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We present a new estimator for the self-energy based on a combination of two equations of motion and discuss
its benefits for numerical renormalization group (NRG) calculations. In challenging regimes, NRG results from
the standard estimator, a ratio of two correlators, often suffer from artifacts: The imaginary part of the retarded
self-energy is not properly normalized and, at low energies, overshoots to unphysical values and displays wiggles.
We show that the new estimator resolves the artifacts in these properties as they can be determined directly from
the imaginary parts of auxiliary correlators and do not involve real parts obtained by Kramers–Kronig transform.
Furthermore, we find that the new estimator yields converged results with reduced numerical effort (for a lower
number of kept states) and thus is highly valuable when applying NRG to multiorbital systems. Our analysis is
targeted at NRG treatments of quantum impurity models, especially those arising within dynamical mean-field
theory, but most results can be straightforwardly generalized to other impurity or cluster solvers.
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I. INTRODUCTION

Quantum impurity systems, a small number of interacting
degrees of freedom embedded in a noninteracting bath, play
an important role in many-body physics. On the one hand,
they are fascinating on their own right, serving as a paradigm
for strong-coupling phenomena and as the underlying model
of quantum dot devices [1]. On the other hand, they gained
much attention recently in the study of strongly correlated
lattice systems within the dynamical mean-field theory
(DMFT) [2].

For conventional quantum impurity models, central dy-
namic correlation functions are, e.g., the spectral function
(local density of states) or the magnetic susceptibility. By
contrast, in DMFT, the quintessential object is the (local but
frequency-dependent) self-energy. It enters many observables,
such as the momentum-dependent spectral function (used
to describe angle-resolved photoemission spectroscopy), all
types of conductivities in transport measurements, nonlocal
susceptibilities that make up structure factors, and is needed to
determine the Fermi-liquid parameters that pervade most low-
energy properties. Moreover, for almost all lattices—the pop-
ular Bethe lattice being an exception—the self-energy is the
crucial ingredient of the DMFT self-consistency iteration [2].

The numerical renormalization group (NRG) [3] is the gold
standard for solving quantum impurity models [4]. It is often
used as a real-frequency impurity solver for DMFT, in Hub-
bard models with one [5–11], two [12–17], and three orbitals
[18–21], and recently even for realistic material systems [22].
Modern formulations of NRG, also known as full density-
matrix (fdm) NRG [23,24], give very accurate results for
correlation functions of local operators. Yet, the self-energy
� is no such correlation function but an irreducible vertex
object, and must be computed by different means. Since a
direct inversion of the Dyson equation is numerically disad-
vantageous, � is routinely computed through an equation of
motion (eom) as a quotient between two correlators [25]. In

challenging (e.g., multiorbital) situations, however, the results
for � are not always as accurate as one expects from NRG.
First, its spectral weight is not guaranteed to be properly
normalized in fdm NRG, so that the (analytically known)
high-frequency asymptote may be violated. Moreover, the
imaginary part of the retarded self-energy Im�ν can over-
shoot to positive values at low energies even though causality
requires Im�ν � 0. This is often accompanied by wiggles in
small values of Im�ν .

In fact, while the high-energy resolution of NRG can be
increased by averaging techniques [8,26,27], these tricks do
not help much in resolving the problems of Im�ν at low
energies—where NRG is most powerful. So far, the over-
shooting and wiggles in Im�ν could only be tackled by
brute-force increase of numerical effort (increasing the num-
ber of kept states), so that accurate results for � were a
computational bottleneck.

In this paper, we present a new formula for the self-energy,
based on a combination of a one- [25] and twofold [28]
application of the eom. This result strongly alleviates the pre-
viously mentioned artifacts: The high-frequency asymptote of
Re� is fulfilled exactly, overshooting of Im� is ruled out,
and the value of Im� at zero energy is improved by several or-
ders of magnitude. Our formula involves three instead of two
[25] correlators. While this naively increases the numerical
costs by a factor of 1.5, we find that accurate results with the
new formula are obtained already with less numerical effort
(a lower number of kept states) compared to the standard
scheme. Hence, our approach also makes NRG computations
of� more efficient and thus helps to equip DMFT+NRGwith
the tools needed for treating Hubbard models with ever more
orbitals.

The rest of the paper is organized as follows. In Sec. II,
we give an overview of the theoretical framework as well
as the previous and new self-energy estimators. The deriva-
tion of these expressions and their properties is found in the
subsequent Sec. III. In Sec. IV, we demonstrate the benefits
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of the new approach with numerical results. There, we start
with the single-orbital Anderson impurity model and proceed
with one-, two-, and three-orbital Hubbard models treated
in DMFT. Section V contains our conclusions, Appendix A
discusses the generalization to matrix-valued correlation func-
tions, and Appendix B provides additional numerical data.

II. OVERVIEW

A. Definitions

Quantum impurity models are naturally divided into the
interacting impurity and the noninteracting bath. We denote
electron creation operators of the former by d†

α and those of
the latter by c†kα . The index α enumerates spin (σ ) and possibly
orbital (m) quantum numbers; the bath modes are further la-
beled by k, standing, e.g., for momentum. The noninteracting
part of the Hamiltonian H = H0 + Hint generally reads

H0 =
∑

α

εd,αd
†
αdα +

∑
k,α

εkαc
†
kαckα

+
∑
k,α

(Vkαd
†
αckα + H.c.). (1)

For the interacting part, we consider two examples. The
single-orbital (α = σ ) Anderson impurity model [29] has

Hint = Un↑n↓, nσ = d†
σdσ . (2)

In the multiorbital case [α = (σ,m)], we use the generaliza-
tion of Eq. (2) introduced by Dworin and Narath [30,31],

Hint = 3
4JN + 1

2

(
U − 3

2J
)
N (N − 1) − JS2, (3)

where N = ∑
α d

†
αdα and S = ∑

σσ ′m d†
σ ′mτσ ′σdσm with the

Pauli matrices τ.
We will be interested in correlation functions involving the

fundamental operators dα , d†
α as well as the auxiliary operators

qα = [dα,Hint], q†α = [Hint, d
†
α]. (4)

They allow us to define four fermionic correlation functions:

Gαz = 〈〈dα, d†
α〉〉z, Iαz = 〈〈qα, q†α〉〉z, (5a)

FL
αz = 〈〈qα, d†

α〉〉z, FR
αz = 〈〈dα, q†α〉〉z. (5b)

Here, our notation follows Ref. [25]: z is a complex frequency
variable. It can be a discrete imaginary frequency, iν, or a
continuous real frequency ν. In the former case, 〈〈A,B〉〉z
is the Fourier transform of the imaginary-time correlator
−〈TA(τ )B〉, with the time-ordering operator T . In the latter, it
corresponds to the retarded correlator −iθ (t )〈{A(t ),B}〉, with
the step function θ and the anticommutator {·, ·}.

In systems defined by Eqs. (1)–(3), the fermionic correla-
tion functions are diagonal in α (and thus carry only a single
subscript). It then follows (as shown below) that FL

αz = FR
αz;

we will hence mostly drop the superscript. Appendix A ad-
dresses the case where H0 has off-diagonal contributions and
the correlation functions become matrix-valued. Then, FL

and FR are not equal, but still related by symmetry. For a
close connection of both situations, we often use matrix-type
notation in the main text, too, and restore the superscripts L,
R in key places. Moreover, even for α-diagonal computations,
FL

αz = FR
αz might be slightly violated numerically. It may then

be helpful to use the matrix-type formulas, which are symmet-
ric in FL and FR.

Before moving on to the self-energy, let us briefly recall
how correlators like Gαz, Fαz, and Iαz are obtained in NRG.

B. NRG correlation functions

In NRG, a general correlatorCαz is first computed as a dis-
crete version of the spectral part − 1

π
ImCαν . After broadening

ImCαν , the real part follows by Kramers–Kronig transform as

ReCαν = − 1

π
P

∫
dν ′ ImCαν ′

ν − ν ′ . (6)

By construction of fdm NRG, the total weight of ImCαν

is guaranteed to be exact [23,24]. Further, by the very na-
ture of NRG, results for ImCαν are most accurate at low
energies. Going to larger frequencies, ImCαν can be signifi-
cantly less accurate, reflecting the logarithmic discretization
of the hybridization function. Refined averaging and adaptive
broadening techniques [8,26,27] help to minimize overbroad-
ening. Yet, the approximate nature of ImCαν for large ν

remains. In particular, it is known that the moments C(n) =
− 1

π

∫
dν νnImCαν are not reproduced exactly for n > 0. Now,

by Eq. (6), the large-energy inaccuracies of ImCαν are not
only passed down to ReCαν but are also spread in frequency
space. Hence, in the following, we will aim to minimize the
effect of real parts of correlation functions in the computation
of �.

C. Self-energy formulas

The self-energy is defined by the Dyson equation as

�αz = (
G0

αz

)−1 − (Gαz )
−1. (7)

Here,G0
αz is the bare propagator, which can be written in terms

of the hybridization function 
αz as

(
G0

αz

)−1 = z − εd,α − 
αz, 
αz =
∑
k

|Vkα|2
z − εkα

. (8)

The retarded self-energy fulfills the Kramers–Kronig relation

Re�αν = �H
α − 1

π
P

∫
dν ′ Im�αν ′

ν − ν ′ , (9)

where �H
α is the constant Hartree part. This relates the high-

frequency asymptote of the real part to the total weight in the
imaginary part. We define the 1/ν coefficient of Re�αν (or
the 1/z coefficient of �αz) as the moment �(0)

α , which fulfills

�(0)
α = lim

|ν|→∞
ν

(
Re�αν − �H

α

) = − 1

π

∫
dν Im�αν. (10)

For many algorithms that yield Gαz directly, Eq. (7) is not
ideal to extract �. In NRG, it is basically inapplicable since
G0

αz involves the exact, continuous hybridization function. By
contrast, Gαz is the result of an approximate calculation where

αz was discretized. Thus, cancellations between G0

αz and
Gαz required for Eq. (7) do not work properly and induce
large numerical errors. For this reason, NRG self-energies are
routinely computed by means of an eom yielding [25]

�FG
αz = Fαz(Gαz )

−1. (11)
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Our new formula, based on a combination of a one- and
twofold [28] application of the eom, reads

�IFG
αz = �H

α + Iαz − FL
αz(Gαz )

−1FR
αz. (12)

We restored the superscript on F in light of matrix-valued ap-
plications (see Appendix A). In the given α-diagonal setting,
the last term can be simply written as F 2

αz/Gαz. Now, what are
the advantages of Eq. (12) over Eq. (11)?

Focusing on the imaginary part, from Eq. (11), we get

Im�FG
αν = Im FανReGαν − ReFανImGαν

|Gαν |2 . (13)

Evidently, Im�FG
αν is determined by the imaginary parts and

the real parts of NRG correlators. One finds that the total
weight

∫
dν Im�FG

αν typically does not give the exact value.
Further, due to the real parts involved, Im�FG

αν at low energies
is less accurate than one is used to for imaginary parts of cor-
relators computed directly with NRG. In challenging regimes,
one encounters the aforementioned artifacts that Im�FG

αν over-
shoots to positive values and displays wiggles for low ν.

By contrast, for �IFG
αz , we will show that both the total

weight of Im�IFG
αν , as an important high-energy property, as

well as the low-energy behavior of Im�IFG
αν is determined by

the imaginary parts of NRG correlators only. Indeed, we have∫
dν Im�IFG

αν =
∫

dν Im Iαν − (
∫
dν Im Fαν )2∫
dν ImGαν

, (14)

and, for a Fermi liquid,

Im�IFG
αν = Im Iαν − (Im Fαν )2

ImGαν

+ κO(ν4,T 4, ν2T 2), (15)

where κ ∼ 1/(T 2
K Im
α,ν=0). (A similar relation also holds

for non-Fermi liquids whenever Im� is small, but the remain-
der term may not be as easy to estimate.) For these imaginary
parts of NRG correlators (Im Iαν , Im Fαν , ImGαν), the exact
total weight in Eq. (14) is guaranteed and the low-energy
behavior in Eq. (15) is extremely accurate. Hence, because of
Eqs. (14) and (15), we can expect �IFG

αz to give better results
in NRG than �FG

αz . Below, we will first derive these properties
analytically and then demonstrate their benefits numerically.

III. DERIVATIONS

A. Equations of motion

The starting point is the well-known equation of motion

〈{A,B}〉 = 〈〈zA − [A,H],B〉〉z, (16a)

〈{A,B}〉 = 〈〈A, zB − [H,B]〉〉z, (16b)

as used, e.g., in Refs. [25,28,32,33]. In short, Eqs. (16a) and
(16b) follow by differentiating the time-dependent two-point
correlator with respect to the first and second time argument,
respectively. Then, the equal-time anticommutator stems from
the time derivative of the (time-ordering) step function, z
from the time derivative itself after Fourier transform, and the
commutator with H from the the Heisenberg time evolution.

Commutators between the bare Hamiltonian H0 and the
basic operators dα and d†

α can be immediately deduced as

[dα,H0] = εd,αdα +
∑
k

Vkαckα, (17a)

[H0, d
†
α] = d†

αεd,α +
∑
k

c†kαV
∗
kα. (17b)

The last summands involve bath operators. It can easily be
shown via Eqs. (16) that, for general impurity operators Od ,∑

k

Vkα〈〈ckα,Od〉〉z = 
αz〈〈dα,Od〉〉z, (18a)

∑
k

〈〈Od , c
†
kα〉〉zV ∗

kα = 〈〈Od , d
†
α〉〉z
αz. (18b)

In Eqs. (16), the equal-time term is trivial for the creation
and annihilation operators, {dα, d†

α} = 1. We thus get

1 = 〈〈zdα − [dα,H0], d
†
α〉〉z − 〈〈[dα,Hint], d

†
α〉〉z

= (z − εd,α − 
αz )〈〈dα, d†
α〉〉z − 〈〈qα, d†

α〉〉z
= (

G0
αz

)−1
Gαz − FL

αz. (19)

Using Eq. (16b) instead of (16a) yields 1 = Gαz(G0
αz )

−1 −
FR

αz. In the given α-diagonal setting, this implies FR
αz = FL

αz.
We next employ Eq. (16b) for FL

αz. This way, the commu-
tator acts on d†

α , similarly as before. The equal-time term with
one qα operator gives the Hartree self-energy,

�H
α = 〈{[dα,Hint], d

†
α}〉 = 〈{dα, [Hint, d

†
α]}〉. (20)

In total, we get

�H
α = 〈〈qα, zd†

α − [H0, d
†
α]〉〉z − 〈〈qα, [Hint, d

†
α]〉〉z

= 〈〈qα, d†
α〉〉z(z − εd,α − 
αz ) − 〈〈qα, q†α〉〉z

= FL
αz(G

0
αz )

−1 − Iαz. (21)

Applying Eq. (16a) to FR
αz yields �H

α = (G0
αz )

−1FR
αz − Iαz.

Again, this shows FR
αz = FL

αz in the α-diagonal setting. We will
hence drop the superscript in most of the following.

B. Self-energy estimators

Using the Dyson equation (7), the first-order eom result for
�αz directly follows from Eq. (19) as

�αz = FαzG
−1
αz ≡ �FG

αz . (22)

This is the famous result from Ref. [25]. Here and below, the
expression after the ≡ sign serves for future reference. Next,
the second-order formula for � is obtained by inserting the
eom (21) for Fαz into the first-order result (22) for �:

�αz = (
�H

α + Iαz
)
G0

αzG
−1
αz ≡ �IG

αz . (23)

Using Eq. (7) for (Gαz )−1 and isolating �αz, we get

�αz = [
1 + (

�H
α + Iαz

)
G0

αz

]−1(
�H

α + Iαz
) ≡ �I

αz, (24)

the “symmetric improved estimator” derived in Ref. [28,34].
Using Eq. (7) for (G0

αz )
−1 instead of (Gαz )−1 in Eq. (23),

after bringing both propagators to the left of Eq. (23), yields

�αz = �H
α + Iαz − �αzGαz�αz. (25)
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This formula was used in Ref. [33] for a recursive diagram-
matic Monte Carlo scheme. Here, we process this result
further by inserting the standard estimator for � on the right,
�αzGαz�αz = F 2

αz/Gαz, to obtain an improved estimator on
the left. Restoring superscripts yields the symmetric expres-
sion

�αz = �H
α + Iαz − FL

αz(Gαz )
−1FR

αz ≡ �IFG
αz . (26)

This is our main result, as anticipated in Eq. (12), for a new,
improved estimator for NRG calculations of the self-energy.

Equation (26) can also derived in a different way. First,
we rephrase Eq. (19) as (Gimpr

αz )−1 = (1 + FL
αz )

−1(G0
αz )

−1 and
Eq. (21) as FR,impr

αz = G0
αz(�

H
α + Iαz ). As indicated by the su-

perscript, we view these expressions for G and F as improved
estimators in terms of the higher-order correlators F and I ,
respectively. Thereby, we aim for an improved � estimator by
means of Eq. (22) in the form �

impr
αz = (Gimpr

αz )−1FR,impr
αz . This

way, G0
αz conveniently cancels. The expression we get is

�αz = (1 + Fαz )
−1

(
�H

α + Iαz
) ≡ �IF

αz. (27)

Yet, the denominator turns out to be numerically disadvanta-
geous. We thus multiply Eq. (27) by 1 + Fαz and use Eq. (22)
again in the form Fαz�αz = F 2

αz/Gαz to reproduce Eq. (26).
With �FG, �IG, �I, �IFG, �IF, we have a total of five

self-energy estimators available. However, �IG and �I are
not ideal for NRG since they mix full and bare correlators.
Thereby, they mix objects like Gαz and Iαz, which are com-
puted after discretization, with the exact, continuum object
G0

αz. This hinders cancellations and often entails numerical
artifacts. As already mentioned, the denominator in Eq. (27)
makes �IF numerically disadvantageous; we will elaborate on
this in Sec. III E. Consequently, �FG

αz and �IFG
αz are the most

suitable estimators for NRG. Next, we derive the properties of
their high- and low-energy behavior anticipated before.

C. High- and low-energy behavior

We start with the high-energy behavior. In Eq. (10), we de-
fined the self-energy moment �(0)

α , which represents the total
weight of Im�αν as well as the first term in a high-frequency
expansion of Re�αν . Via the second property, Eq. (14) can be
derived in a few steps.

Let us consider again a general correlator Cz = 〈〈A,B〉〉z
with C|z|→∞ = 0, as a placeholder for Gαz, Fαz, and Iαz. The
spectral representation implies the high-frequency expansion

Cz =
∞∑
n=1

C(n−1)

zn
, C(n) = − 1

π

∫
dν νnImCαν. (28)

The C(n) can also be obtained from expectation values, as

C(0) = 〈{A,B}〉, C(1) = 〈{[A,H],B}〉 = 〈{A, [H,B]}〉,
etc. The leading coefficients for our specific correlators are
G(0)

α = 1, F (0)
α = �H

α , I
(0)
α = 〈{qα, q†α}〉. For the self-energy

estimators, we can then easily deduce

�FG
αz = F (0)

α

G(0)
α

+
[
F (1)

α

G(0)
α

− F (0)
α G(1)

α(
G(0)

α

)2
]
1

z
+ O

(
1

z2

)
, (29a)

�IFG
αz = �H

α +
[
I (0)α −

(
F (0)

α

)2
G(0)

α

]
1

z
+ O

(
1

z2

)
. (29b)

The combination of Eqs. (10), (28), and (29b) implies
Eq. (14).

As mentioned before, the exact C(0) is guaranteed by the
sum-rule conserving fdm NRG [23,24]. However, C(1) is
much less accurate as it probes ImCν with increasing weight
at large ν and thus suffers from NRG discretization artifacts.
With the standard estimator �FG

αz , the exact coefficients F (0)
α

and G(0)
α generate the exact Hartree term �H

α = F (0)
α /G(0)

α .
Yet, �H

α is also readily available via expectation values, see
Eq. (20), whereas the moment �(0)

α in �FG
αz involves coeffi-

cients F (1)
α and G(1)

α and is thus not very accurate. By contrast,
�IFG

αz takes �H
α as input and uses the exact coefficients I (0)α ,

F (0)
α , G(0)

α to generate the exact self-energy moment �(0)
α .

Next, we take a closer look at Im� at low energies. For
�FG

αz , Eq. (13) directly follows from Eq. (11) and requires no
further comment. Deriving Eq. (15) for �IFG

αz takes only two
steps. Straightforward algebra yields

Im�IFG
αν = Im Iαν − Im

(
F 2

αν

Gαν

)

= Im Iαν − (Im Fαν )2

ImGαν

+ |Gαν |2
ImGαν

(
Im�FG

αν

)2
. (30)

The last term, expressed through Im�FG
αν of Eq. (13), is

typically very small, since Im�αν is small at low frequen-
cies. Indeed, in a Fermi liquid, −Im�αν = O(ν2/TK,T 2/TK)
in terms of the Kondo temperature TK, and, further-
more, ImGαν/|Gαν |2 = −Im 1/Gαν , which gives Im
α,ν=0

at ν,T → 0. Using this result in Eq. (30) yields Eq. (15).
Equation (30) reveals an intimate connection between

Im�IFG
αν and Im�FG

αν . We can infer that, if Im�FG
αν shows arti-

facts at values of |Im�FG
αν | = y (e.g., y ≈ 10−3 in appropriate

units), then Im�IFG
αν will show similar artifacts at values ∼y2

(i.e., 10−6 in the example). This quadratic relation evidently
enables a huge improvement, but it still hinders Im�IFG

αν from
reaching down all the way to zero in a T = 0 Fermi liq-
uid. Accordingly, for determining the Fermi-liquid parameter
Im�α,ν=0, it may be preferential to directly use Eq. (15), i.e.,
incorporate the knowledge of Eq. (30) where (Im�FG

α,ν→0)
2 is

negligible [35].

D. Shifting quadratic parts in the Hamiltonian

The derivations in Secs. III A and III B build on the separa-
tion H = H0 + Hint . While H0 is the quadratic part, Eq. (1),
it is not specified whether or not Hint also contains a term
quadratic in d (†)

α . Indeed, we may shift both H0 and Hint to

H̃0 = H0 + d†
αζαdα, H̃int = Hint − d†

αζαdα. (31)

This leaves H invariant; hence, it does not change any prop-
erties of the system, and all above arguments still hold. The
self-energies obtained in either way are related as(
G̃0

αz

)−1 − �̃αz = (
G0

αz

)−1 − �αz ⇒ �αz = ζα + �̃αz. (32)

How does this shift affect the numerical results for the
two � estimators �FG and �IFG? From q̃α = qα − ζαdα ,
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q̃†α = q†α − d†
αζα , we can directly infer that �̃H

α = �H
α − ζα

and F̃L
αz = Fαz − ζαGαz, F̃R

αz = Fαz − Gαzζα . Further, we have

Ĩαz = Iαz − FL
αzζα − ζαF

R
αz + ζαGαzζα. (33)

Applying these relations to the two � estimators yields

�̃FG
αz = F̃L

αz(Gαz )
−1 = FL

αz(Gαz )
−1 − ζα, (34a)

�̃IFG
αz = �̃H

α + Ĩαz − F̃L
αz(Gαz )

−1F̃R
αz

= �H
α − ζα + Iαz − FL

αz(Gαz )
−1FR

αz. (34b)

Hence, for an algorithm like NRG, which is bilinear in the
arguments of a correlation function 〈〈A,B〉〉z, a shift does not
affect the numerical results for �FG and �IFG. For other esti-
mators like �IF, involving shifted correlation functions in the
denominator, the equivalence under a shift does not simply
follow from linearity but requires more intricate cancellations
that may be violated numerically. We also note that Eq. (33)
naturally produces both FL and FR. Hence, for the equiva-
lence of �IFG under shifts according to Eq. (34b), it is helpful
to use the symmetric form FL

αzG
−1
αz F

R
αz—instead of (FL

αz )
2G−1

αz

or G−1
αz (F

R
αz )

2—if FL and FR (slightly) differ numerically.
Now, even if the shifts leave the numerical results for

�FG and �IFG invariant, they help us to gain more analytical
insight. Two specific shifts are particularly suited for that.

The first is ζα = �H
α . With (G̃0

αz )
−1 = (G0

αz )
−1 − �H

α , it
transforms the bare propagator into the Hartree propagator,
G̃0

αz = GH
αz. This is particularly convenient for particle-hole

symmetric systems, where εd,α and �H
α cancel. Furthermore,

�̃H = 0 simplifies the� estimators involving the Hartree self-
energy. One gets, e.g., �̃IG

αz = ĨαzGH
αz(Gαz )−1, an estimator

used in Ref. [36]. Additionally, �̃H = 0 implies F̃ (0)
α = 0 [37].

With Im�αν = Im �̃αν , Eqs. (14) and (29b) then simplify as∫
dν Im�IFG

αν =
∫

dν Im Ĩαν ⇒ �(0)
α = 〈{q̃α, q̃†α}〉. (35)

The second interesting shift is ζα = ImFαν̄

ImGαν̄
, where ν̄ is

any given frequency, as it yields ImF̃αν = 0 at ν = ν̄. With
Im�αν = Im�̃αν , the result of Eq. (30) then simplifies as

Im�IFG
αν̄ = ImĨαν̄ + |Gαν̄ |2

ImGαν̄

(Im�FG
αν̄ )

2. (36)

Here, the sign of the two summands is determined by
ImĨαν̄ and ImGαν̄ , respectively, where Ĩαν̄ =〈〈q̃α, q̃†α〉〉ν̄ and
Gαν̄=〈〈dα, d†

α〉〉ν̄ . Since each of them is defined with a
mutually conjugate pair of operators, their Lehmann repre-
sentations, evaluated with fdm NRG, directly yield ImĨαν̄ �0
and ImGαν̄ �0, thus ensuring Im�IFG

αν̄ �0. While this analytic
argument refers to an arbitrary but fixed frequency ν̄, one need
not actually perform a shift for each frequency value to numer-
ically profit from Eq. (36). Instead, by linearity, NRG results
are equivalent for any shift, and Eq. (36) ensures Im�IFG

αν � 0
for all frequencies at once.

Interestingly, we find from Eq. (36) that the retarded self-
energy has a negative imaginary part without resorting to
perturbation theory (which may break down for non-Fermi
liquids) or to properties of the propagator [38]. Hence, this
argument also applies to general quantum impurity models,
for which the retarded nature of Gαν = 1/(ν − εd,α − 
αν −

�αν ) merely requires Im(
αν + �αν ) � 0, i.e., Im�αν �
−Im
αν , instead of Im�αν � 0.

E. Denominator in �IF

Wementioned before that �IF
αz is disadvantageous since the

denominator is problematic for systems with reduced spectral
weight (such as bad metals in DMFT) or even spectral gaps
(insulators). Indeed, let us consider a particle-hole symmetric
system, where ReGαν and ReGH

αν are antisymmetric in ν and
thus vanish at ν = 0. From the analog of Eq. (19) under the
shift ζα = �H

α , we then have Gαz = GH
αz(1 + F̃αz ) and

ImGα,ν=0 = ImGH
α,ν=0 (1 + Re F̃α,ν=0). (37)

Hence, if the spectrum is gapped, ImGα,ν=0 = 0, Eq. (37)
shows that 1 + Re F̃α,ν=0 = 0, i.e., Re F̃α,ν=0 = −1. However,
it is numerically challenging to precisely resolve the finite
value to which a Kramers–Kronig transformed object like
Re F̃α,ν converges. For this reason, �IF

αz is numerically disad-
vantageous for gapped system and, more generally, those with
strongly reduced spectral weight (as demonstrated below).

As a curiosity, we mention that �IFG
αν can be viewed as a

linear interpolation between �IF
αν and �FG

αν , in the form

�IFG
αν = �IF

αν fν + �FG
αν (1 − fν ), fν = 1 + Fαν. (38)

The weighting function fν is unity for ν → ∞ and close to
unity for ν → 0 in a Fermi liquid. Hence, �IFG

αν and �IF
αν share

many of their beneficial properties at high and low energies.
Further, fν is small whenever 1 + Fαν is small, i.e., whenever
the denominator in �IF

αν becomes problematic. In this region,
�IFG

αν is given by �FG
αν and thus free from any instabilities.

IV. NUMERICAL RESULTS

A. NRG setting

We employ the fdm NRG [24] in a state-of-the-art imple-
mentation based on the QSpace tensor library [39], allowing
one to exploit Abelian and non-Abelian symmetries. Indeed,
SU(2) spin symmetry is used throughout, while two cal-
culations additionally have SU(2) charge and SU(3) orbital
symmetry, respectively. The resolution at finite ν is improved
by averaging the (discrete) spectral data over nz shifted dis-
cretization grids [26] and through an adaptive broadening
scheme [8,27]. For the single-orbital results, we set the NRG
discretization parameter to 
 = 2 and nz = 4. For the mul-
tiorbital results, we use 
 = 4 while fixing nz = 2 to reduce
numerical run times. The only truncation criterion during the
NRG iterative diagonalization is given by the number of kept
states Nkp. As usual, this bound is soft in order to respect
emergent degeneracies in the spectrum.

We will first discuss the Anderson impurity model with a
featureless hybridization function. All other results stem from
DMFT solutions of lattice systems, which are mapped onto
self-consistently determined impurity models. For simplic-
ity, we consider the Bethe lattice with a semicircular lattice
density of states and converge the DMFT self-consistency
iteration using the conventional self-energy scheme �FG.
Although the self-consistency condition on the Bethe lat-
tice can be phrased in terms of the spectral function Aαν =
− 1

π
ImGαν , it is standard practice to use the self-energy for
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FIG. 1. Self-energies �FG and �IFG for the single-orbital Anderson impurity model. (a) Real part (minus the Hartree shift), (b) imaginary
part. The discrepancies in (a) and (b) reflect the fact that �(0) = − 1

π

∫
dν Im�ν is exact in �IFG but not in �FG. Indeed, the inset in (a) enlarges

the high-frequency decay with the exact asymptote �(0)
ex /ν in gray. (c) Im�ν at low energies for an increasing number of kept states Nkp [SU(2)

multiplets; 1k = 103, etc.]. Crucially, −Im�IFG
ν is nonnegative, free of any wiggles, and, on the given scale, converged for Nkp as low as 500.

an improved spectral function compared to the direct NRG
output. Then, from the converged DMFT solution, we perform
one more calculation to compare results with different self-
energy estimators.

Generally, we use the half bandwidth D = 1 of the (bare)
hybridization function as our energy unit. For the plain An-
derson impurity model, the size of � is best compared to the
hybridization strength �. In lattice systems, the self-energy
adds to the dispersion relation in the inverse propagator; we
thus plot �/D. For all our numerical results, we set T/D =
10−8, which can be considered as zero temperature.

B. Single-orbital Anderson impurity model

We begin our presentation of numerical results with the
single-orbital Anderson impurity model [cf. Eq. (2)], with
a box-shaped hybridization function −Im
ν = �θ (D − |ν|)
of half bandwidth D = 1 and strength �. We here choose
� = 0.1, an interaction value of U = 0.3, and the on-site
energy εd = −0.1. With εd > −U/2, the system is less than
half filled, having nd = ∑

σ 〈nσ 〉 ≈ 0.87. Appendix B pro-
vides additional results, obtained for the same parameter set
as chosen in Ref. [25]: � = 0.015, U = 0.2, and εd = −0.1
(half filling). For the present model, qσ = Udσnσ̄ . Hence, the
Hartree self-energy gives the well-known �H

σ = 〈{qσ , d†
σ }〉 =

Und/2. Using Eq. (35), the (exact) self-energy moment is
easily evaluated as �(0)

ex = 〈{q̃σ , q̃†σ }〉 = U 2 nd
2 (1 − nd

2 ). Our
temperature T = 10−8 is far below the Kondo temperature
[40] of TK ≈ 0.043.

To set the stage, Figs. 1(a) and 1(b) show the real and
imaginary part of� on a wide energy window. Generally,�FG

ν

and �IFG
ν yield consistent results, while slight deviations are

observed at higher energies. This is expected since �IFG
ν gives

the exact high-frequency asymptote for the real part [see inset
of Fig. 1(a)] and the exact total weight for the imaginary part,
whereas both properties are slightly violated in �FG

ν . Before
inspecting this further, we enlarge the low-energy behavior of
Im�ν in Fig. 1(c) and compare results for different numbers
of kept states Nkp [here SU(2) multiplets]. For Nkp = 1000,
−Im�FG

ν overshoots to negative values on the scale of 10−3�.

Increasing Nkp, −Im�FG
ν approaches the ν axis. Importantly,

however, the notable wiggles of Im�FG
ν on the scale of 10−4�

remain, even for Nkp as high as 5000. In striking contrast,
−Im�IFG

ν is nonnegative, free of any wiggles, and, on the
given scale, already converged for Nkp as low as 500.

In Fig. 2, we take a closer look at both the high-energy
property �(0) = − 1

π

∫
dν Im�ν and the low-energy property

Im�ν=0. The former should give �(0)
ex = U 2 nd

2 (1 − nd
2 ), the

latter zero at T = 0 [or more generally O(T 2/TK)]. We plot
both quantities as a function of 1/Nkp, i.e., with accuracy
increasing toward the left. Starting with Fig. 2(a) and �FG,
we see that the deviation of �(0) from �(0)

ex decreases with
increasing the number of kept states Nkp, and the number of
z shifts nz. However, the relative deviation stays above 5%
even for the high-accuracy setting Nkp = 5000 and nz = 4. By
contrast, for Im�IFG

ν (and also Im�IF
ν ), the exact total weight

is guaranteed, no matter the chosen parameters.
As a low-energy property, Im�ν=0, shown in Fig. 2(b), is

basically independent of discretization details and thus almost
the same for nz = 2 and nz = 4. One readily observes that
Im�IFG

ν=0 is more accurate than Im�FG
ν=0 (and also Im�IF

ν=0)
by several orders of magnitude. In more detail, for all self-
energy estimators, the values improve (quasi) monotonically
with Nkp and approach the exact value, zero. For the lower
values of Nkp, the numerical error in Im�IFG

ν=0 is dominated
by (Im�FG

ν=0)
2 in Eq. (30), leading to the quadratic relation

between both curves in Fig. 2(b). For higher Nkp and ex-
tremely low values of |Im�IFG

ν=0|, uncertainties in the first two
terms of Eq. (30) become noticeable. Indeed, at Nkp = 1000,
e.g., �FG, �IF, and �IFG roughly yield 10−3, 10−4, and 10−6,
respectively. Increasing Nkp to 5000, −Im�FG

ν=0/� reaches
down to 10−5 and −Im�IFG

ν=0/� even down to 10−7.

C. Single-orbital Hubbard model

Next, we consider the DMFT+NRG solution of the single-
orbital Hubbard model (Bethe lattice with half bandwidth
D = 1). We set the interaction value toU = 2.6 in the metal–
insulator coexistence region. Metallic and insulating solutions
are obtained by approaching U from below and above,
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FIG. 2. The self-energy moment � (0) = − 1
π

∫
dν Im�ν and

Im�ν=0 as a function of 1/Nkp. (a) The �FG results improve with
increasing Nkp and nz, the number of z shifts; �IFG (and �IF) always
yield the exact value. (b) All results get closer to the exact value zero
with increasing Nkp while being almost independent of nz. Through-
out, �IFG improves upon �FG by two to three orders of magnitude.

respectively, in the DMFT self-consistency iteration. For this
particle-hole symmetric setup, we exploit SU(2) charge and
SU(2) spin symmetry, keeping Nkp = 5000 multiplets. Work-
ing with the shift ζ = �H (cf. Sec. III D), we particularly have
�̃IF

z = Ĩz/(1 + F̃z ).
Figures 3(a) and 3(b) show Im�ν for the metallic solution

and Re�ν for the insulating solution, respectively. Overall,
�FG and �IFG give consistent results for both phases. For
the metal, however, −Im�FG

ν overshoots to unphysical neg-
ative values at the point ν ≈ 2 · 10−3 and −Im�FG

ν ≈ 10−3,
while −Im�IFG

ν decreases smoothly down to −Im�ν ≈
10−6. Again, the two values are related quadratically by
Eq. (30). The red-dotted line in the plot gives the low-energy
behavior of Im�IFG

ν according to Eq. (15), i.e., by discarding
the erroneous (Im�FG

ν )2 in Eq. (30). For this highly symmet-
ric (and highly accurate) calculation, the result goes smoothly
down in energy, all the way to −Im�IFG

ν /D ∼ 10−13.
Turning to �IF in Fig. 3(a), the curve also shows a clean ν2

decay, but it has a peculiar dip at larger frequencies, ν ≈ 0.2.
The reason is that the spectral function in the metallic phase
(see inset) exhibits strongly reduced weight at precisely these
frequencies, separating the quasiparticle peak from the Hub-
bard bands. This leads to low values in |1 + F̃ν | (as explained
in Sec. III E) and artifacts in �IF

ν . In the insulating phase,
Fig. 3(b), Re�FG and Re�IFG nicely follow the 1/ν diver-
gence of the Mott insulator. There, |1 + F̃ν | should decrease to
zero for ν → 0. However, due to inaccuracies in the real part
obtained by Kramers–Kronig transform, |1 + F̃ν | levels off for
ν < 0.01, so that Re�IF

ν deviates from 1/ν. In total, for this

10-7
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101

10-5 10-3 10-1
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100

103
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(b)

FIG. 3. Self-energies for the single-orbital Hubbard model in
(a) the metallic and (b) the insulating phase (see spectral func-
tions in the insets) at U/D = 2.6. (a) While −Im�FG

ν overshoots to
negative values and −Im�IF

ν has artifacts when |1 + F̃ν | becomes
small, −Im�IFG

ν gives reliable results throughout. The red-dotted
line shows the low-energy behavior via Eq. (15) and follows the
ν2 decay smoothly down to −Im�IFG

ν /D ∼ 10−13. (b) Re�FG
ν and

Re�IFG
ν follow the 1/ν divergence of the Mott insulator, but Re�IF

ν

deviates from that as soon as |1 + F̃ν | levels off, due to inaccuracies
in Re F̃ν .

strongly correlated setup, �IF does not give reliable results
since the denominator 1 + F̃ν leads to numerical instabilities.

D. Multiorbital Hubbard models

We now turn to DMFT+NRG results for multiorbital Hub-
bard models on the Bethe lattice with the interaction given by
Eq. (3). We first consider two half-filled orbitals and different
bandwidths of D ≡ D1 = 1 and D2 = 0.5. Setting U = 1.8
and J = 0.3 yields a simple realization of an orbital-selective
Mott phase (OSMP). Indeed, in the absence of interorbital
hopping [17], the 1-orbital is metallic while the 2-orbital is a
Mott insulator with a gap in the spectrum (see inset of Fig. 4).
Note that, for the present calculation, the Wilson chains of the
two orbitals are interleaved [18,43] for extra efficiency.

The main panel of Fig. 4 shows the self-energy of the
metallic 1-orbital �1 at low energies and for various Nkp.
It is known that, due to the unscreened magnetic moments
of the 2-orbital, the 1-orbital is a singular Fermi liquid with
logarithmic singularities in �1 [20,44]. The black-dashed line
shows the expected a ln−2 |ν/T ∗| behavior; where a and T ∗
are fitting parameters. We multiplied a by an extra factor 1.2
to separate the curves for better readability. The numerical
data obtained with �FG shifts notably by increasing Nkp from
5000 to 30 000 SU(2) multiplets. For the lowest accuracy,
Im�FG

1,ν does not reproduce the analytically expected behavior
and still contains notable wiggles. Increasing Nkp, Im�FG

1,ν
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FIG. 4. Self-energies �1 of the metallic orbital in a two-orbital
realization of the OMSP (see spectral functions in the inset). As a
singular Fermi liquid, −Im�1,ν is expected to show a logarithmic
singularity. With �FG, this behavior is only seen for the largest Nkp.
By contrast, Im�IFG

1,ν perfectly agrees with the analytic curve and is,
on the given scale, already converged for the lowest Nkp = 5000. The
extra factor 2 on the axes is used to have convenient tick marks.

approaches the expected behavior but is not fully converged at
Nkp = 30 000. By contrast, �IFG always yields a stable curve,
in excellent agreement with the analytic form, and is, on the
given scale, already converged for the lowest number of kept
states, Nkp = 5000.

We close our presentation of numerical results with a three-
orbital setup of the Hund-metal category [31,45]. Having three
degenerate orbitals, we exploit the additional SU(3) symmetry
permitted by Eq. (3). There, we set U = 3, J = 0.5 in units
of the half bandwidth D = 1. At a filling of two, the spectral
function (see inset of Fig. 5) is highly asymmetric. The left
part of Aν exhibits an intriguing orbital-resonance shoulder
[18–20], and we thus focus on ν < 0 for the analysis of �.

Figure 5 shows |Im�ν | for both estimators �FG and �IFG

and forNkp = 3000, 4000, and 5000 SU(2)×SU(3) multiplets.
In this challenging, three-orbital setup, −Im�FG

ν overshoots
to unphysical negative values already at the point where −ν

and−Im� are around 10−2. For�FG calculations with higher
Nkp, this point is shifted only marginally to lower ν. Wig-
gles in Im�FG

ν are on the scale of 10−3 for the lower Nkp

and weaker but still present for the largest Nkp. Again, �IFG

eradicates the overshooting problem. Even for the lowest Nkp,
−Im�IFG

ν follows a clean ν2 decay down to values of 10−3,
before wiggles appear on the scale of 10−4. For the highest
Nkp = 5000,−Im�IFG

ν follows the ν2 decay down to values of
10−4 and hardly any wiggles are to be found. Again, the values
of |Im�FG

ν=0| and |Im�IFG
ν=0| relate quadratically [Eq. (30)].

The red dotted line shows Im�IFG
ν for |ν| → 0 according to

Eq. (15) and reaches down to values of −Im�IFG
ν /D ∼ 10−6.

It is clear from the plot that converging the standard es-
timator �FG with Nkp toward a clean ν2 decay down to, say,
10−3 is very slow and practically unfeasible. By contrast,�IFG

gives very accurate results already for much lower Nkp, and
its low-energy behavior can be extracted very cleanly from
Eq. (15). We hope that, in this way, our new self-energy
estimator will expand the class of systems where NRG can

10-3 10-2 10-1 100

10-4

10-2

100

3k
4k
5k

FIG. 5. Self-energies in a degenerate three-orbital Hund-metal
system. We focus on negative frequencies where the spectral func-
tion at filling 2 has a pronounced shoulder (see inset). −Im�FG

ν

overshoots to unphysical negative values for −ν/D � 10−2 for
all numerically feasible Nkp [SU(2)×SU(3) multiplets]. By con-
trast, −Im�IFG

ν never overshoots and follows the ν2 decay down
to −Im�IFG

ν /D = 10−3 and even 10−4 for Nkp = 3000 and 5000,
respectively. The red-dotted line shows the low-energy behavior
according to Eq. (15) and follows the ν2 decay smoothly down to
−Im�IFG

ν /D ∼ 10−6.

be used as a highly-accurate, real-frequency DMFT impurity
solver.

V. CONCLUSION

We presented a new self-energy estimator and showed that
it yields greatly improved results in NRG calculations. The
standard estimator�FG = F/G [see Eqs. (5) and (11)] follows
from an eom for G. While it yields much better results than
employing the Dyson equation, �FG still does not have all the
qualities one is used to from fdm NRG correlators, as Im�FG

is not properly normalized and can overshoot to positive val-
ues. Moreover, it often displays wiggles for very low energies.

By combining the eom for G with an analogous eom
for F , one can derive several � estimators [see Eqs. (23)–
(27)]. We identified �IFG = �H + I − F 2/G as particularly
well-suited for NRG. Indeed, we showed analytically that the
normalization of Im�IFG [Eq. (14)] and its low-energy be-
havior [see Eq. (15)] are determined directly by Im I , Im F ,
and ImG. Accordingly, there are no real parts (obtained by
Kramers–Kronig transform) involved, and Im�IFG is as reli-
able as the imaginary part of any fdm NRG correlator: it is
normalized, does not overshoot, and is extremely accurate at
low energies.

We examined numerical results for the Anderson impurity
model with a featureless hybridization and for the DMFT so-
lutions of one-, two-, and three-orbital Hubbard models. In all
cases, the above properties were confirmed and �IFG yielded
much better results than �FG. Furthermore, we found that
�IFG converged much faster with increasing the numerical ef-
fort (increasing the number of kept states Nkp) than �FG. This
is very important when applying NRG to multiorbital systems
where the maximal Nkp is limited by numerical resources and
finding accurate results for �FG was the major challenge.
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The estimator �FG = F/G is also frequently used for other
impurity solvers, such as exact diagonalization (ED) [36],
the density-matrix renormalization group (DMRG) [46,47]
and quantum Monte Carlo (QMC) [32,48–50]. Although our
analysis is targeted at NRG applications, we expect that �IFG

yields improved results for some of these methods, too.
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APPENDIX A: MATRIX-VALUED
CORRELATION FUNCTIONS

In the main text, we focused on α-diagonal fermionic cor-
relation functions, as they follow from Eqs. (1)–(3). Matrix-
valued correlation functions are obtained if the quadratic
Hamiltonian is generalized to

H0 =
∑
αα′

d†
α′εd,α′αdα +

∑
k,αα′

c†kα′εk,α′αckα

+
∑
k,αα′

(d†
α′Vk,α′αckα + H.c.) (A1)

and has nonzero off-diagonal (α �= α′) elements. Indeed, this
expression contains several matrices, which we denote by εd ,
εk , and Vk without subscripts α. Most results of the main text
are purposefully phrased in such a way that they directly gen-
eralize to matrix form upon removing α indices. An exception
is the hybridization function in Eq. (8), which is rephrased as


z =
∑
k

Vk (z − εk )
−1V †

k . (A2)

The matrix-valued correlation functions are denoted by Gz, Iz,
etc., without α indices. Their matrix elements are defined by

Gαα′,z = 〈〈dα, d†
α′ 〉〉z, Iαα′,z = 〈〈qα, q†α′ 〉〉z, (A3)

FL
αα′,z = 〈〈qα, d†

α′ 〉〉z, FR
αα′,z = 〈〈dα, q†α′ 〉〉z. (A4)

In this generalized setting, too, one computes with NRG
the Lehmann representation of a spectral function like

AG
ν = (Gν − G†

ν )/(−2π i). (A5)

Its diagonal elements fulfill the standard relation AG
αα,ν =

− 1
π
ImGαα,ν , while the off-diagonal elements are generally

complex. From the Lehmann representation, one also finds
AFL

ν = (AFR

ν )† as the generalization of FL
αα,z = FR

αα,z used in
the main text. The retarded correlator subsequently follows as

Gν = P
∫

dν ′ 1

ν − ν ′A
G
ν ′ − iπAG

ν . (A6)
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FIG. 6. Imaginary part of two self-energy components for the
Anderson impurity model with off-diagonal on-site energy and hy-
bridization. For both a diagonal (a) and off-diagonal (b) element of
�, the results from �IFG are smoother than those of �FG and free
from wiggles at low energies. The total weight

∫
dνA�

ν from �IFG

is in perfect agreement with the exact value 〈{q̃α, q̃
†
α′ }〉, cf. Eq. (35),

whereas that obtained with �FG deviates by roughly 15% in each
component.

The equations of motion (19) and (21) involving FL, to-
gether with their counterparts involving FR, were already
given in a way that directly generalizes to matrix form. The
same applies to the � formulas (22)–(27) if F without su-
perscript is understood as FL. Here, we gather the various
matrix-valued � estimators in both their “left” and “right”
forms:

�FG
z = FL

z G
−1
z (A7a)

= G−1
z FR

z , (A7b)

�IG
z = (�H + Iz )G

0
zG

−1
z (A7c)

= G−1
z G0

z (�
H + Iz ), (A7d)

�I
z = [

1 + (�H + Iz )G
0
z

]−1
(�H + Iz ) (A7e)

= (�H + Iz )
[
1 + G0

z (�
H + Iz )

]−1
, (A7f)

�IF
z = (

1 + FL
z

)−1
(�H + Iz ) (A7g)

= (�H + Iz )
(
1 + FR

z

)−1
, (A7h)

�IFG
z = �H + Iz − FL

z G
−1
z FR

z . (A7i)

Note that the last term can also be written as (FL
z )2G−1

z ,
G−1

z (FR
z )2. However, this spoils the invariance under shifts

(see Sec. III D) and is therefore numerically disadvantageous.
Finally, we present an exemplary set of numerical results

for matrix-valued self-energies. We consider an Anderson
impurity model, similar to the one from Sec. IVB, with a
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FIG. 7. Self-energies�FG and�IFG for the single-orbital Anderson impurity model, as in Fig. 1, but at a stronger interaction, �/U = 0.075,
and half filling. (a) Real part (minus the Hartree shift) and (b) imaginary part on a wide frequency window. Discrepancies reflect the fact that
� (0) is exact in �IFG but not in �FG. We restrict the frequency range to ν > 0 in light of particle-hole symmetry. The inset in (a) enlarges the
high-frequency decay with � (0)

ex /ν in gray. (c) Im�ν at low energies for an increasing number of kept states Nkp [SU(2)×SU(2) multiplets].
One observes that −Im�FG

ν overshoots to negative values for Nkp = 1000 and is not yet converged for the highest Nkp = 5000. By contrast,
−Im�IFG

ν shows a clean, nonnegative parabola and is, on the given scale, converged for Nkp as low as 500.

boxed-shaped hybridization function A

ν = �θ (D − |ν|)/π ,

and interaction strength U = 0.3 and temperature T = 10−8

in units of the half bandwidth D = 1. However, differently
from Sec. IVB, we promote the on-site energy εd and the
hybridization strength � to nondiagonal matrices:

εd =
( −0.2 0.05i

−0.05i −0.1

)
, � =

(
1 −i
i 1

)
. (A8)

This model exhibits only a U(1) charge symmetry, and
we choose the NRG parameters as 
 = 2, nz = 2, Nkp =
8000. The self-energies �FG and �IFG are obtained from their
matrix expressions (A7a) and (A7i). Figure 6 shows the imagi-
nary part of two exemplary components,�11 and�21. Overall,
both estimators yield consistent results. However, already on
the wide-frequency window, one observes that �IFG results
are much smoother than those of�FG. The notable differences
at large energies owe to the fact that �IFG produces the exact
total weight

∫
dνA�

ν as known from 〈{q̃α, q̃†α′ 〉 expectation
values, cf. Eq. (35), while the corresponding results from
�FG deviate by roughly 15% in each component. The insets,
enlarging the low-energy regime, reveal that, also in the non-
diagonal setting,�IFG is free from the wiggles present in�FG.
Remarkably, this applies not only to the diagonal self-energy
component where the imaginary part vanishes at ν = 0, but
also to the off-diagonal component where this value is finite.

APPENDIX B: ANDERSON IMPURITY MODEL AT
STRONG INTERACTION

Here, we give additional numerical results for the (α-
diagonal) single-orbital Anderson impurity model at strong

interaction. We choose the same parameter set as in Ref. [25]:
a box-shaped hybridization function of half bandwidth D = 1
and strength � = 0.015, an interaction value ofU = 0.2, and
εd = −0.1 corresponding to half filling. The particle-hole
symmetry allows us to exploit SU(2) charge and SU(2) spin
symmetry in the calculation, as already done in Sec. IVC.
We set 
 = 2 and nz = 4 as in Sec. IVB. The tempera-
ture T = 10−8 is again far below the Kondo temperature of
TK ≈ 2.06 · 10−4, following from the same formula as used in
Sec. IVB.

Figure 7 is analogous to Fig. 1; we restrict panels (a) and
(b) to positive frequencies in light of particle-hole symmetry.
The findings from Sec. IVB also hold analogously in the
current setting at strong interaction: �FG and �IFG are overall
consistent; deviations at large frequencies in Figs. 7(a) and
7(b) reflect the fact that the high-frequency asymptote in the
real part and the total weight in the imaginary part are exactly
fulfilled by �IFG

ν , whereas this is not the case for �FG
ν . The

agreement between Re�IFG
ν and �(0)

ex /ν for large ν can be
seen in the inset of Fig. 7(a).

The low-energy behavior of Im�ν for an increasing num-
ber of kept states Nkp [SU(2)×SU(2) multiplets] is compared
in Fig. 7(c). The wiggles of Im�FG

ν at low energies, as for
instance observed in Fig. 1(c), are absent in this particle-hole
symmetric setting. However, for Nkp = 1000, −Im�FG

ν still
overshoots to negative values on the scale of 10−3�. Increas-
ing Nkp to 2000 and 5000, −Im�FG

ν continues to shift: it
comes closer to the ν axis without fully reaching it, violating
Im�FG(0) = 0 with errors on the order of 10−3�. By con-
trast, −Im�IFG

ν shows a clean, nonnegative parabola, which,
on the given scale, has its vertex right at the origin and is
converged for Nkp as low as 500.
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