(U = 3J)N(N — 1) — JS?, (©)

where N =" did, and S =)
Pauli matrices t.

We will be interested in correlation functions involving the
fundamental operators d,,, d; as well as the auxiliary operators

Qe = [du, Hinl, g, = [Hine, d}]. “)

They allow us to define four fermionic correlation functions:

Goe = (dod)) 2y Iuz = (qarql))e,  (52)
Fl = (g d)):  FR = {(du,q. ). (5b)

Here, our notation follows Ref. [25]: z is a complex frequency
variable. It can be a discrete imaginary frequency, iv, or a
continuous real frequency v. In the former case, (A, B)),
is the Fourier transform of the imaginary-time correlator
—(T A(t)B), with the time-ordering operator 7. In the latter, it
corresponds to the retarded correlator —i6(¢)({A(¢), B}), with
the step function 8 and the anticommutator {-, -}.

In systems defined by Egs. (1)—(3), the fermionic correla-
tion functions are diagonal in « (and thus carry only a single
subscript). It then follows (as shown below) that F(MLz = Foi;
we will hence mostly drop the superscript. Appendix A ad-
dresses the case where Hy has off-diagonal contributions and
the correlation functions become matrix-valued. Then, F&
and FR are not equal, but still related by symmetry. For a
close connection of both situations, we often use matrix-type
notation in the main text, too, and restore the superscripts L,
R in key places. Moreover, even for «-diagonal computations,
FaLZ = Falz might be slightly violated numerically. It may then

T .
oo'm d(r’mro'/o'do'm Wlth the

be helpful to use the matrix-type formulas, which are symmet-
ricin F& and FR.

Before moving on to the self-energy, let us briefly recall
how correlators like G, Fy., and I, are obtained in NRG.

B. NRG correlation functions

In NRG, a general correlator C,, is first computed as a dis-
crete version of the spectral part — %Im Cyv. After broadening
Im Cy,, the real part follows by Kramers—Kronig transform as
’ Im Ca\ﬂ

v—v

ReCauz—lP/dv 6)
b4

By construction of fdm NRG, the total weight of Im C,,
is guaranteed to be exact [23,24]. Further, by the very na-
ture of NRG, results for ImC,, are most accurate at low
energies. Going to larger frequencies, Im C,, can be signifi-
cantly less accurate, reflecting the logarithmic discretization
of the hybridization function. Refined averaging and adaptive
broadening techniques [8,26,27] help to minimize overbroad-
ening. Yet, the approximate nature of ImC,, for large v
remains. In particular, it is known that the moments C™ =
—% [ dvv"Im Cy, are not reproduced exactly for n > 0. Now,
by Eq. (6), the large-energy inaccuracies of Im C,, are not
only passed down to Re C,, but are also spread in frequency
space. Hence, in the following, we will aim to minimize the
effect of real parts of correlation functions in the computation
of X.

C. Self-energy formulas

The self-energy is defined by the Dyson equation as

Tee = (G2) ™ = (Gar) . 7

Here, G° . is the bare propagator, which can be written in terms
of the hybridization function A, as

_ Via 2
(@) =t = Buee Ao =Y )
& T — €ka

The retarded self-energy fulfills the Kramers—Kronig relation

Im X,

1
Rezwzzg——P/dv/ , )
T

v—

where ! is the constant Hartree part. This relates the high-
frequency asymptote of the real part to the total weight in the
imaginary part. We define the 1/v coefficient of Re X, (or
the 1/z coefficient of £,.) as the moment £, which fulfills

P = lim v (Re %, — ZF) = —l/dvlm Sov. (10)
[v]—o00 T

For many algorithms that yield G, directly, Eq. (7) is not
ideal to extract . In NRG, it is basically inapplicable since
ng involves the exact, continuous hybridization function. By
contrast, Gy, is the result of an approximate calculation where
Ay, was discretized. Thus, cancellations between ng and
G, required for Eq. (7) do not work properly and induce
large numerical errors. For this reason, NRG self-energies are
routinely computed by means of an eom yielding [25]

Er0 = Fur(Gor) " (11)
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Our new formula, based on a combination of a one- and
twofold [28] application of the eom, reads

2F6 = 28 + I, — FL(G.) 'FR. (12)

We restored the superscript on F in light of matrix-valued ap-
plications (see Appendix A). In the given «-diagonal setting,
the last term can be simply written as Fazz /Gy Now, what are
the advantages of Eq. (12) over Eq. (11)?

Focusing on the imaginary part, from Eq. (11), we get

Im F,,Re G,, — Re F,,Im G,
|G ? '

13)

Im 2F6 =

Evidently, Im %F9 is determined by the imaginary parts and
the real parts of NRG correlators. One finds that the total
weight [ dvIm ZEG typically does not give the exact value.
Further, due to the real parts involved, Im EEUG at low energies
is less accurate than one is used to for imaginary parts of cor-
relators computed directly with NRG. In challenging regimes,
one encounters the aforementioned artifacts that Im ZES over-
shoots to positive values and displays wiggles for low v.

By contrast, for £F9, we will show that both the total
weight of Im FC, as an important high-energy property, as
well as the low-energy behavior of Im ZFC is determined by
the imaginary parts of NRG correlators only. Indeed, we have

/dvaEéFvG =fdvlmlw -

and, for a Fermi liquid,

(fdvImF,,)*

Yavimla) oy
[dvImG,, ’ (14

(Im £, )*

e + k00, T*Vv2T?),  (15)

Im =F6 = Im1,, —

where ¥ ~ 1/ (TKZIm Ag.v=0). (A similar relation also holds
for non-Fermi liquids whenever Im X is small, but the remain-
der term may not be as easy to estimate.) For these imaginary
parts of NRG correlators (Im 1,,, Im F,,, Im G,,), the exact
total weight in Eq. (14) is guaranteed and the low-energy
behavior in Eq. (15) is extremely accurate. Hence, because of
Egs. (14) and (15), we can expect E(EEG to give better results
in NRG than Z,SZG Below, we will first derive these properties
analytically and then demonstrate their benefits numerically.

III. DERIVATIONS

A. Equations of motion

The starting point is the well-known equation of motion

({A, B}) = (zA — [A, H], B)).,
({A, B}) = (A, zB — [H, B])):.

(16a)
(16b)

as used, e.g., in Refs. [25,28,32,33]. In short, Egs. (16a) and
(16b) follow by differentiating the time-dependent two-point
correlator with respect to the first and second time argument,
respectively. Then, the equal-time anticommutator stems from
the time derivative of the (time-ordering) step function, z
from the time derivative itself after Fourier transform, and the
commutator with H from the the Heisenberg time evolution.

Commutators between the bare Hamiltonian Hy and the
basic operators d,, and d; can be immediately deduced as

[do, Hol = €4.0de + ) ViaCras (17a)
k

[Ho. d}) = djesa + Y _ cf,Vi- (17b)
k

The last summands involve bath operators. It can easily be
shown via Egs. (16) that, for general impurity operators Oy,

D Vialcras Oadz = Az (e, Oa):, (18a)
k

> 40u. cf )2V = (Ou. d):Au.
k

(18b)

In Egs. (16), the equal-time term is trivial for the creation
and annihilation operators, {d,, d;f} = 1. We thus get

1 = (zdy — [du, Hol, d)); — ([de, Hindl, d.)),
= (2~ €da — Do) dus AN — (G, d1)).
—1
= (G2) Gu:—Fy. (19)
Using Eq. (16b) instead of (16a) yields 1 = GM(GOZ)’1 -

FO};. In the given a-diagonal setting, this implies Falz = Falz.
We next employ Eq. (16b) for FaLZ. This way, the commu-
tator acts on d_, similarly as before. The equal-time term with

one ¢, operator gives the Hartree self-energy,

28 = ({[dy, Hinl, d)}) = ({(dos [Hine, d21}). (20)

In total, we get
Sy = (qas 2y — (Ho, d1)z = (Gos [Hine, dS1)-
= (> 4102z = €00 = Au) = (Ga 42D
= Fi(Gy) ™" — L. @21)
Applying Eq. (16a) to FaRz yields =f = (ng)_lFaRZ — Iy,.

Again, this shows F,x = F,; in the a-diagonal setting. We will
hence drop the superscript in most of the following.

B. Self-energy estimators

Using the Dyson equation (7), the first-order eom result for
% directly follows from Eq. (19) as

Y. = F,,G,! = =Y. (22)

<oz

This is the famous result from Ref. [25]. Here and below, the
expression after the = sign serves for future reference. Next,
the second-order formula for X is obtained by inserting the

eom (21) for F,, into the first-order result (22) for X:
o = (B8 + 1..)Go.G,! = 200, (23)

oz T az

Using Eq. (7) for (G,.)~! and isolating %, we get

Pe = 14 (B + 1)@ (S 4 L) = 2L @9

the “symmetric improved estimator” derived in Ref. [28,34].
Using Eq. (7) for (ng)’1 instead of (G,.;)~! in Eq. (23),
after bringing both propagators to the left of Eq. (23), yields

Yoo = S 4 I, — B4.Go e (25)
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This formula was used in Ref. [33] for a recursive diagram-
matic Monte Carlo scheme. Here, we process this result
further by inserting the standard estimator for ¥ on the right,
Yo:Gaz Loz = Fazz /G, to obtain an improved estimator on
the left. Restoring superscripts yields the symmetric expres-
sion

Tor = B8 4 Ie — Fii(Goy) 'FR =TI, (26)

This is our main result, as anticipated in Eq. (12), for a new,
improved estimator for NRG calculations of the self-energy.

Equation (26) can also derived in a different way. First,
we rephrase Eq. (19) as (Go:')™' = (1 + F2)™'(GY,)™" and
Eq. (21) as Fo'™" = GY. (=M + 1,;). As indicated by the su-
perscript, we view these expressions for G and F as improved
estimators in terms of the higher-order correlators F and I,
respectively. Thereby, we aim for an improved X estimator by
means of Eq. (22) in the form I = (GIP')~! F,5 ™ This
way, ng conveniently cancels. The expression we get is

Yo = (1 + F) ' (B8 + L) = 3. 27)

Yet, the denominator turns out to be numerically disadvanta-
geous. We thus multiply Eq. (27) by 1 + F,; and use Eq. (22)
again in the form F,; %,, = FOZZZ /Gy to reproduce Eq. (26).

With XF6 36 3l $IFG $IF we have a total of five
self-energy estimators available. However, ' and X! are
not ideal for NRG since they mix full and bare correlators.
Thereby, they mix objects like G, and I,;, which are com-
puted after discretization, with the exact, continuum object
GY.. This hinders cancellations and often entails numerical
artifacts. As already mentioned, the denominator in Eq. (27)
makes %'F numerically disadvantageous; we will elaborate on
this in Sec. IIIE. Consequently, =5¢ and [FC are the most
suitable estimators for NRG. Next, we derive the properties of
their high- and low-energy behavior anticipated before.

C. High- and low-energy behavior

We start with the high-energy behavior. In Eq. (10), we de-
fined the self-energy moment £, which represents the total
weight of Im X, as well as the first term in a high-frequency
expansion of Re X,,,. Via the second property, Eq. (14) can be
derived in a few steps.

Let us consider again a general correlator C, = (A, B)),
with C;. = 0, as a placeholder for G, Fy;, and I.. The
spectral representation implies the high-frequency expansion

c - i c(—D

n=1

1
i C(Vl) - / dvv"ImC,,,. (28)
Z T

The C™ can also be obtained from expectation values, as
CV=({A.B}), C" =({[A H]B}) = ({A [H,B]}),

etc. The leading coefficients for our specific correlators are
GO =1, FO =8 1O = ({g4, ¢! }). For the self-energy
estimators, we can then easily deduce

o _EO TRV BP0y

FO) 1 1
TG = $H 4 [15» _ %]Z + 0<Z—2>. (29b)
The combination of Egs. (10), (28), and (29b) implies
Eq. (14).

As mentioned before, the exact C*) is guaranteed by the
sum-rule conserving fdm NRG [23,24]. However, CV is
much less accurate as it probes Im C,, with increasing weight
at large v and thus suffers from NRG discretization artifacts.
With the standard estimator 50, the exact coefficients F,
and G generate the exact Hartree term T = F(©/GD.
Yet, E}j is also readily available via expectation values, see
Eq. (20), whereas the moment £* in £¢ involves coeffi-
cients £ and G{") and is thus not very accurate. By contrast,
TIFG takes = as input and uses the exact coefficients 7\,
F9, G to generate the exact self-energy moment £?.

Next, we take a closer look at Im X at low energies. For
=59, Eq. (13) directly follows from Eq. (11) and requires no
further comment. Deriving Eq. (15) for £ takes only two
steps. Straightforward algebra yields

F2
Im Z¥6 = Im1,, — Im <ﬂ)
Gav

(Im F,, )
Im G,

|Ga |?
Im G,

—Iml, — (Im =£6)*. (30)
The last term, expressed through Im =F9 of Eq. (13), is
typically very small, since Im X, is small at low frequen-
cies. Indeed, in a Fermi liquid, —Im X, = 02/ Tk, T?/Tx)
in terms of the Kondo temperature Tx, and, further-
more, Im Gq, /|Gy, |> = —Im 1/G,,, which gives Im A, ,—o
atv, T — 0. Using this result in Eq. (30) yields Eq. (15).

Equation (30) reveals an intimate connection between
Im =G and Im £EC. We can infer that, if Im ZEC shows arti-
facts at values of [Im 6| =y (e.g., y & 10~ in appropriate
units), then Im ZFS will show similar artifacts at values ~y?
(i.e., 107® in the example). This quadratic relation evidently
enables a huge improvement, but it still hinders Im £FC from
reaching down all the way to zero in a 7 = 0 Fermi lig-
uid. Accordingly, for determining the Fermi-liquid parameter
Im %, ,—0, it may be preferential to directly use Eq. (15), i.e.,
incorporate the knowledge of Eq. (30) where (Im £ _ ()* is
negligible [35].

D. Shifting quadratic parts in the Hamiltonian

The derivations in Secs. III A and III B build on the separa-
tion H = Hy + Hi,. While Hy is the quadratic part, Eq. (1),
it is not specified whether or not Hj, also contains a term

quadratic in dS). Indeed, we may shift both Hy and Hjy, to
Hy = Hy + djtody,  Hin = Hi — djCady. (1)

This leaves H invariant; hence, it does not change any prop-
erties of the system, and all above arguments still hold. The
self-energies obtained in either way are related as

(Ge.)

How does this shift affect the numerical results for the
two X estimators X6 and X6? From G, = gy — Cuda,

~ -1 ~
— % =(G) —Ter = Ter =L+ Zor. (32)
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4, =g} — dfty, we can directly infer that SH=xH_¢,
and F; = Fy. — £4Gyz, Fik = Fy: — Go:{y. Further, we have
iozz = Iozz - Fo,LZé‘a - CaFaRz + é‘aGazé‘a‘ (33)

Applying these relations to the two X estimators yields

S = Fl(Gu:) ' = F(Ga:) ™ = (340)
B = SR 4+ I, — FL(Ga) 'FR
=S — ¢y + 1, — FZ(Go) 'ER. (34b)

Hence, for an algorithm like NRG, which is bilinear in the
arguments of a correlation function ((A, B)),, a shift does not
affect the numerical results for £F6 and X'FC. For other esti-
mators like ZTF, involving shifted correlation functions in the
denominator, the equivalence under a shift does not simply
follow from linearity but requires more intricate cancellations
that may be violated numerically. We also note that Eq. (33)
naturally produces both F& and FR. Hence, for the equiva-
lence of X6 under shifts according to Eq. (34b), it is helpful
to use the symmetric form F;G,!FR—instead of (F})*G,]
or G;Zl (Fali )>—if F' and FR (slightly) differ numerically.
Now, even if the shifts leave the numerical results for
»FG and %' invariant, they help us to gain more analytical
insight. Two specific shifts are particularly suited for that.
The first is ¢, = 2. With (G)™' = (GY,)™' — =8, it
transforms the bare propagator into the Hartree propagator,
GY, = G.. This is particularly convenient for particle-hole
symmetric systems, where €, , and 2;‘ cancel. Furthermore,
¥H = 0 simplifies the X estimators involving the Hartree self-
energy. One gets, e.g., f);(;’ = ILZG?Z(GM)’I, an estimator
used in Ref. [36]. Additionally, &% = 0 implies £© = 0 [37].
With Im =,, = Im £,,, Egs. (14) and (29b) then simplify as

/dvlm yIFG — fdvlmfav = 39 = ((Gs. G )). (35)

ImF,;
¢ ImG,;°
any given frequency, as it yields ImF,, =0 at v = . With
ImX,, = ImX,,, the result of Eq. (30) then simplifies as
IFG & |Gas|* FG\2
ImEm-) = Im[m-, + ﬁ(ImEaD ) . (36)

ab

The second interesting shift is ¢, = where v is

Here, the sign of the two summands is determined by
Iml,; and ImG,;, respectively, where I,z ={(Gy, G, )5 and
Gui={dy, d; 5. Since each of them is defined with a
mutually conjugate pair of operators, their Lehmann repre-
sentations, evaluated with fdm NRG, directly yield Imi,; <0
and ImG,; <0, thus ensuring Im=F6 < 0. While this analytic
argument refers to an arbitrary but fixed frequency v, one need
not actually perform a shift for each frequency value to numer-
ically profit from Eq. (36). Instead, by linearity, NRG results
are equivalent for any shift, and Eq. (36) ensures ImXF'6 < 0
for all frequencies at once.

Interestingly, we find from Eq. (36) that the retarded self-
energy has a negative imaginary part without resorting to
perturbation theory (which may break down for non-Fermi
liquids) or to properties of the propagator [38]. Hence, this
argument also applies to general quantum impurity models,
for which the retarded nature of Gy, = 1/(v — €44 — Aay —

Yv) merely requires Im(Ag, + X4,) <0, ie., ImX,, <
—ImA,,, instead of ImX,, < 0.

E. Denominator in X'F

We mentioned before that =¥ is disadvantageous since the
denominator is problematic for systems with reduced spectral
weight (such as bad metals in DMFT) or even spectral gaps
(insulators). Indeed, let us consider a particle-hole symmetric
system, where Re G,, and Re G!1 are antisymmetric in v and
thus vanish at v = 0. From the analog of Eq. (19) under the
shift £, = ¥, we then have G,. = G!.(1 + F,.) and

Im Gy,v—0 = Im G} _o (1 + Re Fy ). (37)

Hence, if the spectrum is gapped, Im G, ,—o = 0, Eq. (37)
shows that 1 + Re qu:a =0,ie., Re Fa,uzo = —1. However,
it is numerically challenging to precisely resolve the finite
value to which a Kramers—Kronig transformed object like
Re F,,, converges. For this reason, ZéF is numerically disad-
vantageous for gapped system and, more generally, those with
strongly reduced spectral weight (as demonstrated below).

As a curiosity, we mention that £FC can be viewed as a
linear interpolation between X' and %FS in the form

TG -+ 2F—£), fi=1+F.. (3%

The weighting function f, is unity for v — oo and close to
unity for v — 0 in a Fermi liquid. Hence, £IF¢ and ©IF share
many of their beneficial properties at high and low energies.
Further, f, is small whenever 1 + F,, is small, i.e., whenever
the denominator in ¥ becomes problematic. In this region,

IFG is given by =FY and thus free from any instabilities.

IV. NUMERICAL RESULTS

A. NRG setting

We employ the fdm NRG [24] in a state-of-the-art imple-
mentation based on the QSpace tensor library [39], allowing
one to exploit Abelian and non-Abelian symmetries. Indeed,
SU(2) spin symmetry is used throughout, while two cal-
culations additionally have SU(2) charge and SU(3) orbital
symmetry, respectively. The resolution at finite v is improved
by averaging the (discrete) spectral data over n, shifted dis-
cretization grids [26] and through an adaptive broadening
scheme [8,27]. For the single-orbital results, we set the NRG
discretization parameter to A = 2 and n, = 4. For the mul-
tiorbital results, we use A = 4 while fixing n, = 2 to reduce
numerical run times. The only truncation criterion during the
NRG iterative diagonalization is given by the number of kept
states Nip. As usual, this bound is soft in order to respect
emergent degeneracies in the spectrum.

We will first discuss the Anderson impurity model with a
featureless hybridization function. All other results stem from
DMEFT solutions of lattice systems, which are mapped onto
self-consistently determined impurity models. For simplic-
ity, we consider the Bethe lattice with a semicircular lattice
density of states and converge the DMFT self-consistency
iteration using the conventional self-energy scheme XFC.
Although the self-consistency condition on the Bethe lat-
tice can be phrased in terms of the spectral function A,, =
—%Im Gy, it is standard practice to use the self-energy for
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FIG. 1. Self-energies ©F6 and %S for the single-orbital Anderson impurity model. (a) Real part (minus the Hartree shift), (b) imaginary
part. The discrepancies in (a) and (b) reflect the fact that © = —1 [ dvIm £, is exact in ' but not in £F¢. Indeed, the inset in (a) enlarges
the high-frequency decay with the exact asymptote =¥ /v in gray. (c) Im £, at low energies for an increasing number of kept states Ny, [SU(2)
multiplets; 1k = 10, etc.]. Crucially, —Im € is nonnegative, free of any wiggles, and, on the given scale, converged for Ny, as low as 500.

an improved spectral function compared to the direct NRG
output. Then, from the converged DMFT solution, we perform
one more calculation to compare results with different self-
energy estimators.

Generally, we use the half bandwidth D = 1 of the (bare)
hybridization function as our energy unit. For the plain An-
derson impurity model, the size of X is best compared to the
hybridization strength I'. In lattice systems, the self-energy
adds to the dispersion relation in the inverse propagator; we
thus plot X /D. For all our numerical results, we set T/D =
1073, which can be considered as zero temperature.

B. Single-orbital Anderson impurity model

We begin our presentation of numerical results with the
single-orbital Anderson impurity model [cf. Eq. (2)], with
a box-shaped hybridization function —Im A, = I'6(D — |v|)
of half bandwidth D =1 and strength I"'. We here choose
I' = 0.1, an interaction value of U = 0.3, and the on-site
energy €; = —0.1. With €; > —U/2, the system is less than
half filled, having n, =) (n,) ~ 0.87. Appendix B pro-
vides additional results, obtained for the same parameter set
as chosen in Ref. [25]: ' = 0.015, U = 0.2, and ¢; = —0.1
(half filling). For the present model, ¢, = Ud,ns. Hence, the
Hartree self-energy gives the well-known T = ({¢,,d[}) =
Ung/2. Using Eq. (35), the (exact) self-energy moment is
casily evaluated as £ = ({G,, g} }) = U*%(1 — %). Our
temperature T = 1078 is far below the Kondo temperature
[40] of Tx =~ 0.043.

To set the stage, Figs. 1(a) and 1(b) show the real and
imaginary part of ¥ on a wide energy window. Generally, =F¢
and £FC yield consistent results, while slight deviations are
observed at higher energies. This is expected since 7O gives
the exact high-frequency asymptote for the real part [see inset
of Fig. 1(a)] and the exact total weight for the imaginary part,
whereas both properties are slightly violated in X¥6. Before
inspecting this further, we enlarge the low-energy behavior of
Im X, in Fig. 1(c) and compare results for different numbers
of kept states My, [here SU(2) multiplets]. For Ny, = 1000,
—Im =S overshoots to negative values on the scale of 1073T".

Increasing Ny, —Im G approaches the v axis. Importantly,
however, the notable wiggles of Im £FC on the scale of 1074T
remain, even for Ny, as high as 5000. In striking contrast,
—Im 26 is nonnegative, free of any wiggles, and, on the
given scale, already converged for Ny, as low as 500.

In Fig. 2, we take a closer look at both the high-energy
property £ = —L ['4yIm %, and the low-energy property
Im ¥,—¢. The former should give ¥ = U2"7“(1 — 4, the
latter zero at T = 0 [or more generally O(T?/Ti)]. We plot
both quantities as a function of 1/Np, i.e., with accuracy
increasing toward the left. Starting with Fig. 2(a) and £,
we see that the deviation of £© from £ decreases with
increasing the number of kept states Nyp, and the number of
z shifts n,. However, the relative deviation stays above 5%
even for the high-accuracy setting M, = 5000 and n, = 4. By
contrast, for Im =FS (and also Im %IF), the exact total weight
is guaranteed, no matter the chosen parameters.

As a low-energy property, Im X,_¢, shown in Fig. 2(b), is
basically independent of discretization details and thus almost
the same for n, = 2 and n, = 4. One readily observes that
Im =9 is more accurate than Im £FS (and also Im ZIF )
by several orders of magnitude. In more detail, for all self-
energy estimators, the values improve (quasi) monotonically
with My, and approach the exact value, zero. For the lower
values of Ny, the numerical error in Im E})F:% is dominated
by (Im £FS))? in Eq. (30), leading to the quadratic relation
between both curves in Fig. 2(b). For higher Ny, and ex-
tremely low values of [Im ZFG |, uncertainties in the first two
terms of Eq. (30) become noticeable. Indeed, at Ny, = 1000,
e.g., 2F6, B "and 'F6 roughly yield 1073, 107#, and 1076,
respectively. Increasing Ni, to 5000, —Im XS /T reaches
down to 1075 and —Im E‘EF:(%/F even down to 1077,

C. Single-orbital Hubbard model

Next, we consider the DMFT+NRG solution of the single-
orbital Hubbard model (Bethe lattice with half bandwidth
D = 1). We set the interaction value to U = 2.6 in the metal—
insulator coexistence region. Metallic and insulating solutions
are obtained by approaching U from below and above,
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FIG. 2. The self-energy moment £© =—1 [dvImE, and
Im ¥, as a function of 1/Ny,. (a) The TFC results improve with
increasing Ny, and n., the number of z shifts; £'F9 (and X'F) always
yield the exact value. (b) All results get closer to the exact value zero
with increasing Ny, while being almost independent of .. Through-
out, ©'FY improves upon O by two to three orders of magnitude.

respectively, in the DMFT self-consistency iteration. For this
particle-hole symmetric setup, we exploit SU(2) charge and
SU(2) spin symmetry, keeping Ny, = 5000 multiplets. Work-
ing with the shift ¢ = ZH (cf. Sec. Il D), we particularly have
SF=L/1+F).

Figures 3(a) and 3(b) show Im X, for the metallic solution
and Re X, for the insulating solution, respectively. Overall,
»FG and = give consistent results for both phases. For
the metal, however, —Im 2F¢ overshoots to unphysical neg-
ative values at the point v ~ 2 - 1073 and —Im EEG ~ 1073,
while —Im ZFG decreases smoothly down to —Im X, &
107%. Again, the two values are related quadratically by
Eq. (30). The red-dotted line in the plot gives the low-energy
behavior of Im XFG according to Eq. (15), i.e., by discarding
the erroneous (Im £5¢)? in Eq. (30). For this highly symmet-
ric (and highly accurate) calculation, the result goes smoothly
down in energy, all the way to —Im ZF6/D ~ 10713,

Turning to =¥ in Fig. 3(a), the curve also shows a clean v
decay, but it has a peculiar dip at larger frequencies, v = 0.2.
The reason is that the spectral function in the metallic phase
(see inset) exhibits strongly reduced weight at precisely these
frequencies, separating the quasiparticle peak from the Hub-
bard bands. This leads to low values in |1 4 £, | (as explained
in Sec. IIIE) and artifacts in %!F. In the insulating phase,
Fig. 3(b), Re XFC and Re X'FC nicely follow the 1/v diver-
gence of the Mott insulator. There, |1 + F,| should decrease to
zero for v — 0. However, due to inaccuracies in the real part
obtained by Kramers—Kronig transform, |1 4 F, | levels off for
v < 0.01, so that Re EII)F deviates from 1/v. In total, for this

2

(@) 10" [ 2FG _ _ yIFG /\\_
IF ATH AR, R
b)) |1+F| /a-(‘/ S
Q L i
03 403
3L P ]
g 10 e
— o /‘ =
! I P A(v)
-~
F =
7 _""
10 A il bt
—
o —
B e i
107 o el i
107 1073 107"
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FIG. 3. Self-energies for the single-orbital Hubbard model in
(a) the metallic and (b) the insulating phase (see spectral func-
tions in the insets) at U/D = 2.6. (a) While —Im ESG overshoots to
negative values and —Im E{F has artifacts when |1 + F,| becomes
small, —Im =F gives reliable results throughout. The red-dotted
line shows the low-energy behavior via Eq. (15) and follows the
v2 decay smoothly down to —Im Z¢/D ~ 1073, (b) Re F6 and
Re TS follow the 1/v divergence of the Mott insulator, but Re =
deviates from that as soon as |1 + F,| levels off, due to inaccuracies
inRekF,.

strongly correlated setup, ©'F does not give reliable results
since the denominator 1 + F, leads to numerical instabilities.

D. Multiorbital Hubbard models

We now turn to DMFT+NRG results for multiorbital Hub-
bard models on the Bethe lattice with the interaction given by
Eq. (3). We first consider two half-filled orbitals and different
bandwidths of D = D; =1 and D, = 0.5. Setting U = 1.8
and J = 0.3 yields a simple realization of an orbital-selective
Mott phase (OSMP). Indeed, in the absence of interorbital
hopping [17], the 1-orbital is metallic while the 2-orbital is a
Mott insulator with a gap in the spectrum (see inset of Fig. 4).
Note that, for the present calculation, the Wilson chains of the
two orbitals are interleaved [18,43] for extra efficiency.

The main panel of Fig. 4 shows the self-energy of the
metallic 1-orbital X; at low energies and for various Nyp.
It is known that, due to the unscreened magnetic moments
of the 2-orbital, the 1-orbital is a singular Fermi liquid with
logarithmic singularities in X, [20,44]. The black-dashed line
shows the expected aIn~2 |v/T*| behavior; where a and T*
are fitting parameters. We multiplied a by an extra factor 1.2
to separate the curves for better readability. The numerical
data obtained with £ shifts notably by increasing Ny, from
5000 to 30 000 SU(2) multiplets. For the lowest accuracy,
Im EIFGU does not reproduce the analytically expected behavior

and still contains notable wiggles. Increasing Nyp, Im EFGV
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FIG. 4. Self-energies ¥, of the metallic orbital in a two-orbital
realization of the OMSP (see spectral functions in the inset). As a
singular Fermi liquid, —Im X, , is expected to show a logarithmic
singularity. With £FC, this behavior is only seen for the largest Nj,.
By contrast, Im £{C perfectly agrees with the analytic curve and is,
on the given scale, already converged for the lowest Ny, = 5000. The
extra factor 2 on the axes is used to have convenient tick marks.

approaches the expected behavior but is not fully converged at
Ny = 30000. By contrast, £'F¢ always yields a stable curve,
in excellent agreement with the analytic form, and is, on the
given scale, already converged for the lowest number of kept
states, N, = 5000.

We close our presentation of numerical results with a three-
orbital setup of the Hund-metal category [31,45]. Having three
degenerate orbitals, we exploit the additional SU(3) symmetry
permitted by Eq. (3). There, we set U = 3, J = 0.5 in units
of the half bandwidth D = 1. At a filling of two, the spectral
function (see inset of Fig. 5) is highly asymmetric. The left
part of A, exhibits an intriguing orbital-resonance shoulder
[18-20], and we thus focus on v < O for the analysis of X.

Figure 5 shows |Im X, | for both estimators £F¢ and £1F6
and for Ny, = 3000, 4000, and 5000 SU(2) x SU(3) multiplets.
In this challenging, three-orbital setup, —Im ZFC overshoots
to unphysical negative values already at the point where —v
and —Im ¥ are around 10~2. For £¥C calculations with higher
Nyp, this point is shifted only marginally to lower v. Wig-
gles in Im =FY are on the scale of 1073 for the lower N,
and weaker but still present for the largest Ny,. Again, ¢
eradicates the overshooting problem. Even for the lowest Ny,
—Im =6 follows a clean v? decay down to values of 10,
before wiggles appear on the scale of 10~*. For the highest
Ny = 5000, —Im =G follows the v? decay down to values of
10~* and hardly any wiggles are to be found. Again, the values
of [Im FS | and |Im G| relate quadratically [Eq. (30)].
The red dotted line shows Im ElI)FG for |[v| — 0 according to
Eq. (15) and reaches down to values of —Im £F6/D ~ 107°.

It is clear from the plot that converging the standard es-
timator O with Nyp toward a clean V2 decay down to, say,
1073 is very slow and practically unfeasible. By contrast, FC
gives very accurate results already for much lower N, and
its low-energy behavior can be extracted very cleanly from
Eq. (15). We hope that, in this way, our new self-energy
estimator will expand the class of systems where NRG can

100 [T T T -
ENkp TG $IFG ;2
i N
| 3k - ]
E 4k —
Q [ BK — — = ]
2 [ ]
= i ' A(v)
3 7
E s /
L o /
4L /.
10— ol
1073 1072 107" 10°
—v/D

FIG. 5. Self-energies in a degenerate three-orbital Hund-metal
system. We focus on negative frequencies where the spectral func-
tion at filling 2 has a pronounced shoulder (see inset). —Im XFC
overshoots to unphysical negative values for —v/D < 1072 for
all numerically feasible M, [SU(2)xSU(3) multiplets]. By con-
trast, —Im XTFC never overshoots and follows the v? decay down
to —Im =F¢/D = 10~ and even 10~* for N, = 3000 and 5000,
respectively. The red-dotted line shows the low-energy behavior
according to Eq. (15) and follows the v? decay smoothly down to
—Im =¥6/D ~ 107S.

be used as a highly-accurate, real-frequency DMFT impurity
solver.

V. CONCLUSION

We presented a new self-energy estimator and showed that
it yields greatly improved results in NRG calculations. The
standard estimator ¥ = F/G [see Egs. (5) and (11)] follows
from an eom for G. While it yields much better results than
employing the Dyson equation, O still does not have all the
qualities one is used to from fdm NRG correlators, as Im > FG
is not properly normalized and can overshoot to positive val-
ues. Moreover, it often displays wiggles for very low energies.

By combining the eom for G with an analogous eom
for F, one can derive several ¥ estimators [see Eqs. (23)—
(27)]. We identified X6 = =H 4+ T — F?/G as particularly
well-suited for NRG. Indeed, we showed analytically that the
normalization of Im X'F¢ [Eq. (14)] and its low-energy be-
havior [see Eq. (15)] are determined directly by Im 7, Im F,
and Im G. Accordingly, there are no real parts (obtained by
Kramers—Kronig transform) involved, and Im X'FC is as reli-
able as the imaginary part of any fdm NRG correlator: it is
normalized, does not overshoot, and is extremely accurate at
low energies.

We examined numerical results for the Anderson impurity
model with a featureless hybridization and for the DMFT so-
lutions of one-, two-, and three-orbital Hubbard models. In all
cases, the above properties were confirmed and X7 yielded
much better results than XFC. Furthermore, we found that
%IFG converged much faster with increasing the numerical ef-
fort (increasing the number of kept states Ny,) than 6. This
is very important when applying NRG to multiorbital systems
where the maximal Ny, is limited by numerical resources and
finding accurate results for XFC was the major challenge.
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The estimator XF¢ = F/G is also frequently used for other

impurity solvers, such as exact diagonalization (ED) [36],
the density-matrix renormalization group (DMRG) [46,47]
and quantum Monte Carlo (QMC) [32,48-50]. Although our
analysis is targeted at NRG applications, we expect that 76
yields improved results for some of these methods, too.
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APPENDIX A: MATRIX-VALUED
CORRELATION FUNCTIONS

In the main text, we focused on a-diagonal fermionic cor-
relation functions, as they follow from Egs. (1)—(3). Matrix-
valued correlation functions are obtained if the quadratic
Hamiltonian is generalized to

E d/edaotd + E Ckaekaacka

koo’

+ ) (] Viwatra + H.c.)

k,aa’

(AD)

and has nonzero off-diagonal (o # «’) elements. Indeed, this
expression contains several matrices, which we denote by €,
€x, and V;, without subscripts «. Most results of the main text
are purposefully phrased in such a way that they directly gen-
eralize to matrix form upon removing « indices. An exception
is the hybridization function in Eq. (8), which is rephrased as
A=) Viz—ea) 'V, (A2)
k
The matrix-valued correlation functions are denoted by G, I,
etc., without « indices. Their matrix elements are defined by

Gaa o = {das 22y luore = (Gas 4 )2s (A3)

Fa]:x/ = {(qa; d MNes Falz 7= {(dy, q;»z-

In this generalized setting, too, one computes with NRG
the Lehmann representation of a spectral function like

= (G, — G})/(=2mi).

(A4)

(A5)
Its diagonal elements fulfill the standard relation AS, , =
—%Im Gya.v, while the off-diagonal elements are generally
complex. From the Lehmann representation one also finds

AFL (.AF ) as the generalization of F, aa .= Falfx . used in

the main text. The retarded correlator subsequently follows as

1
G, = Pfdu’—,AS', — i AS. (A6)
vV—V
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FIG. 6. Imaginary part of two self-energy components for the
Anderson impurity model with off-diagonal on-site energy and hy-
bridization. For both a diagonal (a) and off-diagonal (b) element of
¥, the results from € are smoother than those of ¢ and free
from wiggles at low energies. The total weight [ dv.A¥ from ZFG
is in perfect agreement with the exact value ({Gq, q;/}), cf. Eq. (35),
whereas that obtained with X0 deviates by roughly 15% in each
component.

The equations of motion (19) and (21) involving FT, to-
gether with their counterparts involving FR, were already
given in a way that directly generalizes to matrix form. The
same applies to the ¥ formulas (22)—(27) if F without su-
perscript is understood as F-. Here, we gather the various
matrix-valued ¥ estimators in both their “left” and “right”
forms:

¢ =FG; (ATa)
=G, 'F}, (ATb)

26 = 2"+ 1)GG! (A7¢)
=G 'GA(=" + 1), (A7d)

S =1+ E LGS L) (ATe)
=+ 0], (AT

= (1 +F)' =M+ 1) (A7g)
=+ (1 +FR) (A7h)
=9 =3+ - E-GI'FR. (ATi)

Note that the last term can also be written as (F, L)2
1(F R)2 However, this spoils the invariance under shlfts
(see Sec. I D) and is therefore numerically disadvantageous.
Finally, we present an exemplary set of numerical results
for matrix-valued self-energies. We consider an Anderson
impurity model, similar to the one from Sec. IV B, with a
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FIG. 7. Self-energies ZFC¢ and %™C for the single-orbital Anderson impurity model, as in Fig. 1, but at a stronger interaction, I'/U = 0.075,
and half filling. (a) Real part (minus the Hartree shift) and (b) imaginary part on a wide frequency window. Discrepancies reflect the fact that
2O js exact in ™6 but not in £FC. We restrict the frequency range to v > 0 in light of particle-hole symmetry. The inset in (a) enlarges the
high-frequency decay with /v in gray. (c) Im X, at low energies for an increasing number of kept states Ny, [SU(2)xSU(2) multiplets].
One observes that —Im ZF¢ overshoots to negative values for Ny, = 1000 and is not yet converged for the highest N, = 5000. By contrast,
—Im =S shows a clean, nonnegative parabola and is, on the given scale, converged for N, as low as 500.

boxed-shaped hybridization function A2 = T'6(D — |v|)/7,
and interaction strength U = 0.3 and temperature T = 1073
in units of the half bandwidth D = 1. However, differently
from Sec. IV B, we promote the on-site energy €; and the
hybridization strength I" to nondiagonal matrices:

—0.2  0.05i 1 i
E‘1:(—0.051 —0.1)’ F:<i 1)' (A8)

This model exhibits only a U(1) charge symmetry, and
we choose the NRG parameters as A =2, n, =2, Ny =
8000. The self-energies =0 and X7 are obtained from their
matrix expressions (A7a) and (A71). Figure 6 shows the imagi-
nary part of two exemplary components, 3, and ¥,;. Overall,
both estimators yield consistent results. However, already on
the wide-frequency window, one observes that ¢ results
are much smoother than those of XFC. The notable differences
at large energies owe to the fact that ©'FG produces the exact
total weight f d vAvE as known from ({g,, c]l,) expectation
values, cf. Eq. (35), while the corresponding results from
¥FG deviate by roughly 15% in each component. The insets,
enlarging the low-energy regime, reveal that, also in the non-
diagonal setting, X'FC is free from the wiggles present in £F6.
Remarkably, this applies not only to the diagonal self-energy
component where the imaginary part vanishes at v = 0, but
also to the off-diagonal component where this value is finite.

APPENDIX B: ANDERSON IMPURITY MODEL AT
STRONG INTERACTION

Here, we give additional numerical results for the («-
diagonal) single-orbital Anderson impurity model at strong

interaction. We choose the same parameter set as in Ref. [25]:
a box-shaped hybridization function of half bandwidth D = 1
and strength ' = 0.015, an interaction value of U = 0.2, and
€4 = —0.1 corresponding to half filling. The particle-hole
symmetry allows us to exploit SU(2) charge and SU(2) spin
symmetry in the calculation, as already done in Sec. IV C.
We set A =2 and n, =4 as in Sec. IVB. The tempera-
ture 7 = 10~% is again far below the Kondo temperature of
Tk ~2.06- 1074, following from the same formula as used in
Sec. IVB.

Figure 7 is analogous to Fig. 1; we restrict panels (a) and
(b) to positive frequencies in light of particle-hole symmetry.
The findings from Sec. IV B also hold analogously in the
current setting at strong interaction: £¥6 and £'F¢ are overall
consistent; deviations at large frequencies in Figs. 7(a) and
7(b) reflect the fact that the high-frequency asymptote in the
real part and the total weight in the imaginary part are exactly
fulfilled by £!FG, whereas this is not the case for ©FS. The
agreement between Re =IF¢ and £©/v for large v can be
seen in the inset of Fig. 7(a).

The low-energy behavior of Im X, for an increasing num-
ber of kept states Ny, [SU(2) x SU(2) multiplets] is compared
in Fig. 7(c). The wiggles of Im XFC at low energies, as for
instance observed in Fig. 1(c), are absent in this particle-hole
symmetric setting. However, for Ny, = 1000, —Im £F¢ still
overshoots to negative values on the scale of 1073I". Increas-
ing Ny, to 2000 and 5000, —Im =FC continues to shift: it
comes closer to the v axis without fully reaching it, violating
Im 2F6(0) = 0 with errors on the order of 107°I". By con-
trast, —Im ZFY shows a clean, nonnegative parabola, which,
on the given scale, has its vertex right at the origin and is
converged for Ny, as low as 500.
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